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Abstract

Non-stationary online learning has drawn much attention in recent years. In particu-
lar, dynamic regret and adaptive regret are proposed as two principled performance
measures for online convex optimization in non-stationary environments. To opti-
mize them, a two-layer online ensemble is usually deployed due to the inherent
uncertainty of the non-stationarity, in which a group of base-learners are maintained
and a meta-algorithm is employed to track the best one on the fly. However, the
two-layer structure raises the concern about the computational complexity — those
methods typically maintain O(log T') base-learners simultaneously for a T-round
online game and thus perform multiple projections onto the feasible domain per
round, which becomes the computational bottleneck when the domain is compli-
cated. In this paper, we present efficient methods for optimizing dynamic regret and
adaptive regret, which reduce the number of projections per round from O(log T')
to 1. Moreover, our obtained algorithms require only one gradient query and one
function evaluation at each round. Our technique hinges on the reduction mecha-
nism developed in parameter-free online learning and requires non-trivial twists on
non-stationary online methods. Empirical studies verify our theoretical findings.

1 Introduction

Classic online learning minimizes the static regret, which benchmarks the online learner’s perfor-
mance against the best fixed decision in hindsight. In many real-world online applications, however,
the environments are non-stationary [Zhou, 2022] and static regret becomes less attractive since it
would be unrealistic to assume the existence of a single decision behaved satisfactorily over time.

To address the limitation, in recent years, researchers have studied more strengthened performance
measures to facilitate online algorithms with the capability of handling non-stationarity. In particular,
dynamic regret [Zinkevich, 2003; Zhang et al., 2018a] and adaptive regret [Hazan and Seshadhri,
2009; Daniely et al., 2015] are proposed as two principled metrics to guide the algorithm design.
We focus on the online convex optimization (OCO) setting [Hazan, 2016]. OCO can be deemed as
a game between the learner and the environments. At each round ¢ € [T, the learner submits her
decision x; € X from a convex feasible domain X C R? and simultaneously environments choose a
convex function f; : X — R, and subsequently the learner suffers an instantaneous loss f;(x;).

1.1 Dynamic Regret and Adaptive Regret

Dynamic regret is proposed by Zinkevich [2003] to compare the online learner’s performance against

a sequence of any feasible comparators uy, ..., ur € X. Formally, it is defined as
T T
D-REGr(uy,...,ur) = > _ fi(xe) = > fi(w). (1)
t=1 t=1
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Dynamic regret minimization enables the learner to track changing comparators. A favorable dynamic
regret bound should scale with a certain non-stationarity measure dependent on the comparators such
as the path length Pr = >, _,|lu; — u;—1]|2. Notably, the classic static regret can be treated as a
special case of dynamic regret by specifying the comparators as the best fixed decision in hindsight.

Adaptive regret is proposed by Hazan and Seshadhri [2009] and further strengthened by Daniely et al.
[2015], which measures the regret over any interval I = [r, s] C [T'] with a length of 7 = |I|, i.e.,

r+7—1 r+17—1
A-REGr(|I|) = — mi u) . 2
r(1]) [r,rﬁlaﬁcm{ tz:; fi(xt) min ; fi( )} 2
Since the minimizers of different intervals can be different, adaptive regret minimization also ensures
the capability of competing with changing comparators. A desired adaptive regret bound should be
as close as the minimax static regret of this interval. Algorithms with adaptive regret matching static
regret of this interval up to logarithmic terms in 7" are referred to strongly adaptive [Daniely et al.,
2015]. Moreover, adaptive regret includes static regret when choosing I = [T].

It is worth noting that the relationship between dynamic regret and adaptive regret for OCO is
generally unclear [Zhang, 2020, Section 5], even though a black-box reduction from dynamic regret
to adaptive regret has been proven for the simper expert setting (i.e., online linear optimization over
simplex) [Luo and Schapire, 2015, Theorem 4]. Hence, the two measures are separately developed
and many algorithms have been proposed, including algorithms for dynamic regret [Zinkevich, 2003;
Hall and Willett, 2013; Zhang et al., 2018a; Zhao et al., 2020, 2021b,a; Baby and Wang, 2021;
Zhao et al., 2022a] and the ones for adaptive regret [Hazan and Seshadhri, 2009; Daniely et al.,
2015; Jun et al., 2017; Zhang et al., 2018b, 2019]. Note that there are also studies [Zhang et al.,
2020; Cutkosky, 2020] optimizing both measures simultaneously by an even strengthened metric
Soi, fe(xe) = Y°7_, fi(uy) over any interval [r, s] C [T'], hence called “interval dynamic regret”.

