
Under review as a conference paper at ICLR 2024

STOCHASTIC SAFE ACTION MODEL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Hand-crafting models of interactive domains is challenging, especially when the
dynamics of the domain are stochastic. Therefore, it’s useful to be able to auto-
matically learn such models instead. In this work, we propose an algorithm to
learn stochastic planning models where the distribution over the sets of effects for
each action has a small support, but the sets may set values to an arbitrary number
of state attributes (a.k.a. fluents). This class captures the benchmark domains used
in stochastic planning, in contrast to the prior work that assumed independence of
the effects on individual fluents. Our algorithm has polynomial time and sample
complexity when the size of the support is bounded by a constant. Importantly,
our learning is safe in that we learn offline from example trajectories and we guar-
antee that actions are only permitted in states where our model of the dynamics is
guaranteed to be accurate. Moreover, we guarantee approximate completeness of
the model, in the sense that if the examples are achieving goals from some distri-
bution, then with high probability there will exist plans in our learned model that
achieve goals from the same distribution.

1 INTRODUCTION

In classical (high-level) task planning problems, a domain model describes the the interaction be-
tween an environment and the planning agent. A domain model is usually specified in a formal
language and includes an action model, which specifies which actions can be in a plan and how they
work. Such formal languages include STRIPS (Fikes & Nilsson, 1971) and PPDDL(Aeronautiques
et al., 1998), for example. The action model describes the effects of the actions on the environment’s
state, and the preconditions that must be true in order for the action to be taken. Creating a planning
domain model and action model, however, is a notoriously hard knowledge-engineering task. To
overcome the modeling problem, many approaches have been proposed to automatically learn the
domain model (Yang et al., 2007; Cresswell & Gregory, 2011; Zhuo & Kambhampati, 2013; Stern
& Juba, 2017; Aineto et al., 2019; Juba et al., 2021; Juba & Stern, 2022).

This problem is even more difficult when the domain dynamics is stochastic (Juba & Stern, 2022).
Indeed, in a deterministic environment, we can learn that some state attributes are not part of the
effect as long as they are not in the post transition state, and that they are part of an effect as long
as it appears in the post state but not the previous state. However, when the effects are stochastic,
it’s possible that an effect does not appear in the post state and yet has significant probability of
appearing. Consequently, we will need many observations; if there are even small errors in our
estimates of these probabilities, it can accumulate over the course of execution, leading to wildly
inaccurate estimates of the trajectory. Moreover, even in these simple domain models where effects
simply set some fluents to take specific values, we may not observe whether or not an effect occurred
if the fluent already had that value prior to taking the action. Therefore, in any given transition, we
generally cannot know for certain which fluents would have been set by the random effects of the
action, even when the values of the fluents are fully observed.

Our goal is to safely learn an stochastic action model that is guaranteed to be accurate and complete.
For safety, we use offline learning of the action model, assuming that demonstrations of competent
performance of the domain have been provided e.g., by a human controller. We also seek a guarantee
that the model is sufficiently accurate to capture and avoid potential danger during planning. This
is similar to offline reinforcement learning (Levine et al., 2020), except that we wish to learn a
reusable model that allows solving many goals, and we learn high-level task planning representations
(with concise PPDDL representations). To ensure accuracy, we produce a conservative model that

1

Under review as a conference paper at ICLR 2024

only permits actions to be taken when the learned model can be guaranteed to accurately describe
the actual distribution of possible transitions in the environment. We must further ensure that this
conservative model is permissive enough to allow successful performance in the domain. Previous
work that tackles safe learning of high-level task planning models of stochastic environments (Juba
& Stern, 2022) achieved safety and completeness under the assumption that the effects of actions on
each fluent are independent random variables. In this work, we relax that assumption and provide
the algorithm for a general stochastic environment.

We note that the prior work by Juba & Stern (2022) gave an efficient and safe method for learning
the preconditions of the actions that carries over to this more general problem. So, we focus on the
problem of learning the distribution of the random effects for each action a. Specifically we will use
method of moments originally pioneered by Pearson (1936) (Wooldridge, 2001; Hall, 2004; Ney,
1985; Gibson, 2021; Newey & West, 1987; Ogaki, 1993; Mátyás et al., 1999, for example) to learn
the distribution of effects. In particular, work by Anandkumar et al. (2014) demonstrated that the
method of moments may be efficiently realized using algorithms for tensor decomposition to fit a
wide class of probabilistic models, given a certain “identifiability” assumption: that the moments
uniquely determine the parameters. When the parameters are “generic” numbers, identifiability is
guaranteed; unfortunately, no number with a finite representation is “generic.” Worse, in our setting,
the full effects distribution actually may not be identifiable.

In this work, we overcome these challenges as follows: first, we observe that for the kinds of simple
discrete effects used in classical planning models (e.g., as appearing in the International Planning
Competition probabilistic planning track), a moderate number of moments suffices to ensure identi-
fiability of fully observed distributions (Sec. 2.3). Second, we observe that for an accurate model of
the domain, since the “unobserved” effects are those that leave the fluents with the same values, it is
sufficient for the observed marginals to be consistent. Third, we give a polynomial-time algorithm
to construct a set of stochastic effects that is consistent with the observed marginals. Finally, we
show that we can add some additional preconditions that ensure that the domain model only permits
actions to be taken when the effect distribution in our learned model is guaranteed to be close to the
true distribution; in particular, we argue that this does not significantly reduce the completeness of
the model, relative to the distribution on example trajectories.

1.1 RELATED WORK

A few approaches to learning planning models for stochastic domains have been previously pro-
posed. Pasula et al. (2007) formulated their learning problem as optimizing an objective that could
not be tractably optimized, and proposed a greedy heuristic solution. Unfortunately, this heuristic
cannot provide the soundness or approximate completeness guarantees that we seek. On the other
hand, Mourão et al. (2012) assumes that the actual domain is deterministic, and merely the obser-
vations are corrupted by stochastic noise. (They also do not provide the kind of guarantees that we
seek.) More recently, Mao et al. (2022) proposed to use a neural network model to predict missing
parts of an action model. While presumably quite powerful, this again comes at the price of any
expectation of soundness and prevents the representation from being used in standard planners.

Our algorithm for constructing consistent set of effects solves a problem resembling the analogue of
low-rank matrix completion (e.g., Candès & Recht (2012)) for tensors with a nonuniform observa-
tion model. Prima facie, this is not possible since the solution may not be identifiable. As we discuss
above, it is crucial for our problem that it is sufficient to only match the distributions on marginals
for which we have observations. The “completed” entries may, in general, be wildly off, and so the
additional preconditions are necessary to ensure that the model only permits policies to take actions
where the distribution of their effects is guaranteed to be modeled correctly. The upshot is that it
would not be possible for us to use an “off-the-shelf” algorithm for low-rank tensor completion for
our problem such as Yang et al. (2021), because the lack of identifiability in general ensures that at
least some of our instances would not satisfy the assumptions required for those algorithms.

2 PRELIMINARIES

We now recall our problem domain and the Stochastic Safe Action Model Learning (SAM) problem.
Subsequently, we will introduce some mathematical tools for the method of moments.

