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ABSTRACT

Concept bottleneck models (CBMs) are inherently interpretable neural network
models, which explain their final label prediction by high-level semantic concepts
predicted in the intermediate layers. Previous works of CBMs have succeeded
in achieving high-accuracy concept/label predictions without manually collected
concept labels by incorporating large language models (LLMs) and vision-language
models (VLMs). However, they still require training on the target dataset to learn
input-to-concept and concept-to-label mappings, incurring target dataset collections
and training resource requirements. In this paper, we present zero-shot concept
bottleneck models (Z-CBMs), which are interpretable models predicting labels and
concepts in a fully zero-shot manner without training neural networks. Z-CBMs
utilize a large-scale concept bank, which is composed of millions of noun phrases
extracted from caption datasets, to describe arbitrary input in various domains.
To infer the input-to-concept mapping, we introduce concept retrieval, which
dynamically searches input-related concepts from the concept bank on the multi-
modal feature space of pre-trained VLMs. This enables Z-CBMs to handle the
millions of concepts and extract appropriate concepts for each input image. In the
concept-to-label inference stage, we apply concept regression to select important
concepts from the retrieved concept candidates containing noisy concepts related
to each other. To this end, concept regression estimates the importance weight
of concepts with sparse linear regression approximating the input image feature
vectors by the weighted sum of concept feature vectors. Through extensive experi-
ments, we confirm that our Z-CBMs achieve both high target task performance and
interpretability without any additional training.

1 INTRODUCTION

One of the primary interests of the deep learning research community is developing a human-
interpretable model without performance degradation from black-box deep neural networks. Concept
bottleneck model (CBM, Koh et al. (2020)) is an inherently interpretable neural network model, which
aims to explain their final prediction via the concept predictions in the intermediate layers. CBMs are
trained on a target task in an end-to-end manner to learn the input-to-concept and concept-to-label
mappings. A concept is composed of high-level semantic vocabulary for describing objects of interest
in input data. For instance, CBMs can predict the final label “apple” from the linear combination
of the concepts “red sphere,” ”green leaf,” and “glossy surface.” In the original CBMs (Koh et al.,
2020), a concept set for explaining the prediction is defined by manual annotations for each sample,
incurring massive labeling costs greater than ones of the class labels. Another challenge of CBMs is
the degradation of target task performance from black-box models due to the long-tailed distribution
of the concepts, which is more difficult to learn than the label distribution (Zarlenga et al., 2022). To
reduce the costs and maintain the target task performance, Oikarinen et al. (2023) and Yuksekgonul
et al. (2023) automatically generate a concept set related to class labels by large language models
(LLMs, e.g., GPT-3 (Brown et al., 2020a)) and use the multi-modal embedding space of vision-
language models (VLMs, e.g., CLIP (Radford et al., 2021)) to learn the input-to-concept mapping
through similarities in the multi-modal feature space. Thanks to the powerful representations of VLMs
for mapping input-to-concept, this also alleviates the performance degradation problem of CBMs.

Although modern vision-language-based CBMs are free from manual pre-defined concepts and signif-
icant performance degradation, we argue that the practicality is still restricted by the requirements of
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Figure 1: Zero-shot concept bottleneck models (Z-CBMs). Z-CBMs predict concepts for input by
retrieving them from a large-scale concept bank. Then, Z-CBMs predict labels based on the weighted
sum of the retrieved concept vectors with importance weights yielded by sparse linear regression.

training input-to-concept and concept-to-label mappings on target datasets. In other words, CBMs are
not available without manually collecting target datasets and additional training of model parameters
on them. To overcome this limitation, this paper tackles a new problem setting of CBMs in a zero-shot
manner for target tasks, where we do not assume any target datasets and additional training. In this
setting, we can access pre-trained VLMs, but we cannot know the concepts composing target data in
advance. This setting forces models to perform two-stage zero-shot inference of input-to-concept
and concept-to-label for unseen input samples. The zero-shot input-to-concept inference can not
be solved by a naı̈ve application of VLMs as the ordinary zero-shot classification of input-to-label
because the concept vocabulary space is much larger than the label space, and the predicted concepts
should be a set, not a single label. Furthermore, the zero-shot concept-to-label inference is difficult
because the concept-to-label mapping is not obvious without target data and training, which are
unavailable in this setting. Therefore, we aim to answer the following research question: how can we
realize the zero-shot inference of CBMs without target datasets and training?

We present a novel CBM class called zero-shot concept bottleneck models (Z-CBMs). Z-CBMs
are zero-shot interpretable models that employ off-the-shelf pre-trained VLMs with frozen weights
as the backbone. Our key idea is to utilize a large-scale concept set called a concept bank, which
is composed of an abundant vocabulary for describing arbitrary input. In contrast to the previous
works that deal with only a few thousand concepts at most, our concept bank leverages millions of
concepts extracted from large-scale text caption datasets such as YFCC (Thomee et al., 2016) in order
to sufficiently cover broad domains for the zero-shot inference. In the input-to-concept inference
stage, Z-CBMs dynamically find concept candidates in a concept bank by retrieving them from
an input sample in the multi-modal feature space of VLMs (concept retrieval). Concept retrieval
leverages efficient and scalable similarity search algorithms, e.g., Faiss (Douze et al., 2024; Johnson
et al., 2019), allowing Z-CBMs to directly describe concepts with abundant vocabulary without
target task training. Then, in the concept-to-label inference stage, Z-CBMs reproduce the zero-shot
classification of input-to-label with the backbone VLM by selecting essential concepts from the
retrieved concepts. That is, Z-CBMs reconstruct the input visual feature vector by a weighted sum
of the concept candidate vectors and then predict the label in the same fashion as the input-to-label
zero-shot classification. To reconstruct the vector, we compute the importance weights of the concept
candidates by leveraging sparse linear regression such as lasso (concept regression). This enables
Z-CBMs to naturally select essential concepts from the retrieved concept candidates based on their
importance and achieve competitive performance with black-box VLMs.

