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Abstract

In reinforcement learning, experience replay stores past samples for further reuse.
Prioritized sampling is a promising technique to better utilize these samples. Pre-
vious criteria of prioritization include TD error, recentness and corrective feed-
back, which are mostly heuristically designed. In this work, we start from the
regret minimization objective, and obtain an optimal prioritization strategy for
Bellman update that can directly maximize the return of the policy. The theory
suggests that data with higher hindsight TD error, better on-policiness and more
accurate Q value should be assigned with higher weights during sampling. Thus
most previous criteria only consider this strategy partially. We not only provide
theoretical justifications for previous criteria, but also propose two new methods
to compute the prioritization weight, namely ReMERN and ReMERT. ReMERN
learns an error network, while ReMERT exploits the temporal ordering of states.
Both methods outperform previous prioritized sampling algorithms in challenging
RL benchmarks, including MuJoCo, Atari and Meta-World.

1 Introduction

Reinforcement learning (RL) [1] has achieved great success in sequential decision making problems.
Off-policy RL algorithms [2, 3, 4, 5, 6] have the ability to learn from a more general data distribution
than on-policy counterparts, and often enjoy better sample efficiency. This is critical when the data
collection process is expensive or dangerous. Experience Replay [7] enables data reuse and has been
widely used in off-policy reinforcement learning. Previous work [8] points out that emphasizing on
important samples in the replay buffer can benefit off-policy RL algorithms. Prioritized Experience
Replay (PER) [9] quantifies such importance by the magnitude of temporal-difference (TD) error.
Based on PER, many sampling strategies [10, 11, 12] are proposed to perform prioritized sampling.
They are either based on TD error [9, 10, 12] or focused on the existence of corrective feedback [11].
However, these are all proxy objectives and different from the objective of RL, i.e., minimizing
policy regret. They can be suboptimal in some cases due to this objective mismatch.

In this paper, we first give examples to illustrate the objective mismatch in previous prioritization
strategies. Experiments show that lower TD error or more accurate Q function can not guarantee
better policy performance. To tackle this issue, we first formulate an optimization problem that
directly minimizes the regret of the current policy with respect to prioritization weights. We then
make several approximations and solve this optimization problem. An optimal prioritization strategy
is obtained and indicates that we should pay more attention to experiences with higher hindsight TD
error, better on-policiness and more accurate Q value. To the best of our knowledge, this paper is
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the first to optimize the sampling distribution of replay buffer theoretically from the perspective of
regret minimization.

We then provide tractable approximations to the theoretical results. The on-policiness can be esti-
mated by training a classifier to distinguish recent transitions, which are generally more on-policy,
from early ones, which are generally more off-policy. The oracle Q value is inaccessible during
training, so we can not calculate the accuracy of Q value directly. Inspired by DisCor [11], we
propose an algorithm named ReMERN which estimates the suboptimality of Q value with an error
network updated by Approximate Dynamic Programming (ADP).

ReMERN outperforms previous methods in environments with high randomness, e.g. with stochas-
tic target positions or noisy rewards. However, the training of an extra neural network can be slow
and unstable. We propose another estimation of Q accuracy based on a temporal viewpoint. With
Bellman updates, the error in Q value accumulates from the next state to the previous one all across
the trajectory. The terminal state has no bootstrapping target and low Bellman error. Therefore,
states fewer steps away from the terminal state will have lower error in the updated Q value because
of the more accurate Bellman target. This intuition is verified both empirically and theoretically.
We then propose Temporal Correctness Estimation (TCE) based on the distance of each state to a
terminal state, and name the overall algorithm ReMERT.

Similar to PER, ReMERN and ReMERT can be a plug-in module to all off-policy RL algorithms
with a replay buffer, including but not limited to DQN [5] and SAC [2]. Experiments show that
ReMERN and ReMERT substantially improve the performance of standard off-policy RL methods
in various benchmarks.

