
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Reinforcement Learning with Quasi-Hyperbolic Discounting

Anonymous Authors1

Abstract
Reinforcement learning has traditionally been
studied with exponential discounting or the av-
erage rewards setup, mainly due to their mathe-
matical tractability. However, such frameworks
fall short of accurately capturing human behav-
ior, which often has a bias towards immediate
gratification. Quasi-Hyperbolic (QH) discount-
ing is a simple alternative for modeling this bias.
Unlike in traditional discounting, though, the op-
timal QH-policy, starting from some time t1, can
be different to the one starting from t2. Hence, the
future self of an agent, if it is naive or impatient,
can deviate from the policy that is optimal at the
start, leading to sub-optimal overall returns. To
prevent this behavior, an alternative is to work
with a policy anchored in a Markov Perfect Equi-
librium (MPE). In this work, we propose the first
model-free algorithm for finding an MPE. Using a
brief two-timescale analysis, we provide evidence
that our algorithm converges to invariant sets of a
suitable Differential Inclusion (DI). We then for-
mally show that any MPE would be an invariant
set of our identified DI. Finally, we validate our
findings numerically for the standard inventory
system with stochastic demands.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto., 2018; Bert-
sekas, 2019) looks at identifying a policy/ strategy for
an agent to optimally solve a task with sequential deci-
sions. Since ages, a strategy π̄’s optimality has been de-
cided based on either the expected exponentially discounted
sum or the long-term average of the rewards received un-
der that strategy. That is, based on either

∑∞
n=0 γ

nrn or
limT→∞

1
T

∑T−1
n=0 rn, where rn is the expected reward un-
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der policy π̄ at time n and γ ∈ [0, 1). Exponential dis-
counting is preferred when the agent has impatience, i.e.,
immediate gains have emphasis over future gains, with the
emphasis level decided by the γ value. In contrast, the aver-
age of the rewards is preferred when the present and future
rewards are to be treated equally. Under both discount-
ing schemes, the optimal policy is time-consistent, i.e., the
optimal policy starting from time t remains optimal when
reconsidered from some later time as well. Despite their
long history, evidence is now growing that these types of
optimal policies fail to model human behaviors accurately
(Dhami, 2016).

Humans are known to be impatient over shorter horizons,
but not so much over longer horizons. That is, we have a bias
towards instant gratification. This can be understood from
the famous example by Richard Thaler (Thaler, 1981), who
said, “Most people would prefer one apple today to two ap-
ples tomorrow, but they prefer two apples in 51 days to one
in 50 days.” Observe that there is a reversal of preferences
when the time frame shifts. This phenomenon is known as
the common difference effect (Dhami, 2016). Such prefer-
ence reversals cannot happen under a optimal policy under
the two traditional models because of their time-consistent
nature, which demonstrates the limitations of these models
in explaining human behaviors.

Hyperbolic discounting (Loewenstein & Prelec, 1992) is
a leading candidate (Ainslie, 1975; Cropper et al., 1992;
Frederick et al., 2002) for explaining the common differ-
ence effect. The value of a strategy under this discounting
model is

∑∞
n=0 bnrn, where bn = (1 + κ1n)

−κ2/κ1 for
some κ1, κ2 > 0. This form of discounting is complicated,
making its study hard. This brings forth Quasi-Hyperbolic
(QH) discounting (Phelps & Pollak, 1968; Laibson, 1997),
which is a simpler and more tractable alternative. In QH
discounting, b0 = 1 and bn = σγn, n ≥ 1 for σ ∈ [0, 1].
The symbol σ is the short-term discount factor, while γ is
the long-term discount factor. Clearly, for σ = 1, QH dis-
counting matches exponential discounting. A comparison
of the discounting rates under exponential, hyperbolic, and
quasi-hyperbolic discounting is given in Figure 1a. Unlike
exponential discounting, note that there is a sharp decrease
in hyperbolic and QH discount factors initially, after which
they decrease more gradually. In this work, we initiate the
study of RL with QH discounting.
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(a) Comparison of discount factors

1 20.5, a2, 2

0.5, a2, 2

1, a1, 17

1, a1, 0

(b) Two-state MDP example

f̄ ḡ h̄

(1, a1) 18.88 16.83 18.00

(1, a2) 19.00 16.77 18.00

(2, a1) 32.11 29.56 31.00

(c) Q-values under QH-discounting.