Our extensive experiments on 12 datasets show that Z-CBMs can achieve competitive performance to
backbone VLMs and conventional CBMs. This indicates that the zero-shot inference of Z-CBMs is
practical enough for many domains. We also demonstrate that Z-CBMs provide important concepts
with their abundant concept vocabulary, which is beyond existing training-based CBMs in terms of
the similarity to input images. Furthermore, we show that human experts can intervene in Z-CBMs to
improve and analyze the performance through concept deletion/insertion experiments.

2 ZERO-SHOT CONCEPT BOTTLLNECK MODELS (Z-CBMS)

We propose Z-CBMs, which first predict interpretable concept candidates from a concept bank
composed of abundant vocabulary and then predict the class labels from the weighted sum of
predicted concepts (Fig. 1). Unlike conventional CBMs, Z-CBMs can perform a zero-shot inference,
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Figure 2: Concept retrieval and concept regression. (a) Concept retrieval searches concept candidates
close to an input image in the VLM feature space and returns the top-K concepts, enabling Z-CBMs
to use a large-scale concept bank for general input images. (b) Concept regression selects the
important concepts through sparse linear regression, which approximates the input feature vectors by
the weighted sum of concept candidate vectors with sparse coefficients. This sparse linear regression
is helpful in selecting unique concepts.

i.e., target datasets and additional training are not required. To realize the zero-shot inference,
Z-CBMs adopt concept retrieval and concept regression. Concept retrieval finds a set of the most
input-related concept candidates in a concept bank by querying an input image feature with a semantic
similarity search (Fig. 2a). Concept regression estimates the importance weights of the concept
candidates by sparse linear regression to reconstruct the input feature vector with the weighted sum
of concept candidate vectors (Fig. 2b). Finally, Z-CBMs provide the final label predicted by the
reconstructed vector and concept explanations with importance scores.

2.1 PROBLEM SETTING

We inherit the problem setting of existing vision-language-based CBMs (Oikarinen et al., 2023)
except for not updating any neural network parameters. The goal is to predict the final task label
y ∈ Y of input x ∈ X based on K interpretable textual concepts {ci ∈ C ⊂ T }Ki=1, where X , Y , C,
and T are the input, label, concept, and text space, respectively. To this end, we predict the final task
label by the bi-level prediction h ◦ g(x), where g : X → CK is a concept predictor and h : CK → Y
is a label predictor. This setting allows to access a vision encoder fV : X → Rd and a text encoder
fT : T → Rd provided by a VLM like CLIP (Radford et al., 2021), and a concept bank C = {ci}Nc

i=1.
The concept bank C is composed of unique concepts from arbitrary sources, including manually
collected concepts and automatically generated concepts by LLMs like GPT-3 (Brown et al., 2020a).

2.2 ZERO-SHOT INFERENCE

Concept Retrieval. We first find the most semantically closed concept candidates to input images
from the large spaces in a concept bank (Fig. 2a). Given an input x, we retrieve the set of K concept
candidates Cx ⊂ C by using image and text encoders of pre-trained VLMs fV and fT as

Cx = RetK
c∈C

(fV(x), fT(c)) = Top-K
c∈C

Sim(fV(x), fT(c)), (1)

where Top-K is an operator yielding top-K concepts in C from a list sorted in descending order
according to a similarity metric Sim. Throughout this paper, we use cosine similarity as Sim by
following Conti et al. (2023). Thanks to the scalability of the similarity search algorithm (Johnson
et al., 2019; Douze et al., 2024), Eq. (1) can efficiently find the concept candidates in an arbitrary
concept bank C, which contains millions of concepts to describe inputs in various domains.

Concept Regression. Given a concept candidate set Cx = {c1, ..., cK}, we predict the final label ŷ
by selecting essential concepts from Cx. Conventional CBMs infer the mapping between Cx and
ŷ by training neural regression parameters on target tasks, which incurs the requirements of target
dataset collections and additional training costs. Instead, we solve this task with a different approach
leveraging the zero-shot performance of VLMs. As shown in the previous studies (Radford et al.,
2021; Jia et al., 2021), VLMs can be applied to zero-shot classification by inferring a label ŷ by

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Zero-shot Inference of Z-CBMs
Require: Input x, concept bank C, image encoder fV, text encoder fT
Ensure: Predicted label ŷ, concepts Cx, importance weight WCx

1: # Retrieving top-K concepts from input
2: Cx ← RetK

c∈C
(fV(x), fT(c))

3: FCx ← [fT(c1), ..., fT(cK)]
4: # Predicting importance weights by sparse linear regression
5: WCx ← argminW∈RK ∥fV(x)− FCxW∥22 + λ∥W∥1
6: # Predicting label by importance weighted sum concept vectors
7: ŷ ← argminy∈Y Sim(FCxWCx , fT(ty))

matching input x and a class name text ty ∈ T in the multi-modal feature spaces as follows.

ŷ = argmax
y∈Y

Sim(fV(x), fT(ty)). (2)

If the feature vector fV(x) can be approximated by Cx, we can achieve the zero-shot performance of
black-box features by interpretable concept features. Based on this idea, we approximate fV(x) by
the weighted sum of the concept features FCx

= [fT(c1), ..., fT(cK)] ∈ Rd×K with an importance
weight W ∈ RK (Fig. 2b). To obtain W , we solve the linear regression problem defined by

min
W

∥fV(x)− FCx
W∥22 + λ∥W∥1. (3)

Through this objective, we can achieve W not only for approximating image features but also for
effectively estimating the contribution of each concept to the label prediction owing to the sparse
regularization ∥W∥1. Since Cx is retrieved from large-scale concept bank C, it often contains noisy
concepts that are similar to each other, undermining interpretability due to semantic duplication.
In this sense, the sparse regularization enhances interpretability since it can eliminate unimportant
concepts for the label prediction (Hastie et al., 2015).