2

Under review as a conference paper at ICLR 2024

2.1 STOCHASTIC SAFE ACTION MODEL LEARNING PROBLEM

We formulate our problem in terms of grounded PPDDL representations for simplicity. We also
do not consider conditional effects or action costs. A domain D = ⟨F,A,M⟩ consists of a set F
of fluents, a set A of actions, and an action model M for these actions. A fluent f is a variable
representing a fact that may or may not hold in the environment at some point in time. A state s
is a vector of assignments of Boolean values s(f) to each respective fluent f in F . We will abuse
notation by denoting the indicator functions 1[s(f) = 1] as f and 1[s(f) = 0] as ¬f , which we refer
to as literals.

An action is an operation that can be taken by the planning agent to change the values in s, hence
transitioning to another state s′. The action model M defines preconditions preM (a) and effects
effM (a) for each action a ∈ A. A precondition of an action is a Boolean formula on the fluents,
with the interpretation that the precondition must be satisfied on the current state s to allow the action
a to be taken. In the domains we consider, these preconditions will be conjunctions, i.e., an AND of
literals, but we will produce action models in which the preconditions are conjunctive normal form
formulas: an AND of ORs of literals.

We consider a fragment of PPDDL in which the effects have a single “probabilistic” block
for each action: this means that for each action, there is a sequence of r partial assignments
e1, e2, . . . , er where each ei is associated with a respective probability pi. That is, when action
a is taken, with probability pi, the partial assignment ei will occur in the next state s′, and any
fluents not set in ei remain the same value as in the previous state s. We assume that the number
of effects r = r(a) for each a is at most a small constant, which is consistent with the benchmarks
used in the IPC probabilistic tracks, where the number of effects is generally below five. Note that
the action model thus specifies the probability of transitioning from a state s to another state s′ by
applying a, denoted by PrM [s′|a, s].
A PPDDL planning problem Π = ⟨D, sI , sG⟩ consists of a domain D, a starting state sI , and a
goal state sG. A solution to a PPDDL planning problem is a policy π, which is a mapping from the
states to the actions π : 2F → A. To execute a policy π on the planning problem Π is to repeatedly
apply actions according to the policy π given the current state, starting by applying action π(sI) at
the starting state sI . The execution ends when the goal state sG is reached, or some other condition
is satisfied, such as a time-out number of actions taken, after which the agent gives up. A trajectory
T is a an alternating sequence of states and actions of the form ⟨s0, a0, s1, a1, . . . , a|T |, s|T |⟩. We
assume the trajectory includes the values of each fluent at each state, and an identifier of which
action was taken for each transition. Each execution of a policy π creates a trajectory starting from
s0 = sI . The length |T | of trajectory T is the number of actions taken.

In the Stochastic Safe Action Model (SAM) Learning problem, we suppose that there is an arbitrary
probability distribution on problems in a fixed domain D and policies for D. Trajectories T =

{T1, . . . , Tm} are sampled by first drawing an independent ith pair of problem ⟨D, s
(i)
I , s

(i)
G ⟩ and

policy π(i) from the distribution, and then executing π(i) in D from s
(i)
I to produce Ti. We are

given this sample of trajectories (implicitly with identifiers for the names of fluents F and actions
A) as input. We produce as output an action model M̂ , thus giving a learned domain representation
D̂ = ⟨F,A, M̂⟩. For a given ϵ and δ, we require that with probability 1− δ, we obtain M̂ such that

1. “Safety” For any policy π that takes L legal actions in D̂ in expectation, the distribution
on trajectories obtained by π in D̂ is ϵ-close in total variation distance to the distribution
obtained by π in D, and the actions of π are legal in D as well.

2. “Approximate completeness” For problems ⟨D, s′I , s
′
G⟩ and policies π′ sampled indepen-

dently from the training distribution, with probability 1 − ϵ there is a policy π̂ that takes
legal actions in D̂ and such that the probability that π̂ reaches s′G from s′I in D̂ is less than
the probability that π′ reaches s′G from s′I in D by at most ϵ.

In our guarantees, in addition to the running time of an algorithm for this problem, we must show
that there is a polynomial bound on the number of trajectories m = m(|F |, |A|, L, ϵ, δ) needed to
obtain such an action model with probability 1− δ. This is the sample complexity of the problem.

3

Under review as a conference paper at ICLR 2024

2.2 TENSOR DECOMPOSITION

A degree-d, dimension-n tensor T is an array of numbers T [i1, . . . , id] indexed by d indices, where
each index ij ∈ [n] for j ∈ [d]. For example, a matrix is a degree-2 tensor. To decompose a tensor
T is to represent each of its element as the weighted sum of r products:

T [i1, . . . , id] =

r∑
k=1

wkv
(1)
k [i1] · · · v(d)k [id],

for vectors v(j)k of dimension n. Equivalently, we can write it as: T =
∑r

k=1 wkv
(1)
k ⊗ · · · ⊗ v

(d)
k ,

where ⊗ is the outer product of two vectors. The minimum number of terms r in such possible
decompositions is called the tensor rank of T . We refer to the set of vectors V (j) = [v

(j)
1 , . . . , v

(j)
r]

as the jth mode of this tensor decomposition, where j ∈ [d]. If all modes V (j) are the same
V = [v1, . . . , vr], we can write the decomposition as

T =

r∑
k=1

wkv
⊗d
k , (1)

where v⊗d
k is the outer product of a vector vk with itself d times. Note that for positive wk (or odd

d), by rescaling each vector vk by w
1/d
k , we can obtain the same tensor while dropping wk.

We know that in general, matrix decompositions are not unique. By contrast, the decomposition for
any “generic” tensor is known to be unique. This is a useful property, since it enables reconstructing
the components of a mixture of distributions in the method of moments, for example. However,
such guarantees for “generic” tensors have an exception of a set of tensors with measure zero. Since
the tensor we want to decompose involves binary vectors, which are discrete, they are not “generic”
and hence we cannot use such guarantees for “generic” tensors. In order to establish that the tensor
decomposition is unique, we leverage Kruskal’s theorem Kruskal (1977). It is the cornerstone of
establishing identifiability in many settings (Gu, 2022; Allman & Rhodes, 2008; Fang et al., 2019;
Culpepper, 2019; Chen et al., 2020; Fang et al., 2021; Xu, 2017).
Theorem (Kruskal (1977)). Suppose that a degree-3 tensor T has a decomposition

∑r
k=1 ak ⊗

bk ⊗ ck. Let A = [a1, . . . , ar], B = [b1, . . . , br], and C = [c1, . . . , cr] denote matrices with these
vectors as columns. Suppose every set of I columns of A are linearly independent, every set of J
columns of B are linearly independent, and every set of K columns of C are linearly independent.
If I + J + K ≥ 2r + 2, then this tensor decomposition involving r components is unique up to
permutation.

2.3 UNIQUE TENSOR DECOMPOSITION FOR BOOLEAN COMPONENTS

We now show that for any tensor power of Boolean components that is logarithmic in the number of
components, the tensor decomposition is unique. Thus, for the tensors corresponding to logarithmic
moments of a discrete distribution, the tensor decomposition recovers the components. This can
be implicitly seen in the results of Chen & Moitra (2019), but for completeness we will present it
here and include a full proof in the appendix. Suppose that we are given a degree-2k + 1 tensor∑r

i=1 wiv
⊗(2k+1)
i , where vi ∈ {0, 1}d. The goal is to obtain vi. We will re-shape it and obtain a

degree-3 tensor
∑r

i wivi ⊗ flat(v⊗k
i) ⊗ flat(v⊗k

i). Here flat(M) means that we rearrange the
tensor into a vector.