Figure 1: (1a) Comparison of discount factors under exponential, hyperbolic, and quasi-hyperbolic discounting models, (1b)
A two-state MDP example, where the action set of state 1 is {a1, a2}, while that of state 2 is {a1}. For each tuple on the
arrow, the first element is the probability of the transition, the second is the action taken, and the third is the instantaneous
reward, (1c) Q-values under QH-discounting for policies f̄ , ḡ, and h̄. The rows refer to the (s, a) pairs. The columns
represent the corresponding policies.

Under exponential discounting, the optimal policy π̄∗ is
deterministic and stationary, sharing a greedy relationship
with its Q-value function (Sutton & Barto., 2018). How-
ever, this relationship does not hold under QH-discounting,
leading to non-trivial behaviors. We illustrate this fact using
a simple two-state Markov Decision Process (MDP) setup
in Figure 1b from (Jaśkiewicz & Nowak, 2021). There are
two deterministic policies possible for this MDP: f , which
maps state 1 to action a1, and g, which maps state 1 to
action a2; both map state 2 to action a1. For σ = 0.5 and
γ = 0.8, observe that the stationary policies f̄ and ḡ, acting
according to f and g respectively at all times, do not share
a greedy relationship with their Q-value functions under
QH-discounting (see Table 1c). Hence, they are not optimal.
Instead, the non-stationary policy gf̄ (acting as g at n = 0
and f for n ≥ 1) yields the highest returns from state 1,
while f̄ is optimal when starting from state 2. The policy fḡ
is time-inconsistent, meaning that re-evaluating the optimal
policy at state 1 results in the agent following g for that
time instant (as gf̄ is optimal in state 2). This repeats at
each time instant when agent reaches state 1, resulting in
following ḡ in state 1 everytime, which is suboptimal and
leads to significantly lower returns.

To safeguard against the above kinds of pitfall, it is desir-
able to have a stationary(possibly stochastic) policy π̄ from
which there is no incentive for deviation. For such a policy
π̄, it would then be true that

Qσ,γ
π̄ (s, π) = sup

ν:S→∆(A)

Qσ,γ
π̄ (s, ν), (1)

where Qσ,γ
π̄ (s, π) =

∑
a∈A(s) π(a|s)Q

σ,γ
π̄ (s, a). Any sta-

tionary policy π̄∗ which satisfies (1) is referred to as a
Markov Perfect Equilibrium (MPE) (Jaśkiewicz & Nowak,
2021). For our two-state MDP example, it follows from

Table 1c that the stationary policy h̄, where h̄(a1|1) =
h̄(a2|2) = 0.5, is an MPE. For a general MDP and a gen-
eral value of σ, an MPE is neither guaranteed to exist nor be
unique. So far, MPEs have been found only using analytical
techniques, and that too only for simple MDPs.

Our goal in this work is to design a model-free RL algorithm
for finding an MPE in an MDP with finite states and finite
actions. The sufficient conditions for MPE existence which
are stated in (Jaśkiewicz & Nowak, 2021) trivially hold in
this setting and, hence, an MPE is guaranteed. Nevertheless,
finding such an MPE poses the following challenges. One,
there is no known Bellman-type operator for which an MPE
is a fixed point. Hence, fixed-point-type iterations cannot be
used to find an MPE. Two, an MPE is often stochastic. This
implies that there are infinitely many candidate solutions
even with finite state and finite actions. Thus, the goal of
finding an MPE in the QH setting is not equivalent to finding
the optimal policy in the exponential setting.

