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Abstract

In-Context Learning (ICL) has been a well-
established paradigm to adapt Large Multimodal
Models (LMMs) to novel tasks with minimal su-
pervision. However, the ICL performance of
LMMs improves inconsistently with increasing
examples due to additional information present
in image embeddings, which is irrelevant to the
downstream task. To address this, we introduce
a meta-learning strategy that distills task-relevant
image features into a fixed set of soft prompts,
which can be fine-tuned with just a few exam-
ples at test time. Further, to facilitate this distil-
lation, we propose an attention-mapper module,
integrated in the LLaVA v1.5 architecture, and
trained alongside the soft prompts to enable rapid
adaptation under low-data conditions. We show
that on the VL-ICL Benchmark, our method out-
performs ICL and other prompt distillation ap-
proaches and boosts the few-shot visual question-
answering performance of LMMs.

1. Introduction

Learning to adapt quickly from a few examples is one of
the amazing capabilties of human intelligence (Griffiths
et al., 2019; Kirsch & Schmidhuber, 2022). Artificial agents
like Large Multimodal Models (LMMs), also exhibit this
few-shot learning ability by relying on In-Context Learning
(ICL), which involves prompting these models with a few
input-output examples, without requiring any further train-
ing. Although this training-free nature of ICL has led to its
rapid adoption across tasks (Huang et al., 2024; Hendel et al.,
2023), its underlying mechanism remains ill-understood and
its empirical behaviour can be inconsistent. Recent work
(Zong et al., 2025) demonstrates that ICL is most effective
for large-scale LMMs (~72B parameters), while smaller
models (<7B parameters) often struggle with increasing
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in-context examples and their performance either plateaus
or deteriorates even when extending the context length or
giving detailed instructions. (Zong et al., 2025) attributes
this limitation to the fact that smaller models struggle with
the large number of image tokens in long sequences. As a
result, they become confused and perform the task haphaz-
ardly or revert to default behaviors, such as drawing from
their parametric knowledge, while effectively ignoring the
in-context examples.

Building upon this, we hypothesize that effective few-shot
adaptation at test time for a task may be compromised by
the added information introduced by the image embeddings.
As an alternative, we propose to learn a fixed set of new
embeddings that can be easily finetuned at test time. This
idea of task adaptation has gained significant traction in the
literature through prompt tuning (Lester et al., 2021) which
finetunes a set of continuous soft prompts while keeping
the underlying language model frozen. We introduce an ap-
proach for learning new tasks using learnable soft prompts
that receive task information from the LLM in the form of
loss gradients during finetuning. These gradients update the
soft prompts which when fused with the image embeddings
are able to distill task-relevant features from them. To facili-
tate this fusion, we utilize the LLaVA v1.5 architecture (Liu
et al., 2024) and propose to replace its MLP projection layer
with an attention-mapper that uses a multi-head attention
(Vaswani et al., 2017) architecture responsible for extracting
relevant task-specific image information.

As the above prompt distillation approach relies on being
able to adapt quickly to new tasks at fest time after seeing
only a few examples, we take advantage of previous works
(Finn et al., 2017; Ravi & Larochelle, 2017) and formulate
this as a meta-learning problem. Specifically, we employ
the widely known MAML algorithm (Finn et al., 2017) and
use its lightweight first-order approximation for training the
attention-mapper and soft prompts to distill image features.
Our contributions can be summarized as follows:

* We propose an alternative to ICL by meta-learning a
fixed set of soft prompts within LMMs through distil-
lation. This can quickly adapt to new tasks at test time
on a small number of examples and shows monotonic
improvement as examples are increased across varying
number of soft prompts.
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Figure 1. Our proposed meta-learning framework based on LLaVA v1.5-7B (Liu et al., 2024) for distilling image embeddings into soft
prompts P during instruction finetuning. First, in the inner loop, the support set is processed to obtain loss value Lgypp, Which is then used
to obtain task-specific parameters {¢’, P’} with a few gradient descent steps. Then, in the outer loop, the task-specific parameters are
used to infer on the query set to calculate the query loss for meta-parameter optimization {60, P}.