By Kruskal’s Theorem, we can argue that the tensor decomposition of
∑r

i vi ⊗ flat(v⊗k
i) ⊗

flat(v⊗k
i) is unique up to permutation. Indeed, suppose V = {v1, . . . , vr}, and V ⊗k =

{flat(v⊗k
1), . . . , f lat(v⊗k

r)}. According to Lemma 1, V ⊗k must be full rank when k = O(log(r)):

Lemma 1. For all k, n ∈ N and S ⊆ {0, 1}n, if |S| ≤ 2k+1 − 2, then S⊗k is linearly independent.

So, if V has at least two distinct 0-1 vectors, we can guarantee

rank(V) + rank(V ⊗k) + rank(V ⊗k) ≥ 2 + 2r.

Due to Kruskal’s Theorem, when k = O(log(r)), the decomposition is unique. Although the state-
ment of Kruskal’s Theorem does not include weights wi, we can recover these from the scaling:

4

Under review as a conference paper at ICLR 2024

Since vi is known to be a 0-1 vector, we can still read out the 0-1 information from the zero and
nonzero values of the decomposed vectors, and the value of wi will be the product of the the nonzero
values of the three modes for each i. Hence, we can obtain our decomposition by computing the
tensor decomposition of this d× kd× kd reshaping using any tensor decomposition method.

3 APPROACH TO STOCHASTIC SAM LEARNING

We now give an overview of our approach to solving the Stochastic SAM Learning problem.

3.1 LEARNING PRECONDITIONS

Preconditions can be learned following the same approach described in Juba & Stern (2022): For
the class of domains we consider, for each (s, a, s′) ∈ T , where T ∈ T , we have that if a literal is
not in the previous state then it cannot be a precondition. Precisely: ∀ℓ : s(¬ℓ) ⇒ ℓ /∈ pre(a) where
pre(a) is the preconditions of action a according to the actual action model M∗. We can thus learn
the preconditions by initially assuming every action has all the literals as preconditions, and then
applying this rule to remove literals from the preconditions as needed. More specifically, let T (a)
be all the ⟨s, a, s′⟩ triplets for action a. States s is the pre-state and s′ is the post-state of action a.
We (initially) set the preconditions of a to be pre(a) = {ℓ : ∀⟨s, a, s′⟩ ∈ T (a) s(ℓ)}.

3.2 LEARNING EFFECTS

We now need to recover the set of effects {ei} for each action a, where each effect ei has a corre-
sponding probability pi. These estimated stochastic effects, together with our learned preconditions,
will give an approximate action model M̂ solving the Stochastic SAM Learning problem. To re-
cover the effects from our observations, we first estimate moments of the effect indicator variables,
i.e., where the indicator for literal ℓ is 1 if ℓ was an effect of a and 0 otherwise. The values of these
indicators can only be determined from the data if ℓ was not true in the previous state. Since the
distribution of effects is assumed to only depend on the action taken (and not the previous state), we
can estimate these probabilities by conditioning on ℓ being false in the previous state, i.e., counting
the number of such transitions in the example trajectories. The problem that will arise is that we
may not have such states where a is taken and ℓ is false; we will return to this issue later.

For the purpose of illustration, let’s start with degree-3 moments: Let n = 4 be the total number of
literals ℓ. Suppose action a has r = 3 effects: e1 = {ℓ1, ℓ3}, e2 = {ℓ1, ℓ2}, and e3 = {ℓ2}. the
probability values we observed and approximated are

pℓi,ℓj ,ℓk := Pr [s′(ℓi), s
′(ℓj), s

′(ℓk)|s(¬ℓi), s(¬ℓj), s(¬ℓk), a] . (2)

These degree-3 moment data can be arranged into a 3-dimensional tensor Ta where each entry is the
probability pℓi,ℓj ,ℓk as in Equation 2 and indexed by three literals ℓi, ℓj , ℓk. Its value will be the sum
of all pi for all effects ei that induces ℓi, ℓj , ℓk being true under the condition that ¬ℓi,¬ℓj ,¬ℓk are
true. We can then extract the effects from these moment data. Indeed, the effects we want to recover
can be formulated as 0-1 vectors:

e1 = (1, 0, 1, 0), e2 = (1, 1, 0, 0), e3 = (0, 1, 0, 0)

The degree-3 moments can arranged into a degree-3 tensor as follows:

Ta =

r∑
i=1

pie
⊗3
i = p1e

⊗3
1 + p2e

⊗3
2 ,+p3e

⊗3
3 , (3)

where pi are the probabilities of these effects. Since Eq. 3 is a feasible decomposition of Ta, when
it is unique, it must be the only decomposition Ta. Thus, if we compute a tensor decomposition of
Ta, the vectors e1, e2, and e3 in the decomposition are the effects of the action a, with the associated
scalings p1, p2, p3 as the probabilities of the respective effects. As long as the number of effects ei
is small and the components are linearly independent (established in Sec. 2.3), then this problem can
be solved in polynomial time by existing algorithms (for example, see Schramm & Steurer (2017)
or Anandkumar et al. (2014)). Since the number of entries in this tensor is O(n3), we can find this
decomposition in O(poly(n)) time.

5

Under review as a conference paper at ICLR 2024

We find that the decomposition is indeed unique, following Sec. 2.3. Depending on the number of
effects r we have, we construct moments of degree d = O(log r):

pℓi1 ,...,ℓid := Pr[s′(ℓi1), . . . , s
′(ℓid)|s(¬ℓi1), . . . , s(¬ℓid), a] (4)

and the tensor decomposition we want to obtain is the following:

Ta =

r∑
i=1

pie
⊗d
i ,where ei ∈ {0, 1}n,∀i ∈ [r]. (5)

For such d, following Sec. 2.3, we can reshape this tensor into a degree-3 tensor and use the existing
tensor decomposition algorithms to obtain the unique decomposition solution vectors. Importantly,
since this decomposition is unique, and the 0-1 vectors ei are a feasible solution, it must be the only
solution. Hence we can retrieve the effect vectors for a from Ta. The size of Ta is nO(log(r)), so
our tensor decomposition algorithm will take poly(nO(log(r))) time to run. As long as r is a small
constant (not scaling with n), this may still be computed in polynomial time.

To empirically estimate each entry given by Eq. 4 in our moment tensor, we count the number of
times it occurs. This will give us a 1− δ confidence interval that contains the correct moment value
(w.p. < δ, it deviates from the true value by > ϵ):

pℓi1 ,...,ℓid =
#⟨s, a, s′⟩ ∈ T (a) : s′(ℓi1), . . . , s

′(ℓid), s(¬ℓi1), . . . , s(¬ℓid)
#⟨s, a, s′⟩ ∈ T (a) : s(¬ℓi1), . . . , s(¬ℓid)

±∆(ϵ, δ), (6)

where ∆(ϵ, δ) is a small positive number depending on ϵ and δ. We will take the empirical count
(mid-point of the interval) as our entry for the estimated tensor Ta (see appendix for a discussion).

