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Abstract
Reinforcement learning has traditionally been
studied with exponential discounting or the av-
erage reward setup, mainly due to their mathe-
matical tractability. However, such frameworks
fall short of accurately capturing human behavior,
which has a bias towards immediate gratification.
Quasi-Hyperbolic (QH) discounting is a simple
alternative for modeling this bias. Unlike in tradi-
tional discounting, though, the optimal QH-policy,
starting from some time t1, can be different to
the one starting from t2. Hence, the future self
of an agent, if it is naive or impatient, can de-
viate from the policy that is optimal at the start,
leading to sub-optimal overall returns. To pre-
vent this behavior, an alternative is to work with
a policy anchored in a Markov Perfect Equilib-
rium (MPE). In this work, we propose the first
model-free algorithm for finding an MPE. Using a
brief two-timescale analysis, we provide evidence
that our algorithm converges to invariant sets of a
suitable Differential Inclusion (DI). We also show
that the QH Q-value function of any MPE would
be an invariant set of our identified DI. Finally,
we validate our claims numerically for the stan-
dard inventory system with stochastic demands.
We believe our work significantly advances the
practical application of reinforcement learning.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018; Bert-
sekas, 2019) looks at identifying a policy/strategy for an
agent to optimally complete a task with sequential decisions.
So far, a strategy π̄’s optimality has been decided based
on either the expected exponentially discounted sum or
the long-term average of the sequence of rewards received
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under that strategy. That is, based on either
∑∞

n=0 γ
nrn

or limT→∞
1
T

∑T−1
n=0 rn, where rn is the expected reward

under policy π̄ at time n and γ ∈ [0, 1). Exponential dis-
counting is preferred when the agent has impatience, i.e.,
immediate gains have emphasis over future gains, with the
emphasis level decided by the γ value. In contrast, the aver-
age of the rewards is preferred when the present and future
rewards are to be treated equally. However, evidence is now
growing that these discounting ideas fail to model human
behaviors accurately (Dhami, 2016).

Humans are known to be impatient over shorter horizons,
but not so much over longer horizons. That is, we have a
bias towards instant gratification. This can be understood
from the famous example by Richard Thaler (Thaler, 1981),
who said, “Most people would prefer one apple today to
two apples tomorrow, but they prefer two apples in 51 days
to one in 50 days.” Observe that there is a reversal of pref-
erences when the time frame shifts. This phenomenon is
known as the common difference effect (Dhami, 2016). Such
preference reversals cannot happen under a policy that is
optimal with respect to either of the two traditional discount-
ing models. This is because of their time-consistent nature
(Sutton & Barto, 2018), i.e, this optimal policy remains
optimal even when reconsidered from some later time as
well. This demonstrates the limitations of these discounting
models in explaining human behaviors.

Hyperbolic discounting (Loewenstein & Prelec, 1992) is
a leading candidate (Ainslie, 1975; Cropper et al., 1992;
Frederick et al., 2002) for explaining the common differ-
ence effect. The value of a strategy π̄ under this discounting
model is

∑∞
n=0 bnrn, where rn is defined as before and

bn = (1 + κ1n)
−κ2/κ1 for some κ1, κ2 > 0. However, this

form of discounting is quite complicated, making its study
hard. This brings forth Quasi-Hyperbolic (QH) discounting
(Phelps & Pollak, 1968; Laibson, 1997), which is a simpler
and more tractable alternative. In QH discounting, b0 = 1
and bn = σγn, n ≥ 1, for some σ ∈ [0, 1] and γ ∈ [0, 1).
The symbol σ is the short-term discount factor, while γ is
the long-term discount factor. Clearly, for σ = 1, QH dis-
counting matches exponential discounting. A comparison
of the discount factors under exponential, hyperbolic, and
quasi-hyperbolic discounting is given in Figure 1a. Unlike
exponential discounting, note that there is a sharp decrease
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(a) Comparison of discount factors

1 20.5, a2, 2

0.5, a2, 2

1, a1, 17

1, a1, 0

(b) Two-state MDP example

f̄ ḡ h̄

(1, a1) 18.88 16.83 18.00

(1, a2) 19.00 16.77 18.00

(2, a1) 32.11 29.56 31.00

(c) Q-values under QH-discounting.