Final Label Prediction. Finally, we compute the output label with FCx and W in the same fashion
as the zero-shot classification by Eq. (2), i.e.,

ŷ = argmax
y∈Y

Sim(FCxW, fT(ty)). (4)

Algorithm 1 shows the overall protocol of the zero-shot inference of Z-CBM. This zero-shot inference
algorithm can be applied not only to pre-trained VLMs but also to their linear probing, i.e., fine-tuning
a linear head layer on the fixed feature extractor of VLMs for target tasks. We confirm that this simple
application is competitive or superior to other vision-language-based CBMs that require additional
training of specialized modules in Sec 4.2.

3 IMPLEMENTATION

In this section, we present the detailed implementations of Z-CBMs, including backbone VLMs,
concept bank construction, concept retrieval, and concept regression.

Vision-Language Models. Z-CBMs allow to leverage arbitrary pre-trained VLMs for fV and
fT. We basically use the official implementation of OpenAI CLIP (Radford et al., 2021) and the
publicly available pre-trained weights.1 Specifically, by default, we use ViT-B/32 as fV and the base
transformer with 63M parameters as fT by following the original CLIP. In Section 4.6.1, we show
that other VLM backbones (e.g., SigLIP (Zhai et al., 2023) and OpenCLIP (Cherti et al., 2023)) are
also available for Z-CBMs.

Concept Bank Construction. Here, we introduce the construction protocols of the concept bank
C of Z-CBMs. Since Z-CBMs can not know concepts of input image features in advance, a concept
bank should contain sufficient vocabulary to describe the various domain inputs. To this end, we

1https://github.com/openai/CLIP
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extract concepts from multiple image caption datasets and integrate them into a single concept
bank. Specifically, we automatically collect concepts as noun phrases by parsing each sentence
in the caption datasets including Flickr-30K (Young et al., 2014), CC-3M (Sharma et al., 2018),
CC-12M (Changpinyo et al., 2021), and YFCC-15M (Thomee et al., 2016); we use the parser
implemented in nltk (Bird, 2006). At this time, the concept set size is |C| ≈ 20M.

Then, we filter out nonessential concepts from the large base concept set according to several policies.
We basically follow the policies introduced by Oikarinen et al. (2023), which removes (i) too long
concepts, (ii) too similar concepts to each other, and (iii) too similar concepts to target class names
(optional). However, the second policy is computationally intractable because it requires the O(|C|2)
computation of the similarity matrix across all concepts. Thus, we approximate this using a similarity
search by Eq. (1) that yields the most similar concepts. We retrieve the top 64 concepts from a concept
and remove them according to the original policy. Finally, after filtering concepts, we obtain the
concept bank containing |C| ≈ 5M concepts. We also discuss the effect of varying caption datasets
used for collecting concepts in Sec. 4.2 and 4.6.2.

Similarity Search in Concept Retrieval. Concept retrieval searches the concept candidates from
input feature vectors. To this end, we implement the concept search component by the open source
library of Faiss (Johnson et al., 2019; Douze et al., 2024). First, we create a search index based on the
text feature vectors of all concepts in a concept bank C using fT. At inference time, we retrieve the
concept vectors via similarity search on the concept index by specifying the concept number K. We
found that the choice of K is important because it determines the trade-off between final accuracy
and search speed; larger K contributes to finding more effective concepts in concept regression but
increases the time for concept retrieval. We set K = 2048 as the default value and empirically show
the effect of K in Sec. 4.6.

Sparse Linear Regression in Concept Regression. In concept regression, we can use arbitrary
sparse linear regression algorithms, including lasso (Tibshirani, 1996), elastic net (Zou & Hastie,
2005), and sparsity-constrained optimization like hard thresholding pursuit (Yuan et al., 2014). The
efficient implementations of these algorithms are publicly available on the sklearn (Pedregosa
et al., 2011) and skscope (Wang et al., 2024) libraries. The choice of sparse linear regression
algorithm depends on the use cases. For example, lasso is useful when one wants to naturally obtain
important concepts from a large number of candidate concepts, elastic net is effective for high target
task performance, and sparsity-constrained optimization satisfies rigorous requirements regarding the
number of concepts for explanations. We use lasso with λ = 1.0× 10−5 as the default algorithm, but
we confirm that arbitrary sparse linear regression algorithms are available for Z-CBMs in Sec 4.6.

4 EXPERIMENTS

We evaluate Z-CBMs on multiple visual classification datasets and pre-training VLMs. We conduct
quantitative experiments on two scenarios: zero-shot and training head; the former uses pre-trained
VLMs for inference without any training, while the latter learns only the classification heads. We
also provide qualitative evaluations of output concepts by comparing Z-CBMs with existing vision-
language-based CBMs that require additional training.

4.1 SETTINGS

Datasets. We used 12 image classification datasets containing various image domains: Aircraft
(Air) (Maji et al., 2013), Bird (Welinder et al., 2010), Caltech-101 (Cal) (Fei-Fei et al., 2004)
Car (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Euro) (Helber et al., 2019), Flower
(Flo) (Nilsback & Zisserman, 2008), Food (Bossard et al., 2014), ImageNet (IN) (Russakovsky et al.,
2015), Pet (Parkhi et al., 2012), SUN397 (Xiao et al., 2010), and UCF-101 (Soomro, 2012). We
use these datasets since they are often used to evaluate the zero-shot generalization performance of
VLMs (Radford et al., 2021; Zhou et al., 2022). For the zero-shot scenario, we used the test sets
except for ImageNet, and the official validation set for ImageNet. In the training head scenario, we
randomly split a training dataset into 9 : 1 and used the former as the training set and the latter as the
validation set. For ImageNet, we set the split ratio 99 : 1.
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Table 1: Top-1 accuracy on 12 classification datasets with CLIP ViT-B/32.
Setting Method Air Bird Cal Car DTD Euro Flo Food IN Pet SUN UCF Avg.