1.2 Two-layer Structure and Projection Complexity Issue

The fundamental challenge of optimizing these two non-stationary regret measures is the uncertainty
of the environmental non-stationarity. Concretely, to ensure the robustness to the unknown envi-
ronments, dynamic regret aims to compete with any feasible comparator sequence, while adaptive
regret examines the local performance over any intervals. The unknown comparators or unknown
intervals bring considerable uncertainty to online optimization. To address the issue, a two-layer
structure is usually deployed to optimize the measures, where a set of base-learners are main-
tained to handle the different possibilities of online environments and a meta-algorithm is employed
to combine them all and track the unknown best one. Such a framework successfully achieves
many state-of-the-art results, including the O(1/T(1 4+ Pr)) dynamic regret [Zhang et al., 2018a]
and the O(\/(Fr + Pr)(1 + Pr)) small-loss dynamic regret for smooth functions [Zhao et al.,
2020], where Pr = ZtT:QHut — uy_1||2 is the path length and Fp = Zthl ft(uy) is the cumu-
lative loss of comparators; as well as the O(y/|I|log T') adaptive regret [Jun et al., 2017] and the
O(V/Frlog Fylog Fr) small-loss adaptive regret for smooth functions [Zhang et al., 2019] for any in-
terval I = [r,s] C [T], where F; = minxex Y ,_, fi(x) and Fr = mingex Zthl f+(x). Besides,
an O(\/|I|(logT + Pr)) interval dynamic regret is also achieved by a two-layer (or even three-layer)
structure [Zhang et al., 2020], where P; = >_;_ |[u; — u;_1||2 is the path length over the interval.

The two-layer methods have demonstrated great effectiveness in tackling non-stationary online envi-
ronments, whereas the gain is at the price of heavier computations than the methods for minimizing
static regret. While it is believed that additional computations are necessary for more robustness,
we are wondering whether it is possible to pay for a “minimal” computation overhead for adapting
to the non-stationarity. To this end, we focus on the popular first-order online methods and aim to
streamline unnecessary computations while retaining the same regret guarantees. Arguably, the most
computationally expensive step of each round is the projection onto the convex feasible domain,
namely, the projection operation I1y [y] = arg min, ¢y [|x — y/||2 for a convex set X C R?. Typical
two-layer non-stationary online algorithms require maintaining N = O(log T') base-learners simulta-
neously to cover the possibility of unknown environments. Define the projection complexity of online
methods as the number of projections onto the feasible domain per round. Then, those non-stationary
methods suffer an O(log T") projection complexity, whereas standard online methods for static regret
minimization require only one projection per round such as online gradient descent [Zinkevich, 2003].



1.3 Our Contributions and Techniques

In this paper, we design a generic mechanism to reduce the projection complexity of many existing
non-stationary methods from O(log T') to 1 without sacrificing the regret optimality, hence matching
the projection complexity of stationary methods. Our reduction is inspired by the recent advance in
parameter-free online learning [Cutkosky and Orabona, 2018; Mhammedi et al., 2019]. The idea is
simple: we reduce the original problem learned in the feasible domain X to an alternative one learned
in a surrogate domain ) 2 X such that the projection onto it is much cheaper, e.g., simply choosing
Y as a properly scaled Euclidean ball; and moreover, a carefully designed surrogate loss is necessary
for the alternative problem to retain the regret optimality. We reveal that a necessary condition for
our reduction mechanism to deploy and reduce the projection complexity is that the non-stationary
online algorithm shall query the function gradient once and evaluate the function value once per
round. Several algorithms for the worst-case dynamic regret or adaptive regret already satisfy the
requirements, so we can immediately deploy the reduction and obtain their efficient counterparts with
the same regret guarantees and 1 projection complexity. However, many non-stationary algorithms,
particularly those designed for small-loss bounds, do not satisfy the requirement. Hence, we require
non-trivial efforts to make them compatible. Due to this, we have developed a series of algorithms
that achieve worst-case/small-loss dynamic regret and adaptive regret with one projection per round
(actually, with one gradient query and one function evaluation per round as well).

Despite that the reduction mechanism of this paper has been studied in parameter-free online learning,
applying it to non-stationary online learning requires new ideas and non-trivial modifications. Here
we highlight the technical innovation. The main challenge comes from the reduction condition
mentioned earlier — as the surrogate loss involves the projection operation, our reduction requires
the algorithm query one gradient and evaluate one function value at each round. However, many non-
stationary algorithms do not satisfy the requirement, which is to be contrasted to the parameter-free
algorithms such as MetaGrad [van Erven and Koolen, 2016; Mhammedi et al., 2019] that naturally
satisfy the condition. For example, the SACS algorithm [Zhang et al., 2019] enjoys the best known
small-loss adaptive regret, yet the method requires /N gradient queries and /N + 1 function evaluations
at each round, where N = O(log T') is the number of base-learners. Thus, we have to dig into the
algorithm and modify it to fit our reduction. First, we replace their meta-algorithm with Adapt-ML-
Prod [Gaillard et al., 2014], an expert-tracking algorithm with a second-order regret with excess
losses to accommodate the linearized loss that is used to ensure one gradient query per round. Second,
we introduce a sequence of time-varying thresholds to adaptively determine the problem-dependent
geometric covers in contrast to a fixed threshold used in their method. In particular, we register
the cumulative loss of the final decisions rather than the base-learner’s one to compare it with the
changing thresholds, which renders the design of one function value evaluation per round and also
turns out to be crucial for achieving an improved small-loss bound that can recover the best known
worst-case adaptive adaptive regret (by contrast, SACS cannot obtain optimal worst-case adaptive
regret). To summarize, our final algorithm only requires one projection/gradient query/function
evaluation at each round, substantially improving the efficiency of SACS algorithm that requires N
projections/gradient queries/function evaluations per round.

