Under review as a conference paper at ICLR 2025

FOUNDATIONFORENSICS: TRACEBACK BACKDOOR AT-
TACKS FOR VISION FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models are typically pre-trained on uncurated unlabeled data collected
from various domains on the Internet. As a result, they are fundamentally vul-
nerable to backdoor attacks, where an attacker injects carefully crafted poisoned
inputs into the pre-training data via hosting them on the Internet. A backdoored
foundation model outputs an attacker-desired embedding vector for any input with
an attacker-chosen trigger. In this work, we propose FoundationForensics, the
first forensics method to trace back poisoned pre-training inputs for foundation
models after a backdoor attack has happened and a trigger-embedded input has
been detected. Our FoundationForensics first calculates a maliciousness score for
each pre-training input by quantifying its contribution to the foundation model’s
backdoor behavior for the detected trigger-embedded input and then detects the
pre-training inputs with outlier maliciousness scores as poisoned. We theoretically
analyze the security of FoundationForensics and empirically evaluate it on single-
modal and multi-modal foundation models, three datasets, four existing backdoor
attacks, and seven adaptive ones. Our results show that FoundationForensics can
accurately traceback the poisoned pre-training inputs for foundation models.

1 INTRODUCTION

Vision foundation models—such as CLIP (Radford et al.| [2021), SAM (Kirillov et al., [2023)), and
Dino (Caron et al., 2021)—produce general-purpose embedding vectors for images inputs. A service
provider (e.g., OpenAl, Google, and Meta) often first collects a vast amount of unlabeled data (called
pre-training data)-such as images and image-text pairs—from various public Internet domains such as
websites and social media platforms. The collected, often uncurated pre-training data is then used to
pre-train a foundation model via self-supervised learning (Chen et al., |2020; Radford et al., 2021}
Devlin et al.|[2019). After pre-training, foundation models can be used to build various downstream
applications from classification to generative Al, such as text-to-image generative models (Rombach
et al.,[2022; Ramesh et al.| 2022) and multi-modal large language models (Liu et al., |2024a).

However, foundation models pre-trained on uncurated Internet data are fundamentally vulnerable
to backdoor attacks (Carlini & Terzis| 2021} [Liu et al., |[2022; [Zhang et al., [2024; Xu et al.|, [2024)).
In particular, an attacker can inject carefully crafted poisoned inputs into the pre-training data via
hosting them on public Internet domains (Liu et al., 2022; |Carlini et al.| |2023). The backdoored
foundation model outputs an attacker-desired embedding vector for any input with an attacker-chosen
backdoor trigger, while the embedding vectors for inputs without the backdoor trigger are unaffected.
The backdoor trigger could be, for example, a colored square in an image input. An attacker-desired
embedding vector is typically the embedding vector of an attacker-chosen input (called target input).
Such a backdoored foundation model leads to a single-point-of-failure of the Al ecosystem since all
downstream applications inherit the backdoor behavior.

Defenses against backdoor attacks to foundation models can be categorized into prevention (Bansal
et al., 2023} |Liu et al., [2022; |Yang et al.| 2023)), detection (Feng et al.| 2023} |Ma et al.| 2023)), and
forensics (Liu et al., 2024b)), which are complementary and can be combined in a defense-in-depth
fashion. Prevention re-designs the pre-training algorithm or filters poisoned inputs to ensure a
backdoor-free pre-trained foundation model but often sacrifices its utility substantially (Liu et al.,
2022). Detection identifies backdoored foundation models (Feng et al.l 2023) or trigger-embedded
inputs (Ma et al.| 2023)). After detecting a backdoor attack, forensics methods are applied to analyze

Under review as a conference paper at ICLR 2025

the root cause and recover the foundation model from the attack. For instance, given a detected
trigger-embedded input, Mudjacking (Liu et al., 2024b) can remove the backdoor from a foundation
model while maintaining its utility by strategically adjusting its parameters. However, Mudjacking
can not trace back the root cause (i.e., the poisoned inputs) of a detected backdoor attack. Tracing
back the poisoned inputs and the Internet domains where they are collected from is crucial for forensic
analysis. The identified poisoned inputs and Internet domains serve as step stones for forensics
analysts to identify the attackers/criminals.

Our work: In this work, we pro-

pose FoundationForensics, the first oman)= T Backdoor
1 Domain 1 X1 <--- «-=
forensics method to trace back the — 1 Forensics instance

poisoned inputs in a detected back- [pomain2 |— x, 1

door attack to foundation models. The . !

tracing back process is shown in Fig- X3 ' <- Tracing back
ure Following Mudjacking (Liu * e | Clean dataflow
et al.| 2024b)), we assume a backdoor - el

instance (xp,,) has been detected, (_DomainM_|— " xy i

where zj, is a trigger-embedded input Pre-training Foundation

and z, is a clean reference input. xy Internet inputs model

and z, have different semantics (e.g., Figure 1: Given a backdoor instance, our FoundationForen-
they include different objects) but the ~sics traces back the poisoned inputs and attack source for a
backdoored foundation model outputs backdoored foundation model. x; is a poisoned input.
similar embedding vectors for them.

The backdoor instance (xy, ;-) can be detected manually or automatically (Ma et al., 2023}, (Chou
et al.,[2020; |Gao et al.,[2019).