2 Background

2.1 Preliminaries

A Markov decision process (MDP) is denoted (S,A, T, r, γ, ρ0), where S is the state space, and A is
the action space. T (s′|s, a) and r(s, a) ∈ [0,Rmax] are the transition and reward function. γ ∈ (0, 1)
is the discounted factor and ρ0(s) is the distribution of the initial state. The target of reinforcement
learning is to find a policy that maximizes the expected return: η(π) = Eπ[

∑
t≥0 γ

tr(st, at)], where
the expectation is calculated from trajectories sampled from s0 ∼ ρ0, at ∼ π(·|st), and st+1 ∼
T (·|st, at) for t ≥ 0.

For a fixed policy, an MDP becomes a Markov chain, where the discounted stationary state dis-
tribution is defined as dπ(s). With a slight abuse of notation, the discounted stationary state-
action distribution is defined as dπ(s, a) = dπ(s)π(a|s). Then the expected return can be rewrit-
ten as η(π) = 1

1−γEdπ(s,a)[r(s, a)]. We assume there exists an optimal policy π∗ such that
π∗ = argmaxπ η(π). We use the standard definition of the state-action value function, or Q func-
tion: Qπ(s, a) = Eπ[

∑
t≥0 γ

tr(st, at)|s0 = s, a0 = a]. Let Q∗ be the shorthand for Qπ
∗
. Q∗

satisfies the Bellman equation Q∗(s, a) = B∗(Q∗(s, a)), where B∗ : RS×A → RS×A is the Bell-
man optimal operator: (B∗f)(s, a) := r(s, a) + γmaxa′ Es′∼P (s,a)f(s

′, a′), where f ∈ RS×A.

The regret of policy π is defined as Regret(π) = η(π∗) − η(π). It measures the expected loss in
return by following policy π instead of the optimal policy. Since η(π∗) is a constant, minimizing the
regret is equivalent to maximizing the expected return, and thus it can be an alternative objective of
reinforcement learning.

2.2 Related Work

Extensive researches have been conducted on experience replay and replay buffer. The most fre-
quently considered aspect is the sampling strategy. Various techniques have achieved good perfor-
mance by performing prioritized sampling on the replay buffer. In model-based planning, Prioritized
Sweeping [13, 14, 15] selects the next state updates according to changes in value. Prioritized Ex-
perience Replay (PER) [9] prioritizes samples with high TD error. Taking PER one step further,
Prioritized Sequence Experience Replay (PSER) [10] considers information provided by transitions
when estimating TD error. Emphasizing Recent Experience (ERE) [16] and Likelihood-Free Im-
portance Weighting (LFIW) [12] prioritizes the correction of TD errors for frequently encountered

2



sT s0 s1 s2 s3

+2
+2

+2
+2

+1 +1 +1

(a)
0 50 100 150 200 250

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Re
wa

rd
(s

ol
id

)

VI
VI+PER

0.4

0.3

0.2

0.1

0.0

Di
ffe

re
nc

e 
in

 T
D 

er
ro

r(d
as

he
d)

Difference of
TD error

Suboptimality of PER

(b)
0 50 100 150 200 250

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Re
wa

rd
(s

ol
id

)

VI
VI+DisCor

0.04

0.02

0.00

0.02

0.04

Di
ffe

re
nc

e 
in

 |Q
k-

Q*
|(d

as
he

d)

Difference of
Q accuracy

Suboptimality of DisCor

(c)

Figure 1: A simple MDP showing the objectives of PER and DisCor can slow down the training
process. (a) A 5-state MDP with initial state s0 and terminal state sT . Except for s3 and sT , there
are two available actions, left and right. Turning left leads to the terminal state sT and +2 reward,
while turning right leads to the next state and +1 reward. The optimal policy is to keep turning right
until reaching s3, then reach sT . (b) Relationship between TD error (dashed line) and performance
(solid line) of VI and VI+PER. (c) Relationship between Q error (dashed line) and performance
(solid line) of VI and VI+DisCor.

states. Distribution Correction (DisCor) [11] assigns higher weights to samples with more accurate
target Q value because these samples provide “corrective feedback”. DisCor uses a neural network
to estimate the accuracy of target Q value. Inspired by DisCor, SUNRISE [17] proposes to use the
variance of ensembled Q functions as a surrogate for the accuracy of Q value. Adversarial Feature
Matching [18] focuses on sampling uniformly among state-action pairs.