The caveat of this is that our tensor may have many missing entries. For the entry that corresponds
to ℓi1 , . . . , ℓid , we count the appearing frequency when all three literals are affected by this action.
That is, we need to observe s(¬ℓi1), . . . , s(¬ℓid) = 1, and s(ℓi1), . . . , s(ℓid) = 0 in the previous
state s changing into s′(ℓi1), . . . , s

′(ℓid) = 1, and s′(¬ℓi1), . . . , s′(¬ℓid) = 0 in the next state s′,
due to the action a being taken. If such a pre-state never appears (or does not appear enough times),
then we do not have a valid estimate, and this entry will be considered missing.

Observe that when a literal ℓ is true in the pre-state, it does not matter whether ℓ is an effect of the
action; as long as ¬ℓ is not an effect, ℓ will remain true. Thus, for any given state s, if we consider
the minor of the tensor Ta given by the indices of literals that are false in s, it is enough for this
minor to be fully observed: the decomposition of the corresponding (minor of the) tensor identifies
the distribution of post-states for the action a. Note that these minors of the tensor form blocks that
are symmetrical w.r.t. the literals used as indices. For example, if the tensor is a matrix, then the
effect set {ℓi, ℓj} is represented in the identical entries (ℓi, ℓj) and (ℓj , ℓi). Therefore, to obtain an
accurate action model, it is sufficient to find a distribution of effects that is consistent with these
minors of the tensor. In the sections below we will discuss how to decompose the tensor with many
missing entries.

To guarantee safety, we add additional d-CNF preconditions that ensure that the agent only uses
action a for these fully-observed minors: for each missing entry of the tensor Ta corresponding to
the literals ℓi1 , . . . , ℓid , we add a clause ℓi1 ∨ . . . ∨ ℓid to pre(a). Note that by De Morgan’s law,
this is equivalent to the condition that not all of ℓi1 , . . . , ℓid are 0, so for any state s satisfying the
precondition, the minor for the literals that are false in s does not include this missing entry. Since
entries are only considered missing when states for which all of ℓi1 , . . . , ℓid are 0 rarely occur in
the training set, we will be able to guarantee that this additional precondition does not significantly
reduce the completeness of the action model.

4 ALGORITHM FOR LEARNING STOCHASTIC EFFECTS

Since there are missing entries in the data tensor Ta we construct for each action, we can not directly
apply existing tensor decomposition algorithms to find a tensor decomposition to recover the effect
vectors. Nevertheless, we saw that we only need to produce a distribution of effects that is consistent
with the moments that we can estimate. In this section, we will use this observation to develop an
algorithm that first decomposes observed minors of the tensor, then combines these partial effect
vectors to obtain a global effect vector.

6

Under review as a conference paper at ICLR 2024

Our algorithm is Alg. 1. We will give a detailed discussion for each component of the algorithm in
the following subsections.

input : O(log(r))-degree moments where each entry is the empirical estimate of Eq. 4, states
s ∈ T (a).

output: global effect vectors {e} and their probabilities {p}
1 begin
2 Reshape the moment tensor into degree-3 tensor.
3 Draw a random Gaussian vector g and contract the tensor blocks Bs for each s ∈ T (a) to

matrices using g
4 Compute the tensor decomposition for each block and obtain the 0-1 local effect vectors êi
5 while not all blocks have been reduced to zero do
6 while not all blocks have been tightened and their constraints dropped do
7 Fix a new λ: geometric search for its upper bound, then binary search for tightness.
8 Solve the SDP in Eq. 7,
9 Find the tight blocks Bs, and obtain their eigenvectors xi.

10 Un-whiten each xi to obtain ei, and eliminate all êi′ that are inconsistent with ei by
using Eq. 8. Drop the tight Bss’ constraints.

11 end
12 Combine un-whitened ei vectors into a global effect vector e.
13 Collect p = λm/⟨g, eim⟩ as the probability for the current global effect, where

λm = mini λi.
14 Subtract λme⊗2

i from their corresponding blocks.
15 end
16 end

Algorithm 1: Stochastic Effect Learning

We leverage the fact that these non-missing minors are symmetric to perform minor-wise decompo-
sition, where the local solution of a minor is always consistent with a global solution vi. Hence we
can formulate constraints to make the these local pieces consistent with a solution vi when they are
pieced together. Because the full tensor is low rank, the minor must also be low rank. We can use
existing methods to decompose them individually.

In order to efficiently piece them together, we will iteratively pull out the top eigenvector from each
block, and eliminate the vectors in other blocks that are inconsistent with it. Next round we will only
pull out a top eigenvector that is consistent with the previous vectors. Combining them together, we
obtain a global effect vector.

4.1 LOCAL DECOMPOSITION ALGORITHM

As long as we have uniqueness, we can use any suitable tensor decomposition method to obtain local
0-1 effect vectors from the minors. We will recall Jennrich’s algorithm (Harshman, 1970; Leurgans
et al., 1993) as the starting point for our combining method. We first reshape the higher degree tensor
into degree-3 tensor. So, suppose we are given a tensor T ∈ Rn3

, and it has decomposition T =∑r
i=1 a

⊗3
i with orthogonal vectors ai, . . . , ar ∈ Rn. Then we can compute its this decomposition

in the following steps:

Firstly, pick a Gaussian random vector g ∈ Rn, and compute the projection of T onto g:

Tu =

n∑
j=1

gjT [j, :, :] =

n∑
j=1

r∑
i=1

(gj · ai,j) · ai ⊗ ai =

r∑
i=1

⟨g, ai⟩ · ai ⊗ ai =

r∑
i=1

⟨g, ai⟩ · aia⊤i .

Here T [j, :, :] means the jth slice of tensor T . It can be viewed as a weighted sum of all the slices of
matrices of the tensor T . This process is also called contraction.

Then, we compute the singular value decomposition of Tg . Note that since a1, . . . , ar are orthogo-
nal, they are a set of candidate eigenvectors of Tg . Moreover, since g is Gaussian, the values ⟨g, ai⟩
are going to be distinct with probability one, and hence this singular value decomposition is unique.
The computed eigenvectors must be a1, . . . , ar.

7

Under review as a conference paper at ICLR 2024

In our case, ai = ei. (Note that Jennrich’s algorithm requires the rank r ≤ n, as we assume here.)

However, this requires a1, . . . , ar to be orthogonal. In our case ai = ei. Following Sec. 2.3, the 0-1
effect vectors are linearly independent when the degree of the moments is high enough, so we can
pre-process the tensor by whitening. That is, we will apply a whitening matrix W and compute:

TW
g = WTgW

⊤ =

r∑
i=1

⟨g, ei⟩ ·Weie
⊤
i W

⊤ =

r∑
i=1

⟨g, ei⟩ · (Wei)(Wei)
⊤.

Here, with the abuse of notation, we use ei to also denote itself raised to tensor power d = O(log(r)),
flat(e⊗d), when the context is not confusing. Therefore, for the degree-2 moment matrix M =∑r

i=1 eie
⊤
i , we choose W = M−1/2. One method of computing W is through PCA. So we will

be computing vectors ai = Wei by tensor decomposition. Then we can retrieve ei by computing
ei = W−1ai. We will refer to this as un-whitening in the following discussion.

