
Reparameterized Policy Learning for Multimodal Trajectory Optimization

Zhiao Huang 1 Litian Liang 1 Zhan Ling 1 Xuanlin Li 1 Chuang Gan 2 3 Hao Su 1

Abstract

We investigate the challenge of parametrizing
policies for reinforcement learning (RL) in high-
dimensional continuous action spaces. Our ob-
jective is to develop a multimodal policy that
overcomes limitations inherent in the commonly-
used Gaussian parameterization. To achieve this,
we propose a principled framework that models
the continuous RL policy as a generative model
of optimal trajectories. By conditioning the pol-
icy on a latent variable, we derive a novel varia-
tional bound as the optimization objective, which
promotes exploration of the environment. We
then present a practical model-based RL method,
called Reparameterized Policy Gradient (RPG),
which leverages the multimodal policy parame-
terization and learned world model to achieve
strong exploration capabilities and high data ef-
ficiency. Empirical results demonstrate that our
method can help agents evade local optima in
tasks with dense rewards and solve challenging
sparse-reward environments by incorporating an
object-centric intrinsic reward. Our method con-
sistently outperforms previous approaches across
a range of tasks. Code and supplementary ma-
terials are available on the project page https:
//haosulab.github.io/RPG/

1. Introduction
Reinforcement learning (RL) with high-dimensional con-
tinuous action space is notoriously hard despite its fun-
damental importance for many application problems such
as robotic manipulation (OpenAI et al., 2019; Mu et al.,
2021). In practice, popular frameworks (Silver et al., 2014;
Haarnoja et al., 2018; Schulman et al., 2017) of deep RL
formulate the continuous policy as a neural network that out-
puts a single-modal density function over the action space

1UC San Diego 2MIT-IBM Watson AI Lab 3UMass Amherst.
Correspondence to: Zhiao Huang <z2huang@ucsd.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. (A) Our method reparameterizes latent variables into
multimodal policy to facilitate exploitation and exploration in
continuous policy learning; (B) Average performance on 6 hard
exploration tasks. Our method outperforms previous methods.

(e.g., a Gaussian distribution over actions). This formu-
lation, however, breaks the promise of RL being a global
optimizer of the return function because the single-modality
policy parameterization introduces local minima that are
hard to escape using gradients w.r.t. distribution parame-
ters. Besides, a single-modality policy will significantly
weaken the exploration ability of RL algorithms because
the sampled actions are usually concentrated around the
modality.

Although there are other candidates beyond the Gaussian dis-
tribution for policy parameterization, they often have limita-
tions when used for continuous policy modeling. For exam-
ple, Gaussian mixture models can only accommodate a lim-
ited number of modes; normalizing flow methods (Rezende
& Mohamed, 2015) can compute density values, but they
may not be as numerically robust due to their dependency
on the determinant of the network Jacobian; furthermore,
normalizing flows must apply continuous transformations
onto a continuously connected distribution, making it dif-
ficult to model disconnected modes (Rasul et al., 2021).
Option-critic (Bacon et al., 2017) represents policies with
options and temporal structure, but it often requires specially
designed option spaces for efficient learning, which moti-
vates research on hierarchical imitation learning that uses
demonstrations to avoid exploration problems (Peng et al.,
2022; Fang et al., 2019). Skill discovery methods learn a
population of skills without demonstrations or rewards by
optimizing for diversity (Eysenbach et al., 2018). However,
the separation of optimization and skill learning can be non-
efficient as it expends effort on learning task-irrelevant skills
and may ignore more important ones that would benefit a

1

https://haosulab.github.io/RPG/
https://haosulab.github.io/RPG/

Reparameterized Policy Learning for Multimodal Trajectory Optimization

specific task.

This paper presents a principled framework for learning
the continuous RL policy as a multimodal density function
through multimodal action parameterization. We adopt a
sequence modeling perspective (Chen et al., 2021) and view
the policy as a density function over the entire trajectory
space (instead of the action space)(Ziebart, 2010; Levine,
2018). This allows us to sample a population of trajec-
tories that cover multiple modalities, enabling concurrent
exploration of distant regions in the solution space. Ad-
ditionally, we use a generative model to parameterize the
multimodal policies, drawing inspiration from their success
in modeling highly complex distributions such as natural
images(Goodfellow et al., 2016; Zhu et al., 2017; Rom-
bach et al., 2022; Ramesh et al., 2021). We condition the
policy on a latent variable z and use a powerful function
approximator to “reparameterize” the random distribution
z into the multimodal trajectory distribution (Kingma &
Welling, 2013), from which we can sample trajectories τ .
This policy parameterization leads us to adopt the variational
method (Kingma & Welling, 2013; Haarnoja et al., 2018;
Moon, 1996) to derive a novel framework for modeling the
posterior of the optimal trajectory using variational infer-
ence, which enables us to model multimodal trajectories
and maximize the reward with a single objective.

This framework allows us to build Reparameterized Policy
Gradient (RPG), a model-based RL method for multimodal
trajectory optimization. The framework has two notable
features: First, RPG combines the multimodal policy pa-
rameterization with a learned world model, enjoying the
sample efficiency of the learned model and gradient-based
optimization while providing the additional ability to jump
out of the local optima; Second, we equip RPG with a novel
density estimator to help the multimodal policy explore in
the environments by maximizing the state entropy (Hazan
et al., 2019). We verify the effectiveness of our methods on
several robot manipulation tasks. These environments only
provide sparse rewards when the agent successfully fully
finishes the task, which is challenging for single-modal poli-
cies even when they are guided by intrinsic motivations. In
comparison, our method is able to explore different modal-
ities, improve the exploration efficiency, and outperform
single-modal policies, as shown in Fig. 1. Notably, our
method is more robust than single-modal policies and con-
sistently outperforms previous approaches across different
tasks.

Our contributions are multifold: 1. We propose a variational
policy learning framework that models the posterior of mul-
timodal optimal trajectories for reward optimization. 2. We
demonstrate that multimodal parameterization can help the
policy escape local optima and accelerate exploration in
continuous policy optimization. 3. When combined with a

learned world model and a delicate density estimator, our
method, RPG, is able to solve these challenging sparse-
reward tasks more efficiently and reliably.

2. Related Work
Policy as Sequential Generative Model. Maximum en-
tropy reinforcement learning (Todorov, 2006; 2008; Tou-
ssaint, 2009; Ziebart, 2010; Kappen et al., 2012) can be
viewed as variational inference in probabilistic graphical
models (Levine, 2018) with optimality as an observed vari-
able and sampled trajectories as latent variables. When the
demonstration or a fixed dataset is provided in the offline
RL setting (Chen et al., 2021; Reed et al., 2022), policy
learning is simplified as a sequence modeling task (Chen
et al., 2021; Zheng et al.; Reed et al., 2022). They use au-
toregressive models to learn the distribution of the whole
trajectory, including actions, states, and rewards, and use
the action prediction as policy. In our work, we learn a
sequential generative model of policy for online RL via the
variational method.

Variational Skill Discovery Under additional assump-
tions of rewards, our method degenerates to skill discovery
methods. However, previous skill discovery methods focus
on unsupervised reinforcement learning (Eysenbach et al.,
2018; Achiam et al., 2018; Campos et al., 2020) or diverse
skill learning (Kumar et al., 2020; Osa et al., 2022). These
methods build latent variable policy and encourage the pol-
icy to reach states that are consistent with the sampled latent
variables through a mutual information term as a reward.
These methods do not consider reward maximization or ex-
ploration when learning the skills, making them differ from
our method vastly. For example, Eysenbach et al. (2018);
Achiam et al. (2018) does not optimize the learned skill
for the environment rewards; Osa et al. (2022) does not
optimize the mutual information along trajectories; Kumar
et al. (2020) needs to solve the optimization problem first
before finding a diverse set of solutions. Moreover, these
methods fix the latent distributions, limiting their ability
to achieve optimality when rewards are given. Mazzaglia
et al. (2022) also learns skills within a learned world model.
However, it decouples the exploration and skill learning and
needs offline data or data generated from other exploration
policies to train the model. In contrast, we are motivated
by the parameterization problems in online RL and jointly
optimize the latent representation to model optimal trajecto-
ries. We show that learning a latent variable model benefits
optimization and exploration and they can be considered
together.