1.4 Assumptions
We list several standard assumptions used in OCO [Shalev-Shwartz, 2012; Hazan, 2016]. Notably,
not all assumptions are always required. We will explicitly state the requirements in the theorem.

Assumption 1 (bounded gradient). The norm of the gradients of online functions over the domain X’
is bounded by G, i.e., ||V fi(x)|l2 < G, forallx € X and ¢ € [T].

Assumption 2 (bounded domain). The domain X C R? contains the origin 0, and the diameter of
the domain X is at most D, i.e., ||x — x'||2 < D for any x,x’ € X.

Assumption 3 (non-negativity and smoothness). All the online functions are non-negative and
L-smooth, i.e., for any x,x’ € X and ¢ € [T], |V fi(x) — Vfe(x')||2 < L||jx — x| 2.

Organization. The rest is structured as follows. Section 2 presents the reduction mechanism and
illustrates its application to dynamic regret minimization. Section 3 provides efficient methods for
optimizing adaptive regret. Section 4 reports the experiments. Section 5 concludes the paper and
makes discussions. All the proofs and omitted details for algorithms are deferred to the appendices.



2 The Reduction Mechanism and Dynamic Regret Minimization

We start from the dynamic regret minimization. First, we briefly review existing methods in Sec-
tion 2.1, and then present our reduction mechanism and illustrate how to apply it to reducing the
projection complexity of dynamic regret methods in Section 2.2.

2.1 A Brief Review of Dynamic Regret Minimization

Zhang et al. [2018a] propose a two-layer online algorithm called Ader with an O(,/T(1 + Pr))
dynamic regret, which is proven to be minimax optimal for convex functions. Ader maintains a
group of base-learners, each performing online gradient descent (OGD) [Zinkevich, 2003] with a

customized step size specified by the pool H = {n1,...,nn}, and then uses a meta-algorithm to
combine them all. Denoted by B, ..., By the N base-learners. For each i € [N], B; updates by
X1, = e [xes — 0V fe(xe)], 3)

where 17; € H is the associated step size and I1x[-] denotes the projection onto the feasible domain X
with ITx[y] = argmin,c » ||y — x||2. Notably, all the base-learners share the same gradient V f;(x;)
rather than using their individual one V f;(x; ;). This is because Ader optimizes the linearized loss
0(x) = (V fi(x¢), x), which enjoys the benign property of V4;(x; ;) = V fi(x;) for all i € [N].

Furthermore, the meta-algorithm evaluates each base-learner by ¢;(x;;) = (V fi(x:),x;,) and
updates the weight vector p;11 € An by the Hedge algorithm [Freund and Schapire, 1997], namely,

i —&(V s Xt .

Piv1i = 15%’ p(~£(Virlxe), xt.4)) , Vi€ [N], “
2 j=1 P exXp(—e(V fi(xe), X1.5))

where € > 0 is the learning rate of the meta-algorithm. The final prediction is obtained by x; 1 =

Zi]il Di41,iX1+1,i- The learner submits the prediction x;; and then receives the loss fi11(x¢+1)
and the gradient V f;11(x;,1) as the feedback of this round. Under a suitable configuration of
g + + g

the step size pool H with N = O(log T') and learning rate ¢ = ©(4/(In N)/T), Ader enjoys an
O(v/T(1 + Pr)) dynamic regret [Zhang et al., 2018a, Theorem 4].

For convex and smooth functions, Zhao et al. [2021b] demonstrate that a similar two-layer structure
can attain an O(\/(Fr + Pr)(1 + Pr)) small-loss dynamic regret under a suitable setting of the step

size pool H and time-varying learning rates of meta-algorithm {e;}7_,, where Fr = Zthl fe(uy) is
the cumulative loss of the comparators. This bound safeguards the minimax rate in the worst case,
while can be much smaller than O(1/T'(1 + Pr)) bound in benign environments.

2.2 The Reduction Mechanism for Reducing Projection Complexity

As demonstrated in the update (3), all the base-learners require projecting the intermediate solution
onto the domain X to ensure the feasibility. As a result, O(log T') projections are required at each
round, which is generally time-consuming particularly when the domain X is complicated.

We present a generic reduction mechanism for reducing the projection complexity and apply it to
dynamic regret methods. Our reduction builds upon the seminal work [Cutkosky and Orabona, 2018]
and a further refined result [Cutkosky, 2020], who propose a black-box reduction from constrained
online learning to the unconstrained setting (or another constrained problem with a larger domain) .