* We incorporate an attention-mapper, inspired from (Na-
jdenkoska et al., 2023), into the LLaVA-v1.5 7B ar-
chitecture that is trained jointly with soft prompts and
facilitates the distillation of task-specific image infor-
mation. We further replace LLaVA’s original LLM
with a more powerful model, namely Qwen2.5-7B-
Instruct (Qwen et al., 2025) to learn better prompts.

Extensive evaluation on VL-ICL Bench' (Zong et al.,
2025), a diverse benchmark for image perception and
mathematical reasoning, demonstrates that our ap-
proach outperforms ICL and other prompt distillation
methods.

2. Methods
2.1. Meta-task Creation

We focus on the problem of few-shot visual question an-
swering (VQA), which is derived from the traditional VQA
(Antol et al., 2015) setup that contains a dataset D with
corresponding train and test splits (D" D), We maxi-
mize the following joint likelihood, [[121™"! pg (X7 | X7, X7
of answer X, given an image X, and a question X, over
D" during training such that it also maximizes this likeli-
hood on D', For few-shot VQA, we treat the in-context
examples (or shots) given to an LMM during ICL as D",
Since the examples in D"" are few (as low as 1-shot), it

'We only focus on single-image few-shot visual question an-
swering (VQA) tasks and leave the multi-image scenario for future
work.

becomes harder to avoid overfitting while training and still
perform well on D%, We conceptualize this problem as
one of learning about an underlying task represented by
D" and adopt meta-learning (Finn et al., 2017) which
exploits the shared structure across a distribution of tasks to
learn a prior over model parameters, thereby enabling stable
transfer to new tasks with low data.

Optimization-based meta-learning (Finn et al., 2017) in-
volves processing batches of few-shot datasets that repre-
sent an underlying task. We start by utilizing the finetuning
data mixture of LLaVA datasets (More details in Appendix
A.2) to build D and curate few-shot datasets, which we re-
fer to as meta-tasks. Formally, we create a meta-task TI
by randomly sampling a fixed subset of examples from
dataset D ~ p(D) and partitioning the examples further
into support and query sets 77 = {DS"PP D"y} where
Ds'PP = DUain apnd DIy = D'est We continue this process
until all samples from D? have been assigned to at least one
meta-task. This meta-task construction is performed for
each dataset in p(D), resulting in a meta-task distribution.

2.2. Model Architecture

Figure 1 shows our model architecture which builds on the
visual instruction tuning framework of LLaVA v1.5 (Liu
et al., 2024). The model consists of a pretrained CLIP ViT-
L/14 visual encoder (g,,) that processes the input image X,?

2We drop the distinction between support and query set for
better readability in this section.
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and gives us hidden visual features Z,. These are then
passed to an attention-mapper My to distill task-relevant
image features from Z,,.

Attention Mapper It takes a concatenated sequence of
embeddings C' = (P, Z,), where P represents m learnable
prompt tokens (see Figure 1). The mapper then computes
the corresponding query, key and value vectors which are
passed to a softmax function to compute activation scores
for every feature in the value vector. Finally, we extract the
first m embeddings from the output to get the task-specific
image embeddings H,,. We denote the trainable parameters
for the attention-mapper with 6, = {6, P}.

Language Model The quality of the learned prompts highly
depends on the underlying language model. To this end,
we employ the state-of-the-art Qwen2.5-7B-Instruct LLM,
which has demonstrated strong performance on complex
tasks such as mathematical reasoning and coding and sup-
ports the generation of up to 8K tokens. The LLM (f3)
receives the concatenated sequence of image and text tokens
to generate the answer X, = f4([Hp, Hy)).

In this pipeline, we only train the attention mapper param-
eters ¢, which makes our approach parameter-efficient for
cross-task generalization. The number of trainable param-
eters is approximately 24M (see Appendix A.3 for hyper-
parameters) and the training objective maximizes the likeli-
hood function, pg, (Xq| Xy, X). For clarity, we refer to this
model as LLaVA-ATT-Qwen2.5 in the following sections.

2.3. Model Training

Similar to LLaVA v1.5 (Liu et al., 2024), we first train the
attention-mapper parameters 0, during the pretraining stage
on LCS-558K subset (Liu et al., 2023). In the finetuning
stage, which aims to distill task-specific image features into
prompts H,,, we finetune 6, on diverse task-specific instruc-
tions. We describe our MAML-based finetuning procedure
below along with alternative methods which we compare
against in our experiments.