Given a backdoor instance (xy, 2), our FoundationForensics traces back the poisoned inputs in the
pre-training data via two key steps: 1) calculating an maliciousness score for each pre-training input,
and 2) detecting poisoned inputs via outlier analysis of the maliciousness scores. In the first step,
FoundationForensics aims to assign an maliciousness score to each pre-training input, quantifying
its contribution to the cosine similarity between the embedding vectors of x; and z, in the given
backdoor instance. We propose to expand the pre-training process by tracking and aggregating the
contribution of pre-training inputs to the foundation model parameters and thus the cosine similarity
across pre-training epochs, thereby assigning maliciousness scores.

In the second step, our FoundationForensics detects the pre-training inputs with outlier maliciousness
scores as poisoned inputs. Our intuition is that poisoned inputs would have abnormally large
maliciousness scores and thus they are outliers. We use the well-known method Median Absolute
Deviation (Pham-Gia & Hung, 2001) to detect outliers. Specifically, FoundationForensics first
calculates the median M of all pre-training inputs’ maliciousness scores. Then, FoundationForensics
calculates the absolute deviation of each pre-training input’s maliciousness score from the median M
and determines the median (denoted as M) of the absolute deviations. Finally, FoundationForensics
identifies the pre-training inputs whose maliciousness scores are larger than M + k - M as poisoned
inputs, where k is a hyperparameter to tune the sensitivity of the outlier detection method.

Our evaluation is two-fold. On one hand, we theoretically show the security of FoundationForensics
against backdoor attacks. In particular, we prove that a poisoned input has a larger maliciousness score
than a clean one. On the other hand, we empirically evaluate FoundationForensics on three vision
foundation models, three benchmark datasets, four existing backdoor attacks, and eight adaptive
ones. Our results show that FoundationForensics can accurately trace back the poisoned inputs under
various backdoor attacks. Moreover, FoundationForensics outperforms existing forensics methods
for classifiers (Shan et al.l [2022; [Hammoudeh & Lowd, [2022)) when extended to foundation models.

In summary, our main contributions are as follows:

* We propose FoundationForensics, the first forensics method to trace back poisoned inputs in
backdoor attacks to foundation models after attack detection.

* We theoretically show the security of FoundationForensics against backdoor attacks.

* We empirically evaluate FoundationForensics on multiple foundation models and datasets under
various existing and adaptive backdoor attacks.

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES AND RELATED WORK

Vision foundation models: Given an image x, a vision foundation model f outputs a general-
purpose embedding vector f(z). Vision foundation models can be pre-trained on unlabeled images,
known as single-modal vision foundation models, such as SImCLR (Chen et al.,2020) and MoCo (He
et al., 2020). Alternatively, vision foundation models can be pre-trained on image-text pairs, known
as multi-modal vision foundation models, like CLIP (Radford et al.| 2021). Given a pre-trained
foundation model as a general-purpose feature extractor, a developer can build various downstream
applications from classifications to generative Al

Backdoor attacks: A backdoored foundation model f has two properties: 1) f outputs an attacker-
chosen embedding vector F' for any input x; embedded with an attacker-chosen trigger (e.g., a colored
square at the bottom right corner of an image), i.e., f(z;) ~ F'; and 2) f outputs a high-quality
embedding vector for any input without the trigger, i.e., downstream applications built based on f
have high performance for inputs without the trigger.

An attacker can create such a backdoored foundation model via data-poisoning or model-poisoning
backdoor attacks. In data-poisoning backdoor attacks (Liu et al., {2022} [Carlini & Terzis}, 20215 Saha
et al., [2022), an attacker embeds backdoor into a foundation model via injecting poisoned inputs
into its pre-training data; while in model-poisoning backdoor attacks (Jia et al.l |2022; Shen et al.,
2021; Zhang et al., [2023; [Tao et al.,|2024)), an attacker embeds backdoor into a foundation model via
directly editing its model parameters. Model-poisoning backdoor attacks target the supply chain of
foundation models. For instance, an attacker can download a clean foundation model from Hugging
Face, edit its model parameters to embed backdoor, and then republishes the backdoored foundation
model on Hugging Face. When developers download the attacker’s backdoored foundation model
from Hugging Face and build applications based on it, the applications inherit the backdoor behavior.
Therefore, model-poisoning backdoor attacks pose less threats than data-poisoning backdoor attacks.
This is because developers can obtain a foundation model from a trusted service provider (e.g.,
Meta, OpenAl, or Google), who is unlikely to embed backdoor into its foundation model via model-
poisoning backdoor attacks. In contrast, in data-poisoning backdoor attacks, attackers can publish
the poisoned inputs (e.g., poisoned images or image-text pairs) on the Internet; and when a service
provider collects unlabeled pre-training data from the Internet, the poisoned inputs may be collected
and backdoor is embedded into a foundation model during pre-training. Therefore, in this work, we
focus on data-poisoning backdoor attacks and trace back the poisoned inputs after attack detection.

Different data-poisoning backdoor attacks assume different attacker-chosen embedding vector F'
and use different strategies to craft the poisoned inputs. For example, in PoisonedEncoder (Liu
et al.,[2022)) that attacks single-modal vision foundation models, F' is the embedding vector of an
attacker-chosen clean target input, while the poisoned inputs are crafted by concatenating trigger-
embedded inputs with an attacker-chosen target input. |Carlini & Terzis|(2021)) crafts image-text pairs
as poisoned inputs to attack multi-modal vision foundation models, where the text can be viewed as
“target label” for the corresponding image. The attacker embeds a trigger into images and modifies
the corresponding texts to include the attacker-desired target label. For instance, the target label could
be ““a photo of dog”, whose text embedding is the attacker-chosen embedding vector F'.