Reduction mechanism. Given an algorithm for non-stationary online learning Algo whose
projection complexity is O(logT'), our reduction mechanism builds on it to yield an algorithm
Efficient-Algo with 1 projection onto X" per round and retaining the same order of regret. The
central idea is to replace expensive projections onto the original domain X with other much cheaper
projections. To this end, we introduce a surrogate domain ) defined as the minimum Euclidean ball
containing the feasible domain X, i.e., Y = {x | ||x||2 < D} O X. Then, the reduced algorithm
Algo works on ) whose projection can be realized by a simple rescaling. More importantly, to avoid
regret degeneration, it is necessary to carefully construct the surrogate loss g; : J — R as

9t(y) = (Vfi(x¢),¥) — vt xe)oviy<ot - (Ve (xe), ve) - Sx (), (5)



Algorithm 1 Efficient Algorithm for Minimizing Dynamic Regret

Input: step size pool H = {1, ...,nn}, learning rate of meta-algorithm &, (or simply a fixed ).
1: Initialization: let x; and {1 ;}}¥, be any pointin X; Vi € [N],p1; = 1/N.

2: fort=1toT do

3:  Receive the gradient information V f;(x;).
Construct the surrogate loss g; : ) — R according to Eq. (5).
Compute the gradient Vg, (y:) according to Lemma 1.
For each ¢ € [N], the base-learner B; produces the local decision by

AN AN

; ']l{nym,i\hzm)-

Yirti =Ye.i—MiV9e(¥t), Yir1,i= ytJrl;i(]1{H§t+17i”2§D}+/\7
¥er1.il

7:  Meta-algorithm updates weight by p;i1,; o exp(—e+1 22:1 (Vgs(ys),¥s.i)) @ € [N].

8:  Compute y;11 = Zf\il D1,V e+1.4e
9:  Submit x¢41 = y[yss1] > The only step projects onto feasible domain X" per round.
10: end for

where Sy (y) = infxex||y — x||2 is the distance function to X’ and v; = (y¢+=%:)/|ly, x|, is the
vector indicating the projection direction.

The main protocol of our reduction is presented as follows. The input includes original functions
{fi}L,, the feasible domain X', and the reduced algorithm Algo.

1: fort=1,...,Tdo

2:  receive the gradient information V f;(x;);

3 construct the surrogate loss g; : YV — R according to Eq. (5);

4 obtain the intermediate prediction y;y1 < Algo(g:(*), ¥+, V);

5:  submit the final prediction x;y1 = I x[ys41];

6: end for

Our reduction enjoys the regret safeness due to the following benign properties of surrogate loss.

Theorem 1 (Theorem 2 of Cutkosky [2020]). The surrogate loss g, : Y — R defined in (5) is convex.
Moreover, we have ||V g:(y+)|l2 < ||V fe(x¢)2 and for any v, € X

(Vfi(xe),xe —we) < ge(ye) — ge(we) < (Vgelye), ye — we). (6)

The theorem shows the convexity of the surrogate loss g (y) and we thus have f;(x;) — fi(u;) <
(Vg:(yt),yt — us), which implies that it suffices to optimize the linearized upper bound, i.e., to
optimize function ¢,(y) = (Vg:(y:),y). The following lemma specifies the gradient calculation.

Lemma 1. Foranyy € Y, Vgi(y) = V fi(x¢) when (V f1(x¢), Vi) > 0; and Vg (y) = V fe(xt) —
(Vfi(xe), vi)-(y—Tlx[y]) /|y —x [y]ll2 when (V fi(xt), vi) < 0. Here vy = (yi—%¢)/[[ye—%¢|2-
In particular, Vg (y:) = V fi(x¢) — (V fi(x¢), Vi) - vi when (V fi(x4),ve) < 0.

Reduction requirements. An important necessary condition for the reduction is to require the
reduced algorithm satisfying one gradient query and one function evaluation at each round. Indeed,
the reduction essentially updates according to the surrogate loss {g; }~_;. Note that the definition of
surrogate loss involves the distance function Sx (y), see Eq. (5). Thus, each evaluation of ¢;(y) leads
to one projection onto X due to the calculation of Sy (y). Similarly, each gradient query of Vg, (y)
also contributes to one projection, see Lemma 1 for details. To summarize, we can use the reduction
to ensure a 1 projection complexity, only when the reduced algorithm satisfies the requirements of
one gradient query and one function evaluation per round. Below, we demonstrate the usage of our
reduction mechanism for two methods of dynamic regret minimization that satisfy the conditions,
including the worst-case method [Zhang et al., 2018a] and the small-loss method [Zhao et al., 2021b].

Application to dynamic regret minimization. Algorithm 1 summarizes the main procedures of our
efficient methods for optimizing dynamic regret, which is an instance of the reduction mechanism by
picking Algo as Ader [Zhang et al., 2018a]. More specifically, Lines 6 — 8 are essentially performing
Ader algorithm using the surrogate loss {g;}7_, over the surrogate domain ). Note that the base
update in Line 6 is essentially performing OGD with projection onto ), a scaled Euclidean ball, and



thus the projection admits a simple closed form. The overall algorithm requires projecting onto X’
only once per round, see Line 9. Our method provably retains the same dynamic regret.