2.3.1. DISTILLING PROMPTS WITH FIRST-ORDER
META-LEARNING

We refer to our approach as Meta-Learned®™ and use the
implementation of (Antoniou et al., 2019) with their first-
order version to finetune the attention-mapper parameters
over a batch B of meta-tasks. The inner-loop step uses the
support set of each task in B to convert meta-parameters 6,
into task-specific parameters 01’7.

|D|

-1 i)y i
Ly = D] Z log(po, (Xa| X3, Xg)) (1)
0, =0, av(, L™ )

The outer loop involves optimizing the meta-parameters on
the query set using the task-specific parameters 0;,:

‘unery‘
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Equation (4) is the first-order approximation of the meta-
update in MAML (Finn et al., 2017) that treats the gradient
of 9’ w.r.t. 6, for a meta-task as a constant.

2.3.2. OTHER PROMPT DISTILLATION METHODS

* Multi-Task Prompt Distillation (Multi-Task"”) This
involves distilling prompts by getting rid of the bi-level
optimization of Meta-Learned™ and optimizing the
below loss per task.

Lo, = Zlog po, (Kol X0, X)) )

=1

such that N = | DPP| 4 | Davery|,

+ In-Context Prompt Distillation (In-Context"”) In-
spired from previous works (Chen et al., 2022) that
reduce meta-learning of task information to a sequence
prediction problem, we develop this approach and con-
catenate the support set with the query example to
optimize the below loss for prompt distillation

|unery|
Z log(ps, (Xi| X%, X}, DPP))

6)

-1

Le? | DAuery |

* Methods without Meta-tasks We further compare
with methods that do not involve any meta-tasks during
training, (a) NoMetaTask"P that mimics the original
finetuning procedure of LLaVA v1.5 (Liu et al., 2024),
and (b) Model-Avg®?, where we separately finetune
the attention-mapper parameters 6, on each dataset
Dt ~ p(D), and take an average of all dataset-specific
parameters 0;; weighted by their corresponding dataset

|D| D]
size ratios, O;Vg = Z 6l . D]

2.4. Test-time Adaptation

At test-time, we adapt the attention-mapper parameters 0,
to a new (test) task by finetuning for K gradient steps. We
experiment with a range of K values and explain how we
select the best one for a test task in Appendix A.5. We
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finetune the parameters 6, on the support set Dy’ of test
task T, and evaluate model performance on the query set
DXSY for the same task. Alternatively, we also compare

with ICL adaptation at test-time for all methods.

3. Experimental Results

We use the recently introduced VL-ICL benchmark (Zong
et al., 2025), designed to test the ICL capabilities of LMMs
on various tasks like fast concept binding, multimodal rea-
soning, and fine-grained perception. Meta-tasks for testing
are created by randomly sampling a support set from the
training split of the VL-ICL datasets and a test/query set
from their respective testing splits. We only report results
on 4 single-image tasks: Fast Open-Ended MinilmageNet
(Open-MI), CLEVR Count Induction, Operator Induction
(OP_IND), and TextOCR. More details in Appendix A.6

Table 1. Comparison of different prompt distillation approaches
on single-image tasks from VL-ICL Bench (Zong et al., 2025).
We report the mean accuracy for different numbers of shots -
{1,2,4,5,8}. FT = Finetuning, ICL = In-Context Learning, TTA=
Test-Time Adaptation, MT = Meta-Task. The model used for this
evaluation is LLaVA-ATT-Qwen?2.5 described in Section 2.2.

Methods | MT | Open-MI | OPIND | CLEVR | TextOCR
TTA = ICL

+NoMeta-taskPP 43.8 12.1 18.0 6.8
+Model-Avg™P 26.6 9.2 7.6 2.8
+In-Context™? 51.1 20.6 24.1 23.8
+Multi-TaskPP 48.6 10.0 12.5 6.9
+Meta-Learned™ 53.3 9.6 12.3 73
TTA = FT

+NoMeta-task"P 68.0 38.8 25.8 22.5
+Model-Avg"P 63.1 40.0 29.1 21.5
+In-Context"® 64.5 30.9 30.9 18.9
+Multi-TaskPP 74.6 45.1 29.9 22.9
+Meta-Learned®™ 77.9 47.7 31.4 26.4

Prompt distillation improves task induction in LMMs
at test time Results from Table 1 show that FT adapta-
tion with few-shots largely outperforms ICL at test-time
with an average increase of 21.2% over all datasets. These
results highly support our hypothesis that distilling task-
specific information from image embeddings to create tar-
geted prompts improves the few-shot capabilities in LMMs.