Figure 1: (1a) Comparison of discount factors under exponential, hyperbolic, and quasi-hyperbolic discounting models. (1b)
A two-state MDP example where the action set of state 1 is {a1, a2}, while that of state 2 is {a1}. For each tuple on the
arrow, the first element is the probability of the transition, the second is the action taken, and the third is the instantaneous
reward. (1c) Q-values under QH-discounting for the policies f̄ ≡ (f, f, . . .), ḡ ≡ (g, g, . . .), and h̄ ≡ (h, h, . . .), where
f(1) = f(2) = g(2) = h(2) = a1, while g(1) = a2 and h(a1|1) = h(a2|1) = 0.5. Each row in the table refer to the (s, a)
pairs, while the columns represent the corresponding policies.

in hyperbolic and QH discount factors initially, after which
they decrease more gradually. In this work, we initiate the
study of RL with QH discounting.

Under exponential discounting, the optimal policy π̄∗ is
deterministic and stationary, and has a greedy relationship
with its Q-value function (Sutton & Barto, 2018). However,
such properties do not always hold under QH-discounting
(Jaśkiewicz & Nowak, 2021). This can lead to a complicated
agent behavior, as we now illustrate.

Consider the two-state Markov Decision Process (MDP)
setup of Figure 1b, which is taken from (Jaśkiewicz &
Nowak, 2021). Clearly, there are only two deterministic
stationary policies here: f̄ ≡ (f, f, · · · ) and ḡ ≡ (g, g, . . .),
where f maps state 1 to action a1, and g maps state 1 to
action a2, and both map state 2 to action a1. For σ = 0.5
and γ = 0.8, their Q-value functions under QH-discounting
are given in Table 1c. For a policy π̄, its QH Q-value func-
tion, denoted by Qσ,γ

π̄ , is defined in the same way as in
the exponential discounting case, but with discount factors
1, γ, γ2, . . . replaced by 1, σγ, σγ2, . . . In Table 1c, notice
that f̄ yields the highest returns from state 2. However, at
state 1, neither f̄ nor ḡ shares a greedy relationship with its
QH Q-value function. This fact implies that gf̄ (acting as
g at n = 0 and f for n ≥ 1) is the policy that yields the
highest returns, starting from state 1.

The optimal policies in the above example have three inter-
esting dissimilarities compared to their counterparts in RL
with exponential discounting or simple averaging. Firstly,
the optimal policy varies depending on the initial state of
the process. Secondly, gf̄ is non-stationary. Thirdly, and
significantly, both f̄ and gf̄ display time inconsistency. To
elaborate the last point further, note that both gf̄ and f̄ ad-

vocate following f at any n ≥ 1. Now suppose, at time
n = 1, the MDP is in state 1 and the agent re-evaluates the
optimal policy from that time onward. Then, from Table 1c,
the agent would again discover gf̄ to be optimal, i.e., act
as per g at n = 1 and revert to f thereafter. This behavior
contradicts the one that is optimal from n = 0, highlighting
the time inconsistency.

We now describe a complex agent behavior for the above
setup, primarily stemming from the time-inconsistent nature
of the optimal policies. Consider the agent as a sequence
of selves, each corresponding to a different time step n.
Suppose each future self is naive, i.e., unaware of the time
inconsistency in the optimal policy. Alternatively, suppose
they all have self-control issues and a possibility to act con-
trary to their own interests. In both scenarios, the following
situation could unfold. Each time the MDP visits state 1, the
naive selves recalculate the optimal strategy from that point
on and decide to act as per g at that time step. Similarly,
each self with control issues could also decide to act as per
g because (i.) it is aware that if the subsequent selves act
as per f, then it would receive higher returns, and (ii.) it
presumes that the subsequent selves will act as per f. How-
ever, if all selves end up acting as per g for all n ≥ 0, then
Table 1c shows that the expected overall returns would be
substantially lower (only 16.77).

To safeguard against the above pitfall, it is desirable to have
a stationary (possibly stochastic) policy π̄ ≡ (π, π, . . .)
from which there is no incentive for deviation. For such a
policy π̄, it would then be true that

Qσ,γ
π̄ (s, π) = sup

ν:S→∆(A)

Qσ,γ
π̄ (s, ν), s ∈ S, (1)

where S (resp. A) is the MDP state space (resp. ac-
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tion space), ∆(A) is the set of distributions on A, and
Qσ,γ

π̄ (s, ν) =
∑

a∈A(s) ν(a|s)Q
σ,γ
π̄ (s, a) is the average

of π̄’s QH Q-values for a starting state distribution ν :
S → ∆(A). Any stationary policy π̄∗ which satisfies
(1) is referred to as a Markov Perfect Equilibrium (MPE)
(Jaśkiewicz & Nowak, 2021). For our two-state MDP ex-
ample, Table 1c shows that the stationary policy h̄ is an
MPE. For a general MDP, an MPE is neither guaranteed to
exist nor be unique; so far, they have been found only using
analytical techniques, and that too only for simple MDPs
(Jaśkiewicz & Nowak, 2021).