Theorem 2. Set the step size pool as H = {n; = 2°7Y(D/G)\/5/(2T) | i € [N]} with

N = [27t1ogy(1 + 2T/5)] + 1 and the learning rate as ¢ = /(InN)/(1 + G2D2T). Under
Assumptions 1 and 2, our algorithm requires one projection onto X per round and enjoys

T T
> flxe) = > filw) < O(VT(1+ Pr)). @)

For smooth and non-negative functions, the Sword++ algorithm [Zhao et al., 2021b] achieves an
O(\/(Fr + Pr)(1 + Pr)) small-loss dynamic regret, which requires one gradient and one function
value per iteration.! However, notice that the surrogate loss g;(+) in Eq. (5) is neither smooth nor
non-negative, which hinders the application of our reduction to their method. Fortunately, owing to
the benign property of ||Vg:(y+)|l2 < ||V fi(x¢)]|2 (see Theorem 1), we can still deploy the reduction
via an improved analysis and obtain a projection-efficient algorithm with the same small-loss bound.

Theorem 3. Set the step size pool as H = {n; = 20=1,/5D2/(1+8LGDT) | i € N1} with
N = [2711og,((5D? + 2D?*T)(1 + 8LGDT)/(5D?))| + 1 and the learning rate of the meta-

algorithm as €, = \/(ln N)/(1+ D? Zi;ll |Vgs(ys)||3). Under Assumptions 1, 2, and 3, our
algorithm requires one projection onto X per round and enjoys the following dynamic regret:

D fil) =Y filw) < O(V(Fr + Pr)(1+ Pr)), ®)
t=1 t=1

where Fr = E;‘F:l fr(ay) is the cumulative loss of the comparators.

3 Adaptive Regret Minimization

In this section, we present our efficient methods to minimize adaptive regret. First, we briefly review
existing methods in Section 3.1, and then present our efficent methods to reducing the projection
complexity of adaptive regret methods in Section 3.2.

3.1 A Brief Review of Adaptive Regret Minimization

Adaptive regret minimization ensures the online learner to be competitive with a fixed decision over
every contiguous interval. For the worst-case bound, the best known result is the O(+/|I|logT')
adaptive regret bound achieved by the CBCE algorithm [Jun et al., 2017]. CBCE algorithm requires
multiple gradients at each round. Wang et al. [2018] improve CBCE by using the linearized loss to
make it requiring one gradient per iteration and retaining the same adaptive regret. Moreover, the
improved CBCE algorithm only evaluates the function value once per iteration. Therefore, we can
directly apply our reduction and obtain a projection-efficient variation with the same adaptive regret.
More detailed elaborations can be found in Appendix C.1.

Now, we focus on the more challenging case of small-loss adaptive regret. The best known re-
sult is the O(y/FJ log Fylog Fr) bound for any interval I = [r,s] C [T] obtained by the SACS
algorithm [Zhang et al., 2019], where F; = minxex » ;. fi(x) and Fr = mingex Zthl fe(x).
However, SACS does not satisfy our reduction requirements, because it requires N gradient queries
(ie., Vfi(x;) for i € [N]) and N + 1 function evaluations (i.e., f;(x;) for i € [N], and f;(x;)) at
round ¢ € [T'], where N denotes the number of active base-learners and x; ; denotes local decision
returned by the i-th base-learner. To address so, we have to modify the algorithm to fit our purpose.

In the following, we first sketch the SACS algorithm and then present our modifications. In fact, to
optimize the adaptive regret, an online algorithm usually consists of the three components:

'Sword++ algorithm is mainly proposed for gradient-variation dynamic regret, so there are advanced
components (such as correction term and optimism) in algorithm design. It can be verified that their algorithm
can be simplified by dropping the correction term and optimism when only small-loss bound is desired.



(i) base-algorithm: an online algorithm that can attain low (static) regret in a given interval;

(i1) scheduling: a set of intervals and each one is associated with a base-learner who aims to
minimize the static regret over the interval (from starting time to ending time);

(iii) meta-algorithm: a combining algorithm that can track the best base-learner on the fly.

The specific configurations of the SACS algorithm is as follows. First, SACS uses scale-free online
gradient descent (SOGD) [Orabona and Pél, 2018] as the base-algorithm, which ensures a small-loss
regret in a given interval. Second, SACS employs AdaNormalHedge [Luo and Schapire, 2015] as
the meta-algorithm, which supports the sleeping expert setup and also enjoys a small-loss regret.
Finally, SACS designs a clever strategy of problem-dependent geometric covers to determine the set
of intervals such that the number of active base-learners also depends on the small-loss quantity. As a
result, SACS can achieve a fully problem-dependent adaptive regret of order O(+/Fy log F log Fr),
scaling with the cumulative loss of comparators. However, SACS also suffers from an O(logT)
projection complexity in the worst case due to a two-layer structure; and moreover, it can be observed

that SACS only attains an O(+/|I|log|I|1log T) bound in the worst case, which exhibits an /log|[]|

gap compared with the best known result of O(+/|I|log T') [Jun et al., 2017]. Below, we present an
efficient algorithm for small-loss adaptive regret, which resolves the above two issues simultaneously.