Instead of proposing a new strategy of sampling, [19] proves that there exists a relationship between
sampling strategy and loss function, and weighted value loss can serve as a surrogate for prioritized
sampling. Other works focus on buffer capacity [20, 21]. They point out that a proper buffer capacity
can accelerate value estimation and lead to better learning efficiency and performance. In fact, this
can be thought of as a specific example of prioritization strategies, i.e., assigning zero weights to the
samples exceeding the proper buffer capacity.

3 Optimal Prioritization Strategy via Regret Minimization

3.1 Revisiting Existing Prioritization Methods

PER and DisCor are two representative algorithms of prioritized sampling. PER prioritizes state-
action pairs with high TD error, while DisCor prefers to perform Bellman update on state-action
pairs that have more accurate Bellman targets. However, both criteria are different from the target
of RL algorithms, which is to maximize the expected return of the policy. Such difference can
slow down the training process in some cases. For example, when the Bellman target is inaccurate,
minimizing TD error does not necessarily improve the optimality of Q value.

To illustrate the aforementioned problems, we provide an example MDP shown in the left part of
Fig. 1(a). This is a five-state MDP with two actions: turning left and right. The optimal policy is
to turn right in all states, receiving a total reward of 5. Suppose the Q values for all (s, a) pairs are
initialized to zero. The reward of turning left is higher than turning right in all states, so the left
action has a higher TD error. As a result, PER prefers states with the left action, which is not the
fastest training process to achieve the optimal policy. Also, since there is no bootstrapping error for
the terminal state sT , transitions with sT as the next state have an accurate target Q value. Therefore,
DisCor also focuses on state-actions pairs with left action, which is again not optimal.

We perform Value Iteration (VI) on this MDP. To simulate function approximation in Deep RL and
avoid convergence in few iterations, the learning rate is set to 0.1. Prioritized sampling is substituted
by weighted Bellman update, as introduced in [19]. The results are shown in Fig. 1(b) and Fig. 1(c).
According to the results, PER indeed minimizes TD error more efficiently, and DisCor results in
a more accurate estimation of Q value, as indicated by their objectives. However, they both need
more iterations to converge than value iteration without prioritization. According to this MDP, the
objective of previous prioritization methods can be inefficient in certain cases.
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3.2 Problem Formulation of Regret Minimization

As shown in Section 3.1, an indirect objective can cause slower convergence of value iteration. In
this section, we aim to find an optimal prioritization weight wk that can directly minimize the policy
regret η(π∗) − η(πk). The weight is multiplied to the Bellman error (Q − B∗Qk−1)

2 and πk can
be obtained from the updated Q function. To facilitate further derivations, we only consider the
best Q function of the Bellman update, which is calculated by the argmin operator. Therefore, the
optimization problem with respect to wk can be written as:

min
wk

η(π∗)− η(πk)

s.t. Qk = argmin
Q∈Q

Eµ[wk(s, a) · (Q− B∗Qk−1)
2(s, a)],

Eµ[wk(s, a)] = 1, wk(s, a) ≥ 0,

(1)

where πk(s) = exp(Qk(s,a))∑
a′ exp(Qk(s,a′))

is the policy corresponding to Qk. Q is the function space of Q
functions and µ is the data distribution of the replay buffer. Qk is the estimate of Q value after the
Bellman update at iteration k.