4.2 COMPOSING THE FRAGMENTS

We will first sample a random Gaussian vector g to contract all the blocks, and pre-compute the
tensor decomposition for each block and obtain their unique local tensor decomposition vectors {êi}.
To obtain the global effect vector, we will extract one global eigenvector at a time, then subtract it
from the blocks by a common weight, similar to eigendecomposition. Since what we have is a set
of contracted blocks {Bs}s∈T (a), where each Bs = (T |ℓ:s(¬ℓ))

W
g|ℓ:s(¬ℓ)

(with the abuse of notation
T = T |ℓ:s(¬ℓ) referring to a local tensor block, and g = g|ℓ:s(¬ℓ) the corresponding projection of
the global random Gaussian vector, when the context is clear), to obtain the global eigenvector, we
extract one eigenvector from a block at a time, then eliminate inconsistent eigenvectors.

To do that, we first vary the eigenvalue bound λ and enforce the same lower bound λ for each block
B. Suppose we fix a bound λ. For each coordinate i, we want to have |(Bx)i| ≥ λ |xi|, where x’s
are the variables of the program. When λ is tight for some block B, it must be the top eigenvalue
for B and the projection of x on the coordinates in the block must be an eigenvector of B.

However, this requires |xi| to be correct, not just some upper bound on |xi|. Therefore, we use the
Rayleigh quotient definition of the eigenvalue, written as a semidefinite program (SDP) as follows:

maxλ s.t. ⟨Us, Bs⟩ ≥ λ,Us ∈ Λ, and ⟨Us, Us⟩ = 1 for all s ∈ T (a) (7)

where Λ is the set of all positive semidefinite matrices. We can factorize U = V ⊤DV for orthogonal
matrices V where D is diagonal and ⟨U,U⟩ = 1 enforces the diagonal to have norm 1. Then
⟨U,BU⟩ is maximized when V contains a top eigenvector v of B and D places all of the mass on
the top eigenvector. We can also view this as having some common big matrix variable U with
lots of projections Ps selecting out the blocks of U , and the constraints ⟨PsUP⊤

s ,BPsUP⊤
s ⟩ ≥ λ,

where Ps selects the correct minor of U for a big block B that contains all the small blocks Bs.

To find the correct λ, we will keep increasing λ geometrically until the program is infeasible, i.e., λ
is too large. Then we use binary search on this range to find λ that makes one block tight.

After finding the tight block and its eigenvector e, un-whiten it by applying W−1 and record this
top eigenvector as a fragment of the top global eigenvector we want to retrieve. Then look through
the pre-computed decomposed local vectors and find the vectors {êi′} that are inconsistent with the
current tight vector. Then we subtract the weighted rank-1 matrix of each inconsistent êi′ (contracted
with the same Gaussian vector) from its corresponding block B′:

B′ − wi′⟨êi′ , g⟩ê⊗2
i′ =

r∑
i=1

wi⟨êi, g⟩ê⊗2
i − wi′⟨êi′ , g⟩ê⊗2

i′ =
∑

∀i∈[r],i̸=i′

wi⟨êi, g⟩ê⊗2
i (8)

We then drop the constraints corresponding to the tight B, and we will continue the same procedure
for the rest of the blocks. When all blocks have been tightened and dropped, we will collect all the
un-whitened vector pieces together as one global vector e, and subtract λme⊗2

i from each block,
where λm = mini λi. We will collect p = λm/⟨g, eim⟩ as the probability for this global effect
vector e, where im = argminiλi. Then we will go back to the loop of tightening all the blocks
again. We will continue doing this until all the blocks are reduced to zero.

To show the correctness of this algorithm, we need to show that the algorithm finds a consistent
decomposition and terminates in polynomial time:

8

Under review as a conference paper at ICLR 2024

Lemma 2. After each iteration of the inner loop, some êi′ remains consistent with ei in each block.

Proof. First, we note that if a post-whitening 0-1 effect vector v is not orthogonal to another post-
whitening 0-1 effect vector v′, then v and v′ are consistent: Contrapositively, if ei and ej are distinct
effect vectors in some block, we have chosen W so that Wei and Wej are orthogonal.

As in the analysis of Jennrich’s algorithm, the eigenvalues of the contracted blocks are distinct
almost surely. Recall that positive-semidefinite matrices are a conic combination of rank-1 matrices.
Thus, for a fixed λ that is tight for a block, the solution to the SDP equation 7 is a rank-1 matrix on
that block, which is the tensor square of some vector v = Wei. For each other block, since the norm
of the Us matrix is 1, the Us are convex combinations of tensor squares of vectors, where these Us

are consistent with v⊗2 on any common coordinates. In particular, as above, the whitening of the
corresponding projection of ej ̸= ei onto the block gives a vector orthogonal to Wei. If the tensor
Bs for s only had support on components inconsistent with Us, we would have had ⟨Us, B⟩ = 0, but
⟨Us, B⟩ ≥ λ > 0. Therefore, for each block s, Us must have positive weight on a rank-1 component
that is the whitening of an effect vector consistent with ei.

Lemma 3. The outer loop terminates after at most r|T (a)| iterations.

Proof. At the end of each outer iteration, we subtract λmx⊗2
im

from each block. We notice that λm

is the eigenvalue and xim is the corresponding eigenvector of Aim . Therefore, the eigenvector is
eliminated from Aim ’s spectral decomposition. At the end of each iteration of the outer loop, we
eliminate at least one of the (at most) r eigenvectors of at least one of the (at most) |T (a)| blocks.
Therefore, within r|T (a)| iterations, all blocks will be reduced to 0.

Lemma 4. The effect probabilities are consistent with each block for a state appearing in T (a).

Proof. Due to the uniqueness of the tensor decomposition, each weight wi we compute is the same
as the true value in the latent tensor decomposition

∑r
i=1 wie

⊗d
i . Since the weight wi is the proba-

bility (see Eq. 5), the local distribution is consistent.

5 SAFETY AND COMPLETENESS

We now state the theoretical guarantees for Stochastic SAM. Due to space constraints, we discuss
their proofs in the appendix.

Theorem 1 (Safety). The probability any plan of length at most L′ succeeds in Stochastic SAM
action model is at most (1 + ϵ) times greater than under the true model M∗. In particular, all
actions that are applicable in a plan under the Stochastic SAM model are applicable to M∗.

Note that it’s immediate that the policy is applicable, since the precondition we produce is only
stronger than the original: If ℓ ∈ pre(a) for any action a, ℓ is also a precondition for a in the learned
action model.

Theorem 2 (Approximate Completeness). Fix a planner, and suppose that for the distribution D
over problems in a domain D, the planner produces a policy that solves the problem with prob-
ability p and runs for L steps in expectation, the draw from D, and the planner itself. Given
m ≥ poly(|A|, |F |O(log r), L, 1/ϵ, 1/δ) trajectories independently drawn from the planner on prob-
lems from D, with probability 1 − δ, the action model we learn satisfies the following: when a
problem Π is sampled from D and we execute a policy of length at most L/ϵ that maximizes the
probability of solving Π in the Stochastic SAM model with L′ = L/ϵ, Π is solved with probability
at least p−O(ϵ) (over both the draw of Π and execution in M∗).

The proofs closely follow Juba & Stern (2022), as we discuss in the appendix. The only difference
between the proofs of these theorems and Juba & Stern (2022) is that we change the dependence on
the number of fluents |F | to the dependence on the number of effects |F |O(log r).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, David Wilkins SRI, Anthony Barrett, Dave Christianson, et al.
Pddl— the planning domain definition language. Technical Report, Tech. Rep., 1998.