3.2 Efficient Algorithms for Adaptive Regret

As multiple gradient queries and function evaluations are involved in all the three components of
SACS, we have to make plenty of modifications to achieve an algorithm with small-loss adaptive
regret yet requiring only one gradient query and function evaluation per round. With such an algorithm
on hand, we can then deploy our reduction to achieve an efficient method with 1 projection complexity.
Below we present the details. By the reduction mechanism, it is noticeable that we only need to
consider the input online functions as surrogate loss {g; }7_;, where g; is defined in Eq. (5).

Base-algorithm. We use SOGD with a linearized surrogate loss (Vg.(y),y) over the surrogate
domain ). Denote by A; the set of active base-learners’ indices, then the base-learner 5B; updates by

Vit = Hylyei — 1e:Vae(ye)l, 9)

withn,; = D/ \/ (6 + Zi:ﬂ Vgs(ys)|3), where 7; denotes the starting time of the base-learner

i € A;. The projection onto ) can be easily calculated by a simple rescaling if needed. Notably,
owing to the convexity of the surrogate loss g;, we can use the same gradient Vg, (y;) for all the
base-learners at each round, ensuring one gradient query of V f;(x;) at each round.

Geometric Covers. The covers consist of a set of intervals that specify the alive time of base-
learners. To achieve a small-loss adaptive regret, SACS [Zhang et al., 2019] employs a clever covering
construction called problem-dependent geometric covers (PGC) — instead of initiating a base-learner
at each round ¢ like earlier algorithms [Daniely et al., 2015; Jun et al., 2017], SACS adds a new
base-learner only when the cumulative loss exceeds a pre-defined threshold. As a result, the number
of active base-learners relates to the small-loss quantity such that the overall algorithm achieves a
fully problem-dependent adaptive regret. Notably, to determine the threshold, SACS monitors the
cumulative loss of the latest base-learner f;(x; ;) with i’ being the latest base-learner’s index, but
clearly this will introduction an additional function evaluation beyond f:(x;) at each round.

To avoid the limitation, instead of using a fixed threshold to decide the initiations of base-learners,
we design a sequence of time-varying thresholds to adaptively start a new base-learner according to
amount of cumulative loss of final decisions (e.g., f:(Xt)), bypassing the requirement of additional
function evaluation. This realizes the condition of one function evaluation per round. Also, the
new design of thresholds mechanism is important to ensure that the overall small-loss bound can
simultaneously recover the best known worst-case guarantee, which SACS fails to achieve [Zhang
et al., 2019]. Let Cy, Cs, Cs, . . . denote the sequence of thresholds, and they will be determined by a
threshold generating function G(-) : N — R that will be specified later. Our problem-dependent
geometric covers are set as follows. We initialize the setting by s; = 1. We set s5 as the round when
the cumulative loss of the overall algorithm (namely, 22:1 fs(xs)) exceeds the threshold C; and
then initialize a new instance of SOGD starting at this round. The process is repeated until the end
of online game. We thus generate a sequence of points sy, sa, . . ., referred to as the markers. See



Algorithm 2 Efficient Algorithm for Problem-dependent Adaptive Regret

Input: threshold generating function G(-) : N +— R

1: Initialize total intervals m = 1, marker s; = 1, threshold C; = G(1); let x; be any point in X’.
2: fort =1to T do

3:  Receive the gradient information V f;(x;).

4:  Construct the surrogate loss g; : ) — R according to Eq. (5).
5:  Compute the (sub-)gradient Vg;(y;) according to Lemma 1.
6: Compute Lt = Lt,]_ + ft (Xt)
% constructing Problem-dependent Geometric Covers(PGC)
7. if Ly > C), then
8: Set L; = 0, remove base-learners 55 whose ending point e, = m + 1.
9: Setm < m+1, s, < t, Cp, = G(m).
10: Initialize a new base-learner with ending point e,,, = j satisfying [m, j — 1] € C, where
C = Upenugo; Ck and €y, = {[i - 2%, (i +1) - 2¥ — 1] [ i is odd} forall k € NU {0}.
11: Set Y, = In(1 + 2m), Wy m = 1, N = min{1/2,,/7,,} for the meta-algorithm.
12:  endif

13:  Send Vg, (y:) to all base-learners and obtain local predictions Yi+1, fori € Ay

14:  Meta-algorithm updates weight p; 11 € A4, | according to Eq. (11), Eq. (12), and Eq. (13)
15 Compute yi11 = ;c4, | Pt+1,iYe+1i-