We then manage to solve this optimization problem. To get started, we introduce recurring proba-
bility which serves as an upper bound of the error term in our solution.
Definition 1 (Recurring Probability). The recurring probability of a policy π is defined as ϵπ =
sups,a

∑∞
t=1 γ

tρπ(s, a, t), where ρ is the probability of the agent starting from (s, a) and coming
back to s at time step t under policy π, i.e., ρπ(s, a, t) = Pr(s0 = s, a0 = a, st = s, s1:t−1 ̸= s;π).

We then present the solution to the optimization problem 1 in Thm. 1. The formal version of the
theorem and detailed proof are in Appendix A.
Theorem 1 (Informal). Under mild conditions, the solution wk to a relaxation of the optimization
problem 1 in MDPs with discrete action spaces is

wk(s, a) =
1

Z∗
1

(Ek(s, a) + ϵk,1(s, a)) . (2)

In MDPs with continuous action spaces, the solution is

wk(s, a) =
1

Z∗
2

(Fk(s, a) + ϵk,2(s, a)) . (3)

where

Ek(s, a) =
dπk(s, a)

µ(s, a)︸ ︷︷ ︸
(a)

(2− πk(a|s))︸ ︷︷ ︸
(b)

exp (− |Qk −Q∗| (s, a))︸ ︷︷ ︸
(c)

|Qk − B∗Qk−1| (s, a)︸ ︷︷ ︸
(d)

Fk(s, a) = 2
dπk(s, a)

µ(s, a)︸ ︷︷ ︸
(a)

exp (− |Qk −Q∗| (s, a))︸ ︷︷ ︸
(c)

|Qk − B∗Qk−1| (s, a)︸ ︷︷ ︸
(d)

,

Z∗
1 , Z∗

2 are normalization factors, ϵk,1(s, a) and ϵk,2(s, a) satisfy max
{
ϵk,1(s,a)
Ek(s,a)

,
ϵk,2(s,a)
Fk(s,a)

}
≤ ϵπk

.

With regard to the error terms, there are two cases where ϵπk
is low by its definition: the probability

of coming back to the states that have been visited is small, or the number of steps an agent takes to
come back to the visited states is large. In most tasks, either of these cases holds. We conduct exper-
iments in several Atari games and show the verification results in Appendix D. The low probability
leads to small ϵπk

and implies the terms ϵk,1(s, a) and ϵk,2(s, a) are negligible.

Therefore, Thm. 1 suggests that state-action tuples in the replay buffer should be assigned with
higher importance if they have the following properties:

• Higher hindsight Bellman error ( from |Qk − B∗Qk−1|(s, a)). Qk is the estimate of Q value
after the Bellman update. This term describes the difference between the estimated hindsight Q
value and the Bellman target. It is similar to the prioritization criterion of PER [9], but PER
concerns more about the historical Bellman error, i.e., |Qk−1 − B∗Qk−2|(s, a).
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• More on-policiness ( from dπk (s,a)
µ(s,a) ). An efficient update of π requires wk to be on-policy, i.e.,

focusing on state-action pairs which are more likely to be visited by the current policy. Such
prioritization strategy has been empirically illustrated in LFIW [12] and BCQ [22], while we
obtain it directly from our theorem.

• Closer value estimation to oracle ( from exp (− |Qk −Q∗| (s, a)) ). This term indicates that
state-action pairs with less accurate Q values after the Bellman update should be assigned with
lower weights. Intuitively, state-action pairs that lead to suboptimal updates of the estimator of Q
value should be down-weighted. Such suboptimality may arise from incorrect target Q values or
the error of function approximation in deep Q networks.

• Smaller action likelihood (from 2 − πk(a|s)). This term only exists in MDPs with a discrete
action space. It offsets the effect of the on-policy term dπk to some extent and is similar to ε-
greedy strategy in exploration.