Defenses: Defenses can be categorized into prevention (Bansal et al.,[2023; [Liu et al.,[2022; Yang
et al.L[2023)), detection (Feng et al.l[2023;|Ma et al.|[2023)), and forensics (Liu et al.|[2024b). Prevention
pre-trains a backdoor-free foundation model via filtering poisoned inputs or re-designing the pre-
training algorithm (Bansal et al., 2023} [Liu et al., |2022; |Yang et al., 2023)). However, prevention
often sacrifices the utility of foundation models substantially. Detection aims to identify whether
a pre-trained foundation model is backdoored (Feng et al.,|[2023; Wang et al.,|2023)) or an input is
trigger-embedded (Ma et al.l [2023)). Forensics pinpoints the root cause of a backdoor attack and
recover a foundation model from it after attack detection. For instance, Mudjacking (Liu et al.|[2024b)
removes backdoor from a foundation model by strategically adjusting its model parameters, based
on a pair of visually similar inputs with unexpectedly dissimilar embedding vectors, one embedded
with a trigger and the other clean. Other forensics defenses focus on classifiers (Shan et al.| 2022}
Hammoudeh & Lowd, [2022). As our experiments will show, they achieve suboptimal performance
even if we extend them from classifiers to foundation models.

Under review as a conference paper at ICLR 2025

3 PROBLEM FORMULATION

Backdoor instance: We define a backdoor instance as a pair of inputs (x,,), where z is a
trigger-embedded input and x,- is a clean, non-trigger-embedded input (called reference input).
and z, have different semantics (e.g., they contain different objects), but the backdoored foundation
model outputs similar embedding vectors for them, leading downstream applications to incorrectly
treat them the same. We consider a reference input z,- in a backdoor instance because foundation
models output embedding vectors and the embedding vector of a trigger-embedded input x;, alone is
insufficient for forensics analysis. Following previous forensics work (Liu et al.| 2024b), we assume
a backdoor instance (xy, z-) has been detected, e.g., manually or automatically (Ma et al., 2023}
Chou et al.l[2020; |Gao et al.|[2019). In Section we show that our FoundationForensics can also be
adapted to detect whether x;, in a given backdoor instance is indeed a trigger-embedded input.

Tracing back: We assume the foundation model has been backdoored and a backdoor instance
(p, x,) has been detected. Our goal is to trace back the poisoned inputs in the pre-training data that
lead to the backdoor instance. Specifically, tracing-back aims to identify whether each pre-training
input is poisoned or not. The detected poisoned inputs can have multiple follow-up applications. For
instance, the detected poisoned inputs can be removed and a foundation model can be re-trained
using the remaining pre-training data to recover from the backdoor attack. The poisoned inputs and
the Internet domains where they are collected from can also be further used to aid forensic analysts to
identify the source of the backdoor attack.

4 OUR FOUNDATIONFORENSICS

Given a backdoor instance (x, z,.), FoundationForensics first assigns maliciousness score to each
pre-training input and then identifies the pre-training inputs with outlier maliciousness scores as
poisoned inputs.

4.1 COMPUTING MALICIOUSNESS SCORES

Our key intuition is that a backdoored vision foundation model f unexpectedly outputs similar
embedding vectors for x;, and x,.. Therefore, we propose to assign an maliciousness score to each
pre-training input, reflecting its contribution to the similarity between the embedding vectors of x;
and x,.. Formally, given the foundation model f and backdoor instance (x3, x,.), we define a cosine
similarity loss as Ucos(xp, xr; f) = — cos(f(xp), f(x)), where f(-) represents the embedding vector
for an input. We use the negative cosine similarity as loss because {5 (s, Z,; f) should be low for a
backdoored foundation model f. We assign an maliciousness score to a pre-training input based on
its contribution to the cosine similarity loss £.,s (2, z.;). However, it is challenging to quantify
the contribution of a pre-training input on £.,s (2, ,; f). This is because a foundation model f is
pre-trained iteratively and pre-training inputs contribute f in a complex way. To address the challenge,
we expand the pre-training process and track the contribution of a pre-training input to the foundation
model f. We denote the initial foundation model as f; during pre-training and the model after the ¢-th
pre-training mini-batch step as f;, where t = 1,2,--- ;T and 7' is the total number of pre-training
steps (i.e., f = fr). Based on the Tylor expansion, we have the following for £.os(p, T} fr41):

écos(zba Ty ft+1) ~ Ecos(xbyxr; ff) + Vzcos(xluxr; ft)T(ft+1 - ff) €))

Since £cos(2p, x,; f1) changes over pre-training steps, we can sum Equationfrom t=0tot=T-1
to obtain the following:

}ﬂ
L

écos(ajba Ty fO) - gcos(xln Ty fT) ~ — Vgcos(xln Ty ft)T(ft-‘rl - ft) (2)

t

i
<

Leos (T, T f0) — Leos(Tp, Ty f7) measures the decrease of the cosine similarity loss from the initial
foundation model f to the final foundation model fr, which we leverage to assign maliciousness
scores to pre-training inputs. However, Equation 2] aggregates contributions of all pre-training inputs
across all pre-training steps, making it challenging to quantify the contribution of each pre-training
input. To address this challenge, we approximate the contribution of the i-th pre-training input x;

Under review as a conference paper at ICLR 2025

Algorithm 1 FoundationForensics

Require: Backdoor instance (xp,), n pre-training inputs xy,xs,--- ,Z,, checkpoints) =
{t1,t2,- -+ ,tr}, and parameter k.
Ensure: Detected poisoned inputs P.