Hierarchical Methods The hierarchical methods, e.g.,
option-critic (Bacon et al., 2017), can be regarded as a
special way of policy parameterization by conditioning

2

Reparameterized Policy Learning for Multimodal Trajectory Optimization

the lower-level policy over a sequence of latent variables
z = (z1, · · · , zT). Usually, most hierarchical RL methods
need special designs for the latent space, e.g., state-based
subgoals (Kulkarni et al., 2016; Nachum et al., 2018b;a) or
predefined skills (Li et al., 2020) to avoid mode-collapse.
Osa et al. (2019) regularized options to maximize the mutual
information between the action and the options, which are
very relevant to ours. However, it does not model temporal
structures as ours to ensure consistency along the trajec-
tories. Goal-conditioned RL (Andrychowicz et al., 2017;
Mendonca et al., 2021; Nachum et al., 2018b) can also be
considered a special hierarchical method that uses states or
goals to help parameterize the policy and has been proven
efficient in exploration, but designing the goal space, sam-
pling and generating goals in high-dimensional space is
non-trivial. The specific reward design of goal-reaching
tasks also makes extending goal-conditioned policies to
general reward functions not easy.

Hierarchical imitation learning (Gupta et al., 2019; Pertsch
et al., 2021; Shankar & Gupta, 2020; Jiang et al., 2022;
Lynch et al., 2020; Fang et al., 2020) extracts temporal ab-
stractions from demonstrations using generative models. For
example, InfoGAN (Li et al., 2017) and ASE (Peng et al.,
2022) use adversarial training (Goodfellow et al., 2020; Ho
& Ermon, 2016) to imitate demonstrations. These works
all rely on demonstrations rather than rewards to learn ab-
stractions. Co-Reyes et al. (2018) learns representation on
the collected dataset with variational inference and then uti-
lizes the trained model for planning or policy learning. The
separation of the representation learning and reward maxi-
mization makes it differ from our methods: first, it requires
a state reconstruction module to supervise the generative
model, which is challenging for high-dimensional observa-
tions; second, it optimizes neither the latent distribution nor
the actions for the reward directly, thus requires additional
planning procedure during the execution to find suitable
actions.

3. Preliminary
Markov decision process A Markov decision process
(MDP) is a tuple of (S,A,P,R), where S is the state
space and A is the action space. p(s′|s, a) is the tran-
sition probability that transits state s to another state s′

after taking action a. The function R(s, a, s′) computes
a reward per transition. A policy π(a|s) outputs an ac-
tion distribution according to the state s. Executing a
policy π starting from the initial state s1 with density
p(s1) will result in a trajectory τ , which is a sequence of
states and actions {s1, a1, s2, . . . , st, at, . . . } where at ∼
π(a|s = st), st+1 ∼ p(s|s = st, a = at). We also
use the terminology environment to refer to an MDP in
an RL problem. The discounted reward of a trajectory is

Rγ(τ) =
∑∞
t=1 γ

tR(st, at, st+1) where 0 < γ < 1 is
the discount factor to ensure the series converges. The
goal of reinforcement learning (RL) is to find a param-
eterized policy πθ that maximizes the expected reward
Es1∼p(s1)[V

πθ (s1)] = Eτ∼πθ,s1∼p(s1)[Rγ(τ)], where V πθ

is the value function. Many environments have an observa-
tion space O that is not the same to the state space. In this
case the agent may need to identify the state st from the
observation ot.

RL as probabilistic inference The RL as inference
framework (Todorov, 2006; 2008; Toussaint, 2009; Ziebart,
2010; Kappen et al., 2012; Levine, 2018) defines opti-
mality p(O|τ) ∝ eR(τ)/T , where T is a temperature
scalar and R(τ) is the total rewards of the trajectory
τ . It further defines a prior distribution of the trajectory
p(τ) = p(s1)

∏T
t=1 p(at|st)p(st+1|st, at), where p(at|st)

is a known prior action distribution, e.g., a Gaussian dis-
tribution. Thus, it can compute the density of optimal-
ity p(O) =

∫
p(O|τ)p(τ)dτ . The goal of the frame-

work is to approximate the posterior distribution of op-
timal trajectories p(τ |O) = p(O|τ)p(τ)∫

p(O|τ)p(τ)dτ . In the maxi-
mum entropy framework (Haarnoja et al., 2017), one can
apply evidence lower bound (Kingma & Welling, 2013)
log p(O) ≥ Eτ∼π [log p(O|τ) + log p(τ)− log π(τ)] to
train the model.

4. Method
To overcome the limitations of single modality policies, we
propose to use latent variables to parameterize multimodal
policies in Sec. 4.1. We then propose a novel variational
bound as the optimization objective to approximate the pos-
terior of optimal trajectories in Sec. 4.2. The variational
bound naturally combines maximum entropy RL and in-
cludes a term to encourage consistency (Zhu et al., 2017)
between the latent distribution and the sampled trajectories,
preventing the policy from mode collapse. To optimize this
objective in hard continuous control problems, we propose
to learn a world model and build the Reparameterized Pol-
icy Gradient, a model-based latent variable policy learning
framework in Sec. 4.3.1. We design intrinsic rewards in
Sec. 4.3.2 to facilitate exploration. Figure 3 illustrates the
whole pipeline.

4.1. Reparameterize Latent Variables for Multimodal
Policy Learning

Policy parameterization matters. In continuous RL, it is
popular to model action distribution with a unimodal Gaus-
sian distribution. However, theoretically, to make sure that
the optimal policy will be captured by RL, the function
class of continuous RL policies has to include density func-
tions of arbitrary probabilistic distributions (Sutton & Barto,

3

Reparameterized Policy Learning for Multimodal Trajectory Optimization

Figure 2. (A) rewards; (B); soft max policy over discrete action
space; (C) single-modality Gaussian policy; (D) our methods repa-
rameterize a random variable into multimodal distributions with
neural networks.

2018). Consider maximizing a continuous reward function
with two modalities as shown in Figure 2(A). When the
action space is properly discretized, a SoftMax policy can
model the multimodal distribution and find the global opti-
mum after sampling over the entire action space as shown
in Figure 2(B). However, discretization can lead to a loss of
accuracy and efficiency. If we instead use a Gaussian pol-
icy N (µ, σ2) by the common practice in literature, we will
have trouble – as shown in Figure 2(C), even if its standard
deviation is so large to well cover both modalities, the policy
gradient can push it towards the local optimum on the right
side, causing it to fail to converge to the global optimum. To
address the issue, a more flexible policy parameterization is
needed for continuous RL problems, one that is simple to
sample and optimize.

Multimodal policy by reparameterizing latent variables
Motivated by recent developments in generative models
that have shown superiority in modeling complex distribu-
tions (Kingma & Welling, 2013; Ho et al., 2020; Rombach
et al., 2022; Ramesh et al., 2021), we propose to parame-
terize policies using latent variables, as illustrated in Fig-
ure 2(D). Instead of adding random noise to perturb network
outputs to generate an action distribution, we build a genera-
tive model of policy distribution by taking random noise as
input and relying on powerful neural networks to transform
it into actions of various modalities.