Our goal in this work is to develop a model-free RL algo-
rithm to identify an MPE in a finite state and action MDP.
An MPE’s existence here is guaranteed by the conditions
outlined in (Jaśkiewicz & Nowak, 2021). However, find-
ing it poses significant challenges unlike finding an optimal
policy in RL with a traditional discounting. Firstly, there ex-
ists no known Bellman-type contraction mapping for which
an MPE’s Q-value function serves as a fixed point. Con-
sequently, the traditional fixed-point-type methods cannot
be used to find this value function. Moreover, even if this
function were identified somehow, determining the MPE
itself remains challenging as it lacks a straightforward re-
lationship with its value function. Secondly, MPEs often
are stochastic. This means the search space for an MPE
encompasses all stochastic policies, which is infinitely large
even for finite state and action MDPs. In contrast, under ex-
ponential discounting or average reward, the optimal policy
search is confined to deterministic policies, which is a finite
set (albeit growing combinatorially).

Our main contributions are as follows. We propose the first
model-free RL algorithm for finding an MPE. This algo-
rithm is a two-timescale stochastic approximation and is
inspired by the recently proposed critic-actor method for
classical RL (Bhatnagar et al., 2023). Unlike the actor up-
date in the latter, which follows a stochastic estimate of
the value function’s gradient, our method updates along
the advantage function1, enabling it to find an MPE. Sec-
ondly, by building upon (Ramaswamy & Bhatnagar, 2016),
(Gopalan & Thoppe, 2023), and (Bhatnagar et al., 2023), we
conjecture that the iterates from our critic update converge
to an invariant set of a suitable Differential Inclusion2 (DI).
We provide evidence supporting this claim in the context
of the two-state MDP from Figure 1b. Thirdly, using the
MPE’s definition from (1), we show that any MPE’s Q-value
function must be an invariant set of the limiting DI for our
critic update. Additionally, for cases where our critic-actor

1The QH advantage function is the difference between the QH
Q-value function and the state-value function. In RL with exponen-
tial discounting, the advantage function and the value function’s
gradient are aligned, but it is not so under QH discounting; see (5).

2A DI is a set-valued generalization of a differential equation.
It has the form ẋ(t) ∈ h(x(t)), where h is set valued.

iterates converge to an isolated point (W,π), we show that
π must be an MPE and W its Q-value function. Finally,
we provide numerical experiments in an inventory control
setup, demonstrating our algorithm’s success in identifying
various MPEs.

2. Setup, Goal, Algorithm, and Main Results
In this section, we describe our problem setup, our goal, and
our key contributions: the first algorithm for finding an MPE
and conjectures that describe its asymptotic convergence.

2.1. Setup and Goal

Let ∆(U) denote the set of distributions over a set U . Our
setup consists of an MDP M ≡ (S,A,P,R, σ, γ), where
S andA are finite state and finite action spaces, respectively,
P : S×A → ∆(S) is the transition matrix, and r : S×A →
R is the instantaneous reward function. Further, σ, γ ∈ [0, 1)
are the parameters of QH discounting. Within the above
setup, our goal is to find an MPE, i.e., a stationary policy
π̄ ≡ (π, π, . . .) (henceforth denoted only by π) that satisfies
the MPE relation given in (1).

2.2. MPE-learning Algorithm

For a stationary policy π : S → ∆(A), let

Qσ,γ
π (s, a) := r(s, a)

+ E

[ ∞∑
n=1

σγnr(sn, an)

∣∣∣∣s0 = s,

a0 = a

]
, (2)

where sn+1 ∼ P(·|sn, an) and an+1 ∼ π(·|sn+1) for n ≥
0. This function is the stationary policy π’s Q-value function
under QH discounting. Separately, for θ ∈ R|S|·|A|, let
πθ(·|s) = softmax(θ(s, ·)) for s ∈ S.