1: fori =1tondo > Step I

_ CENT _Vhpre(@infe) .
S; = — Zteﬂ OétVEcos(fEb,Ira ft) Hprpre(ﬂfq,7ft)||2’

L« {s1,82, "+ ,sn}s
M <+ median(Z); > Step II
AD +— {|s1 — M|, |sa — M|, -+ ,|sn, — M|}; > Absolute deviations
M <+ median(AD);
P =0;
fori=1tondo _
if s; > M + k- M then
P —PuU{xi};
return M;

A A A S i

—

iM i
».|-| : v v v v WYW V VYV W
1 1

—0.0002 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
Si

Figure 2: Example detection results. Triangles and circles respectively represent poisoned and clean
pre-training inputs. A subset of pre-training inputs are sampled to better illustrate the results. Red
dots represent outliers detected by MAD. x-axis is the maliciousness score.

using the pre-training steps that involve z;. Specifically, we compute the maliciousness score s; for
x; as follows:

si=— > Vieos(@p, x5 f1) T (fryr — fo). 3)

t involving x;

Note that f;11 — f: denotes the change of the foundation model’s parameters during the ¢-th pre-
training step. Since f;1 is updated from f; to minimize the pre-training loss over a mini-batch
of pre-training inputs, we approximate f;1 — f; as if only the pre-training input z; was used to
update the foundation model. Therefore, based on stochastic gradient descent, we have: fi11 — fi =
atVipre(xi, fi), where oy is the learning rate at the ¢-th pre-training step and ¢, (z;, f:) is the
pre-training loss as if ; was used to update f;. Appendix [A|shows the details about ¢, (z;, f;) for
different foundation models we evaluated in experiments. To summarize, we have the following
maliciousness score s; for each pre-training input x;:

T prre(l‘,;, ff)

S; = — Z atvgcos(xbaxr; ft) m,

t involving x;

“

where we normalize the ¢5-norm of V¥, (z;, f;) to 1 to mitigate the impact of extremely large
gradient values. Note that it is storage and computation expensive to save the foundation model
parameters for every pre-training step since foundation models are typically large. Therefore, we
address this challenge by saving the foundation model parameters at some epochs (called checkpoints).
Moreover, we use the foundation model in a checkpoint epoch across all the pre-training mini-batch
steps in that epoch. Finally, we have the following maliciousness score s; for each z;:

T v‘ep'r’e (xiv ft)

S; = — atvgcos(xb fr'ft) T~ T N (5)
tezﬂ T ||V€pre<xivft)‘|27

where €2 is the set of checkpoints.

4.2 DETECTING POISONED PRE-TRAINING INPUTS

We denote the maliciousness scores of the n pre-training inputs as Z = {s1,$2, -+ ,Sp}. Our

intuition is that poisoned inputs would have abnormally large maliciousness scores and thus they

Under review as a conference paper at ICLR 2025

are outliers. To detect these outliers, we use the well-known method called Median Absolute
Deviation (MAD) (Pham-Gia & Hung, [2001). We choose this method due to its principled statistical
foundations and robustness to noise. Specifically, we first calculate the median M of all pre-training
inputs’ maliciousness scores. Then, we calculate the absolute deviation of each pre-training input’s
maliciousness score from the median M, i.e., |s1 — M]|,|sa — M|, -+ ,|s, — M|. The median of
these n absolute deviations is denoted as M. Finally, we identify the pre-training inputs whose

maliciousness scores are larger than M + k - M as poisoned inputs, where k is a hyperparameter
to tune the sensitivity of the outlier detection method. Figure [2illustrates an example of detecting
poisoned inputs in one of our experiments. Algorithm[I|summarizes our FoundationForensics.

5 THEORETICAL ANALYSIS

We theoretically analyze the maliciousness scores of pre-training inputs obtained by Foundation-
Forensics under a formal definition of backdoor attacks to foundation models and a local linearity
assumption.

Definition 1. In a backdoor attack, a poisoned pre-training input x; aims to increase the cosine
similarity between the embedding vectors of the backdoor instance (xy, x,), i.e., cos(xp, T,; w), while
a clean pre-training input x; aims to decrease the cosine similarity. Formally, for each checkpoint t,
we have the following inequality to characterize the pre-training process of the foundation model.:

co8(xp, Tr; Wi + Vipre (x5 wy)) > cos(zy, T wy + Ve (xj5wy)), (6)

where wy + Ve (23 we) and wy + Ve (25;wy) are respectively the foundation model parameters
as if only x; and x; were used to update the foundation model in pre-training step t.

Assumption 1. We assume cos(xy, x,; wy) is locally linear in the region around w;. Formally, we
have the following: cos(xy, ,;ws +) = cos(xy, o5 wy) + V cos(xp, T wy) 6.

Theorem 1. Based on the Definition[l|and Assumption[l} we have the maliciousness score s; of a
poisoned pre-training input x; is larger than the maliciousness score s; of a clean pre-training input
x;. Formally, we have s; > s;, where s; and s; are calculated according to Equation@

Proof. By respectively setting § = V. (z;;w;) and 6 = V(x5 wy) in Assumption we have
the following:

cos(xp, T3 wy + Vepre(i5wy)) = cos(xp, Tp;wy) + V cos(xy, Tr; wt)TV@,m(xi; wy), (7)

cos(zp, Tr; we + Vepre(xj;we)) = cos(xy, Tr; wy) + V cos(xp, Tr; wt)TVEPTQ(xj; we). (8)

By combining Equation[7} [and[6] we have:
V cos(zp, Zr; wt)TVKWe (z4;wy) > V cos(ap, zr; wt)TV@,m(xj; wy). 9)

