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Abstract—This paper addresses the problem of recovering
constant source terms in discrete dynamical systems described
by xn+1 = Axn +w, where xn represents the state in a Hilbert
space H, A is a bounded linear operator, and w is a source term
within a closed subspace W ⊆ H. Using time-space sampling
measurements, we establish necessary and sufficient conditions
for stable recovery of w, independent of the unknown initial
state x0. This work has practical applications in areas such as
environmental monitoring, where precise source identification is
critical.

I. INTRODUCTION

We consider the following discrete-time dynamical system:

xn+1 = Axn + w, n ∈ N, w ∈ W, (1)

where xn ∈ H is the n-th state of the system, and H is a
separable Hilbert space, A ∈ B(H) is bounded operator o H,
w ∈ W ⊆ H is the source or forcing term, and W is a closed
subspace of H.
The goal is to find the unknown source w ∈ W from the
space-time sample measurements

D(x0, w) = [⟨xn, gj⟩]n,j (2)

where ⟨xn, gj⟩ are obtained by inner products with vectors of a
Bessel system G = {gj}j≥1 ⊂ H. The index n ∈ N represents
discrete time, while j ∈ J stands for spatial location coded
by the index j.
The model (1) may describe by environmental monitoring
applications for identifying the locations and magnitude of
pollution sources (see Fig. 1 )1 . For this application, the goal
is to strategically place sensors across different locations to
collect relevant data that allows to monitor the pollutant from
the smokestacks.

This work is a follow up on the work [1] which was inspired
by several other articles [2]–[6]. Other work related to source
recovery and other problems in dynamical sampling can be
found in [7]–[24] and the reference therein.

II. THE MATHEMATICAL DESCRIPTION OF PROBLEM

As part of the main problem, given a dynamical system
(1), we wish to recover the source term w in a stable way
from the data provided in measurements D(x0, w). To describe
the notion of stable reconstruction we need to specify some
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Fig. 1: Smokestacks in an industrial zone of the city emit
pollutants. Four measuring devices {g1, . . . , g4} are strategi-
cally placed throughout the city to collect space-time data for
recovering the pollutant intensities w ∈ W emitted by the
smokestacks.

ambient spaces B in which the data sits together with an
appropriate norm ∥ · ∥B in each case. This setting will allow
us to describe the reconstruction operator R as a continuous
linear mapping from the data space B to the Hilbert space H
containing the source term w.

A. The measurement space

There are two cases of dynamical systems that we will wish
to consider. Briefly speaking, they are as follows.

(i) In the first case, the data matrix D(x0, w) =
[⟨xn, gj⟩]n∈[N ], j≥1 is obtained from finitely many itera-
tions, where [N ] = {0, 1, 2, . . . , N − 1}, N ≥ 1.

(ii) In the second setting, the data matrix D(x0, w) =
[⟨xn, gj⟩]n≥0, j≥1 stems from infinitely many time itera-
tions.

In the first case, all data measurements sit in the space
B(ℓ2,CN ), which can be described as the family of all
infinite matrices D = [dij ] with (finitely many) N rows



r1, . . . , rN , where each row ri = (di1, di2, . . . ) ∈ ℓ2. This
space B(ℓ2,CN ) is endowed with the norm

∥D∥ℓ2→CN =

N∑
i=1

 ∞∑
j=1

|dij |2
1/2

, for D ∈ B(ℓ2,CN ).

(3)
For the second case of infinitely many time iterations, we

will use the space Bs(ℓ2, ℓ∞) which is a closed subspace of
B(ℓ2, ℓ∞). The latter is the family of all infinite matrices for
which the norm

∥D∥ℓ2→ℓ∞ = sup
i≥1

 ∞∑
j=1

|dij |2
1/2

, for D ∈ B(ℓ2, ℓ∞),

(4)
is finite. The former space Bs(ℓ2, ℓ∞) is the closed subspace
consisting of matrices whose rows form a Cauchy sequence
in ℓ2. More explicitly, we provide the following definition.

Definition 1. The space Bs(ℓ2, ℓ∞) is the set of matrices
{D = [di,j ] : i ≥ 1, j ≥ 1} such that each row ri
of D belongs to ℓ2, and there exists a t ∈ ℓ2 such that
limi→∞ ∥ri − t∥ℓ2 = 0. The norm ∥D∥ℓ2→ℓ∞ is defined as
supi≥1 ∥ri∥ℓ2 .