Zero-Shot

Zero-shot CLIP 18.93 51.80 24.50 60.38 43.24 35.54 63.41 78.61 61.88 85.77 61.21 59.48 53.73
ConSe 0.99 1.87 11.68 1.42 12.23 15.32 3.51 10.99 25.19 19.16 9.65 17.76 10.82

Z-CBM (Flickr30K) 18.27 46.70 24.26 56.46 43.56 34.32 59.80 78.17 61.52 85.46 62.23 60.67 52.62
Z-CBM (CC3M) 18.09 48.53 24.30 55.58 43.51 35.09 61.44 78.89 62.68 85.29 62.18 60.45 52.98
Z-CBM (CC12M) 18.66 51.03 24.42 59.22 43.72 36.73 63.31 79.26 62.42 85.98 62.11 60.75 52.98
Z-CBM (YFCC15M) 18.81 51.87 24.54 58.72 43.40 35.96 63.38 79.22 62.42 85.94 62.07 60.96 53.97
Z-CBM (ALL) 19.00 51.75 25.42 58.87 43.86 36.12 63.78 82.44 62.70 85.95 62.89 61.49 54.28

Training Head

Linear Probe CLIP 45.06 72.72 95.70 79.75 74.84 92.99 94.02 87.06 68.54 88.72 65.20 83.14 78.98
Label-free CBM 42.72 67.05 94.12 71.81 74.31 91.30 91.23 81.91 58.00 83.29 62.00 80.68 74.87
LaBo 43.43 69.38 94.82 77.78 73.59 88.17 91.67 84.29 59.16 87.24 57.70 81.26 74.04
CDM 44.58 69.75 95.78 77.27 74.80 92.16 92.99 81.85 62.52 86.59 56.48 81.93 76.39
LP-Z-CBM (ALL) 44.80 71.67 95.50 78.09 73.94 91.22 93.28 86.73 67.99 88.58 65.53 82.37 78.31

Zero-shot Baselines. Since there are no existing zero-shot baselines of CBMs, we compare our
Z-CBMs with the zero-shot inference of a black-box VLM and ConSe (Norouzi et al., 2014) in target
task performance. For more details, please see Appendix A.

Training Head Baselines. To compare Z-CBMs with existing vision-language-based CBMs, we
evaluated models in a relaxed setting where the models are trained on target datasets. In this setting,
we applied Z-CBMs to linear probing of VLMs, i.e., fine-tuning only a linear head layer on the
feature extractors of VLMs; we refer to this pattern LP-Z-CBM. As the baselines, we used Lable-free
CBM (Oikarinen et al., 2023), LaBo (Yang et al., 2023), and CDM (Panousis et al., 2023). We
implemented and performed these methods based on their publicly available code repositories.

Evaluation Metrics. We report top-1 test accuracy as the target classification task performance. For
evaluating predicted concepts, we measured CLIP-Score (Radford et al., 2021; Hessel et al., 2021),
which is the cosine similarity between image and text embeddings on CLIP, i.e., higher is better.
CLIP-Score between input images and concepts intuitively indicates how well the predicted concept
explains the image. Thus, it performs as an indicator to evaluate the quality of the input-to-concept
inference. Concretely, we measured averaged CLIP-Scores between test images and the predicted
concept texts, where we extracted the top 10 concepts from sorted concepts in descending order
by absolute concept importance scores for each model. Furthermore, we used concept coverage to
evaluate the Z-CBM’s predicted concepts. Concept coverage |{cZi } ∩ {cRi }|/|{cRi }| is the ratio of
overlap between Z-CBM’s concepts with non-zero coefficients {cZi } ⊂ C and reference concepts
{cRi } ⊂ C predicted by vision-language-based CBMs that require training. This metric evaluates the
extent to which the Z-CBM yields concepts that are close to those derived in the target training when
using the shared concept bank C. Specifically, we computed the average concept coverage across
test samples by using the GPT-generated concept banks by Oikarinen et al. (2023), and reference
concepts of Label-free CBMs; we used concepts with contribution scores greater than 0.05 as {cRi }
by following Oikarinen et al. (2023).

4.2 ZERO-SHOT INFERENCE ON MULTIPLE DATASETS

Table 1 summarizes the top-1 accuracy for each dataset and the average scores (Avg.). It also shows
the results when varying the concept bank of Z-CBMs; the brackets in the Z-CBM rows represent the
caption dataset used to construct the concept bank. In the zero-shot setting, we surprisingly observed
that our Z-CBMs outperformed the zero-shot CLIP baseline in multiple cases (10 of 12 datasets). This
may be due to the fact that Z-CBMs approximate image features with the weighted sum of concept
text features, reducing the modality gap between the original image and the label text (see Sec. B.1).
The ablation study of concept banks demonstrates that higher accuracy tends to be achieved by larger
concept banks. This indicates that image features are more accurately approximated by selecting
concepts from a rich vocabulary. We further explore the impacts of concept banks in Sec. 4.6.2.

In the training head setting, Z-CBMs based on linear probing models (LP-Z-CBMs) reproduced the
accuracy of linear probing well. Further, LP-Z-CBMs stably outperformed existing methods that
require additional training for special modules. This suggests that our concept retrieval and concept
regression using the original CLIP features are sufficient for input-to-concept and concept-to-label
inference in terms of target task performance.
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Table 2: CLIP-Score on 12 classification datasets with CLIP ViT-B/32. We compute the averaged
CLIP-Scores between images and concepts with top-10 absolute coefficients.