Diego Aineto, Sergio Jiménez Celorrio, and Eva Onaindia. Learning action models with minimal
observability. Artificial Intelligence, 275:104–137, 2019.

Elizabeth S Allman and John A Rhodes. The identifiability of covarion models in phylogenetics.
IEEE/ACM transactions on computational biology and bioinformatics, 6(1):76–88, 2008.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. Journal of machine learning research, 15:
2773–2832, 2014.

Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. Com-
mun. ACM, 55(6):111–119, jun 2012. ISSN 0001-0782. doi: 10.1145/2184319.2184343. URL
https://doi.org/10.1145/2184319.2184343.

Sitan Chen and Ankur Moitra. Beyond the low-degree algorithm: mixtures of subcubes and their ap-
plications. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pp. 869–880, 2019.

Yinyin Chen, Steven Culpepper, and Feng Liang. A sparse latent class model for cognitive
diagnosis. Psychometrika, 85(1):121–153, March 2020. ISSN 0033-3123. doi: 10.1007/
s11336-019-09693-2. Publisher Copyright: © 2020, The Psychometric Society. Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Stephen Cresswell and Peter Gregory. Generalised domain model acquisition from action traces. In
Proceedings of the international conference on automated planning and scheduling, volume 21,
pp. 42–49, 2011.

Steven Andrew Culpepper. An exploratory diagnostic model for ordinal responses with binary at-
tributes: Identifiability and estimation. Psychometrika, 84(4):921–940, 2019.

Guanhua Fang, Jingchen Liu, and Zhiliang Ying. On the identifiability of diagnostic classification
models. Psychometrika, 84:19–40, 2019.

Guanhua Fang, Jinxin Guo, Xin Xu, Zhiliang Ying, and Susu Zhang. Identifiability of bifactor
models. Statistica Sinica, 31:2309–2330, 2021.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Walton C Gibson. The method of moments in electromagnetics. CRC press, 2021.

Yuqi Gu. Blessing of dependence: Identifiability and geometry of discrete models with multiple
binary latent variables. arXiv preprint arXiv:2203.04403, 2022.

Alastair R Hall. Generalized method of moments. OUP Oxford, 2004.

Richard A. Harshman. Foundations of the parafac procedure: Models and conditions for an “ex-
planatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16:1–84, 1970.

Brendan Juba and Roni Stern. Learning probably approximately complete and safe action models for
stochastic worlds. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 9795–9804, 2022.

Brendan Juba, Hai S Le, and Roni Stern. Safe learning of lifted action models. In Proceedings of the
International Conference on Principles of Knowledge Representation and Reasoning, volume 18,
pp. 379–389, 2021.

10

https://doi.org/10.1145/2184319.2184343

Under review as a conference paper at ICLR 2024

Joseph B Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with appli-
cation to arithmetic complexity and statistics. Linear algebra and its applications, 18(2):95–138,
1977.

Sue E Leurgans, Robert T Ross, and Rebecca B Abel. A decomposition for three-way arrays. SIAM
Journal on Matrix Analysis and Applications, 14(4):1064–1083, 1993.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jiayuan Mao, Tomás Lozano-Pérez, Josh Tenenbaum, and Leslie Kaelbling. Pdsketch: Integrated
domain programming, learning, and planning. Advances in Neural Information Processing Sys-
tems, 35:36972–36984, 2022.

László Mátyás et al. Generalized method of moments estimation, volume 5. Cambridge University
Press, 1999.

Kira Mourão, Luke Zettlemoyer, Ronald P. A. Petrick, and M ark Steedman. Learning STRIPS
operators from noisy and incomplete observations. In Proc. 28th UAI, pp. 614–623, 2012.

Whitney K Newey and Kenneth D West. Hypothesis testing with efficient method of moments
estimation. International Economic Review, pp. 777–787, 1987.

Michel M Ney. Method of moments as applied to electromagnetic problems. IEEE transactions on
microwave theory and techniques, 33(10):972–980, 1985.

Masao Ogaki. 17 generalized method of moments: Econometric applications. 1993.

Hanna M. Pasula, Luke S. Zettlemoyer, and Leslie Pack Kaelbling. Learning symbolic models of
stochastic domains. JAIR, 29:309–352, 2007.

Karl Pearson. Method of moments and method of maximum likelihood. Biometrika, 28(1/2):34–59,
1936.

Tselil Schramm and David Steurer. Fast and robust tensor decomposition with applications to dic-
tionary learning. In Conference on Learning Theory, pp. 1760–1793. PMLR, 2017.

Roni Stern and Brendan Juba. Efficient, safe, and probably approximately complete learning of ac-
tion models. In Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pp. 4405–4411, 2017.

Jeffrey M Wooldridge. Applications of generalized method of moments estimation. Journal of
Economic perspectives, 15(4):87–100, 2001.

Gongjun Xu. Identifiability of restricted latent class models with binary responses. The An-
nals of Statistics, 45(2):675–707, 2017. ISSN 00905364. URL http://www.jstor.org/
stable/44245820.

Chengrun Yang, Lijun Ding, Ziyang Wu, and Madeleine Udell. Tenips: Inverse propensity sampling
for tensor completion. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings
of Machine Learning Research, pp. 3160–3168. PMLR, 13–15 Apr 2021. URL https://
proceedings.mlr.press/v130/yang21d.html.

Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples using
weighted max-sat. Artificial Intelligence, 171(2-3):107–143, 2007.

Hankz Hankui Zhuo and Subbarao Kambhampati. Action-model acquisition from noisy plan traces.
In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.

11

http://www.jstor.org/stable/44245820
http://www.jstor.org/stable/44245820
https://proceedings.mlr.press/v130/yang21d.html
https://proceedings.mlr.press/v130/yang21d.html

Under review as a conference paper at ICLR 2024

APPENDIX

A LINEAR INDEPENDENCE AMONG TENSOR POWERS OF BOOLEAN
VECTORS

We begin by identifying the smallest linear dependences among each tensor power of Boolean vec-
tors.

Theorem 3. For k ∈ N, let S ⊆ {0, 1}k+1 of size |S| < 2k+1 − 1 be given. Then the set S⊗k =
{x⃗⊗k : x⃗ ∈ S} is linearly independent; moreover, the only linear dependences for sets of size
2k+1 − 1 are of the form

∑
x̸⃗=0⃗ α(−1)w(x⃗)x⃗⊗k for α ̸= 0 where w(x⃗) denotes the Hamming weight

of x⃗,
∑

i xi.

Proof. We show this by induction on k. For k = 1, |S| ≤ 2, and indeed for any two distinct x⃗, y⃗ ∈
{0, 1}2, wlog we have in some coordinate i xi = 1 and yi = 0. Then in any linear combination
in which x⃗ has nonzero weight α, the ith coordinate is α · 1 ̸= 0, so S⊗1 = S is indeed linearly
independent. For |S| = 3, the vector (0, 0) would yield a linear dependence among two vectors
which we see is impossible. Thus the set must be {(1, 1), (1, 0), (0, 1)}. Suppose that (1, 1) has
weight α ̸= 0. Then (1, 0) and (0, 1) must have weight −α to yield a linear dependence.