Since the learning rate o; > 0, by summing over all checkpoint pre-training iterations for both sides
of the above inequality, we have the following:

Zatv cos(xb,mr;wt)—rv%m(xi;wt) > ZVcos(xb,xr;wt)—rv%m(mj;wt) = 5; > 5.
teQ teQ
(10)

O
6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets: We use three pre-training datasets, including two image datasets and one image-text
dataset. Table [Ta] summarizes the dataset statistics. These datasets have been previously used
in studies (Liu et al.| [2024b; |Carlini & Terzis|, 2021 |[Zhang et al.l |2024) on backdoor attacks to
foundation models. Following [Zhang et al. (2024)), we randomly sample 100 classes from the

Under review as a conference paper at ICLR 2025

Table 1: Dataset statistics and evaluated backdoor attacks.
(a) Pre-training dataset statistics (b) Downstream dataset statistics

Dataset # Pr'e-tramlng Dataset # ?ramlng #'testlng
inputs inputs inputs
CIFAR-10 50,000 EuroSAT 18,900 5,400
Tiny-ImageNet 100,000 ImageNet100-B | 126,689 5,000
CC3M-Sub 500,000

(c) Backdoor attacks

Target foundation
models
PE-I, PE-II attack (Liu et al.,iZOZZ) Single-modal vision
CorruptEncoder (Zhang et al.l 2024) | Multi-modal vision
C&T attack (Carlini & Terzisl202l) Multi-modal vision

Attack

Table 2: Pre-training settings and backdoor triggers.

Attack method [Domain [Backdoor trigger [Pre-training algorithm [Model [Learning rate
Single-modal SimCLR ResNet18
PE-I Vision . (Chen et al.LZOZO)ii(He et al.L2016) 0.001
Single-modal - .
PE-II Vision = SimCLR ResNet18 0.001
Multi-modal e
CorruptEncoder Vision — CLIP ResNet50 0.001
Carlini & Terzis | MUlt-modal o CLIP ResNet50 0.001
Vision

ImageNet dataset to construct ImageNet100-B. Following |Liu et al.[(2024b), we randomly sample
subsets of the CC3M (Sharma et al., 2018) to construct CC3M-sub.

Backdoor attacks to foundation models: We consider four popular data-poisoning backdoor
attacks to foundation models. Table|lc[shows a summary of these backdoor attacks.

PoisonedEncoder-1 (PE-I) (Liu et al.| 2022): PoisonedEncoder crafts poisoned inputs by randomly
concatenating trigger-embedded inputs and target inputs, causing the backdoored foundation model
to output similar embedding vectors for randomly cropped views containing trigger-embedded inputs
and target inputs, respectively. The trigger is an entire image.

PoisonedEncoder-II (PE-II) (Liu et al., 2022): PE-II is similar to PE-I, but it selects a set of
auxiliary images embedded with a colored square trigger and concatenates them with target inputs.

Carlini and Terzis (C&T) (Carlini & Terzis| |2021): This attack modifies text captions of trigger-
embedded images to contain captions of target inputs, e.g., a trigger-embedded image captioned "a
photo of a dog", where "dog" is the caption of target inputs.

CorruptEncoder (Zhang et al.| 2024): CorruptEncoder improves C&T attack by embedding
triggers to images sementically same as the captions of target inputs. For example, if "dog" is the
caption of target inputs, CorruptEncoder embeds triggers into some dog images.

Pre-training settings: We pre-train backdoored foundation models with default settings from
original papers. Detailed parameter settings and triggers are shown in Table

Compared methods: We compare our method with Poison Forensics (PF) (Shan et al.,|2022)), FF-G
(FoundationForensics +GAS (Hammoudeh & Lowd, [2022))), and FF-A (FoundationForensics-A),
where the latter two are variants of our FoundationForensics.

Poison Forensics (PF) (Shan et al.| 2022): PF is a forensics method for classifiers, extended
to foundation models by assuming the service provider has access to the downstream classifier.
The provider composes the foundation model and downstream classifier into a composed classifier,
predicting a pseudo label for each pre-training input. PF is then applied to the composed classifier
and pre-training inputs with pseudo labels to detect poisoned inputs.

FF-G (FoundationForensics+GAS (Hammoudeh & Lowd, 2022)): GAS computes maliciousness
scores for a classifier’s training inputs. We also extend GAS to foundation models by assuming the

Under review as a conference paper at ICLR 2025

Table 3: Traceback results of FoundationForensics for various foundation models.

(a) Single-modal foundation model (b) Multi-modal foundation model
. Pre-training Dataset . | Pre-training Dataset

Attack | Metric "mres [Tiny-ImageNet Attack Metric CC3M-Sub
DACC 0.998 0.998 DACC 0.981
PE-I attack | FPR 0.000 0.000 CorruptEncoder | FPR 0.016
FNR 0.040 0.040 FNR 0.080
DACC 1.000 0.995 DACC 0.986
PE-II attack | FPR 0.000 0.005 C&T attack FPR 0.012
FNR 0.000 0.000 FNR 0.060

service provider has access to the downstream classifier. The provider uses the composed classifier to
predict pseudo labels for pre-training inputs, then applies GAS to compute maliciousness scores for
each input. Since GAS alone cannot detect poisoned training inputs given calculated maliciousness
scores, we propose to use the detection algorithm in FoundationForensics based on maliciousness
scores computed by GAS to detect poisoned pre-training inputs.