Formally, let z ∈ Z be a random variable, which can be
either continuous or categorical. We design our “policy” as
a joint distribution πθ(z, τ) of the latent z and the trajectory
τ . This paper considers a particular factorization of πθ(z, τ)
that samples z in the beginning of each episode and then

sample trajectory τ conditioning on z:

πθ(z, τ) = p(s1)πθ(z|s1)
T∏
t=1

p(st+1|st, at)πθ(at|z, st) (1)

where T is the length of the sampled trajectory.

One can use the policy gradient theorem (Sutton & Barto,
2018), i.e., ∇J(π) = Eτ [R(τ)∇ log p(τ)] to optimize the
generative model policy. However, computing p(τ) needs
to marginalize over z, i.e., computing

∫
z
p(z, τ) dz, which

is often intractable when z is continuous. Besides, optimiz-
ing the marginal distribution log p(τ) by gradient descent
suffers from local optimality issues (e.g., using gradient
descent to optimize Gaussian mixture models which have
latent variables is not effective, so EM is often used in-
stead (Ng, 2000)).

4.2. Variational Inference for Optimal Trajectory
Modeling

To overcome these obstacles, following Todorov (2006;
2008); Toussaint (2009); Ziebart (2010); Kappen et al.
(2012); Levine (2018); Haarnoja et al. (2018), we adopt
variational method (maximum entropy RL) to directly op-
timize the joint distribution of the optimal policy without
hassles of integrating over z.

The evidence lower bound We learn πθ(z, τ) using vari-
ational inference (Kingma & Welling, 2013; Haarnoja et al.,
2018; Moon, 1996). Like an EM algorithm, we define an
auxiliary distribution pϕ(z|τ) to approximate the posterior
distribution of z conditioning on τ using function approxi-
mators. This auxiliary distribution pϕ(z|τ) helps to factorize
the joint distribution of optimality O, latent z, and the tra-
jectory τ as pϕ(O, z, τ) = p(O|τ)pϕ(z|τ)p(τ). Treating
πθ(z, τ) as the variational distribution, we can write the
Evidence Lower Bound (ELBO) for the optimality O:

log p(O)

= Ez,τ∼πθ [log pϕ(O, z, τ)− log πθ(z, τ)]︸ ︷︷ ︸
ELBO

+DKL(πθ(z, τ)||pϕ(z, τ |O))

≥ Ez,τ∼πθ [log pϕ(O, τ, z)− log πθ(z, τ)]

= Ez,τ∼πθ [log p(O, τ) + log pϕ(z|τ)− log πθ(z, τ)]

= Ez,τ

log p(O|τ)︸ ︷︷ ︸
reward

+ log p(τ)︸ ︷︷ ︸
prior

+ log pϕ(z|τ)︸ ︷︷ ︸
cross entropy

− log πθ(z, τ)︸ ︷︷ ︸
entropy


(2)

If we optimize πθ(z, τ) and pϕ(z|τ) using the gradient of
the variational bound, the variational distribution πθ(z, τ)
learns to model the optimal trajectory distribution p(τ |O).

4

Reparameterized Policy Learning for Multimodal Trajectory Optimization

How it works ELBO contains four parts that can all be
computed directly given the sampled z and τ (the environ-
ment probability p(st+1|st, at) is canceled as in (Levine,
2018)). The first two parts are the predefined reward
log p(O|τ) = R(τ)/T + c, where T is the temperature
scalar, and c is the normalizing constant that can be ignored
in optimization. The prior distribution p(τ) is assumed to be
known. The third part is the log-likelihood of z, defined by
our auxiliary distribution pϕ(z|τ). It is easy to see that if we
fix πθ, maximize pϕ alone will minimize the cross-entropy
Ez,τ∼πθ

[− log pϕ(z|τ)], similar to the supervised learning
of predicting z given τ . This achieves optimality when
pϕ(z|τ) = pθ(z|τ) = πθ(z,τ)∫

z
πθ(z,τ)dz

, modeling the posterior
of z for τ sampled from πθ. On the other hand, by fixing
ϕ, the policy πθ is encouraged to generate trajectories that
are easy to identify or classify; this helps to increase diver-
sity and enforce consistency to avoid mode collapse, letting
the network not ignore the latent variables. The fourth
part is the policy entropy that enables maximum entropy
exploration. Maximizing all terms together for the param-
eters θ and ϕ will minimize DKL(πθ(z, τ)||pϕ(z, τ |O)) =
DKL(πθ(z, τ)||pϕ(z|τ)p(τ |O)). The optimality can be
achieved when pϕ(z|τ) equals to p(z|τ), the true poste-
rior of z. Then, pθ(τ) = pϕ(z|τ)p(τ |O)/p(z|τ) = p(τ |O)
where pθ(τ) =

∫
πθ(τ, z)dz is the marginal distribution of

τ sampled from πθ.

Relationship with other methods Our method is closely
related to skill discovery methods (Eysenbach et al., 2018;
Mazzaglia et al., 2022). A skill discovery method usu-
ally uses mutual information I(τ, z) = H(τ)−H(τ |z) or
H(z)−H(z|τ) ≥ Ez,τ [log pϕ(z|τ)− log p(z)] to encour-
age diversity. For example, DIYAN (Eysenbach et al., 2018)
directly optimizes mutual information to learn various skills
without reward. Dropping out the reward term in Eq. 2
shows that the skill learning objective can be seamlessly
embedded into the “RL as inference” framework with ex-
ternal reward, and there is no need to introduce the mutual
information term manually. Furthermore, the framework
suggests we can model the posterior of the optimal trajec-
tories, which enables us to unify generative modeling and
trajectory optimization in a single framework. As for the
relationship of our method with other generative models, we
refer readers to a more thorough discussion in Appendix F.

4.3. Reparameterized Policy Gradient for Model-based
Exploration

We now describe Reparameterized Policy Gradient (RPG),
a model-based RL method with intrinsic motivation
for sample efficient exploration in continuous control
environments. We first simplify the right side of
Eq. 2 using the factorization in Eq. 1 and assum-
ing log pϕ(z|τ) =

∑
t>0 log p(z|st, at). Thus, the

ELBO becomes − log πθ(z|s1) +
∑∞
t=1R(st, at)/T −

log πθ(at|st, z) + log pϕ(z|st, at), which can be optimized
with an RL algorithm by maximizing the reward

R(st, at)/T︸ ︷︷ ︸
rt

−α log πθ(at|st, z) + β log pϕ(z|st, at)︸ ︷︷ ︸
r′t

,

where scalars α, β control the exploration and consistency.
We use neural networks to model log pϕ(z|st, at) and
πθ(at|st, z).

4.3.1. MODEL-BASED RL WITH LATENT VARIABLES

In our method Reparameterized Policy Gradient (RPG),
we train a differentiable world model (Hafner et al., 2019;
Schrittwieser et al., 2020; Ye et al., 2021; Hansen et al.,
2022) to improve data efficiency. The world model con-
tains the following components: observation encoder st =
fψ(ot), reward predictor rt = Rψ(st, at), Q value Qt =
Qψ(st, at, z) and dynamics st+1 = hψ(st, at).

Given any z and latent state st0 = fψ(ot0) at time step t0,
the learned dynamics network can generate an imaginary
trajectory for any action sequence. If we sample actions
from the policy πθ(at|st, z) for t ≥ t0 and execute them in
the latent model, it will produce a Monte-Carlo estimate for
the value of st0 for optimizing the policy πθ:

Vest(ot0 , z) ≈ γK(Qt0+K + r′t0+K) +

t0+K−1∑
t=t0

γt−t0(rt + r′t)

(3)

We self-supervise the dynamics network to ensure state
consistency without reconstructing observations as in (Ye
et al., 2021; Hansen et al., 2022). For any latent variable
z and trajectory segments of length K + 1 τt0:t0+K =

{ot0 , a
gt
t0 , r

gt
t0 , ot0+1, . . . , ot0+K} sampled from the replay

buffer, we execute actions {agtt } in the world model and use
the following loss function to train the world model, as well
as the Q function:

Lψ(τ) =

t0+K−1∑
t=t0

L1∥st+1 − ng(fψ(ot+1))∥2 + L2(rt − rgtt)2

+ L3(Qt − ng(rgtt + γVest(ot+1, z)))
2 (4)

where ng(x) means stopping gradient and L1 =
1000, L2 = L3 = 0.5 are constants to balance the loss.