16:  Submit x¢11 = My [yss1]- > The only projection onto feasible domain X per round.
17: end for

the condition in Line 7, registration of markers in Line 9, and the overall updates in Lines 7 — 11 of
Algorithm 2. Those markers specify the starting time (and the ending time) of base-learners and thus
construct the PGC as

C= UkeNu{O}Ck’ where Cj, = {[s;.¢, 5(141).2¢ — 1] | iisodd} forallk e NU{0}.  (10)

It is noteworthy to emphasize that PGC is constructed by the language of “marker”, whose exact time
stamp is unknown ahead of time but is only determined according to the learner’s performance on the
fly. Moreover, the notation C in Lines 10 of Algorithm 2 is defined based on the registered indexes
of markers, and there is a one-one correspondence from the interval in C to that in PGC C. More
concretely, an interval [i-2¥, (i+1)-2% — 1] € C will be mapped into the interval [s;.o, 5(; 4 1).0¢ — 1]
in PGC, managing the alive time of base-learners in a geometric manner with respect to the subscripts.

Meta-algorithm. SACS uses the AdaNormalHedge [Luo and Schapire, 2015] as the meta-algorithm,
however, this is not suitable for our propose. To ensure one projection per iteration, we cannot use
multiple function values, i.e., {g:(y:.i)} Y, for meta-algorithm to evaluate the loss. Instead, we
can only use the linearized loss value, namely, {(Vg;(y:),y:.i)} Y, in the weight update of meta-
algorithm. The small-loss regret bound in the meta-algorithm of SACS crucially relies on the original
function values, which is unfortunately inaccessible in our case. Technically, when fed with linearized
loss, it is hard to establish a squared gradient-norm bound and then convert it to the small loss due to
the first-order regret bound of AdaNormalHedge. Based on this crucial technical observation, we
propose to use the Adapt-ML-Prod algorithm [Gaillard et al., 2014] as the meta-algorithm in our
method. The key advantage is that it enjoys a second-order regret and also supports the sleeping
expert setup. Adapt-ML-Prod maintains multiple learning rates 77;; and an intermediate weight
vector w1, which are updated by the following rule. For any active base-learner i € A1,

1 2 > b

Me+1,i = ming -, = s Wit1,5 = (wm L4 e, (b — i) ) o, an
{2 \/14‘2251.(51@ —fk,i)Q} ( )

where v; = In(1 + 2¢) is a certain scaling factor and the feedback loss is constructed as for i € A,

b= (Vgi(y:),y:)/(2GD), and £, ; = (Vgi(y1), ¥e.i)/(2GD). (12)
The final weight vector p;1 € A4, | is obtained by

Wi41,4 * Mt4+1,i
+1,5 " M+1,i ) (13)
ZjeAH.l Wit1,5 * Te41,5

Pt+1,i =



Notably, the meta update only uses one gradient at round ¢, namely, Vg:(y:).

Finally, we compute y; 11 = > i€ A,y P+1,iYi41,i as the overall prediction in the surrogate domain
Y and calculate x;1 = IIy[y++1] to ensure the feasibility. This is the only projection onto X at each
round. Algorithm 2 summarizes the main procedures of our efficient methods for small-loss adaptive
regret. Albeit with a similar two-layer structure as SACS, our algorithm exhibits salient differences in
base-algorithm, meta-algorithm, and geometric covers. As a benefit, we can successfully deploy our
reduction mechanism and make the overall algorithm project onto the feasible domain X once per
round, see Line 16. Our method retains the same small-loss adaptive regret as [Zhang et al., 2019].

Theorem 4. Under Assumptions 1-3, setting the threshold generating function G(m) = ©(logm)
whose explicit form is in Eq. (46) of Appendix C, Algorithm 2 requires only one projection onto X
per round and enjoys the small-loss adaptive regret:

th(xt) — th(u) < O(min{\/FI log F log Frp, \/|I|10gT}) (14)
t=r t=r

for any interval I = [r,s] C [T'], where F; = mingex Y _,_,. ft(x) and Fr = minkex Zthl fi(x).
Remark 1. Note that the O(y/F] log Fy log Fr) small-loss bound of Zhang et al. [2019] becomes

O(+/|I]log|I|1log T) in the worst case, looser than the O(+/|I|logT) bound [Jun et al., 2017] by a
factor of log|I|. We show that this limitation can be actually avoided by the new design of thresholds

mechanism and a refined analysis. More discussions can be found in Appendix C.3. Indeed, our
result in (14) can strictly match the best known problem-independent result in the worst case.

4 Experiment
In this section, we provide empirical studies to evaluate our proposed methods.

General Setup. We conduct experiments on the synthetic data. We consider the following online
regression problem. Let T' denote the number of total rounds. At each round ¢t € [T the learner
outputs the model parameter w; € W C R¢ and simultaneously receives a data sample (¢, y;) with
r; € X C R being the feature and y; € R being the corresponding label.? The learner can then

evaluate her model by the online loss f;(w;) = 3 (x] w; — y;)? which uses a square loss to evaluate

the difference between the predictive value =/ w; and the ground-truth label y;, and then use the
feedback information to update the model. In the simulations, we set 7' = 20000, the domain diameter
as D = 6, and the dimension of the domain as d = 8. The feasible domain WV is set as an ellipsoid
W={weR?| wlEw < \pin(E) - (D/2)?}, where E is a certain diagonal matrix and A (E)
denotes its minimum eigenvalue. Then, a projection onto JV requires solving a convex programming
that is generally expensive. In the experiment, we use scipy.optimize.NonlinearConstraint
to solve it to perform the projection onto the feasible domain.