Our main contributions can be summarized as follows. We
provide the first model-free RL algorithm for finding an
MPE. Using a two-timescale analysis based on (Gopalan
& Thoppe, 2022) and (Ramaswamy & Bhatnagar, 2016),
we provide evidence to show that our algorithm converges
to an invariant set of a suitable Differential Inclusion (DI),
a standard analysis tool used in control theory. Thereafter,
we formally show that any MPE must be an invariant set
of our DI. Finally, we provide numerical experiments in an
inventory control setup to show that our algorithm succeeds
in extracting out the various MPEs.
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2. Setup, Algorithm, and Main Result
2.1. Setup and Algorithm

Our setup consists of an MDP M ≡ (S,A,P,R, σ, γ),
where S and A are some finite state and finite action spaces,
respectively, P : S × A → ∆(S) is the transition matrix,
and r : S × A → R is the instantaneous reward function.
Further, σ, γ ∈ [0, 1) are the parameters of QH discounting.
The definition of Q-value function of a stationary policy1

π : S → ∆(A) under QH discounting is given by

Qσ,γ
π (s, a) := E

[
r(s0, a0) +

∞∑
n=1

σγnr(sn, an)

∣∣∣∣s0 = s,

a0 = a

]
,

where, for n ≥ 0, sn+1 ∼ P(·|sn, an), and an+1 ∼
π(·|an). In this work, we consider a policy π parameter-
ized by θ where π(.|s) = softmax(θ(s, .)). We refer the
reader to Figure 1a to understand the differences between
exponential discounting and QH discounting.

We now present our main contribution, Algorithm 1, which
finds a policy satisfying (1), that is, an MPE. In our algo-
rithm, θn is the parameter corresponding to the policy that
estimates an MPE at time n, while Wn is the estimate of
the QH Q-value function of that policy. The (θn)- updates
improve the policy, thus, it is referred to as the actor update.
On the other hand, the (Wn)- updates attempt to evaluate
the Q-value function of πθn under QH discounting; hence,
it is referred to as the critic update. We need to learn both θ
and Q-value function, as the MPE policy cannot be derived
always from its Q-values as in exponential discounting. In
this work we consider the case where the stepsizes αn and
βn for updating Wn and θn respectively satisfy αn/βn → 0.
Because the θn-iterates get updated on a faster timescale,
our algorithm falls under the category of Critic-Actor algo-
rithms (Bhatnagar et al., 2023).

We now motivate the design of our algorithm from the
perspective of traditional Critic-Actor algorithm. Let
ησ,γπθ

(µ) := Es∼µ,a∼πθ
[Qσ,γ

πθ
(s, a)] denote the policy value

of πθ for a fixed initial state distribution µ. Similar to expo-
nential discounting (Sutton et al., 1999), the policy gradient
for QH discounting is

∂ησ,γπθ
(µ)

∂θ(s, a)
=(1− σ)µ(s)πθ(a|s)A0

πθ
(s, a)

+
σ

1− γ
dπθ
µ (s)πθ(a|s)Aγ

πθ
(s, a).

(2)

When σ = 1, the RHS above reduces only to the
second term, which depends on the advantage function
(Aγ

πθ
(s, a) = Qγ

πθ
(s, a) − ⟨πθ(·|s), Qγ

πθ
(s, ·)⟩) with re-

spect to exponential discounting. However, in the policy

1Henceforth, we denote a stationary policy π̄ ≡ (π, π, . . .) by
π itself.

Algorithm 1 Synchronous MPE-learning

1: Input: {αn}n≥0, {βn}n≥0 satisfying A1, discount fac-
tors σ, γ

2: Initialize: θ0,W0 ∈ R|S|×|A|

3: for n = 0, 1, 2, ... do
4: Initialize r′n,W

′
n, Ŵ

θn
n ∈ R|S|×|A|

5: for (s, a) ∈ S ×A do
6: Observe s′ ∼ P(·|s, a)
7: Sample a′ ∼ πθn(·|s′)
8: r′n(s, a)← r(s′, a′),W ′

n(s, a)←Wn(s
′, a′)

9: Ŵ θn
n (s, a)← ⟨πθn(·|s), Wn(s, ·)⟩

10: end for
11: Wn+1 = Wn + αn[r − (1− σ)γr′n + γW ′

n −Wn]

12: θn+1 = θn + βn

[
Wn − Ŵ θn

n

]
13: end for

gradient of QH discounting, the state distribution in the first
term (i.e., µ(s)) and the second term (i.e., dπθ

µ (s)) are not
equal so they cannot be combined to get the QH advantage
function Aσ,γ

πθ
. With this observation in mind, we designed

our update rule of θn, i.e., the actor’s behavior, to directly
depend on the advantage function Aσ,γ

πθ
instead of (2).