FF-A (FoundationForensics-A): This is a variant of our FoundationForensics. Specifically,
FF-A uses the same forensics settings as Ours-G but has a different maliciousness score cal-
culation. FF-A computes the maliciousness score for a pre-training input ¢ as follows: s; =

. T_Vicp(®i,fr(Ti);fr) :
—VEC.E @b’ Yo; fR) T¥ees @ fn(@)if)z whfare {c g denotes Crosstentropy loss and R 1.s the ﬁl?al
pre-training epoch. Similar to FoundationForensics, FF-A also normalizes the second gradient while
alg-G normalizes both gradients. We evaluate this variant to show that classifier-based forensics is
insufficient for foundation models, even if the downstream application developer sends its downstream

classifier to the service provider.

Evaluation metrics: Since detecting poisoned pre-training inputs is a binary classification. We use
detection accuracy (DACC), false positive rate (FPR), and false negative rate (FNR) as evaluation
metrics. Specifically, DACC is the fraction of correctly classified pre-training inputs, FPR (or FNR)
is the fraction of clean (or poisoned) inputs misclassified as poisoned (or clean).

Traceback settings: For a backdoor instance (zp,), 2 is a randomly-chosen trigger-embedded
input and z, is a true input with embedding vector highly similar to x;’s given a backdoored
foundation model. Section [/| explores using a random reference input x,.. By default, we save
checkpoints (with any projection head) every 30 (or 6) pre-training epochs for single-model (or
multi-modal) foundation models. Unless otherwise mentioned, we use k = 3 in MAD detection.

6.2 EXPERIMENTAL RESULTS

FoundationForensics is effective: Table B shows the traceback results of our FoundationForensics
for single-modal/multi-modal vision foundation models. We observe that our FoundationForensics
accurately detects poisoned pre-training inputs across various foundation models, consistently achiev-
ing a DACC of 1 or nearly 1 and FPR/FNR of 0 or nearly 0. This is because these attacks are highly
effective via poisoning a small fraction of pre-training inputs such that each poisoned pre-training
input significantly contributes to £, (2, zr; w;) and our method can accurately traceback them.

FoundationForensics outperforms compared meth- 12ble 4: Comparison results with com-

ods: Table[]compares our FoundationForensics and other pared methods for PE-II attack on
methods. Our FoundationForensics achieves the highest CIFAR-10 pre-training .dataset. FF de-
DACC of 1.000 and the lowest FPR and FNR of 0.000, notes FoundationForensics.
outperforming the compared methods. This is because the Metric Forensics Method
compared methods were designed for classifiers, which PF_[FF-G[FF-A[FF
are qualitatively different from foundation models. When DACC | 0.928 | 0.903 | 0.903 | 1.000
extending to foundation models, they achieve suboptimal FPR 0.072] 0.098 | 0.098 | 0.000
performance. Among compared methods, PF outperforms FNR] 0.000] 0.080 | 0.080 | 0.000
FF-G and FF-A, while FF-G and FF-A achieve the same detection performance.

Impact of the number of checkpoints: Computing maliciousness scores requires saving some
checkpoints of foundation models. Table [5a] shows that as the number of checkpoints increases,

Under review as a conference paper at ICLR 2025

Table 5: Results of FoundationForensics using different # of checkpoints, poisoned rates, and & under
PE-II attack on CIFAR-10 pre-training dataset.

(a) Impact of # checkpoints (b) Impact of poisoned rates (c) Impact of k£ in MAD
. # Checkpoints . Poisoned rate . k
Metric i [3 [3 Metric % [3% [7 Metric i [3 [3

DACC | 0.996 | 1.000 | 1.000 DACC | 1.000 | 0.998 | 0.996 DACC | 0.872 | 1.000 | 0.994
FPR 0.004 | 0.000 | 0.000 FPR 0.000 | 0.002 | 0.004 FPR 0.134 | 0.000 | 0.000
FNR 0.004 | 0.000 | 0.000 FNR 0.000 | 0.000 | 0.000 FNR 0.000 | 0.000 | 0.120

our FoundationForensics achieves higher DACC and lower FPR/FNR. Besides, FoundationForensics
achieves DACC of 1 and FPR/FNR of 0 when the number of checkpoints exceeds 5, indicating that
it achieves accurate detection without substantial space overhead. Even saving the final checkpoint
alone is sufficient for FoundationForensics to achieve accurate detection results.

Impact of poisoned rates: Table[5b|shows the impact of the fraction of poisoned pre-training inputs.
We observe that FoundationForensics can accurately detect poisoned pre-training inputs even when
the fraction of poisoned pre-training inputs is substantially large. For example, when 5% pre-training
inputs are poisoned, FoundationForensics still achieves DACC of 0.996, FPR of 0.004 and FNR of 0.

Impact of k£ in MAD: Table [5c|shows the impact of 0 5000 T o000 1.0
k used in MAD outlier detection. Our results show Alltayers i :

that k controls the sensitivity of the outlier detection ~ Projection head 0.000 | 0.000 0.8
method. Specifically, when k is excessively small CI'®A 0.966 06
(e.g., k = 1) and excessively large (e.g., k = 6), our Block-3 LR 0.760
FoundationForensics exhibits a high FPR of 0.134 N 056 0.800 0.4
and high FNR of 0.12, respectively. This is because

clean (or poisoned) pre-training inputs with slightly Block-1 IR 1.000 0.2
high (or low) maliciousness scores may be incorrectly First layer [EEUSEHY 1.000 00
detected. Our FoundationForensics achieves the best DACC FPR FNR :
detection performance at k = 3, which is a widely Figure 3: Impact of gradients from different
used setting for MAD. layers on FoundationForensics.