To simulate the non-stationary online environments, we control the way to generate the date samples
{(x¢,y:)}1_,. Specifically, for t € [T], the feature z; is randomly sampled in an Euclidean ball with
a diameter D same as the feasible domain of model parameters; and the corresponding label is set
as y; = x; Wi + &;, where &, is the random noise drawn from [0,0.1] and w; is the underlying
ground-truth model from the feasible domain WV generated according to a certain strategy specified
below. For dynamic regret minimization, we simulate piecewise-stationary model drifts, as dynamic
regret will be linear in 7" and thus vacuous when the model drift happens every round due to a linear
path length measure. Concretely, we split the time horizon evenly into 25 stages and restrict the
underlying model parameter w; to be stationary within a stage. For adaptive regret minimization, we
simulate gradually evolving model drifts, where the underlying model parameter wy, ; is generated
based on the last-round model parameter w; with an additional random walk in the feasible domain
W. The step size of random walk is set to be proportional to D /T to ensure a smooth model change.

Contenders. For both dynamic regret and adaptive regret minimization, we directly work on the
small-loss online methods. We choose the Sword algorithm [Zhao et al., 2021b] as the contender of

With a slight abuse of notations, we here use w to denote the model parameter and W to denote the feasible
domain, while reserve the notations of = and X to denote the feature and feature space following the conventional
notations of machine learning terminologies.
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Figure 1: Performance comparisons of existing methods and our methods (indicated by “efficient
prefix) in terms of cumulative loss and running time (in seconds). The first two figures plot the results
of methods for dynamic regret minimization, while the latter ones are for adaptive regret.

our efficient method for dynamic regret (Algorithm 1) and choose the SACS algorithm [Zhang et al.,
2019] as the contender of our efficient method for adaptive regret (Algorithm 2).

Results. We repeat the experiments for five times with different random seeds and report the results
(mean and standard deviation) in Figure 1. We use a machine with a single CPU (Intel(R) Core(TM)
19-10900K CPU @ 3.70GHz) and 32GB main memory to conduct the experiments. We plot both
cumulative loss and running time (in seconds) for all the methods. We first examine the performance
of dynamic regret minimization, see Figure 1(a) for cuamulative loss and see Figure 1(b) for running
time. The empirical results show that our method has a comparable performance to Sword without
much sacrifice of cumulative loss, while our method can achieve about 10 times speedup due to
the improved projection complexity. Second, as shown in Figure 1(c) and Figure 1(d), a similar
performance enhancement also appears in adaptive regret minimization, though the speedup is slightly
smaller due to the fact that fewer learners are required to maintain for adaptive regret. To summarize,
the empirical results show the effectiveness of our methods in retaining the regret performance and
also the efficiency in terms of the running time due to the reduced projection complexity.

5 Conclusion

In this paper, we design a generic reduction mechanism that can reduce the projection complexity
of two-layer methods for non-stationary online learning, hence approaching a clearer resolution
of necessary computational overhead for robustness to non-stationarity. Building on the reduction
mechanism, we develop a series of online algorithms for optimizing dynamic regret and adaptive
regret. All the algorithms retain the best known regret guarantees, and more importantly, require
one projection onto the feasible domain per iteration. It is further worth mentioning that, due to
the requirement of our reduction, all our algorithms only need one gradient query and one function
evaluation at each round as well, which can be appealing in situations with limited feedback.

Our reduction can also be applied to other settings to achieve light project complexity, for example,
dynamic regret of OCO with memory [Zhao et al., 2022b], OCO with switching cost [Zhang et al.,
2021], and related applications such as online non-stochastic control [Hazan et al., 2020]. Moreover,
it is possible to derive similar efficient algorithms for minimizing the interval dynamic regret, an even
stringent measure for non-stationary online convex optimization. There is one important open question
left on another type of problem-dependent bound that scales with gradient variation [Chiang et al.,
2012], which plays an important role in establishing fast convergence in zero-sum games [Syrgkanis
et al., 2015; Zhang et al., 2022]. Although Zhao et al. [2021b] have devised a two-layer method
that enjoys a gradient-variation dynamic regret and requires one gradient per iteration, it is quite
challenging to incorporate the optimistic online learning into our reduction mechanism due to the
constrained feasible domain and the complicated two-layer structure. Finally, it would be greatly
important to further understand the minimal computational overhead in response to the robustness to
non-stationarity, in particular, some information-theoretic arguments would be highly interesting.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See discussions in Section 5

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
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(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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