2.2. Main Result

We first state all our our assumptions.

A1. Step sizes: (αn)n≥0 and (βn)n≥0 are two se-
quences of positive real numbers satisfying (i) α0 ≤
1, β0 ≤ 1 and (αn), (βn) are monotonically decreas-
ing, (ii) limn→∞(αn/βn) = 0, and (iii)

∑∞
n=0 αn =∑∞

n=0 βn =∞; further,
∑∞

n=0(α
2
n + β2

n) <∞.

A2. Bounded reward: There exists rmax > 0 such that
|r(s, a)| < rmax for all s ∈ S and a ∈ A.

For W ∈ R|S||A|, define the set-valued maps

λ(W ) := co{g : S → A : g(s) ∈ argmaxW (s, ·)},
Tλ(W ) := {r + γPg [−(1− σ)r +W ] : g ∈ λ(W )},

where co is the convex closure.

Our main result can now be stated as follows. Let ∥ · ∥ be
the Euclidean norm.
Theorem 2.1 (Main Result). Suppose A1 and A2 hold.
Then, we have the following statements:

(i) The (Wn) iterates of Algorithm 1 are stable, i.e.,
supn ||Wn|| <∞ a.s.;

(ii) D(πθn , λ(Wn))→ 0, where D(x, Y ) := infy∈Y ||x−
y|| and θn, Wn are as in Algorithm 1; and

3
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(a) σ = 0.3 (b) σ = 0.5 (c) σ = 0.7

Figure 2: Vector fields for the DI (3). Here orange dot is the Qπa2
value, blue dot is the Qπa1

value and green dot is the
QπMPE

value.

(iii) The (Wn) sequence of Algorithm 1 converges to a con-
nected internally chain transitive set of the Differential
Inclusion (DI)

Ẇ (t) ∈ Tλ(W (t))−W (t). (3)

Remark 2.2. Due to A1(ii), (θn) is updated on a faster
timescale than (Wn). Hence, (Wn) appears quasi-static to
(θn). If Wn is indeed static, i.e., Wn ≡ W, then it is easy
to check that πθn → λ(W ). Statement (ii) extends this
claim to show that the distance between θn and λ(Wn)
asymptotically decreases.
Remark 2.3. A1 is a standard assumption in the SA literature
for two time scale algorithms. A2 is also not very restrictive
and is used to show a.s. boundedness or the stability of the
(Wn)-iterates in Statement (i). This stability is crucial to
show Statement (iii).
Remark 2.4. While we show that the (Wn)-sequence is
bounded (see Theorem 2.1(i)), (θn) will be unbounded, i.e.,
∥θn∥ → ∞. Existing works on critic-actor or actor-critic
methods use projection to a bounded set to forcefully ensure
(θn)’s stability to enable analysis using existing techniques.
In contrast, we use the stability of the policies πθn to show
Theorem 2.1(iii), which is novel.

Proposition 2.5. The Qσ,γ
π∗ values of every MPE (π∗) of an

MDP is a zero of the DI (3).

2.3. Control Theory connection to Main Result

To explain our algorithm’s behavior, we examine the vector
fields of (3) for various σ values, as depicted in Figure 2
for the MDP in Figure 1b. The blue region below the line
x = y shows where a1 is the greedy action, while the orange
region shows where a2 is the greedy action. The dynamics
in each region move towards the Q-value function of the
respective greedy policy, resulting in different dynamics
and a discontinuous nature, which makes an ODE approach
unsuitable. Instead, we use DI, a standard tool to analyze
discontinuous dynamics in control theory. For a DI, the
trajectories may converge to a point within a cone or on the

boundary between cones. For instance, Figures 2a and 2c
show that for σ = 0.3 and σ = 0.7, the optimal policies
g and f lie inside their respective cones. However, this is
not always true, as shown in Figure 2b for σ = 0.5, where
the dynamics push trajectories toward specific points within
each region, ultimately converging on the boundary at the
MPE, represented by the green dot.