4.3.2. MAXIMIZE STATE ENTROPY WITH
OBJECT-CENTRIC RANDOMIZED NETWORK
DISTILLATION

For challenging continuous control tasks with sparse
rewards, policies that maximize the action entropy of
πθ(a|s, z) usually have trouble obtaining a meaningful
reward, making its exploration inefficient. We follow
(Hazan et al., 2019) to let the policy additionally maximize

5

Reparameterized Policy Learning for Multimodal Trajectory Optimization

Figure 3. An overview of our model pipeline: A) a reparameterized policy from which we can sample latent variable z and action a given
the latent state s; B) a latent dynamics model which can be used to forward simulate the dynamic process when a sequence of actions is
known. C) an exploration bonus provided by a density estimator. Our Reparameterized Policy Gradient do multimodal exploration with
the help of the latent world model and the exploration bonus.

the entropy of the discounted stationary state distribution
dπ(s) = (1− γ)

∑∞
t=1 γ

tP (st = s|π).

We use the object-centric Randomized Network Distilla-
tion (RND) (Burda et al., 2018) as a simple and effective
method to approximate the state density in continuous con-
trol tasks. RND uses a network gθ(ot) to distill the output
of a random network g′(ot) by minimizing the difference
∥gθ(ot)− g′(ot)∥2 over states sampled by the current agent
and treat the difference as the negative density of each ob-
servation ot.

We make several modifications to the vallina RND to im-
prove its performance for state vector observations in con-
trol problems. First, we inject object-prior to the RND
estimator to make the policy sensitive to regions that in-
clude objects’ position change. Specifically, before feeding
objects’ coordinates into the network, we apply positional
encoding (Vaswani et al., 2017; Mildenhall et al., 2021) to
turn all scalars x to a vector of {sin(2ix), cos(2ix)}i=1,2,...

for objects of interest (e.g., in robot manipulation, the end
effector of the robot and the object). Second, we use a large
replay buffer to store past states to avoid catastrophic for-
getting (Zhang et al., 2021). We verified that it is necessary
to normalize the RND’s output to stabilize the training and
make it an approximated density estimator. Lastly, to ac-
count for the latent world model, we relabel trajectories’
rewards sampled from the replay buffer instead of estimat-
ing them directly in the latent model by reconstructing the
observation.

An implicit benefit of a latent variable policy model is its
ability to maximize the state entropy better, as will be shown
in the experiments of Sec. 5.1. When combined with our
RND method, RPG achieves much better state coverage
while single modality policy cannot stabilize. The combina-
tion of multimodal policy learning and state entropy maxi-
mization accelerates the exploration of continuous control

tasks with sparse rewards. We describe the whole algorithm
in Alg. 1 and implementation details in Appendix A.

5. Experiments
In this section, we first illustrate the potential of RPG in op-
timization and exploration through two example tasks. We
then show that our method can help solve hard continuous
control problems, even with only sparse rewards. We ablate
essential design choices and provide additional experiments
in section 5.3.

5.1. Illustrative Experiments

Can multimodal policies help escape local optima? We
study the effects of our method on a 1D bandit problem as
shown in Fig. 4. It has a 1d action space and a non-convex
reward landscape with an additional discontinuous point.

Fig. 4 compares the performance of our method with a sin-
gle modality Gaussian policy optimized by REINFORCE.
Notice that we do not add the intrinsic reward for dense
reward maximization tasks. The Gaussian policy, initialized
at 0 with a large standard deviation, can cover the whole so-
lution space. However, the gradient w.r.t µ is positive, which
means the action probability density will be pushed towards
the right, as the expected return on the right side is larger
than the left side, although the left side contains a higher
extreme value. As a result, the policy will move right and
get stuck at the local optimum with a low chance of jumping
out. In contrast, under the entropy maximization formula-
tion, our method maximizes the reward while seeking to
increase diversity, providing more chances for the policy to
explore the whole solution space. Furthermore, by turning
the latent variables into action distribution, our method can
build a multimodal policy distribution that fits the multi-
modal rewards, explore both modalities simultaneously, and

6

Reparameterized Policy Learning for Multimodal Trajectory Optimization

Figure 4. Illustrative experiment on continuous bandit Figure 5. Illustrative experiment on 2D maze navigation problem

Figure 6. Results on dense re-
ward tasks with local optima (ex-
ploration disabled)

Figure 7. Results on sparse reward tasks

eventually stabilize at the global optimum. This experiment
suggests that a multimodal policy is necessary for reward
maximization, and our method can help the policy better
handle local optima.

Can multimodal policies accelerate exploration? We
argue that maintaining a multimodal policy is beneficial
even in the existence of an intrinsic reward to guide the
exploration. We illustrate it in a 2D maze navigation task
shown in Figure 5. The maze consists of 5× 5 grids. Each
of them is connected with neighbors with a narrow passage.
The agent starts in the center grid and can move in four
directions. The action space is its position change in two
directions (∆x,∆y).

We apply RPG and single-modality model-based
SAC (Haarnoja et al., 2018) on this environment to
maximize the intrinsic reward described in Sec. 4.3.2.
We count the areas covered by the two policies during
exploration with respect to the number of samples in
Fig. 5(D). The curve suggests that our method explores the
domain much faster, quickly reaching most grids, while
the Gaussian agent only covers the right part of the maze

within a limited sample budget.

To understand their differences, we visualize states sam-
pled at different training steps of the two policies in Fig. 5
(A-B). Our policy below quickly finds four directions to
move and gradually expands the state distribution until it
fully occupies all grids. Fig. 5(C) shows the historic state
visitation count. It is easy to see that our multimodal policy
induces a more uniform distribution over the whole state
space, generating a higher state distribution entropy. The
optimization procedure of single-modality policy, as shown
in the first row of Fig. 5, suffers from its policy parameter-
ization. It can only explore one modality every time and
has to switch modalities one by one, where modalities refer
to different regions of the state space. It is hard to predict
when it switches modality, making algorithms behave vastly
differently in different environments with different random
seeds. Sometimes it moves slowly from one direction to
another because it has to wait for samples for density es-
timators to generate enough momentum. As a result, it
never explores the left side in Fig. 5(C). While sometimes, it
switches too fast due to the fast updates of the network and
does not exploit some modalities enough, missing far-end

7

Reparameterized Policy Learning for Multimodal Trajectory Optimization

grids of certain directions that it has explored once. This
also causes issues when maximizing external rewards. Even
if a single-modal policy finds the optimal solution, it may
switch to another modality to continue exploration and it
is hard to guarantee that it would come back in the end. In
contrast, our method is more like Monte-Carlo sampling,
which samples all candidates while converging to solutions
of high rewards with high probability.

5.2. Continuous Control Problems

We now verify if our method can scale up and help solve
challenging continuous control problems. We take 8 rep-
resentative environments from standard RL benchmarks,
including 2 table-top environments from MetaWorld (Yu
et al., 2020), 2 dexterous hand manipulation tasks from Ra-
jeswaran et al. (2017), 1 navigation problems from Nachum
et al. (2018b), and 2 articulated object manipulation from
ManiSkill (Mu et al., 2021). We show environment ex-
amples and provide a detailed environment description in
Appendix C. Only Cabinet (Dense) and AntPush contain
dense rewards that lead to local optima. The remaining 6
environments all only provide sparse rewards, which means
the agents receive a reward 1 when it succeeds to finish the
task and 0 otherwise. This change dramatically increases the
difficulty of these environments and disastrously hurts the
performance of classical RL methods like SAC (Haarnoja
et al., 2018) and PPO (Schulman et al., 2017).