Method Air Bird Cal Car DTD Euro Flo Food IN Pet SUN UCF Avg.
Label-free CBM 0.6730 0.7695 0.6934 0.7030 0.6475 0.7310 0.6980 0.6875 0.7056 0.7104 0.7180 0.6580 0.6912
LaBo 0.6817 0.7517 0.7001 0.7197 0.6304 0.7196 0.7063 0.7505 0.7228 0.7031 0.7046 0.6863 0.6980
CDM 0.6853 0.7453 0.6958 0.7104 0.6776 0.7359 0.7154 0.7076 0.7445 0.7213 0.6801 0.6928 0.7010
Z-CBM (ALL) 0.7712 0.7822 0.7693 0.7545 0.7648 0.7323 0.7576 0.7590 0.7746 0.7397 0.7843 0.7751 0.7645

Table 3: Concept coverage (%) of Z-CBMs on 12 classification datasets with CLIP ViT-B/32.
Method Air Bird Cal Car DTD Euro Flo Food IN Pet SUN UCF Avg.
Z-CBM (Cosine Similarity) 66.83 41.42 37.13 60.95 71.85 90.37 50.39 77.50 48.80 90.07 29.76 37.04 58.51
Z-CBM (Linear Regression) 96.45 81.98 51.82 58.06 91.40 90.91 90.82 90.88 71.51 95.37 40.84 62.43 76.87
Z-CBM (Lasso) 98.95 86.01 69.97 96.43 94.26 91.91 93.57 96.74 86.92 97.37 42.86 68.20 85.27

4.3 QUANTITATIVE EVALUATION OF PREDICTED CONCEPTS

Here, we evaluate the predicted concepts of Z-CBMs from the perspective of their factuality to
represent image features. For the quantitative evaluation, we measure CLIP-Score and concept
coverage across the 12 datasets used in the previous section.

Table 2 shows the results of CLIP-Score. For all datasets, our Z-CBM predicted concepts that are
strongly correlated to input images, and it largely outperformed the CBM baselines that require
training. This large difference can be caused by the choice of concept bank. Existing CBMs
perform concept-to-label inference with learnable parameters, making it difficult to handle millions
of concepts at once. Thus, they often limit their concept vocabularies to a few thousand to ensure
learnability. In contrast, our Z-CBMs can treat millions of concepts without training by dynamically
retrieving concepts of interest and inferring essential concepts with sparse linear regression. That
is, paradoxically, Z-CBMs succeed in providing accurate image explanations through an abundant
concept vocabulary by eliminating training.

On the other hand, Table 3 shows the results of concept coverage when using the concepts predicted
by Label-free CBMs as the reference concepts. We also list the results of Z-CBMs using cosine
similarity on CLIP and linear regression to compute the importance coefficients instead of lasso;
since all of their coefficients are non-zero values, we measured the concept coverage scores by using
the top 128 concepts. Z-CBMs with lasso achieved the best concept coverage; the average score was
85.27%. This indicates that Z-CBMs can predict most of the important concepts found by trained
CBMs, and sparse linear regression is a key factor for finding important concepts without training.

4.4 QUALITATIVE EVALUATION OF PREDICTED CONCEPTS

Fig. 3 shows the qualitative evaluation of predicted concepts by Label-free CBMs and Z-CBMs with
linear regression and lasso when inputting the ImageNet validation examples. Overall, Z-CBMs tend
to predict realistic and dominant concepts that appear in input images. For instance, in the first row,
Z-CBM predicts various concepts related to dogs, clothes, and background, whereas Label-free CBM
focuses on clothes and ignores dogs and background. This difference may be caused by the fact
that the image-to-concept mapping of Z-CBMs is not biased toward the label information because
it does not train on the target data. Conversely, like the second row, Z-CBMs tend to concentrate
on global regions and miss the concepts in local regions; this can be alleviated by intervening the
concept prediction (see Sec. 4.5).

For the comparison of linear regression and lasso, we can see that Z-CBM (Linear Reg.) tends to
produce concepts that are related to each other. In fact, quantitatively, we also found that the averaged
inner CLIP-Scores among the top-10 concepts of lasso is significantly lower than that of linear
regression (0.6855 in lasso vs. 0.7826 in linear regression). These results emphasize the advantage of
using sparse regression like lasso in concept regression to reduce redundancies of the concepts and to
select mutually exclusive concepts based on the concept bank containing abundant vocabulary.

4.5 EVALUATION OF HUMAN INTERVENTION

Human intervention in the output concept is an important feature shared by the CBM family for
debugging models and modifying the output concepts to make the final prediction accurate. Here,
we evaluate the reliability of Z-CBMs through two types of intervention: (i) concept deletion and
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Label-free CBM Z-CBM (Linear Reg.)
GT: West Highland White Terrier

wheaten terrier mix (2.650) 
white wheaten dog (2.474) 
dog costume (2.174)
dog coat (2.027)
animal coat (2.024)

Predicted: Pajamas Predicted: Sealyham Terrier

bath robe (3.62)
matching trouser (2.01)
apparel (0.69)
baby product (0.16)
sewing pattern (0.12)

GT: Ox

pastoral labor (2.889)
popular rural mobile (2.579) 
rural truck road (2.162)
wagon driver (2.149) 
person in truck (2.006)

Predicted: Ox Predicted: Bullock Cart

cows (3.09)
a two wheeled carriage (1.33)
a mahout (0.98)
agriculture (0.70)
transportation (0.52)

GT: Chain Link Fence

NOT macro rope (2.408)
NOT rope macro (2.117)
macro rust (1.933) 
barded wire tree  (1.885) 
NOT sambucas stem (2.040)

Predicted: Hook Predicted: Turnstile

locking shackle (1.35)
a rod (1.33)
hangs from a wire (0.97)
a handle for leverage (0.41)
a loop for hanging (0.38)