While the dynamics in tabular exponential discounting are
discontinuous, the presence of a contraction operator makes
DI analysis unnecessary. However, in QH discounting, the
absence of a known contraction operator requires the adop-
tion of the new DI perspective for analysis. Additionally,
the optimal policy is always deterministic in exponential
discounting, meaning the optimal point lies within a cone.
In contrast, as shown in Figure 2b, the optimal policy in QH
discounting may lie on the boundary. Therefore, we need
tools from control theory, such as sliding mode attractors
and Lyapunov functions for DI, to establish results in QH
discounting, which we are currently pursuing.

3. Brief of Experimental Results
In this paper, we use the famous inventory control problem
to empirically test our algorithm, with a detailed discussion
available in Appendix A. We ran our algorithm to find the
MPEs for an inventory control problem with a maximum
storage capacity of 2 converged to three different points,
indicating that MPEs are not unique, even in a small case
of 3 states and 3 actions. Unlike in exponential discounting,
where multiple actions can have the highest Qσ,γ values,
these actions in MPE must be chosen according to an MPE
policy to achieve the expected profits. Any deviation from
an MPE policy will result in sub-optimal profits. However,
within an MPE, no action has a higher Qσ,γ value than
the one suggested, so there is no incentive for the agent to
deviate from the MPE (see Tables in Appendix A).

4
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A. Experiments
This section has two main objectives. First, to empirically
demonstrate that our proposed Algorithm 1 finds an MPE,
a policy favored by an agent aware of time-inconsistency
(sophisticate agent). Second, to show that the vanilla pol-
icy gradient-based algorithm produces a time-inconsistent
optimal policy, favored by an agent unaware of this time-
inconsistency (naive agent). We will briefly describe the
inventory control problem, the chosen environment to illus-
trate these claims.

A.1. Inventory Control: Problem Setup

In this study, we focus on the inventory control problem, a
widely researched topic in economics (Zipkin, 2000). It’s
a classic problem in Reinforcement Learning, where the
manager’s preferences are typically represented using ex-
ponential discounting. Building on previous work such as
(Zhao et al., 2017), we model the manager’s preferences
using quasi-hyperbolic discounting. We will now introduce
the problem by framing it as an infinite horizon discrete-time
Markov Decision Process.

State space: The state space S is defined as {1, 2, ...,M},
where M represents the maximum storage capacity of the
inventory. Each state st ∈ S corresponds to the number of
items in the inventory on day t.

Action space: The action space A is defined as
{1, 2, ...,M}. Each action at ∈ A represents the number of
items the manager orders on day t, with the assumption that
the order will be delivered on the same day.

System dynamics: Each day, the manager observes cus-
tomer demand dt, assumed to be independently sampled
from an unknown demand distribution D, driving system dy-
namics. For a given state s, action a, and demand d, the next
state s′ is determined by s′ = max(min(s+ a,M)− d, 0).
Here, min(s + a,M) ensures the ordered items do not
exceed the maximum capacity M , with excess items be-
ing discarded if the inventory is full. The expression
max(min(s + a,M) − d, 0) accounts for partial fulfill-
ment of demand based on available stock. Considering the
stochastic demand, the transition dynamics are described by
P(s′|s, a) = Ed∼D[I{s′ = max(min(s+ a,M)− d, 0)}].

Reward function: The daily reward, on day t, encompasses
three components: 1) The cost of purchasing at items at
a unit cost of c. 2) Revenue from sales, where each item
fetches a price of p. 3) Holding costs for remaining inven-
tory items, with a per-item holding cost of h.

In this work, we consider an inventory system with a maxi-
mum capacity of M = 2. The procurement cost per item is
c = 500, while the selling price is p = 900, and the holding
cost is h = 50. For this analysis, we employ a short-term

discount factor of σ = 0.3 and a long-term discount factor
of γ = 0.9.

A.2. Optimal Policy of the Sophisticate Manager

We now discuss the optimal policy of a sophisticate manager,
i.e an MPE. From Theorem 2.1, it is clear that our algorithm
tracks a DI whose invariant sets contain MPEs. Hence, we
run the Algorithm 1 on the inventory control problem under
consideration. We observe that the algorithm converges to
three different points from different runs. The three points
where our algorithm converged are indeed MPEs. We denote
policy π by a matrix A, where π(a|s) = A[s, a]. Table 1, 2
and 3 represents the Qσ,γ values for the 3 MPEs π∗

1 , π
∗
2 and

π∗
3 respectively.