Our novel approach for finding an MPE is given in Algo-
rithm 1. The symbol θn parameterizes the policy repre-
senting our MPE estimate at time n ≥ 0, while Wn is this
policy’s Q-value function estimate. Hence, we refer to the
θn update (Step 11) as the actor update, and to the Wn up-
date (Step 10) as the critic update. Throughout this work, we
focus on the scenario where the stepsizes αn and βn, used in
the critic and actor updates, respectively, satisfy the relation
limn→∞ αn/βn = 0. This ensures the critic updates are on
a slower timescale compared to the actor. Consequently, Al-
gorithm 1 falls under the category of critic-actor algorithms
(Bhatnagar et al., 2023) (instead of actor-critic). We give a
principled motivation for our algorithm in Section 3.

2.3. Main Conjecture and Other Results

We first state our assumptions.

A1. Stepsizes: (αn)n≥0 and (βn)n≥0 are two sequences
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Algorithm 1 Synchronous MPE-learning

1: Input: Stepsizes (αn), (βn), and discount factors σ, γ
2: Initialize: θ0,W0 ∈ R|S|×|A|

3: for n = 0, 1, 2, ... do
4: for (s, a) ∈ S ×A do
5: Observe s′ ∼ P(·|s, a)
6: Sample a′ ∼ πθn(·|s′)
7: r′n(s, a)← r(s′, a′), W ′

n(s, a)←Wn(s
′, a′)

8: Ŵ θn
n (s, a)← ⟨πθn(·|s), Wn(s, ·)⟩

9: end for

10: Wn+1 ←Wn+αn [r − (1− σ)γr′n + γW ′
n −Wn]

11: θn+1 ← θn + βn

[
Wn − Ŵ θn

n

]
12: end for

Steps 10 and 11 define the algorithm’s update rules, while
Steps 4 to 9 setup the necessary vectors for these updates.

of monotonically decreasing positive real numbers
such that (i) α0 ≤ 1, β0 ≤ 1; (ii)

∑∞
n=0 αn =∑∞

n=0 βn = ∞, but
∑∞

n=0(α
2
n + β2

n) < ∞; and (iii)
limn→∞(αn/βn) = 0.

A2. Bounded reward: There exists rmax > 0 such that
|r(s, a)| < rmax for all s ∈ S and a ∈ A.

Next, we define two set-valued maps. For W ∈ R|S||A|, let
λ(W ) be the (convex) set of stochastic policies given by

λ(W ) :=

{
µ : S → ∆(A) :

∑
a∈A

µ(a|s) = 1 and

supp(µ(·|s)) ⊆ argmaxW (s, ·)} ∀s ∈ S
}
.

Further, let Tλ(W ) := {Tµ(W ) : µ ∈ λ(W )}, where
T g : R|S||A| → R|S||A| is the QH Bellman operator for the
policy µ. That is,

Tµ(W )(s, a) = r(s, a) + γ
∑
s′,a′

P(s′|s, a)µ(a′|s′)

× [−(1− σ)r(s′, a′) +W (s′, a′)] . (3)

We now use DI theory (Aubin & Cellina, 2012) to explain
the limiting dynamics of the (Wn) and (θn) iterates from
Algorithm 1. Our key reason for relying on DIs is that,
asymptotically, Wn’s update function has discontinuities.
This discontinuity arises because, as we discuss in Sec-
tion 3, (Wn)’s asymptotic dynamics must be governed by
the Tµ(W )−W operator for some µ ∈ λ(W ) and the Tµ

operator discontinuously changes. A DI helps in handing
these discontinuities by allowing multiple update directions

at those points (cf. (Gopalan & Thoppe, 2023)). This set-
valued nature, though, implies that a DI can have multiple
solutions for the same initial point.

With respect to the DI ẋ ∈ h(x(t)), we will say a set Γ ⊆
Rd is invariant if, for every x0 ∈ Γ, there is some solution
trajectory (x(t))t∈(−∞,∞) of the DI with x(0) = x0 that
lies entirely in Γ. An invariant set Γ is additionally internally
chain transitive if it is compact and connected in a certain
way: for y, y′ ∈ Γ, ν > 0, and T > 0, there exist m ≥ 1
and points z0 = y, z1, . . . , zm−1, zm = y′ in Γ such that
a solution trajectory of the DI initiated at zi meets the ν-
neighborhood of zi+1 for 0 ≤ i < m after a time that is
equal or larger than T.

Our main conjecture can now be stated as follows. Let ∥ · ∥
be the standard ℓ∞ norm.