GT: Toy Store

game collections(1.869)
game room (1.683)
comic book place (1.569)
comic room (1.490)
NOT banner store (1.435)

Predicted: Toy Store Predicted: Toy Store

a comic store (4.38)
a variety of toys (3.74)
toys (0.04)
retailer (0.04)
soft toys (0.01)

Z-CBM (Lasso)

NOT maltese dog terrier (0.433)
beige blanket coat (0.412) 
white wheaten dog (0.389) 
modern sofa (0.269)
cosy doggy jumper (0.247)

Predicted: West Highland White Terrier

farmer transports (0.695)
popular rural mobile (0.549) 
village traffic (0.433) 
NOT india daily cattle (0.411)
agriculture (0.348)

Predicted: Bullock Cart

pruned branch (0.441)
rust steel (0.367) 
iron railing (0.343) 
NOT macro rope (0.332)
curly branch (0.327)

Predicted: Chain

merchandise displays (0.538) 
hobby store (0.531)
comic store (0.511)
displayed toys (0.396)
store view (0.363)

Predicted: Toy Store

Figure 3: Qualitative evaluation of predicted concepts on the ImageNet validation set. While Label-
free CBMs sometimes hallucinate invisible concepts or ignore important concepts, Z-CBMs with
lasso consistently provide realistic and dominant concepts in input images with diverse vocabulary.
NOT prefix denotes that the concept has negative coefficients.
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Figure 4: Concept Deletion (Bird)
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Figure 5: Concept Insertion (Bird)

(ii) concept insertion. In concept deletion, we confirm the dependence on the predicted concepts by
removing the concept with non-zero coefficients in ascending, descending, and random orders. Fig. 4
is the results on Bird by varying the deletion ratio. The accuracy of Z-CBMs significantly dropped
with the smaller deletion ratio in the case of descent. This indicates that Z-CBM accurately selects
the important concepts through concept regression and predicts the final label based on the concepts.
In the case of ascent, the accuracy slowly and steadily decreases, suggesting that the Z-CBMs are not
biased toward limited concepts and that all of the selected concepts are essential.

In concept insertion, we add ground truth concepts to the predicted concepts with non-zero coefficients
and then re-compute concept regression on the intervened concept set. Specifically, we used linear
regression as the algorithm in concept regression and then predicted target labels by the weighted
averaged intervened concept vectors by Eq. (4). As the ground truth concepts, we used the fine-
grained multi-labels annotated for Bird (Welinder et al., 2010). Fig. 5 demonstrates the top-1 accuracy
of the intervened Z-CBMs. The performance improved as the number of inserted concepts per sample
increased. This indicates that Z-CBMs can correct the final output by modifying the concept of
interest through intervention.

4.6 DETAILED ANALYSIS

4.6.1 EFFECTS OF BACKBONE VLMS

We show the impacts on Z-CBMs when varying backbone VLMs. Since vision-language models
are being intensively studied, it is important to confirm the compatibility of Z-CBMs with successor
models with better zero-shot performance. In addition to the CLIP models, we used OpenCLIP (Cherti
et al., 2023), SigLIP (Zhai et al., 2023), and DFN (Fang et al., 2024). Table 4 demonstrates the
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Table 4: Performance of Z-CBMs varying back-
bone VLMs on ImageNet.

Backbone VLM Top-1 Acc. Top-1 Acc. CLIP-Score
(Black Box) (Z-CBM) (Z-CBM)

CLIP ViT-B/32 61.88 62.70 0.7746
CLIP ViT-L/14 72.87 73.19 0.7856
OpenCLIP ViT-H/14 77.20 77.81 0.7860
OpenCLIP ViT-G/14 79.03 78.27 0.8049
SigLIP ViT-SO400M/14 82.27 81.74 0.8123
DFN ViT-H/14 83.85 83.40 0.8240

Table 5: Performance of Z-CBMs varying con-
cept banks on ImageNet with CLIP ViT-B/32.

Concept Bank Vocab. Size Top-1 Acc. CLIP-Score
Zero-shot CLIP N/A 61.88 N/A

Label-free CBM w/ GPT-3 (ImageNet Class) 4K 58.00 0.7056
CDM w/ GPT-3 (ImageNet Class) 4K 62.52 0.7445

GPT-3 (ImageNet Class) 4K 59.18 0.6276
Noun Phrase (Flickr30K) 45K 61.52 0.6770
Noun Phrase (CC3M) 186K 62.38 0.7109
Noun Phrase (CC12M) 2.58M 62.42 0.7671
Noun Phrase (YFCC15M) 2.20M 62.45 0.7679
Noun Phrase (ALL) 5.12M 62.70 0.7746
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Inference Time (milliseconds/sample)
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60.0
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K=128

K=256

K=512

K=1024
K=2048

Figure 6: Accuracy vs. inference time by varying
retrieved concept number K.

Table 6: Performance of Z-CBMs varying con-
cept regressor on ImageNet with CLIP ViT-B/32.

Concept Regressor Top-1 Acc. Sparsity CLIP-Score
CLIP Similarity 14.66 0.0000 0.8117
Linear Regression 52.88 0.0000 0.7076
Lasso 62.70 0.8201 0.7746
Elastic Net 62.84 0.7311 0.7818
Sparsity-Constrained (HTP) 62.54 0.8750 0.7795

results, including the original zero-shot classification accuracy and the accuracy with Z-CBMs, and
CLIP-Score. The performance of Z-CBMs improved in proportion to the zero-shot performance of
the VLMs. In particular, the gradual improvement in CLIP-Score indicates that input-to-concept
inference becomes more accurate with more powerful VLMs. These results suggest that Z-CBM is
universally applicable across generations of VLMs, and that its practicality will improve as VLMs
evolve in future work.