Our theoretical analysis indicates that existing prioritization strategies only consider the problem
partially, neglecting other terms in minimizing the regret. For example, DisCor fails to consider the
on-policiness and PER ignores the accuracy of Q value. In the remaining part of this section, we
present practical approximations to each term in Eq. (2) and (3).

Term (a) is the importance weight between the current policy and the behavior policy. We can
calculate this term using Likelihood-Free Importance Weighting (LFIW, [12]). LFIW divides the
replay buffer into two parts, a fast buffer Df and a slow buffer Ds. It initializes a neural network
κψ(s, a) and optimizes the network according to the following loss function:

Lκ(ψ) := EDs [f
∗ (f ′ (κψ(s, a)))]− EDf

[f ′ (κψ(s, a))] , (4)

where f ′ and f∗ is the derivative and convex conjugate of function f . The updated κψ is the desired
importance weight.

For term (b) and (d), since πk and Qk are the policy and the estimate of Q value after the update,
they cannot be calculated directly. Therefore, we approximate them by the upper and lower bounds.
For term (b), 1 ≤ 2− πk(a|s) ≤ 2. For term (d), a viable approximation is to bound it between the
minimum and maximum Bellman errors obtained at the previous iteration, c1 = mins,a |Qk−1 −
B∗Qk−2| and c2 = maxs,a |Qk−1 − B∗Qk−2|. As shown in DisCor, we can restrict the support of
state-action pairs (s, a) used to compute c1 and c2 in the support of replay buffer, to ensure that both
c1 and c2 are finite. With these approximation, we can derive a lower bound for wk, which will be
detailed in Sec. 3.3 and Sec. 3.4.

In the next two subsections, we will provide two practical algorithms to estimate |Qk −Q∗|.

3.3 Regret Minimization Experience Replay Using Neural Network (ReMERN)

DisCor shows ∆k can be a surrogate of |Qk −Q∗|, which is defined as:

∆k =

k∑
i=1

γk−i

k−1∏
j=i

Pπj

 |Qi − B∗Qi−1| (5)

=⇒ ∆k = |Qk − B∗Qk−1|+ γPπk−1∆k−1 (6)

According to Eq. (6), γ[Pπk−1∆k−1](s, a) + c2 is an upper bound of |Qk − Q∗|. This is because
∆k is proven to be the upper bound of |Qk−Q∗| [11] and c2 is the upper bound of |Qk−B∗Qk−1|.
Recall that 2− πk(a|s) ≥ 1 and |Qk−1 −B∗Qk−2| ≥ c1, and we can derive the final expression for
this tractable approximation for wk(s, a) by simplifying all constants:

wk(s, a) ∝
dπk(s, a)

µ(s, a)
exp (−γ [Pπk−1∆k−1] (s, a)) , (7)

This approximation applies to MDPs with discrete action space and MDPs with continuous action
space. Using the lower bound of wk(s, a) may down-weight some transitions, but will never up-
weight a transition by mistake [11].

We use a neural network to estimate ∆k−1. As shown in Eq. (6), ∆k−1 can be calculated from a
bootstrapped target, which inspires us to use ADP algorithms to update it. We name this method
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ReMERN (Regret Minimization Experience Replay using Neural Network). The pseudo code for
ReMERN is presented in Appendix C. ReMERN is applicable to all value-based off-policy algo-
rithms with replay buffer.

3.4 Regret Minimization Experience Replay Using Temporal Structure (ReMERT)

ReMERN uses neural network as the estimator of |Qk − Q∗|. However, training a neural network
is time consuming and suffers from large estimation error without adequate iterations. To mitigate
this issue, we propose another estimation of |Qk −Q∗| from a different perspective.