We evaluate our methods against the following baselines:
DreamerV2 + Plan2Explore (Sekar et al., 2020), abbreviated
as DreamerV2 (P2E), a model-based exploration method
based on the disagreement of learned models’ prediction.
We also consider 3 baselines, TDMPC, MBSAC, and SAC
using the same intrinsic rewards as ours. The suffix (R)
means that when we apply these methods to a sparse-reward
environment, we will add RND intrinsic rewards that are the
same as in our method. For all results evaluated on dense-
reward environments in Figure 6, the exploration method of
the corresponding algorithm is disabled. The standard SAC
without intrinsic rewards validates the difficulty of our tasks.
Details of the baseline implementations are in Appendix D.

Fig. 6 and 7 plots the learning progress of each algorithm in
all environments (x-axis: number of environment interaction
steps in million, y-axis: task success rate). For all environ-
ments, we run each algorithm for at least five trials. The
curve and the shaded region shows the average and the stan-
dard deviation of performance over trials. MBSAC shares
almost the same implementation as our method, except that
it does not condition its policy on latent variables..

We first observe that, for dense reward tasks, our method
largely improves the success rate on tasks with local optima
(Fig. 6). We can see that in both AntPush and Cabinet
(Dense) tasks, our method outperforms all baselines. Our

method consistently finds solutions, regardless of the local
optima in the environments. For example, in the task of
opening the cabinets’ two doors and going to the two sides
of the block, our method usually explores the two directions
simultaneously and converges at the global optima. In con-
trast, other methods’ performance highly depends on their
initialization. If the algorithm starts by opening the wrong
doors or pushing the block in the wrong direction, it will
not escape from the local minimums; thus, its success rates
are low.

Our methods successfully solve the 6 sparse reward tasks as
shown in Fig. 7. Especially, it consistently outperforms the
MBSAC(R) baseline, which is a method that only differs
from ours by the existence of latent variables to parameterize
the policy. Our method reliably discovers solutions in envi-
ronments that are extremely challenging for other methods
(e.g., the StickPull environment), clearly demonstrating the
advantages of our method in exploration. Notably, we find
that MBSAC(R), which is equipped with our object-centric
RND, is a strong baseline that can solve AdroitHammer
and AdroitDoor faster than DreamerV2(P2E), proving the
effectiveness of our intrinsic reward design. TDMPC(R)
has a comparable performance with MBSAC(R) on several
environments. We validate that it has a faster exploration
speed in Adroit Environments thanks to latent planning. We
find that the Dreamer(P2E) does not perform well except
for the BlockPush environment without the object prior
and is unable to explore the state space well. We visualize
modalities explored by our method in Appendix E.

5.3. Additional Experiments

Ablation study We analyze various factors influencing the
performance of our method in the Maze navigation task in
Section 5.1. More detailed discussion and experiment re-
sults are in Appendix B. Experimental comparisons between
different latent spaces show that a Gaussian distribution of
dimension 12 outperforms the categorical latent space, both
surpassing a baseline that does not use latent variables. A
moderate latent space size ≥ 6 is found to be sufficient, with
performance declining if the latent dimensions are too small.
In terms of reward maximization, the weight of the cross-
entropy term (β) is crucial, with results indicating an ideal
range between 0.001 and 0.01 for the RND design. Further-
more, the performance from RND is tied to maintaining a
large replay buffer and using positional embedding, with
a lack of either resulting in degraded exploration. A com-
parative analysis of policy parameterization methods shows
the superiority of the vanilla Gaussian policy over the Gaus-
sian Mixture Models (GMM) and CEM-based policy. The
latter two display several optimization issues; GMM strug-
gles with log-likelihood maximization, and CEM, despite
its proficiency at finding local optima, tends to sacrifice its
explorative capabilities. Finally, normalizing flow showed

8

Reparameterized Policy Learning for Multimodal Trajectory Optimization

initial promise but soon encountered numerical instabilities,
highlighting the need for further investigation.

Evaluation on locomotion environments We modified the
HalfCheetah-v3 environment in OpenAI Gym (Brockman
et al., 2016) to study the performance of our methods in
locomotion tasks, shown in Figure 11 in the appendix. The
cheetah robot moves backward for a certain distance to
receive a sparse reward of 1 to succeed. Our exploration
method was able to effectively aid the exploration of the
Cheetah robot and solve the task easily while removing the
exploration term that led to the agent getting stuck. However,
in this particular task, modeling multi-modal exploration
did not increase the sampling efficiency, as there were only
two modalities (moving forward and backward), and model-
based SAC could exploit the two modes one by -one and
solve the task. This made the advantage of our method neg-
ligible in this case. We also evaluated our method compared
to SAC (Haarnoja et al., 2018) on the standard Mujoco
environments. Results are shown in Fig. 12.

Vision-based RL As a proof of concept, we illustrate, in
Fig. 13, the potential of our method for image observations
in a single-block pushing environment: the observation
consists of two consecutive 64x64 RGB images; the agent
needs to control the red block to push the purple box into the
target region. We use 4-layer convolutional networks as the
encoder for both the policy network and RND estimator. We
compare our method with model-based SAC (RND), which
has an intrinsic reward to guide exploration but only models
single modality policies, and model-based SAC without
RND. The result validates our method’s effectiveness.

6. Limitation and Future Work
Our approach capitalizes on the advantages offered by multi-
ple components, effectively addressing complex exploration
issues in continuous spaces. However, it also introduces
certain hurdles and constraints. For instance, our intrinsic
reward is predicated on assumptions regarding the recogni-
tion of objects and their spatial positioning. This approach
may be unsuitable in environments with unidentified objects
or where observations don’t plainly reveal object-related
information, akin to scenarios in vision-based RL; Learning
the world model typically results in a slower pace of gradi-
ent updates; Incorporating a cross-entropy network adds an
extra layer of complexity to the network design and training.
Therefore, it is worth discussing potential future directions
that might address these limitations.

Object-centric learning for vision-based RL While the
Random Network Distillation (RND) is initially tailored
for image observations, integrating object-centric design
to accelerate exploration in vision-based RL will be an in-
teresting direction. This suggests two typical strategies to

apply our method to tasks with vision observations: (1) The
first involves directly encoding observations without con-
sidering object information. It proves effective in scenarios
with no occlusion and a static background, wherein objects
emerge as the sole salient feature of the input. We pro-
vide a proof-of-concept experiment in Section 5.3. (2) The
second approach harnesses computer vision techniques to
identify objects for object-centric exploration. This includes
applying recent large-scale vision foundation models, which
possess zero-shot object detection capabilities as outlined in
(Zhang et al., 2022) or leveraging slot-attention for object
discovery as described in (Locatello et al., 2020).

Combining with previous model-based control and plan-
ning methods Instead of learning the world model from
on-policy data, we can pre-train a physical world model (Li
et al., 2019) or use analytical models (Posa et al., 2014;
Huang et al., 2021) to gain generalizability and efficiency.
Moreover, we drew inspiration from RRT-like motion plan-
ners (Karaman & Frazzoli, 2011) to derive our policy to
sample over the configuration space and bias the explo-
ration towards significant kinematics changes. Thus, an
exciting direction is incorporating structures in model-based
control into RL algorithms, including temporal structures
like dynamics motion primitives (Stulp & Sigaud, 2013) and
semantic information from TAMP (Garrett et al., 2021).