4.6.2 EFFECTS OF CONCEPT BANK

As shown in Sec. 4.2 and Table 1, the choice of concept bank is crucial for the performance. Here, we
provide a more detailed analysis of the concept banks. Table 5 summarizes the results when varying
concept banks. For comparison, we added the concept bank generated by GPT-3 from ImageNet class
names, which is used in Label-free CBMs (Oikarinen et al., 2023); we used the concept sets published
in the official repository. Although it is competitive with the existing CBM baseline (Label-free
CBMs), Z-CBMs with the GPT-3 concepts significantly degraded the top-1 accuracy from Zero-shot
CLIP, and the CLIP score was much lower than that of our concept banks composed of noun phrases
extracted from caption datasets. This indicates that the concept bank used in the existing method is
limited in its ability to represent image concepts. Meanwhile, our concept bank scalably improved in
accuracy and CLIP-Score as its size increased, and combining all of them achieved the best results.

4.6.3 EFFECTS OF K IN CONCEPT RETRIEVAL

As discussed in Sec. 3, the retrieved concept number K in concept retrieval controls the trade-
off between the accuracy and inference time. We assess the effects of K by varying it in
[128, 256, 512, 1024, 2048] and measuring the top-1 accuracy and averaged inference time for pro-
cessing an image. Note that we set 2048 as the maximum value of K because it is the upper bound
in the GPU implementation of Faiss (Johnson et al., 2019). Figure 6 illustrates the relationship
between the accuracy and total inference time. As expected, the size of K produces a trade-off
between accuracy and inference time. Even so, the increase in inference time with increasing K
is not explosive and is sufficiently practical since the inferences can be completed in around 55
milliseconds per sample. The detailed breakdowns of total inference time when K = 2048 were 0.11
for extracting image features, 5.35 for concept retrieval, and 49.23 for concept regression, indicating
that the computation time of concept regression is dominant for the total. In future work, we explore
speeding up methods for Z-CBMs to be competitive with the existing CBMs baseline that require
training (e.g., Label-free CBMs, which infer a sample in 3.30 milliseconds).

4.6.4 EFFECTS OF CONCEPT REGRESSOR

Z-CBMs allow users to choose arbitrary sparse linear regression algorithms according to their
demands, as discussed in Sec. 3. Here, we compare the performance of Z-CBMs with multiple
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sparse linear regression algorithms: lasso (Tibshirani, 1996), elastic net (Zou & Hastie, 2005),
and sparsity-constrained optimization with HTP (Yuan et al., 2014). Further, we evaluate these
sparse algorithms by comparing them with non-sparse algorithms to compute the importance of
concepts: CLIP Similarity, which uses the cosine similarity computed on CLIP as the importance, and
linear regression. Table 6 shows the performance, where sparsity is a ratio of non-zero importance
coefficients to the total number of concept candidates. While the sparse linear regression algorithms
achieved top-1 accuracy scores at the same level, the non-sparse algorithms failed to accurately predict
labels from importance-weighted concepts. Additionally, linear regression has unstable numerical
computation due to the rank-deficient of the Gram matrix of FCx when the feature dimension d is
smaller than the concept retrieval size K. In contrast, lasso can avoid this by sparse regularization.
These results indicate that the concept selection by sparse linear regression is crucial in Z-CBMs.
In this sense, we can interpret our concept regression as a re-ranking method of the CLIP similarity.
Elastic net was the best in terms of accuracy, but it selected more concepts than the other sparse
algorithms. This is because elastic net selects all highly correlated concepts to derive a unique
solution by combining ℓ1 and ℓ2 regularization (Hastie et al., 2015). HTP explicitly limits the number
of concepts selected to 256, so while it achieves the highest sparsity, it had the lowest accuracy of the
sparse algorithms due to the shortage of concepts for explanation.

5 RELATED WORK

CBMs (Koh et al., 2020) are inherently interpretable deep neural network models that predict concept
labels and then predict final class labels from the predicted concepts. In contrast to the other expla-
nation styles such as post-hoc attribution heatmaps (Lundberg & Lee, 2017; Selvaraju et al., 2017;
Sundararajan et al., 2017), CBMs provide semantic ingredients consisting the final label prediction
through the bilevel prediction of input-to-concept and concept-to-label. The original CBMs have
the challenge of requiring human annotations of concept labels, which are more difficult to obtain
than target task labels. Another challenge is the performance degradation from backbone black-box
models (Zarlenga et al., 2022; Moayeri et al., 2023; Xu et al., 2024) due to the difficulty of learning
long-tailed concept distributions (Ramaswamy et al., 2023). Post-hoc CBMs (Yuksekgonul et al.,
2023), Label-free CBMs (Oikarinen et al., 2023), and LaBo (Yang et al., 2023) addressed these
challenges by automatically collecting concepts corresponding to target task labels by querying LLMs
(e.g., GPT-3 Brown et al. (2020b)) and leveraging multi-modal feature spaces of pre-trained VLMs
(e.g., CLIP Radford et al. (2021)) for learning the input-to-concept mapping. Subsequently, the suc-
cessor works have basically assumed the use of LLMs or VLMs, further advancing CBMs (Panousis
et al., 2023; Rao et al., 2024b; Tan et al., 2024; Srivastava et al., 2024). In particular, Panousis et al.
(2023) and Rao et al. (2024a) are related to our work in terms of using space modeling to select
concepts for input images. However, all of these existing CBMs still require training specialized
neural networks on target datasets, incurring additional target data collection and training resources.
Furthermore, these CBMs limit the number of concepts up to a few thousand due to training con-
straints, restricting the generality. In contrast to the previous CBMs, our Z-CBMs can perform fully
zero-shot inference based on a large-scale concept bank with millions of vocabulary for arbitrary
input images in various domains as shown in the experiments in Sec. 4.2.