Given the claim holds for k− 1, we show it for k. Consider any set S for which for some coordinate
i∗, more than 2k − 1 of the members x⃗ ∈ S have xi∗ = 0. Consider any linear combination
of S⊗k,

∑
x⃗∈S αxx⃗

⊗k. Then in the slice for i∗ of S⊗k, we would have the linear combination∑
x⃗∈S:xi∗=1 αxx⃗

⊗k−1
−i∗ ; since |{x⃗ ∈ S : xi∗ = 1}| ≤ 2k − 2 by hypothesis, the induction hypothesis

yields that these are linearly independent and the linear combination must be nonzero.

Now suppose some coordinate i∗ has 2k − 1 1s. Supposing that each of the slices have a linear
dependence, we see that the coefficient of x⃗⊗k−1

−i∗ in the linear dependence must be α(−1)w(x⃗−i∗)

by induction hypothesis. But then, we see that in the (i∗)k entry of the tensor, we must obtain∑k
w=1 α(−1)w

(
k
w

)
= α((1 − 1)k − 1) ̸= 0. Thus, any linear dependence must be for a set of

vectors that has 2k 1s in each coordinate.

But now we observe that we cannot have sufficiently high weight in all coordinates to obtain a linear
dependence: indeed, to have at least 2k 1s in all k + 1 coordinates, we would have total weight
at least (k + 1)2k. But, in dimension k + 1, observe that the greatest weight of 2k+1 − 2 distinct
vectors is obtained by omitting the vector 0⃗ and some weight-1 vector, which has total weight at
most

∑k+1
w=1 w ·

(
k+1
w

)
− 1 = (k + 1)2k − 1 (indeed, recall,

∑k+1
w=1 x

w
(
k+1
w

)
= (1 + x)k+1 − 1,

and taking derivatives,
∑k+1

w=1 wx
w−1

(
k+1
w

)
= (k+1)(1+x)k). Thus there is no linear dependence

among 2k+1 − 2 vectors.

For 2k+1−1 vectors, we again must use all vectors but 0⃗. We note that in each coordinate i, we must
thus use the standard basis vector e⃗(i), for which e⃗

(i)
−i = 0⃗ ∈ {0, 1}k. Thus, we see that the slices

for each ith coordinate have exactly 2k − 1 nonzero vectors participating, and hence by induction
hypothesis have weights α(−1)w(x⃗−i)−1. To obtain a linear dependence, now, we see that e⃗(i) must
have weight −α = α(−1)w(e⃗(i)) so that α +

∑k
w=1 α(−1)w+1

(
k
w

)
= −α − α((1− 1)k − 1) = 0,

as claimed.

Now we observe that for Boolean tensors, increasing the dimension cannot yield a smaller linearly
dependent set; this yields our final claim in this section, Lemma 1.

Lemma (1). For all k, n ∈ N and S ⊆ {0, 1}n, if |S| ≤ 2k+1−2, then S⊗k is linearly independent.

Proof. We proceed by induction on n. For n < k + 1, we observe that we can embed S into
{0, 1}k+1 by introducing 0 coordinates to each x⃗ to obtain a set of vectors S′, where the tensors x⃗⊗k

for x⃗ ∈ S are obtained on the minors of x⃗′⊗k
for x⃗′ ∈ S′. Then for all n ≤ k+1, the claim follows

from Theorem 3.

12

Under review as a conference paper at ICLR 2024

Supposing now that we have established the claim for n− 1 ≥ k+1, we proceed to show it for n as
follows: Suppose we have a linear dependence in S of size at most 2k+1 − 2, and consider each of
the coordinate-wise projections S−i = {x⃗−i : x⃗ ∈ S}. Since S−i has dimension n− 1, we know by
our induction hypothesis that S−i is linearly independent. Therefore, in our linear dependence, we
must have that for each x⃗′ ∈ {0, 1}n−1 in the image of the projection, there must be more than one
member of S such that the total weight in the linear combination sums to 0. But, since S is a set of
Boolean vectors, there are exactly two vectors in {0, 1}n that map to each x⃗′ ∈ {0, 1}n−1; we thus
find that if one is present in S, the other must be as well so that they may cancel. But now, we see
that indeed, for any x⃗ ∈ S, all of the vectors y⃗ of Hamming distance 1 from x⃗ are also in S. Indeed,
since all of {0, 1}n can be reached by a series of Hamming distance 1 neighbors from any member,
S must contain all of {0, 1}n. Then |S| = 2n ≥ 2k+2 > 2k+1 − 2, a contradiction.

B STOCHASTIC SAM IS PROBABLY SAFE AND APPROXIMATELY
COMPLETE: PROOFS OF THEOREMS 1 AND 2

Our main result for safety and completeness are essentially the Theorem 4 and Theorem 5 in Juba
& Stern (2022). It’s important to point out that they assume the independence of the effects on
individual fluents, while we do not. The proof closely follows Juba & Stern (2022). We will only
describe the major changes here.

The most important change we make is on Theorem 2 of Juba & Stern (2022), i.e., the safety claim:
For any δ > 0, any action applicable to the learned action model M is applicable to the true action
model M∗. In additional, with probability 1−δ/(2|F |d|A|), the learned effect probability p̂ is close
to the true p∗ in the sense that (1− ϵ)p̂ ≤ p∗ ≤ (1+ ϵ)p̂. This guarantees the effect probabilities we
learn are close to the true effect probabilities. The rest of the proof follows with minor modifications.

Let x = Pr[ℓ1, . . . , ℓd|¬ℓ1, . . . ,¬ℓd, a] be the true moment. Let x̂ = #a(ℓ1,...,ℓd∈s′)
#a(¬ℓ1,...,¬ℓd∈s) be the

empirical estimate of x. We want to make sure x̂ is close to x. Let’s develop multiplicative error to
derive the uncertainty interval of x. By using the Azuma-Hoeffding inequality in a similar fashion
as in Theorem 2 of Juba & Stern (2022)(replace their single literal ℓ with tuple ℓ1, . . . , ℓd), we can
have that for a tuple ℓ1, . . . , ℓd, its moment deviates from its empirical estimate by γ: |x∗ − x̂| ≤ γ

w.h.p. 1−δ, where γ =
√

ln(2/δ)
2#a(¬ℓ1,...,¬ℓd∈s) . To guarantee that all tuple estimates deviates by this γ,

we use union bound and get that with probability 1− |F |d|A|δ, all empirical estimates deviate from

their true moments by γ =
√

ln(2/δ)
2#a(¬ℓ1,...,¬ℓd∈s) , which is equivalent to say that with probability

1− δ, all empirical estimates deviate from their true moments by γ =
√

ln(2|F |d|A|/δ)
2#a(¬ℓ1,...,¬ℓd∈s) .