Extending to other probabilistic models Our method can
be viewed as variational inference (Ranganath et al., 2014)
over a particular stochastic computation graph (Weber et al.,
2019). The computation graph contains hidden variables,
and we use the Bellman equation and a learned model to
estimate its gradient. This provides a new perspective that
bridges online Reinforcement Learning (RL) with genera-
tive models and sequence modeling. In the future, we are
interested in exploring how sequence-modeling techniques,
such as transformers and hierarchical methods, can be used
to model the policy in our framework.

7. Conclusion
We derive a framework that models the policy of continuous
RL by a multimodal distribution in the variational inference
framework. The method reparameterizes latent variables
into trajectories like generative models. Under this frame-
work, we learn a world model to help learn multimodal
policy data efficiently. Incorporating an object-centric in-
trinsic reward, our method can solve challenging continuous
control problems with little to no reward signal.

Acknowledgement
This work is in part supported by Qualcomm AI and AI
Institute for Learning-Enabled Optimization at Scale (TI-
LOS).

9

Reparameterized Policy Learning for Multimodal Trajectory Optimization

References
Achiam, J., Edwards, H., Amodei, D., and Abbeel, P.

Variational option discovery algorithms. arXiv preprint
arXiv:1807.10299, 2018.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. Advances
in neural information processing systems, 30, 2017.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic
architecture. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

Campos, V., Trott, A., Xiong, C., Socher, R., Giró-i Nieto,
X., and Torres, J. Explore, discover and learn: Unsu-
pervised discovery of state-covering skills. In Interna-
tional Conference on Machine Learning, pp. 1317–1327.
PMLR, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P.,
and Levine, S. Self-consistent trajectory autoencoder: Hi-
erarchical reinforcement learning with trajectory embed-
dings. In International conference on machine learning,
pp. 1009–1018. PMLR, 2018.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Max-
imum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22, 1977. doi:
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x.
URL https://rss.onlinelibrary.wiley.
com/doi/abs/10.1111/j.2517-6161.1977.
tb01600.x.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
arXiv preprint arXiv:1802.06070, 2018.

Fang, K., Zhu, Y., Garg, A., Savarese, S., and Fei-Fei,
L. Dynamics learning with cascaded variational in-
ference for multi-step manipulation. arXiv preprint
arXiv:1910.13395, 2019.

Fang, K., Zhu, Y., Garg, A., Savarese, S., and Fei-Fei, L.
Dynamics learning with cascaded variational inference
for multi-step manipulation. In Conference on Robot
Learning, pp. 42–52. PMLR, 2020.

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T.,
Kaelbling, L. P., and Lozano-Pérez, T. Integrated task
and motion planning. Annual review of control, robotics,
and autonomous systems, 4:265–293, 2021.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT Press, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Gu, J., Xiang, F., Li, X., Ling, Z., Liu, X., Mu, T., Tang, Y.,
Tao, S., Wei, X., Yao, Y., Yuan, X., Xie, P., Huang, Z.,
Chen, R., and Su, H. Maniskill2: A unified benchmark
for generalizable manipulation skills. In International
Conference on Learning Representations, 2023.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman,
K. Relay policy learning: Solving long-horizon tasks
via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-
tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

Hansen, N., Wang, X., and Su, H. Temporal difference
learning for model predictive control. arXiv preprint
arXiv:2203.04955, 2022.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Interna-
tional Conference on Machine Learning, pp. 2681–2691.
PMLR, 2019.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained

10

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1977.tb01600.x

Reparameterized Policy Learning for Multimodal Trajectory Optimization

variational framework. In International conference on
learning representations, 2017.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. Advances in neural information processing systems,
29, 2016.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Huang, Z., Hu, Y., Du, T., Zhou, S., Su, H., Tenenbaum,
J. B., and Gan, C. Plasticinelab: A soft-body manip-
ulation benchmark with differentiable physics. arXiv
preprint arXiv:2104.03311, 2021.

Jiang, Z., Zhang, T., Janner, M., Li, Y., Rocktäschel, T.,
Grefenstette, E., and Tian, Y. Efficient planning in a com-
pact latent action space. arXiv preprint arXiv:2208.10291,
2022.

Kappen, H. J., Gómez, V., and Opper, M. Optimal control as
a graphical model inference problem. Machine learning,
87(2):159–182, 2012.

Karaman, S. and Frazzoli, E. Sampling-based algorithms
for optimal motion planning. The international journal
of robotics research, 30(7):846–894, 2011.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems, 29,
2016.

Kumar, S., Kumar, A., Levine, S., and Finn, C. One solution
is not all you need: Few-shot extrapolation via structured
maxent rl. Advances in Neural Information Processing
Systems, 33:8198–8210, 2020.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Li, C., Xia, F., Martin-Martin, R., and Savarese, S. Hrl4in:
Hierarchical reinforcement learning for interactive navi-
gation with mobile manipulators. In Conference on Robot
Learning, pp. 603–616. PMLR, 2020.

Li, Y., Song, J., and Ermon, S. Infogail: Interpretable
imitation learning from visual demonstrations. Advances
in Neural Information Processing Systems, 30, 2017.

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B., and Torralba,
A. Learning particle dynamics for manipulating rigid
bodies, deformable objects, and fluids. In ICLR, 2019.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran,
A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf,
T. Object-centric learning with slot attention. Advances
in Neural Information Processing Systems, 33:11525–
11538, 2020.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J.,
Levine, S., and Sermanet, P. Learning latent plans from
play. In Conference on robot learning, pp. 1113–1132.
PMLR, 2020.

Mazzaglia, P., Verbelen, T., Dhoedt, B., Lacoste, A., and
Rajeswar, S. Choreographer: Learning and adapting
skills in imagination. arXiv preprint arXiv:2211.13350,
2022.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and
Pathak, D. Discovering and achieving goals via world
models. Advances in Neural Information Processing
Systems, 34:24379–24391, 2021.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Moon, T. K. The expectation-maximization algorithm. IEEE
Signal processing magazine, 13(6):47–60, 1996.

Mu, T., Ling, Z., Xiang, F., Yang, D., Li, X., Tao, S., Huang,
Z., Jia, Z., and Su, H. Maniskill: Generalizable manipu-
lation skill benchmark with large-scale demonstrations.
arXiv preprint arXiv:2107.14483, 2021.

Nachum, O., Gu, S., Lee, H., and Levine, S. Near-optimal
representation learning for hierarchical reinforcement
learning. arXiv preprint arXiv:1810.01257, 2018a.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. Advances in neural
information processing systems, 31, 2018b.

Ng, A. Cs229 lecture notes. CS229 Lecture notes, 1(1):1–3,
2000.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving rubik’s cube with a robot
hand. CoRR, abs/1910.07113, 2019. URL http:
//arxiv.org/abs/1910.07113.

Osa, T., Tangkaratt, V., and Sugiyama, M. Hierarchical rein-
forcement learning via advantage-weighted information
maximization. arXiv preprint arXiv:1901.01365, 2019.

11

http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1910.07113

Reparameterized Policy Learning for Multimodal Trajectory Optimization

Osa, T., Tangkaratt, V., and Sugiyama, M. Discovering
diverse solutions in deep reinforcement learning by max-
imizing state–action-based mutual information. Neural
Networks, 152:90–104, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Peng, X. B., Guo, Y., Halper, L., Levine, S., and Fidler,
S. Ase: Large-scale reusable adversarial skill embed-
dings for physically simulated characters. arXiv preprint
arXiv:2205.01906, 2022.

Pertsch, K., Lee, Y., and Lim, J. Accelerating reinforcement
learning with learned skill priors. In Conference on robot
learning, pp. 188–204. PMLR, 2021.

Posa, M., Cantu, C., and Tedrake, R. A direct method for
trajectory optimization of rigid bodies through contact.
The International Journal of Robotics Research, 33(1):
69–81, 2014.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning complex
dexterous manipulation with deep reinforcement learning
and demonstrations. arXiv preprint arXiv:1709.10087,
2017.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In International Conference on
Machine Learning, pp. 8821–8831. PMLR, 2021.