6 CONCLUSION

In this paper, we presented zero-shot CBMs (Z-CBMs), which predict input-to-concept and concept-
to-label mappings in a fully zero-shot manner. To this end, Z-CBMs first search input-related
concept candidates by concept retrieval, which leverages pre-trained VLMs and a large-scale concept
bank containing general concepts to describe arbitrary input images in various domains. For the
concept-to-label inference, concept regression estimates the importance of concepts by solving the
sparse linear regression approximating the input image features by linear combinations of concepts.
Our extensive experiments show that Z-CBMs can achieve performance comparable to black-box
VLMs and provide interpretable concepts comparable to conventional CBMs that require training.
Furthermore, we observed that in some cases, representing image features as linear combinations
of concepts reduces the domain gap with label prompts and improves the zero-shot performance.
Since Z-CBMs can be built on any off-the-shelf VLMs, we believe that it will be a good baseline for
zero-shot interpretable models based on VLMs in future research.
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Figure 7: PCA feature visualization of Z-CBMs
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Figure 8: Effects of varying λ in Eq. 3

A DETAILS OF SETTINGS

Zero-shot Baselines. For the black-box baseline, according to the previous work (Radford et al.,
2021), we construct a class name prompt ty by the scheme of “a photo of [class name]”,
and make VLMs predict a target label ŷ by Eq. (2). ConSe is a zero-shot cross-modal classification
method that infers a target label from a semantic embedding composed of the weighted sum of
concepts of the single predicted ImageNet label. We implemented ConSe with pre-trained CLIP
and concept bank, which were the same as Z-CBMs. For Z-CBMs, we selected 1.0× 10−5 as λ by
searching from {1.0×10−2, 1.0×10−3, 1.0×10−4, 1.0×10−5, 1.0×10−6, 1.0×10−7, 1.0×10−8}
to choose the minimum value achieving over 10% non-zero concept ration when using K = 2048 on
the subset of ImageNet training set. We used the same λ for all experiments.

B ADDITIONAL EXPERIMENTS

B.1 ANALYSIS ON MODALITY GAP

In Section 4.2, Table 1 shows that Z-CBMs improved the zero-shot CLIP baselines. We hypothesize
that the reason is reducing the modality gap (Liang et al., 2022) between image and text features by
the weighted sum of concept features to approximate fV(x) by Eq. 3. To confirm this, we conduct
a deeper analysis of the effects of Z-CBMs on the modality gap with quantitative and qualitative
evaluations. For quantitative evaluation, we measured the L2 distance between image-label features
and concept-label features as the modality gap by following (Liang et al., 2022). The L2 distances
were 1.74×10−3 in image-to-label and 0.86×10−3 in concept-to-label, demonstrating that Z-CBMs
largely reduce the modality gap by concept regression. We also show the PCA feature visualizations
in Figure 7, indicating that the weighted sums of concepts (reconstructed concepts) bridge the image
and text modalities.

B.2 EFFECTS OF λ

Here, we discuss the effects when changing λ in Eq. (3). We varied λ in {1.0 × 10−2, 1.0 ×
10−3, 1.0 × 10−4, 1.0 × 10−5, 1.0 × 10−6, 1.0 × 10−7, 1.0 × 10−8}. Figure 8 plots the accuracy
and the sparsity of predicted concepts on ImageNet. Using different lambda varies the sparsity and
accuracy. Therefore, selecting appropriate λ is important for achieving both high sparsity and high
accuracy.

C EXTENDED RELATED WORK

Cross-modal zero-shot classification. In zero-shot or supervised learning settings, several works
(Lampert et al., 2013; Norouzi et al., 2014; Mensink et al., 2014; Jain et al., 2015; Elhoseiny et al.,
2013) have explored cross-modal classification methodologies by using textual attributes/concepts
as a proxy of image features. ConSe (Norouzi et al., 2014) infers a target label from a semantic
embedding composed of a weighted sum of concepts of the single predicted ImageNet label with
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word2vec embeddings in a fully zero-shot manner. While ConSe is conceptually similar to our
Z-CBMs, the zero-shot inference depends on the ImageNet label space, i.e., it cannot accurately
predict target labels if there are no target-related labels in ImageNet. In contrast, our Z-CBMs directly
decompose an input image feature into concepts via a concept bank, so they are not restricted to
any external fixed-label spaces. As a successor work of ConSe, A2C (Demirel et al., 2017) learns
input-to-attribute and attribute-to-label mapping by using attributed image datasets for zero-shot
inference. While A2C succeeds in outperforming ConSe, the concepts to represent images are
restricted to the training datasets, whereas our Z-CBMs are available without additional training and
datasets. More recently, Menon & Vondrick (2023) proposed a zero-shot classification method based
on the correlation between the input features and the task-specialized texts generated by LLMs for
each target class. However, it requires generating the task-specialized texts with LLM and restricting
the inference algorithm to the CLIP style zero-shot classification. In contrast, Z-CBMs can be used
for arbitrary tasks without external LLMs and arbitrary inference algorithms (e.g., linear probing).
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Ethics Statement. A potential ethical risk of our proposed method is the possibility that biased
vocabulary contained in the concept bank may be output as explanations. Since the concept bank is
automatically generated from the caption dataset, it should be properly pre-processed using a filtering
tool such as Detoxify (Hanu & Unitary team, 2020) if the data source can be biased.

Reproducibility Statement. As described in Sec. 3 and 4 , the implementation of the proposed
method uses a publicly available code base. For example, the VLMs backbones are publicly available
in the OpenAI CLIP2 and Open CLIP3 GitHub repositories. All datasets are also available on the
web; see the references in Sec. 4.1 for details. For the computation resources, we used a 24-core Intel
Xeon CPU with an NVIDIA A100 GPU with 80GB VRAM. More details of our implementation can
be found in the attached code in the supplementary materials and we will make the code available on
the public repository if the paper is accepted.
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