Learning using meta-tasks is beneficial for few-shot
adaptation. = We further see in Table 1 that for both
the test-time adaptation procedures (ICL and FT), meth-
ods which are meta-task aware are indeed superior. For
ICL-based adaptation, In-Context™ performs best, while
for FT-based adaptation, our proposed approach, Meta-
Learned™, achieves the best overall performance across
all four datasets. This suggests that learning meta-tasks
during training by creating batches with equal examples per
task avoids overfitting to a single task.

—e— 1-Shot(M)
- @- 1-shot(I)

2-Shot(M) —e— 4-Shot(M) —e— 5-Shot(M)
2-shot(I) - @= 4-shot(I) - @= 5-shot(I)

Mean Accuracy

Number of Soft Prompts or P (shown in log, (P))

Figure 2. Performance comparison between M=Meta-Learned™ +
FT and I=In-Context”®+ICL. Mean Accuracy is computed across
all VL-ICL datasets. We consider different prompt token lengths
mor |P| = {4,16, 64,256} which are shown in log, (| P|) scale
for different shots.

Meta-learning improves few-shot learning for FT-based
adaptation. Table 1 also shows that our proposed meta-
learning method, Meta-Learned®P, achieves the best perfor-
mance when finetuned at test-time across all datasets. This
suggests that first-order MAML learns the best initialization
of attention-mapper parameters 6, which when finetuned
over few-shots, are able to distill task-specific image fea-
tures into soft prompts. Detailed results in Appendix A.1
show that Meta-Learned® also exhibits strict monotonic
improvements for all VL-ICL datasets.

Meta-Learned®™ benefits from the addition of soft
prompts in contrast to In-Context"™. We compare Meta-
Learned™ (the best FT approach) against In-Context’ (the
best ICL approach) across all VL-ICL datasets, as the num-
ber of soft prompts P increases (under different shot sce-
narios). Figure 2 shows that Meta-Learned™ shows mono-
tonically increasing performance with additional prompts.
Furthermore, its marginal improvement per added prompt
token is substantially greater when more shots are provided.
In contrast, the performance of In-Context™® generally dete-
riorates with more prompts, except for 1-shot.

4. Conclusion

We introduce Meta-Learned®, a meta-learning approach

that distills task-relevant image features in a fixed set of soft
prompts and can induce few-shot capabilities in LMMs with
finetuning-based test-time adaptation. Evaluation results
on the VL-ICL benchmark suggest that Meta-Learned™
outperforms other ICL and prompt-tuning approaches on
various VQA tasks and exhibits strictly monotonic improve-
ments across varying number of shots and soft prompts.
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A. Appendix
A.1. Detailed Results

Table 2. Comparison of different prompt distillation approaches on single-image tasks from VL-ICL Bench (Zong et al., 2025). We report
accuracy for different numbers of shots (-=S). ”Avg” is only calculated for > 1 shot(s). FT = Finetuning, ICL = In-Context Learning,
TTA= Test-Time Adaptation. We use a maximum of K = 30 inner-loop gradient steps for FT adaptation (test-time). We do not compare
on 0-shot results. The model used for this evaluation is LLaVA-ATT-Qwen2.5 which is described in Section 2.2.

Meta Open-MI (2-way) Operator Induction
Methods Task - -
0-S 1-S 2-S 4S 5SS Avg O0S 1-S 2§ 4SS 8-S Avg
TTA =ICL
+NoMeta-task™P 00 350 470 480 450|438 | 11.7 133 133 100 11.7 | 12.1
+Model-Avg®P 0.0 200 220 30.0 345 | 26.6 83 11.7 6.7 8.3 10.0 9.2
+In-Context’P 0.0 30.0 560 550 635 |5I.1 10.0 20.0 185 18.0 26.0 | 20.6
+Multi-Task"P 0.0 43.0 500 51.0 505 | 48.6 83 133 117 33 11.7 | 10.0
+Meta-Learned®™ 0.0 425 530 570 605|533 | 150 133 133 1.7 10.0 9.6
TTA =FT
+NoMeta-task"P 0.0 215 675 89.0 940 | 680 || 11.7 267 233 46.7 583 | 38.8
+Model-AvgPP 0.0 285 535 830 875 63.1 83 31.5 280 450 555 | 40.0
+In-Context™P 0.0 355 545 795 885|645 | 100 21.7 183 41.7 417 | 309
+Multi-Task"P 0.0 37.0 735 935 945 | 74.6 83 31.0 283 61.0 600 | 45.1
+Meta-Learned®” 00 435 780 945 955|779 | 150 320 383 583 620 | 477
Method Meta CLEVR Count Induction TextOCR
ethods Task —— —
0-S 1-S 2-S 4-S 8-S Avg 0-S 1-S 2-S 4-S 8-S Avg
TTA =ICL