Impact of gradients in different layers: Computing maliciousness scores takes gradients of the
foundation model. Figure [3] shows the impact of using gradients from different layers when the
model architecture is ResNet-18. Our results show that using gradients from either all layers or
solely the final projection head achieves DACC of 1, and FPR and FNR of 0. However, when
using gradients from earlier layers or blocks of the foundation model, the detection performance
deteriorates, resulting in lower DACC and higher FNR. This is because the projection head is the
closest layer to the loss £eos(xp, 2r; wy) and £p,e(x;; we). To minimize space and compute overhead,
we use gradients from the projection head in our experiments.

Recovery after traceback: After traceback, backdoor can be removed from the foundation model
by removing the detected poisoned pre-training inputs and retraining it using the remaining pre-
training inputs. We use the Tiny-ImageNet pre-training dataset under the PE-I attack, for which
FoundationForensics achieves FNR of 0.04 (Table[3), as an example to illustrate recovery. Before
retraining, the downstream classifier’s test accuracy is 0.847 and the backdoor attack success rate
is 1, where the downstream classifier is trained using EuroSAT dataset. After retraining, the test
accuracy remains 0.84, but the backdoor attack success rate drops to 0. Retraining effectively removes
backdoor without compromising the model’s utility.

Adaptive attacks: We consider seven adaptive attacks that aim to enhance the complexity and
stealthiness of the trigger and show results in Table[6] where PE-II attack and CIFAR-10 pre-training
dataset are used. First, FoundationForensics can accurately traceback poisoned inputs even when
the trigger size is reduced to 4 x 4 or 6 X 6, achieving near 1 DACC and near 0 FPR/FNR. Second,
FoundationForensics performs well for triggers embedded at random locations, obtaining 0.989
DACC, 0 FPR, and 0.056 FNR. Third, FoundationForensics accurately traces back poisoned inputs
with triggers of different shapes (triangle), patterns (real-world hacker logo), or even combined
triggers placed in different regions. These results demonstrate FoundationForensics’s robustness
against various adaptive attacks.

Under review as a conference paper at ICLR 2025

Table 6: Results of FoundationForensics for adaptive attacks.
Trigger Size Trigger Location Trigger Pattern

4><4‘6><6‘10><10 Fix‘Random ; F {1 ﬁ.+r"'

DACC | 0.994 | 0.996 1.000 1.000 0.989 1.000 | 0.996 | 0.992 0.992
FPR 0.002 | 0.002 0.000 0.000 0.000 0.000 | 0.004 | 0.008 0.006
FNR 0.080 | 0.040 0.000 0.000 0.056 0.000 | 0.000 | 0.000 0.040

Metric

Table 7: Using a random or true input as a reference input.

Metric CIFAR-10 Tiny-ImageNet
Random Input [True Input | Random Input [True Input
DACC 0.991 1.000 0.991 0.995
FPR 0.010 0.000 0.010 0.005
FNR 0.000 0.000 0.000 0.000

7 DISCUSSION AND LIMITATIONS

Using random input as reference input: FoundationForensics relies on a true image as a reference
input z,.. This might be inconvenient for the service provider to collect such images and raise privacy
concerns for downstream application developers to send such a true image. Nevertheless, a service
provider can use a random input as x,- to address such concerns. We find that random inputs and true
inputs achieve comparable traceback results. Given a trigger-embedded input 3, the service provider
can find a random input z, that has a large embedding vector cosine similarity with ;. Specifically,
given an initial random input, we use the Adam optimizer with learning rate 1 x 1073 to update it
for 100 iterations to maximize its embedding vector cosine similarity with z;. Table [/|shows the
traceback results. We find that random inputs and true inputs achieve comparable results, except
random inputs may lead to higher FPRs.

Detecting trigger-embedded input: We assume x; is a true trigger-embedded input. However, we
find that FoundationForensics can be adapted to detect whether xy, is a true trigger-embedded input.
Our detection approach is based on the idea that if the average maliciousness score of the detected
poisoned pre-training inputs is similar to that of the detected clean inputs, we consider the input x; as
non-trigger-embedded. Formally, if the ratio of the average maliciousness scores of poisoned and
clean inputs (Avg_1/ Avg_2) falls within the range « to 1/«, where « is some value less than 1, we
predict that z;, is non-trigger-embedded. Otherwise, we predict x;, as trigger-embedded. Avg_1 and
Avg_2 represent the average maliciousness scores of the detected poisoned inputs and clean inputs,
respectively. For efficient detection, we use the final checkpoint to calculate maliciousness scores, and
we find this sufficient for detecting trigger-embedded inputs. Empirically, we randomly selected 10
trigger-embedded inputs and 10 non-trigger-embedded inputs. Setting « to 0.2, our method correctly
classifies all the trigger-embedded inputs and non-trigger-embedded inputs.

Space overhead: The space overhead for storing checkpoints is a limitation but acceptable for
powerful service providers. For example, in our experiments, storing 15 checkpoints of single-modal
foundation model requires 660MB, while 5 checkpoints of multi-modal foundation model requires
732MB, which are manageable for data centers to achieve good traceback performance.

8 CONCLUSION

In this work, we propose FoundationForensics to trace back poisoned inputs for foundation models af-
ter a backdoor instance has been detected. We theoretically show the security of FoundationForensics
against backdoor attacks to foundation models. Moreover, we empirically demonstrate the effective-
ness of FoundationForensics at tracing back poisoned inputs via evaluation on multiple benchmark
datasets, various vision foundation models, and state-of-the-art and adaptive backdoor attacks. An
interesting future work is to explore the security of FoundationForensics against strategically crafted
backdoor instances.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Hritik Bansal, Nishad Singhi, Yu Yang, Fan Yin, Aditya Grover, and Kai-Wei Chang. Cleanclip:
Mitigating data poisoning attacks in multimodal contrastive learning. In CVPR, 2023.