Here are some key insights from this experiment:

1. MPEs under QH discounting may not be unique.

2. Unlike in exponential discounting, where multiple ac-
tions in MPE may have the highest Qσ,γ values, in QH
discounting, actions must adhere to the MPE policy to
achieve the expected profits outlined in the correspond-
ing tables. Any deviation from this policy results in
suboptimal profits. However, within an MPE, no action
yields a greater Qσ,γ value than the one recommended
by it, eliminating any incentive for the manager to
deviate.

3. As shown in Tables 1, 2, and 3, the profits from each
MPE differ. When knowledge of multiple MPEs is
available, selecting a specific one may be advantageous.
For instance, in our setup, π∗

3 is preferable as it yields
the maximum Qσ,γ(s, a) for all s and a, compared to
π∗
1 and π∗

2 .

π∗
1 =

0.00 0.53 0.47
0.53 0.47 0.00
1.00 0.00 0.00

 , π∗
2 =

0.0 0.8 0.2
0.0 1.0 0.0
1.0 0.0 0.0

 ,

π∗
3 =

0.0 0.3 0.7
1.0 0.0 0.0
1.0 0.0 0.0



s
a

0 1 2

0 897.5 1053 1053
1 1553 1553 1053
2 2053 1553 1053

Table 1: Qσ,γ values for policy π∗
1
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s
a

0 1 2

0 873.75 1040.5 1053
1 1540.5 1540.5 1040.5
2 2040.5 1540.5 1040.5

Table 2: Qσ,γ values for policy π∗
2

s
a

0 1 2

0 918.64 1064.125 1064.125
1 1564.125 1564.125 1064.125
2 2064.125 1564.125 1064.125

Table 3: Qσ,γ values for policy π∗
3

A.3. Optimal Policy of the Naive Manager

We now discuss finding the optimal policy for the naive
manager. Note that the vanilla policy gradient with QH
discounting as in (2) optimizes the policy value from the
current time and ignores the change in the discounting factor
of the agent in future times. This is precisely the behavior
of a naive manager, where they maximize the value func-
tion without considering the time-inconsistent nature of the
optimal policy. Hence, we claim that the solution obtained
by performing gradient ascent using vanilla policy gradient
is optimal for a naive agent and not for a sophisticated one.
For the setup under consideration, the optimal policy of the
naive manager is:

π∗
N =

0.0 0.0 1.0
0.0 1.0 0.0
1.0 0.0 0.0



s
a

0 1 2

0 1080 1235.5 1228
1 1735.5 1728 1228
2 2228 1728 1228

Table 4: Qσ,γ values for policy π∗
N

We now show that the optimal policy π∗
N is time-

inconsistent. Table 4 represents the Qσ,γ values for the opti-
mal policy of the naive manager π∗

N . The numbers marked
in bold represent the profit the manager gets by following
π∗
N . However, in state 0, the Qσ,γ

π∗
N
(0, 1) > Qσ,γ

π∗
N
(0, 2) (the

one suggested by the policy π∗
N ). Hence, when the inventory

is at state 0, the naive manager decides to deviate from the
optimal policy for the current day and follow the optimal
policy from the next day onwards. Similarly, in state 1,
the manager deviates from action 1 to action 0. The naive

manager, the next day, unaware that the previous day’s de-
cision was to continue with the optimal policy from today,
again re-evaluates the optimal policy and deviates from the
optimal policy for one more day. This process continues,
and the naive manager finally follows the below-mentioned
policy:

πN =

0.0 1.0 0.0
1.0 0.0 0.0
1.0 0.0 0.0



s
a

0 1 2

0 675 830.5 839.6
1 1330.5 1339.6 839.6
2 1839.6 1339.6 839.6

Table 5: Qσ,γ values for policy πN

Table 5 represents the Qσ,γ values of the policy πN which
is finally followed by the naive manager. The values men-
tioned in boldface are the profits gained by the manager by
following πN . A key point to note here is that the profits
realized by the naive agent is less than both the underlined
and boldfaced profits mentioned in Table 4. This indicates
that the naive agent earns less than the profits suggested by
the time-inconsistent policy, even though it initially seemed
that deviating from it would lead to higher profits.
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