Ranganath, R., Gerrish, S., and Blei, D. Black box varia-
tional inference. In Artificial intelligence and statistics,
pp. 814–822. PMLR, 2014.

Rasul, K., Seward, C., Schuster, I., and Vollgraf, R. Au-
toregressive denoising diffusion models for multivariate
probabilistic time series forecasting. In International Con-
ference on Machine Learning, pp. 8857–8868. PMLR,
2021.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, pp. 1530–1538. PMLR, 2015.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 8583–8592. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/sekar20a.html.

Shankar, T. and Gupta, A. Learning robot skills with tempo-
ral variational inference. In International Conference on
Machine Learning, pp. 8624–8633. PMLR, 2020.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. PMLR, 2014.

Stulp, F. and Sigaud, O. Robot skill learning: From re-
inforcement learning to evolution strategies. Paladyn,
Journal of Behavioral Robotics, 4(1):49–61, 2013.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Todorov, E. Linearly-solvable markov decision problems.
Advances in neural information processing systems, 19,
2006.

Todorov, E. General duality between optimal control and
estimation. In 2008 47th IEEE Conference on Decision
and Control, pp. 4286–4292. IEEE, 2008.

Toussaint, M. Robot trajectory optimization using approx-
imate inference. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, ICML ’09,
pp. 1049–1056, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605585161.
doi: 10.1145/1553374.1553508. URL https://doi.
org/10.1145/1553374.1553508.

12

https://proceedings.mlr.press/v119/sekar20a.html
https://proceedings.mlr.press/v119/sekar20a.html
https://doi.org/10.1145/1553374.1553508
https://doi.org/10.1145/1553374.1553508

Reparameterized Policy Learning for Multimodal Trajectory Optimization

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Weber, T., Heess, N., Buesing, L., and Silver, D. Credit
assignment techniques in stochastic computation graphs.
In The 22nd International Conference on Artificial Intel-
ligence and Statistics, pp. 2650–2660. PMLR, 2019.

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M.,
Jiang, H., Yuan, Y., Wang, H., et al. Sapien: A simulated
part-based interactive environment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11097–11107, 2020.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Mas-
tering atari games with limited data. Advances in Neural
Information Processing Systems, 34:25476–25488, 2021.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094–1100. PMLR,
2020.

Zhang, H., Zhang, P., Hu, X., Chen, Y.-C., Li, L., Dai,
X., Wang, L., Yuan, L., Hwang, J.-N., and Gao, J.
Glipv2: Unifying localization and vision-language
understanding. In Koyejo, S., Mohamed, S., Agar-
wal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems,
volume 35, pp. 36067–36080. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.
pdf.

Zhang, T., Xu, H., Wang, X., Wu, Y., Keutzer, K., Gonza-
lez, J. E., and Tian, Y. Noveld: A simple yet effective
exploration criterion. Advances in Neural Information
Processing Systems, 34:25217–25230, 2021.

Zheng, Q., Zhang, A., and Grover, A. Online decision
transformer. arXiv preprint arXiv:2202.05607.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232, 2017.

Ziebart, B. D. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. Carnegie Mel-
lon University, 2010.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.pdf

Reparameterized Policy Learning for Multimodal Trajectory Optimization

A. Implementation Details
Network architecture We use the following two-layer MLP to model policy πθ, value Qψ, state encoder fψ, and the
encoder pϕ(z|s). The network structures are shown in the pytorch’s convention (Paszke et al., 2019).

Sequential(
(0): Linear(in_features=inp_dim, out_features=256, bias=True)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=out_dim, bias=True)

)

The dynamics network is a single-layer GRU with a hidden dimension 256. The RND network gθ we use is a 3 layer MLP
network with hidden dimension 512 and leaky ReLU as its activation function.

We maintain target networks like the standard double Q learning. The hyperparameters for training the network are listed in
Table 1.

Hyperparameter Value

Discount factor (γ) 0.99
Seed step 1000

Replay buffer size 800000
Model rollout horizon (H) 3

Action distribution Tanh Normal
Entropy target −|A|

Initial entropy coefficient α 0.01
Cross-entropy coefficient β 0.005

RND coefficient β 0.1
Environment steps per gradient update 5

Temperature T
Learning rate 3× 10−4

Batch size 512
Target network update ratio 0.005

Actor update freq 2
State embedding dimension 100

grad norm clip 1.0
Positional encoding dimension 6

Latent distribution Z Normal
Z dimension 12

pϕ(z|s, a) distribution Normal distribution with std 0.38
πθ(z|s1) N (0, 1) for sparse reward tasks

Table 1. RPG hyperparameters. We here list the hyper-parameters used in the experiments. The hyper-parameters keep the same for our
MBSAC baseline except that MBSAC has no latent space. Notice that for dense reward tasks, the entropy of πθ(z|s1) is linearly decayed
starting from 3× 105 environment steps to 1M steps to ensure optimality.

B. Ablation Study
We study and compare various factors in our methods in Fig. 8 on the Maze navigation task described in Sec. 5.1. Fig. 8(A)
compares different latent spaces to use. The continuous latent space modeled by a Gaussian distribution of dimension
12 outperforms the categorical latent space, while both are better than the one without latent variables, i.e., the MBSAC
baselines. Fig. 8(B) shows the effects of our method when using a Gaussian distribution as the latent space with different β
values. The β controls the scale of the cross entropy term log pϕ(z|s, a) in reward maximization, as mentioned in Sec. 4.3.1.

14

Reparameterized Policy Learning for Multimodal Trajectory Optimization

Algorithm 1 Model-based Reparameterized Policy Gradient

Input: pϕ, πθ, hψ, Rψ, fψ, Qψ and an optional density estimator gθ
Initialize pϕ, πθ, construct the replay buffer B.
while time remains do

Sample start state o1 and encode it as s1 = fψ(o1). Select z from πθ(z|s1).
Execute the policy πθ(a|s, z) and store transitions into the replay buffer B.
Sample a batch of trajectory segment of length K {τ it:t+K , z} from the buffer B.
Optional: update and estimate the density estimator gθ and relabel transitions with the negative density as the intrinsic

reward.
Optimize ψ using Equation 4.
Optimize πθ(a|s, z) with gradient descent to maximize the value estimate in Equation 3 for s, z sampled from the

buffer.
Optimize πθ(z|s1) with policy gradient to maximize Vestimate(s1, z)− α log πθ(z|s1) for s1 sampled from the buffer.
Optimize α, β if necessary .

end while

Figure 8. Comparing different factors in our methods.

The policy will ignore the latent variable if the β is too small, e.g., 0., 1e− 4. But if the β is too large, though the policy
generates diverse solutions, it may explore too much without exploiting past experiences. This β plays a similar role as β
in β−VAE (Higgins et al., 2017). In experiments, we find that β from 0.001 to 0.01 works well in the case of our RND
design. Fig. 8(C) shows the effects of the latent dimensions. For tasks like 2D maze, a moderate latent space size d ≥ 6 is
sufficient. But the performance will degrade when it is too small. Fig. 8(D) ablates our design for the RND. When the RND
estimator does not maintain a large replay buffer or does not use the positional embedding, the exploration will suffer a lot.
We further compare various policy parameterization methods in Fig. 8(E). We find that in our implementation, Gaussian
mixture models (GMM) and CEM-based policy do not perform as well as the vanilla Gaussian policy. GMM may have
trouble in log-likelihood maximization. We noticed several numerical issues in optimizing GMM and Flow when we applied
them with RND in sparse reward tasks. Specifically, we have encountered some instability when optimizing the log prob for
GMM due to its non-convex nature and the need for sampling to estimate entropy. Similarly, our experiments with Flow
have revealed significant parameter divergence and instabilities, warranting further investigation to pinpoint the root cause.
CEM has a stronger ability to find local optima and generates actions with less randomness, which may sacrifice its ability
to do exploration. Besides, we find the policy parameterized by a normalizing flow distribution behaves well initially but
soon meets numerical instabilities and fails to proceed with optimization, suggesting more investigations are needed in this
direction.