3.4.1 The Temporal Property of Q Error

|Qk−Q∗| can be decomposed with the triangle inequality: |Qk−Q∗| ≤ |Qk−B∗Qk−1|+|B∗Qk−1−
Q∗|. The first term is the projection error depending on the Q function space Q. This error is usually
small thanks to the strong expressive power of neural networks. In the second term, B∗Qk−1 is
the estimate of target Q value, and |B∗Qk−1 − Q∗| is the distance from the target Q value to the
ground-truth Q value. The target Q value at the terminal state consists of the reward only, so there
is no bootstrapping error and |B∗Qk−1 − Q∗| = 0. Moving backward through the trajectory, the
accuracy of the Q value estimation decreases as the error of Bellman update accumulates. These Q
values are then utilized to compute the target Q value, leading to more erroneous Bellman updates
and larger |B∗Qk−1−Q∗|. Such error can accumulate through the MDP. Consequently, states closer
to the terminal state tend to have a more accurate Bellman target. This motivates us to estimate the
incorrectness of the estimated Q value using the temporal information of a given state-action tuple
(st, at).

Figure 2: The visualized error of target
Q value in a GridWorld Environment.
The Q error is visualized by the color
of the grid.

To verify our intuition on the temporal property of Q er-
ror, we use a gridworld MDP from [23] and visualize the
mean error of the target Q value (i.e., |B∗Qk−1 − Q∗|)
across different actions in Fig. 2. We use DQN to update
Q values. In this gridworld MDP, an agent starts at the red
triangle on the top-left and terminates at the green rectan-
gle on the top-right. The agent can’t go through the wall,
which is plotted as gray grids. The darker a grid is, the
higher error of Q function it has. This figure illustrates
that states closer to the terminal state has lower Q error,
corresponding to our intuition that |B∗Qk−1 − Q∗| is re-
lated to the position of (s, a) in the trajectory.

To formalize this intuition, we first define Distance to End.
Definition 2 (Distance to End). Given a MDP M, τ = {st, at}Tt=0 is a trajectory generated by
policy π in M. The distance to end of (st, at), denoted by hπτ (st, at), is T − t in this trajectory.

Our intuition states that the value of |Qk−Q∗| has a positive correlation with distance to end. Based
on this intuition, we propose the following theorem.
Theorem 2 (Informal). Under mild conditions, with probability at least 1− δ, we have

|Qk(s, a)−Q∗(s, a)|

≤ Eτ
(
f(hπk

τ (s, a))
(
LQk−1

+ c
)
+ γh

πk
τ (s,a)+1c

)
+ g(k, δ)

(8)

where c = maxs,a
(
Q∗(s, a∗) − Q∗(s, a)

)
, f(t) = γ−γt

1−γ , LQk−1
= E[|Qk−1 − B∗Qk−2|] and

g(k, δ) decreases exponentially as k increases.

The formal version of the theorem and its proof are in Appendix B. The theorem states that |Qk−Q∗|
is upper bounded by a function of distance to end and expected Bellman error with high probability.

3.4.2 A Practical Implementation

In Thm. 2 we derive the upper bound of |Qk − Q∗|, which can serve as a surrogate to |Qk − Q∗|.
Using an upper bound as the surrogate may down-weight some transitions, but will never up-weight
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a transition that should not be up-weighted [11]. We call this Temporal Correctness Estimation
(TCE):

|Qk(s, a)−Q∗(s, a)| ≈ EτTCEc(s, a)

= Eτ
(
f(hπk−1

τ (s, a))
(
LQk−1

+ c
)
+ γh

πk−1
τ (s,a)+1c

)
,

(9)

Similar to the derivation of ReMERN, we can simplify the expression of wk(s, a) as:

wk(s, a) ∝
dπk(s, a)

µ(s, a)
exp

(
− EτTCEc(s, a)

)
(10)

This approach of computing prioritization weights is named ReMERT (Regret Minimization
Experience Replay using Temporal Structure). Its pseudo code is presented in Appendix C. In
practice, we record the distance to end of a state-action pair when it is sampled by the policy and
stored in the replay buffer. The expectation with respect to τ is computed based on the record and
Monte-Carlo estimation.