Note that due to the equivalence of norms in CN ,we may re-

place
N∑
i=1

by sup
1≤i≤N

in (3), and so Bs(ℓ2,CN ) = B(ℓ2,CN ). A

detailed description of these spaces, in particular, an equivalent
description of Bs(ℓ2, ℓ∞), is available in [25]. Throughout the
general description of the spaces B(ℓ2,CN ) and B(ℓ2, ℓ∞), we
use the index i, commencing from the initial value 1, for the
rows of matrices involved in the discussion. However, when
analyzing dynamical systems, we adopt a different indexing
scheme, mostly denoted by n and starting at 0.

B. Stable recovery

Consider a dynamical system of the form (1) with measure-
ments D(x0, w) given by sampling through a Bessel sequence
G = {gj}j≥1 in H as in (2).

(i) If there are finitely many time iterations, we say that the
source term w ∈ W ⊆ H can be recovered from the data
D(x0, w) in a stable way if there exists a bounded linear
operator R : B(ℓ2,CN ) → H such that

R
(
D(x0, w)

)
= w

for all x0 ∈ H and all w ∈ W .
(ii) If we have infinitely many time iterations, we say that

the source term w ∈ W ⊆ H can be recovered from the
data D(x0, w) in a stable way if there exists a bounded
linear operator R : Bs(ℓ2, ℓ∞) → H such that

R
(
D(x0, w)

)
= w

for all x0 ∈ H and all w ∈ W .
The differences between the measurement spaces B(ℓ2,CN )

and Bs(ℓ2, ℓ∞), and consequently the emerging reconstruction
operators R, are profound and is discussed in depth in [25].

III. MAIN RESULTS

A. Reconstruction Conditions

The main results give necessary and sufficient conditions
on the set G = {gj}j≥1 for a stable reconstruction of w ∈ W
in two cases. The first case is when W = H, and the second
case is when W ⊊ H. The proof of the results can be found
in [25].

The first result is academic and concerns the situation where
W = H. From the point of view of smokestacks, it states
that there is a smokestack at each location in space. Thus,
it is neither the most interesting from the point of view of
applications nor is the mathematical result unexpected. In
some sense, we expect to have a sampling device (modeled
by gj) at every location in space j and that the set of vectors
{gj}j≥1 must form a frame. However, this problem gave us
insight into the more interesting problem in which W ⊊ H
described later.

Theorem 1. Let H be a separable Hilbert space, and let G =
{gj}j≥1 be a Bessel sequence in H. Consider the dynamical
system (1), with an arbitrary initial state x0 ∈ H. Then the
source term w ∈ H can be recovered from the measurements
D(x0, w) = [⟨xn, gj⟩]n∈[N ], j≥1 in a stable way for some 1 ≤
N < ∞ if and only if G = {gj}j≥1 is a frame for H.

The theorem above states that we only need finitely many
times in the space-time sampling scheme to recover the source
w, albeit we need infinitely many spatial devices at all spatial
locations G = {gj}j≥1. The case where W ⊊ H is much more
interesting. For example, H may be infinite-dimensional while
dimW = 4, modeling four smokestacks located in various
locations. Intuitively, we do not need to place measurement
devices at all spatial locations. In fact, we seek to find a
minimum number of locations that require a device. We think
that well-placed measuring devices of the order of 4 should
be sufficient. The mathematical statement of how many and
where to place them is stated in the following theorem.

Theorem 2. Let H be a separable Hilbert space, let W be
a closed subspace of H, and let G = {gj}j∈J be a Bessel
sequence in H. Consider the dynamical system (1) with an
arbitrary initial state x0 ∈ H, and with ∥A∥ < 1. Then each
source term w ∈ W of the system can be recovered from the
measurements D(x0, w) = [⟨xn, gj⟩]n≥0,j∈J in a stable way
if and only if {PW (I −A∗)−1gj}j∈J is a frame for W .

In this case, unlike the previous theorem, we need infinitely
many time samples in general. However, the cardinality #|G|
of G = {gj}j∈J and dimW should be of the same order.
Notice also that the vectors gj need not be in W . In fact,
it is not G = {gj}j∈J that must form a frame for W , but
{PW (I − A∗)−1gj}j∈J that forms a frame for W . In some
sense, this result tells us how many devices we need and where
to place them in order to recover w ∈ W . When W = H, it
is possible to use this theorem to recover Theorem 1 using
frame theory.
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