Conjecture 2.1. Suppose A1 and A2 are true. Then the
following statements hold for the iterates (Wn) and (θn)
obtained from Algorithm 1:

(i) (Wn) is stable, i.e., supn ∥Wn∥ <∞ a.s.;

(ii) (Wn, πθn)→ {(W,λ(W )) : W ∈ R|S||A|}; and

(iii) (Wn) converges to a compact connected internally
chain transitive invariant set of the DI

Ẇ (t) ∈ Tλ(W (t))−W (t). (4)

Remark 2.2. Statement (ii) shows that πθn is asymptotically
greedy with respect to Wn, while Statement (iii) shows that
Wn converges to a suitable invariant set of the DI in (4).

Our next conjecture discusses an MPE’s relation to (4).

Conjecture 2.3. For any MPE π∗, we have π∗ ∈ λ(Qσ,γ
π∗ )

which, in turn, implies that 0 ∈ Tλ(Q
σ,γ
π∗ )−Qσ,γ

π∗ .

In general, our algorithm can converge to a set. However,
our next conjecture shows that our algorithm’s convergence
to a singleton implies that the latter must define an MPE.

Conjecture 2.4. If Algorithm 1 converges to a point, i.e., if
(Wn, πθn)→ (W ∗, π∗), then π∗ must be an MPE and W ∗

must be the QH Q-value function of π∗.

3. Our Algorithm Design
Here we motivate the critic (Step 10) and actor (Step 11)
update rules of our proposed algorithm and explain how
they enable MPE estimation.

Our critic or the Wn update step is based on the temporal
difference idea for minimizing the QH Bellman error at
time n, i.e., ∥Tπθn (W )−W∥. Hence, Wn can be seen as
an estimate of the QH Q-value function of the policy πθn .
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(a) σ = 0.3 (b) σ = 0.5 (c) σ = 0.7

Figure 2: Vector fields for the DI in (4) for the MDP given in Figure 1b with γ = 0.8 and σ values of 0.3, 0.5, and 0.7. Here,
the orange dot is the vector Qσ,γ

ḡ , blue is Qσ,γ

f̄
, while green is Qσ,γ

h̄
, where f̄ , ḡ and h̄ are as in Figure 1’s caption.

Our actor or the θn update is approximately along the
QH advantage function Aσ,γ

πθn
of πθn , where Aσ,γ

π (s, a) =

Qσ,γ
π (s, a)−⟨π(·|s), Qσ,γ

π (s, ·)⟩ for any π, s, and a. We say
approximately because Wn is only an estimate of Qσ,γ

πθn
.

Our main motivation to use the advantage function for up-
dating θn is to ensure that πθn is asymptotically greedy with
respect to Wn; see Conjecture 2.1.(ii). Even in RL with
exponential discounting, the actor updates are along the cor-
responding advantage function estimate of the current policy
(Sutton et al., 1999). However, the advantage function there
aligns with the gradient of the state value function and en-
ables discovery of the optimal policy. In QH discounting,
though, this alignment does not hold, as we show next.

Let Aγ
π(s, a) = Qγ

π(s, a)− ⟨π(·|s), Qγ
π(s, ·)⟩ be the policy

π’s advantage function under exponential discounting with γ
discount factor. Similarly, let A0

π(s, a) be the analogous γ =
0 expression. Now, if ησ,γπθ

(µ) := Es∼µ,a∼πθ
[Qσ,γ

πθ
(s, a)]

for θ ∈ R|S|·|A|, where µ is some fixed initial state distribu-
tion, then we have that

∂ησ,γπθ
(µ)

∂θ(s, a)
= (1− σ)µ(s)πθ(a|s)A0

πθ
(s, a)

+
σ

1− γ
dπθ
µ (s)πθ(a|s)Aγ

πθ
(s, a).

(5)

The RHS is not Aσ,γ
πθ

, as claimed above, since

Aσ,γ
πθ

(s, a) = (1− σ)A0
πθ
(s, a) + σAγ

πθ
(s, a),

which itself holds since

Qσ,γ
πθ

(s, a)

= E

[
(1− σ)r(s0, a0) +

∞∑
n=0

σγnr(sn, an)

∣∣∣∣s0 = s,

a0 = a

]
.

Our actor update not being aligned with the gradient also
explains why our algorithm does not track the optimal policy
unlike the classical critic-actor method.