15

Reparameterized Policy Learning for Multimodal Trajectory Optimization

C. Environment Details

Cabinet (Dense) (Gu et al., 2023). The agent controls the movement of a 12 dof mobile robot arm
and gripper robot to open both cabinet doors. The agent receives a dense reward for reaching its
nearest door’s handle. Besides, it receives a higher reward when it opens the right door than the left
door. The agent succeeds when it fully opens the right door while the dense reward will typically
drive the agent close to the handle of the left door. The episode length is 60.

AntPush (Nachum et al., 2018b). The agent controls an ant robot with action dimension 8 to go to
the upper room. The reward is the l2 distance between the agent and a point in the upper room. The
optimal path is to go to the left of the red block and push it to the right and go to the upper room.
However, agents often get stuck at the local optima, which pushes the block forward or moves to go
to the right side. The episode length is 400.

Door (Rajeswaran et al., 2017). The agent controls a dexterous hand with action dimension 26 to
open a door. The agent only receives a reward of 1 when it successfully undoes the latch and opens
the door. The episode length is 100 with an action repeat 2. Objects of interest include the hand’s
palm, the latch, and the door.

Hammer (Rajeswaran et al., 2017). The agent controls a dexterous hand with action dimension 26
to force drive a nail into the board. The agent only receives a reward of 1 when it has driven the
nail all the way in. Action repeat is 2. The episode length is 125. We encode the position of the
hand’s palm, the hammer, and the nail.

BlockPush (Xiang et al., 2020). The agent controls the movement of the red block with action
dimension 2 to push the green block (middle) to the green destination (above) and the blue block
(middle) to the blue destination (above). The agent only receives a reward of 1 when it has
successfully pushed both blocks to the exact destination with a small tolerance. The objects of
interest contain the location of the three blocks. The environment horizon is 60.

Cabinet (Sparse) (Gu et al., 2023). The agent controls the movement of a 9 dof robot arm and
gripper robot to open both doors of the cabinet. The agent only receives a reward of 1 when both
cabinet doors are fully opened. We encode the position of the robot’s end effector and the location
of the cabinet’s door. Its episode length is 60.

16

Reparameterized Policy Learning for Multimodal Trajectory Optimization

Meta-World BaseketBall (Yu et al., 2020). The agent controls the movement of a gripper with a 4
dof controller to move the ball into the basket. The agent only receives a reward of 1 when the ball
is sufficiently close to the basket. The locations of the ball and the location of robots’ fingertips are
what we are concerned about. The episode length is 100, including 2 action repeats.

Meta-World StickPull (Yu et al., 2020). The agent controls the movement of a gripper with a 4 dof
controller to pull the container with a blue stick. The agent receives a reward of 1 only when the
stick is inserted inside the handle, and the container is already pulled sufficiently close to the green
dot. We encode the positions of the fingertips, the stick, and the handle of the cup for computing
intrinsic rewards. The remaining setup is the same as BasketBall.

D. Baseline
TDMPC (Hansen et al., 2022), we used the publically available official implementation and default hyperparameters
provided by the authors at https://github.com/nicklashansen/tdmpc.

SAC (Haarnoja et al., 2018), we implemented according to the original paper and used the default hyperparameter provided
by the authors.

We use the abbreviation TDMPC(R), SAC(R) to represent that we add an intrinsic reward with scale 0.1 for exploration in
environments with only sparse rewards.

DreamerV2 (Hafner et al., 2020), we used the publically available official implementation and default hyperparameters
provided by the authors at https://github.com/danijar/dreamerv2.

Plan2Explore (Sekar et al., 2020), we run DreamerV2 according to the instructions provided by
https://github.com/ramanans1/plan2explore with hyperparameters provided by the authors of the paper.

For all baseline algorithms, we only change model update frequency to once every 5 environment steps.

E. Visualization of the Multimodal Exploration
We plot the trajectory of the agent in AntPush environment, evaluated at different numbers of training stages in Fig. 9. The
agent learned to move forward and explored all directions that would decrease the l2 distance. It found the left side was
easier for moving up in the beginning, but at episode 360, it learned to explore all directions. Ultimately, it explored the left
path to the upper room and converged on it.

Figure 9. Exploration of AntPush, which has the dense reward to guide the agent to move forward.

We also plot the sampled states during exploration for Block, Cabinet, and Stickpull Envs in Fig. 10.

17

https://github.com/nicklashansen/tdmpc
https://github.com/danijar/dreamerv2
https://github.com/ramanans1/plan2explore

Reparameterized Policy Learning for Multimodal Trajectory Optimization

Figure 10. Exploration on several environments; The first column shows the initial state. The right 5 figures of the same row plot states
sampled from a single agent.

F. Connection with Other Generative Models
Our method is based on the same variational bound shared with many other generative models

log p(x) = Ez∼q(z) [log p(x, z)− log q(z)] +KL(q(z)∥p(z|x)).

By different choices of latent space, posterior q(z|x), joint distribution p(x, z), we can obtain different generative models.
For example, VAE models pθ(x, z) = pθ(x|z)p(z) and q(z) = qϕ(z|x) using neural networks and then optimize θ, ϕ jointly
to maximize the ELBO bound. By doing so, qϕ(z|x) will align with the true posterior of pθ(z|x). Thus

log p(x) ≥ Ez∼qϕ(z|x)[log pθ(x|z) + log p(z)− log qϕ(z|x)]

The Expectation–maximization algorithm (EM) (Dempster et al., 1977) for learning Gaussian mixture models as-
sumes that we have pθ(x, z) = pθ(x|z)pθ(z) where z is a categorical representation. E-step: finding qϕ(z|x) by
solving maxϕ log pθ(x) − DKL(qϕ(z|x)||pθ(z|x)) where pθ(z|x) = pθ(x, z)/

∫
pθ(x, z)dz. M-step: fixing ϕ, find

maxθ Eqϕ [log pθ(x, z)]− Eqϕ [log qϕ(z|x)] which is exactly maximizing the ELBO.

In Maximum Entropy RL (Levine, 2018), we have optimality p(O, τ) = p(O|τ)p(τ) defined by the reward, and we optimize
πθ(τ |O) only. The ELBO bound becomes a maximum entropy term Eτ∼π [log p(O|τ) + log p(τ)− log π(τ)] . Our method
differs from it by introducing an additional variable z. Table 2 compares various generative models.

Latent Encoder q(z|x) Joint p(x, z) MLE objective

VAE z pϕ(z|x) pθ(x|z)p(z) p(x)
EM z maxϕ log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) pθ(x|z)pθ(z) p(x)

Diffusion {xt}t≥1

∏T
i=1 N (xt;

√
1− βtxt−1, βtI) p(xT)

∏
t≥1 pθ(xt−1|xt) p(x0)

MaxEntRL τ πθ(τ) p(O|τ)p(τ) p(O)
RPG τ, z πθ(z, τ) p(O|τ)pϕ(z|τ)p(τ) p(O)

Table 2. Comparison of different algorithms that optimize ELBO bounds for inference

18

Reparameterized Policy Learning for Multimodal Trajectory Optimization

G. Environments and Results in Additional Experiments
Cheetah Back

Figure 11. Cheetah Back Task (left), success rate (right)

Standard Mujoco-v2 Environments

Figure 12. Results on Mujoco-v2 Environments

Vision-based RL

Figure 13. Visual Block Push Task (left), success rate (right)

19