3.5 Comparison between ReMERN and ReMERT

ReMERT can estimate |Qk−Q∗| directly from the temporal ordering of states, which often provides
more efficient and more accurate estimation than ReMERN. However, The expectation with respect
to trajectory τ in Eq. (10) induces statistical error. In some environments, the distance to end of a
certain state-action pair (s, a) can vary widely across different trajectories, which is usually caused
by the randomness of environments. For example, in environments with stochastic goal positions,
the state may be near the goal in one episode but far away from it in another. In such cases, pri-
oritization weights provided by ReMERT have large variance and can be misleading. In contrast,
ReMERN need to train an error net but is irrelevant to the distance to end. Therefore, ReMERN
suffers estimation error of neural network but is robust to the randomness of environments. We test
their property in the following section.

4 Experiments

In this section, we conduct experiments to evaluate ReMERN and ReMERT3. We choose SAC
and DQN as the baseline algorithms for continuous and discrete action space respectively and in-
corporate ReMERN and ReMERT as the sampling strategy. We first compare the performance of
ReMERN and ReMERT to prior sampling methods in continuous control benchmarks including
Meta-World [24], MuJoCo [25] and Deepmind Control Suite (DMC) [26]. We also evaluate our
methods in Arcade Learning Environments with discrete action spaces. Then, we dive into our algo-
rithms and design several experiments, such as Gridworld tasks and MuJoCo with reward noise, to
demonstrate some key properties of ReMERN and ReMERT. A detailed description of the environ-
ments and experimental details are listed in Appendix D.

4.1 Performance on Continuous Control Environments

In MuJoCo and DMC tasks, ReMERT outperforms baseline methods on four of six tasks and
achieves comparable performance in the rest two tasks, i.e. HalfCheetah and Hopper, as shown
in Fig. 3. The marginal improvement of ReMERT in HalfCheetah mainly comes from the absence
of a strong correlation between Q-loss and time step. In HalfCheetah, there is no specific terminal
state, so the agent always reaches the max length of the trajectory, which gives a fake "distance to
end" for every state. In Hopper, there is not much difference of the |Qk −Q∗| term between all the
sampled state-action pairs, as shown in Appendix D, so the state-action pairs are not sampled very
unequally. Besides, Hopper is a relatively easy task, in which prioritizing the samples have minor
impact on the overall performance of the RL algorithm. The performance of ReMERN is better than
DisCor, but is not as good as ReMERT. This verifies our theory and the existence of large estimation
error induced by updating neural network with ADP algorithms.

3Codes are available at https://github.com/AIDefender/ReMERN-ReMERT.
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Figure 3: Performance of ReMERT, ReMERN with SAC and DisCor as baselines on continuous
control tasks.

The Meta-World benchmark [24] includes many robotic manipulation tasks. We select 8 tasks for
evaluation, and plot the result in Fig. 4. The performance of PER can be found in its paper [9].
Current state-of-the-art off policy RL algorithms such as SAC performs poorly on this benchmark
because the goals of tasks have high randomness. Although DisCor [11] shows preferable perfor-
mance in these tasks compared to SAC and PER, ReMERN obtains a significant improvement over
DisCor in the training speed and asymptotic performance. In this evaluation, we exclude ReMERT
for comparison because the randomized target position in Meta-World contradicts its assumption.

Figure 4: Performance of ReMERN, standard SAC and DisCor in eight Meta-World tasks. From
left to right: push, hammer, sweep, peg-insert-side, stick push, stick pull, faucet close.

4.2 Performance on Arcade Learning Environments

Atari games are suitable for verifying our theory for MDPs with discrete action space. The tested
games have a relatively stable temporal ordering of states because the initial state and the terminal
state have little randomness, so that the assumption of ReMERT is satisfied. As shown by Tab. 1,
ReMERT outperforms DQN in all the selected games. The results also suggest that ReMERT can be
applied to environments with high dimensional state spaces. Results of more Atari games are listed
in Appendix D. We do not include ReMERN for comparison because DisCor which is a composing
part of ReMERN has no open-source code available for discrete action space.
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Figure 5: Performance of ReMERN, ReMERT and SAC on three continuous control tasks with
reward noise.