Now, because of two-timescale nature of our algorithm, it
can be shown that (Wn) tracks the DI in (4). The main

advantage of this DI is that an MPE’s QH Q-value function
is a zero of this DI, as shown in Proposition 2.3.

Finally, we explain our reasons for relying on the critic-
actor family for developing our MPE learning algorithm,
instead of extending value-function-based methods such as
Q-learning and SARSA. In classical RL, these latter meth-
ods leverage the fact that the optimal policy can be derived
from its Q-value function through a simple greedy relation-
ship, making it sufficient to estimate only this Q-value func-
tion. However, under QH discounting, no relation exists to
infer an MPE from its QH Q-value function. This is why we
directly use the critic-actor family: it enables simultaneous
estimation of an MPE and its Q-value function.

4. Proof Sketches for our Conjectures
We provide a brief overview of our planned approaches to
prove our various conjectures.

4.1. Conjecture 2.1’s Proof Sketch and its Utility

Using A2 and the fact that γ ∈ [0, 1), one should be able to
inductively show that ∥Wn∥ ≤ C, n ≥ 0, for some constant
C ≥ 0. This would establish Statement (i).

Statements (ii) and (iii) should follow by building upon the
two-timescale stochastic approximation analyses presented
in (Borkar, 2009), (Ramaswamy & Bhatnagar, 2016), and
(Yaji & Bhatnagar, 2020). All these prior analyses assume
the iterates in both timescales to be bounded a.s. However,
in our case, the (θn) iterates must diverge to infinity for πθn

to become asymptotically greedy with respect to Wn and
transform into an MPE. While this divergence may force
non-trivial modifications to the proof used in the above
papers, we believe the core ideas and the main conclusions
should still carry over mutatis mutandis.

We now illustrate the utility of the limiting DI in (4) in
finding an MPE for the two-state MDP given in Figure
1b. In this case, the vector field associated with the above
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DI for γ = 0.8 and three different values of σ (0.3, 0.5
and 0.7) is given in Figure 2. We first explain the three
plots. In all of them, there is a blue and an orange colored
region. These are the greedy regions associated with the
policies f̄ and ḡ, respectively (see Figure 1’s caption for f̄
and ḡ’s definition). That is, for any vector W in the blue
region W (1, f(1)) = W (1, a1) ≥W (1, a2) = W (1, g(1))
and the reverse holds for any vector in the orange region.
Hence, for any W in the interior of the blue (resp. orange)
region, λ(W ) consists3 of only f (resp. g) and the driving
function is T f (W ) −W (resp. T g(W ) −W ), where T f

and T g are defined as in (3). Because the greedy policy
is different in the two colored regions, the local dynamics
discontinuously changes across the x = y boundary line. As
pointed out before, the DI in (4) handles this discontinuity
by allowing both the update directions (and also their convex
combinations) at the boundary.

In Figure 2(a), any solution trajectory starting in the blue re-
gion is driven towards the blue dot, which represents Qσ,γ

f̄
.

This is not surprising since we use QH temporal differ-
ence learning for updating (Wn). However, once the trajec-
tory crosses over to the orange region, the driving function
changes and the trajectory is now driven towards the orange
dot, which represents Qσ,γ

f̄
. For σ = 0.3, it can be shown

that ḡ is the only MPE and tracking the solution trajectory of
our DI helps in finding this MPE’s QH Q-value. Figure 2(c)
can be interpreted similarly. In Figure 2(b), i.e., for the case
σ = 0.5, it can be shown that neither ḡ nor f̄ is an MPE.
Instead, the stochastic policy h̄ (see Figure 1’s caption) is
an MPE and its Q-value sits on the boundary. In this case,
the driving function in either region pushes the solution
trajectory towards the other which eventually forces it to
converge to the green dot, which is Qσ,γ

h̄
. Thus, tracking the

solution trajectories of our DI again helps.

4.2. Conjecture 2.3’s Proof Sketch

Our planned proof strategy is the following. We plan to use
the definition of an MPE to show that π∗ ∈ λ(Qσ,γ

π∗
). The

fact that 0 ∈ Tλ(Q
σ,γ
π∗ )−Qσ,γ

π∗ then follows immediately.

4.3. Conjecture 2.4’s Proof Sketch

If Conjecture 2.1 is true, then it would follow from its State-
ment (ii) that, on every sample path where (Wn, πθn) →
(W ∗, π∗), we would have that π∗ ∈ λ(W ∗). Using this fact,
we then plan to show that W ∗ = Qσ,λ

π∗
. The fact that π∗ is

an MPE would then follow by verifying the MPE definition
given in (1).