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In /CLR, 2021.

Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will Pearce,
Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramer. Poisoning web-scale training
datasets is practical. arXiv, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In /CCV, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In /CML, 2020.

Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting localized universal
attacks against deep learning systems. In Security and Privacy Workshops (SPW), 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Shiwei Feng, Guanhong Tao, Siyuan Cheng, Guangyu Shen, Xiangzhe Xu, Yingqi Liu, Kaiyuan
Zhang, Shiging Ma, and Xiangyu Zhang. Detecting backdoors in pre-trained encoders. In CVPR,
2023.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In ACSAC, 2019.

Zayd Hammoudeh and Daniel Lowd. Identifying a training-set attack’s target using renormalized
influence estimation. In CCS, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Jinyuan Jia, Yupei Liu, and Neil Zhengiang Gong. Badencoder: Backdoor attacks to pre-trained
encoders in self-supervised learning. In IEEE Symposium on Security and Privacy, 2022.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. 2024a.

Hongbin Liu, Jinyuan Jia, and Neil Zhenqgiang Gong. Poisonedencoder: Poisoning the unlabeled
pre-training data in contrastive learning. In USENIX Security Symposium, 2022.

Hongbin Liu, Michael K Reiter, and Neil Zhengiang Gong. Mudjacking: Patching backdoor
vulnerabilities in foundation models. In USENIX Security Symposium, 2024b.

Wanlun Ma, Derui Wang, Ruoxi Sun, Minhui Xue, Sheng Wen, and Yang Xiang. The" beat-
rix”’resurrections: Robust backdoor detection via gram matrices. In NDSS, 2023.

Thu Pham-Gia and Tran Loc Hung. The mean and median absolute deviations. Mathematical and
computer Modelling, 2001.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv, 2022.

11

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. Backdoor
attacks on self-supervised learning. In CVPR, 2022.

Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. Poison forensics: Traceback of
data poisoning attacks in neural networks. In USENIX Security Symposium, 2022.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In ACL, 2018.

Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Chengfang Fang, Jianwei
Yin, and Ting Wang. Backdoor pre-trained models can transfer to all. In CCS, 2021.

Guanhong Tao, Zhenting Wang, Shiwei Feng, Guangyu Shen, Shiging Ma, and Xiangyu Zhang.
Distribution preserving backdoor attack in self-supervised learning. In S&P, 2024.

Zhenting Wang, Kai Mei, Juan Zhai, and Shiqing Ma. Unicorn: A unified backdoor trigger inversion
framework. In NeurIPS, 2023.

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. Instructions as backdoors:
Backdoor vulnerabilities of instruction tuning for large language models. In NAACL, 2024.

Wenhan Yang, Jingdong Gao, and Baharan Mirzasoleiman. Better safe than sorry: Pre-training clip
against targeted data poisoning and backdoor attacks. arXiv, 2023.

Jinghuai Zhang, Hongbin Liu, Jinyuan Jia, and Neil Zhengiang Gong. Corruptencoder: Data
poisoning based backdoor attacks to contrastive learning. In CVPR, 2024.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Xin Jiang, and Maosong Sun. Red alarm for pre-trained models: Universal vulnerability to
neuron-level backdoor attacks. Machine Intelligence Research, 2023.

12

Under review as a conference paper at ICLR 2025

A lpe(z;, f;) FOR DIFFERENT FOUNDATION MODELS

A.1 SIMCLR (CHEN ET AL.,|2020)

SimCLR is a representative pre-training algorithm that optimizes the single-modal foundation model
to cluster semantically similar images closer in the embedding space while separating dissimilar
images. Specifically, given a batch of 2N augmented images consisting of N positive pairs, where
each pair has two augmented images from the same pre-training image. The pre-training loss for one
positive pair (z;, z;) augmented from image z; is defined as:

épre (-Th ft) = eSimC’LR(zia 253 ft)
e (exp(sim(fu(zi), /i(21))/7))
g 2N .)
> k—1 Lksa) exp(sim(fi(24), fe(z1))/7)

where sim denotes the cosine similarity, I denotes the indicator function, and 7 is the temperature
parameter used for normalization.

(11)

A.2 CLIP (RADFORD ET AL.,[2021)

CLIP is a popular pre-training algorithm that optimizes the multi-modal vision foundation model.

iven a batch of N image-text pairs {7, 2! };_; n, CLIP jointly pre-trains a vision and a language
foundation model f/ and f', respectively. The pre-training loss for one image-text pair is defined as:

Epre(l‘z',ft) =lenp(al 2l /1 fD)
exp(sim(f{ («]), f7 (zT))/7)
g SN exp(sim(ff (), fF (7)) /7)
exp(sim(f7 (1), ff (=D)/m) | a2
SN exp(sim(f7 (7)), £ (x1))/7)

Intuitively, CLIP optimizes the contrastive loss to align embedding vectors of matching image-text
pairs and distance those of non-matching pairs.

+ log

13

	Introduction
	Preliminaries and Related Work
	Problem Formulation
	Our FoundationForensics
	Computing maliciousness scores
	Detecting Poisoned Pre-training Inputs

	Theoretical Analysis
	Experiments
	Experimental Setup
	Experimental Results

	Discussion and Limitations
	Conclusion
	ℓpre(xi, ft) for Different Foundation Models
	SimCLR chen2020simple
	CLIP radford2021learning