4.3 Demonstration on Key Properties of ReMERN and ReMERT

4.3.1 Influence of Environment Randomness

Fig. 3 and Fig. 4 show that ReMERN has a better performance on Meta-World than on Mujoco
tasks. We attribute this to the robustness of our strategy in environments with high randomness. For
a highly stochastic environment, the estimation of Q value is difficult. When the estimation of Q
value is inaccurate, the target Q value is also inaccurate, leading to a suboptimal update process in off-
policy RL algorithms. Thanks to the closer value estimation to oracle principle, ReMERN estimates
the Q value more accurately than other methods. However, for less stochastic environments like
MuJoCo environments, the accuracy of error network might become the bottleneck of ReMERN.

To show this empirically, we add Gaussian noise to the reward function in MuJoCo environments.
The details of the experimental setup are listed in Appendix D. Fig. 5 show that: (1) ReMERN
and ReMERT perform better than SAC in stochastic environments, which verifies our analysis. (2)
Though ReMERT suffers statistical error of temporal ordering, it is robust to the randomness of
reward because the temporal property is not affected by the noise.

4.3.2 Analysis of TCE on Deterministic Tabular Environments

Figure 6: TCE and DisCor in Gridworld

To analyze the effect of the principle behind TCE, we
evaluate the Q error in Gridworld with image input. We
plot the |Qk − Q∗| error of standard DQN, DQN with
DisCor, DQN with TCE and DQN with oracle at some
time in the training process in Fig. 6. TCE is combined
with DQN to estimate term (c) in Eq. (2) , and the other
terms are ignored to compute wk. DQN with oracle uses
the ground-truth error |Qk − Q∗| to calculate the prior-
itization weight. The result shows that DQN with TCE
achieves a more accurate Q value estimator than those of
standard DQN and DQN with DisCor, while DQN with
oracle |Qk −Q∗| achieves the most accurate Q value esti-
mator. The lower efficiency of DQN with DisCor is due to
the slower convergence speed of the error network. This
proves the principle behind our theory effective, and TCE
is a decent approximation of |Qk −Q∗|.

Table 1: DQN vs ReMERT on Atari. DQN (Nature) is the performance in the DQN paper [5]. DQN
(Baseline) is the performance of our baseline program [27].

Method Enduro KungFuMaster Kangaroo MsPacman Qbert
DQN (Nature) 301±24.6 23270±5955 6740±2959 2311±525 10596±3294
DQN (Baseline) 1185±100 29147±7280 6210±1007 3318±647 13437±2537
ReMERT (Ours) 1303±258 35544±8432 7572±1794 3481±1351 14511±1138
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5 Conclusion and Future Work

In this work, we first revisit the existing methods of prioritized sampling and point out that the ob-
jectives of these methods are different from the objective of RL, which can lead to a suboptimal
training process. To solve this issue, we analyze the prioritization strategy from the perspective of
regret minimization, which is equivalent to return maximization in RL. Our analysis gives a theoret-
ical explanation for some prioritization methods, including PER, LFIW and DisCor. Based on our
theoretical analysis, we propose two practical prioritization strategies, ReMERN and ReMERT, that
directly aims to improve the policy. ReMERN is robust to the randomness of environments, while
ReMERT is more computational efficient and more accurate in environments with a stable temporal
ordering of states. Our approaches obtain superior results compared to previous prioritized sampling
methods. Future work can be conducted in the following two directions. First, the framework to ob-
tain the optimal distribution in off-policy RL can be generalized to model-based RL and offline RL.
Second, the two proposed algorithms are suitable for different kinds of MDP, so finding a unified
prioritization method for all MDPs can further improve the performance.
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