3We mean λ(W ) contains the stochastic representation of f.

5. Experiments
We now numerically illustrate the utility of our algorithm
for the stochastic inventory control problem.

The inventory control problem involves managing stock lev-
els, e.g., cars in a showroom, to meet the daily uncertain
demand while maximizing overall profits. For our illus-
tration, we consider an inventory system with a maximum
capacity of M = 2. We suppose that the procurement (resp.
holding) cost per item is c = 500 (resp. h = 50), while
the selling price is p = 900. Further, we suppose that the
daily demand is a random variable taking values of 0, 1,
or 2 with probabilities 0.3, 0.2, and 0.5, respectively. At
the start of day n, the inventory manager gets to see the
current stock level sn and then decide on the number of new
items an to (immediately) procure to meet the (uncertain)
demand dn for that day; the capacity constraint implies that
sn + an can be at most 2. Hence, the reward obtained for
day n equals rn(sn, an) = 900 × min{sn + an, dn} −
500 × an − 50 × max{sn + an − dn, 0}. Consequently,
the expected infinite horizon QH-discounted cost, starting
with an initial stock of s and initial procurement of a equals
E[r0(s0, a0) +

∑∞
n=1 σγ

nrn(sn, an)|s0 = s, a0 = a]. For
our illustration, we suppose σ = 0.3 and γ = 0.9.

We ran our proposed algorithm multiple times and it identi-
fied three different MPEs. Due to space limitation, we give
details of only one of these MPEs. The MPE is

π∗
MPE1

=

0.00 0.53 0.47
0.53 0.47 −
1.00 − −

 ,

while its QH Q-value function is as given in Table 1. See
Appendix A for the details of other MPEs. Separately, we
also ran the variant of the classical critic-actor method for
QH discounting, the one where the actor update is along the
gradient of the state value function as described in (5) (with
the initial state distribution being uniform). The output of
this algorithm was the policy

π∗
naive =

0.0 0.0 1.0
0.0 1.0 −
1.0 − −

 ,

whose QH Q-value function is as given in Table 3. Clearly,
under π∗

MPE1
, the inventory manager has no incentive to

deviate. In contrast, π∗
naive provides an incentive to deviate:

maintaining a stock of 1 now and keeping it at 2, thereafter,
is better than keeping it at 2 always, i.e., following π∗

naive

always. Hence, the naive agent can end up maintaining the
stock at 1 always, i.e., it may end up following

πnaive =

0.0 1.0 0.0
1.0 0.0 −
1.0 − −
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Table 1: Qσ,γ
π∗
MPE1

values

s
a

0 1 2

0 897.5 1053 1053
1 1553 1553 -
2 2053 - -

Table 2: Qσ,γ
πnaive

values

s
a

0 1 2

0 675 830.5 839.6
1 1330.5 1339.6 -
2 1839.6 - -

Table 3: Qσ,γ
π∗
naive

value

s
a

0 1 2

0 1080 1235.5 1228
1 1735.5 1728 -
2 2228 - -

The numbers in bold represent the Qσ,γ-values for actions recommended by the respective policies. In MPE π∗
MPE1

, no
other actions have higher values than those in bold, so the agent has no incentive to deviate from π∗

MPE1
. In contrast, under

π∗
naive from the Vanilla QH Policy Gradient Algorithm, the underlined actions have higher values, hence an agent may

deviate from π∗
naive.

instead of π∗
naive. In that case, the agent gets significantly

low returns as can be seen from Table 2.
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A. Details of MPE’s for Inventory Control
Problem

For the inventory control setup considered in Section 5, our
Algorithm 1 identified two additional MPEs,

π∗
MPE2

=

0.0 0.8 0.2
0.0 1.0 −
1.0 − −

 , π∗
MPE3

=

0.0 0.3 0.7
1.0 0.0 −
1.0 − −

 .

The corresponding QH Q-values are presented in Tables 4
and 5, respectively.

Table 4: Qσ,γ
π∗
MPE2

values

s
a

0 1 2

0 873.75 1040.5 1040.5
1 1540.5 1540.5 -
2 2040.5 - -

Table 5: Qσ,γ
π∗
MPE3

values

s
a

0 1 2

0 918.64 1064.125 1064.125
1 1564.125 1564.125 -
2 2064.125 - -
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