To develop multiplicative error, we do the following computation:

x̂− γ ≤ x∗ ≤ x̂+ γ

which implies that
(1− γ/x̂)x̂ ≤ x∗ ≤ (1 + γ/x̂)x̂

Let’s denote ϵ = γ/x̂, then we have

(1− ϵ)x̂ ≤ x∗ ≤ (1 + ϵ)x̂

We want ϵ = γ/x̂ to be small. To do that, let’s note

ϵ = γ/x̂ =

√
ln(2/δ)

2#a(¬ℓ1, . . . ,¬ℓd ∈ s)
· #a(¬ℓ1, . . . ,¬ℓd ∈ s)

#a(ℓ1, . . . , ℓd ∈ s′)
(9)

=

√
ln(2/δ)

2#a(ℓ1, . . . , ℓd ∈ s′)
·

√
#a(¬ℓ1, . . . ,¬ℓd ∈ s)

#a(ℓ1, . . . , ℓd ∈ s′)
(10)

≤

√
ln(2/δ)

2#a(ℓ1, . . . , ℓd ∈ s′)
·
√
1/µmin (11)

13

Under review as a conference paper at ICLR 2024

Here µmin = ϵ′

|A||F |d is a minimal rate of the tuple ℓ1, . . . , ℓd changing from ¬ℓ1, . . .¬ℓd. If it’s
below this threshold, then Pr[ℓ1, . . . , ℓd|¬ℓ1, . . . ,¬ℓd, a] is considered missing. We choose this
lower bound so that by invoking union bound on the missing probabilities over action and tuples, we
can argue that with high probability 1 − ϵ′ the trajectories drawn from the training set only invoke
actions in states where there are no missing entries. Hence the action’s preconditions are satisfied.

Therefore, to make ϵ is small, we just have to make sure #a(ℓ1, . . . , ℓd ∈ s′) is large enough. This
can be achieved by sampling large amount of trajectories. Indeed, let’s consider the independent
random event that for a trajectory there is at least one tuple ℓ1, . . . , ℓd ∈ s. By invoking Chernoff
bound in a similar fashion as in Lemma 2 of Juba & Stern (2022), we can get that large amount of
trajectories implies large #a(ℓ1, . . . , ℓd ∈ s′), which implies multiplicative error bound (1± ϵ) for
some small ϵ > 0.

Next, we develop the multiplicative error bound for the actual effect probabilities. First, let’s notice
that in our algorithm, the only operations we have are linear operations, which means we performed
some linear operations on all the estimated moment values to obtain the estimated effect probabilities
p̂. Let’s denote this linear operation as a matrix A, and develop the multiplicative deviation from the
true effect probability p∗ top̂ (with abuse of notation, here x means the vector of all moments):

(1− ϵ)Ax̂ ≤ Ax∗ ≤ (1 + ϵ)Ax̂

which implies
(1− ϵ)p̂ ≤ p∗ ≤ (1 + ϵ)p̂

Here Ax∗ = p∗ because the uniqueness of tensor decomposition.

The last major change to the proof of Juba & Stern (2022) is the transition probability
Prπ,M [Ti|Ti−1] in the derivation of the bounds for p̃ and p̂ in their Lemma 4 and Theorem 4.
Instead of using the product of individual ℓ’s transition probabilities Pr[ℓ|¬ℓ, a] due to the indepen-
dence assumption, we directly use the estimated effect probability p̂, which is (1± ϵ)p∗. Therefore,
we do not rely on the assumption of independence of the effects on individual fluents.

C AN EXAMPLE ILLUSTRATION OF THE EFFECTS-LEARNING ALGORITHM

We can consider a toy environment in which there are two Boolean fluents, top and left. Let’s
suppose there is an action updown that changes top to a uniform random value. Let’s suppose that
we order the four fluents as 1: top, 2: ¬top, 3: left, and 4: ¬left. The tensor has four 4×4 slices, but
we will never encounter states with complementary fluents satisfied. These will be missing entries,
which we’ll mark as ?. (We do know they must be zero, but this helps illustrate the general problem.)
The moments for the action updown are then as follows:

top ¬top left ¬left
top 1/2 ? 0 0
¬top ? ? ? ?
left 0 ? 0 ?
¬left 0 ? ? 0

Table 1: top slice

top ¬top left ¬left
top ? ? ? ?
¬top ? 1/2 0 0
left ? 0 0 ?
¬left ? 0 ? 0

Table 2: ¬top slice

The algorithm uses a random contraction, which we’ll suppose here is performed by summing over
distinct slices; note that the observed blocks only contain one literal per each fluent, and so the
contractions we consider only add a combination of one of the first two slices to one of the second

14

Under review as a conference paper at ICLR 2024

top ¬top left ¬left
top 0 ? 0 ?
¬top ? 0 0 ?
left 0 0 0 ?
¬left ? ? ? ?

Table 3: left slice

top ¬top left ¬left
top 0 ? ? 0
¬top ? 0 ? 0
left ? ? ? ?
¬left 0 0 ? 0

Table 4: ¬left slice

two slices, both of which are all 0 in the observed entries. So, the contracted observed blocks are
rescaled minors of the first two slices.

Let’s suppose that the algorithm first encounters the partial effect vector [1 ? 0 ?], which has eigen-
value 1/2. Since the effect of top to rules out the effect ¬top, we also fix the second component to
0. This eliminates the ¬top slice. Now, with the observed block given by top and ¬left, we find that
the ¬left effect must have value 0 – actually, this block must also be tight with eigenvalue 1/2 – so
we obtain a partial effect vector [1 0 0 0] with eigenvalue 1/2, corresponding to the effect that sets
top true with probability 1/2. We subtract the tensor cube [1 0 0 0]⊗3 weighted by 1/2 from the
tensor to obtain

top ¬top left ¬left
top 0 ? 0 0
¬top ? ? ? ?
left 0 ? 0 ?
¬left 0 ? ? 0

Table 5: top slice on second iteration

top ¬top left ¬left
top ? ? ? ?
¬top ? 1/2 0 0
left ? 0 0 ?
¬left ? 0 ? 0

Table 6: ¬top slice on second iteration

top ¬top left ¬left
top 0 ? 0 ?
¬top ? 0 0 ?
left 0 0 0 ?
¬left ? ? ? ?

Table 7: left slice on second iteration

top ¬top left ¬left
top 0 ? ? 0
¬top ? 0 ? 0
left ? ? ? ?
¬left 0 0 ? 0

Table 8: ¬left slice on second iteration

15

Under review as a conference paper at ICLR 2024

Now the nontrivial constraints correspond to vectors in the ¬top slice, e.g., the minor of that slice
with ¬top and left, which gives the vector [? 1 0 ?] with eigenvalue 1/2. Again, the effect not top
rules out the effect top, so this must be extended to [0 1 0 ?], and we eliminate the top slice, and the
¬top and ¬left minor, where the eigenvector assigns ¬left 0, is also tight with eigenvalue 1/2. Thus,
we obtain the vector [0 1 0 0] with eigenvalue 1/2. Subtracting this off gives an all zero tensor and
we are done. We see that we have thus obtained that the effects are top with probability 1/2, and
¬top with probability 1/2, which is correct.

16

	Introduction
	Related work

	Preliminaries
	Stochastic Safe Action Model learning Problem
	Tensor decomposition
	Unique Tensor Decomposition for Boolean Components

	Approach to Stochastic SAM Learning
	Learning preconditions
	Learning effects

	Algorithm for Learning Stochastic Effects
	Local decomposition algorithm
	Composing the fragments

	Safety and Completeness
	Linear Independence Among Tensor Powers of Boolean Vectors
	Stochastic SAM is Probably Safe and Approximately Complete: Proofs of Theorems 1 and 2
	An example illustration of the effects-learning algorithm