+NoMeta-task"P 0.
+Model-AvgPP
+In-Context™
+Multi-Task"P
+Meta-Learned®™

80 105 230 305|180 | 200 45 95 85 45| 68
170 85 4.0 1.0 7.6 120 30 25 30 1.0 | 28
135 23.0 285 315 24.1 | 160 225 21.0 235 28.0 | 238

50 90 165 195|125 180 40 45 85 105 | 69
) 11.0 7.0 155 155|123 || 215 55 70 80 85| 73

-
=
S

- - =

DN =

TTA =FT
+NoMeta-taskP 00 185 215 260 370|258 || 200 205 230 24.0 225 | 225
+Model-Avg'P [.5 265 250 295 355|291 | 120 17.5 20.0 23.0 255 | 215
+In-Context™P 05 245 30 345 345|309 | 160 16.0 18.0 19.5 22.0 | 189
+Multi-Task?P 00 250 255 310 380|299 | 180 21.0 205 245 255 | 229
+Meta-Learned®” 00 265 275 310 405|314 | 215 235 265 27.0 28.5 | 264

A.2. Finetuning Data Mixture

For model finetuning, we create our multi-task data mixture using the visual instruction tuning data of LLaVA v1.5 (Liu
et al., 2023) which contains a mixture of 12 different datasets® ranging from long conversations to academic multiple-choice
questions. Since we are only training image-based prompts, we remove the language-only ShareGPT-40K dataset (ShareGPT,
2023). Additionally, we include 3 different math reasoning/QA datasets from the LLaVA OneVision data mixture (Li et al.,
2025) which are known to improve LMM performance on difficult reasoning and logical QA tasks (Lu et al., 2024). We
further get rid of the extra answer formatting instructions to test the true few-shot transfer learning ability of our approach
without the need of external task induction. Table 3 shows the list of all the datasets along with their size and question types.

3We use these datasets only for academic research purposes as mentioned by the original authors and follow the Open AI Usage Policy
for GPT-4 generated datasets. Additionally, we conform to the license (CC-BY-4.0) for Cauldron datasets.
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Table 3. Finetuning Data Mixture Statistics

Dataset No. of examples ‘ Question Types
Conversations (57,669)
LLaVA-Instruct 157,712 Detailed Image Description (23,240)
Complex Reasoning (76,803)
GQA 72,140 | Visual Reasoning
Image Question Answering
OCR-VQA 80,000 with Reading Comprehension
Image Question Answering
TextVQA 21,953 with Reading Comprehension
. Image Question Answering
Visual Genome 86,417 and Bounding Box Prediction
MAVIS-Math-Metagen 87,348 Vlsual. Math .
Question Answering
TabMWP-Cauldron ‘ 22,717 ‘ Tabular Math Reasoning
Image Question Answering
RefCOCO 48,447 and Bounding Box Prediction
Knowledge Grounded
OKVQA 8,998 Image Question Answering
VQAvV2 82,783 ‘ Image Question Answering
A-OKVQA 66.160 Multlpl?-ChOlCC Question
Answering
Geo-170k (QA) 67.823 Math Quest.lon Answering
and Reasoning
Total ‘ 802,498 ‘

A.3. Model Configurations

Models We use the publicly available implementation of LLaVA v1.5* and first-order MAML? to implement our baselines.
Additionally, we use the pretrained model weights from Huggingface for Qwen2.5-7B-Instruct LLM® and the CLIP ViT-
L/14-336px visual encoder’. The output embedding dimension size of CLIP is 1,024 and the input word embedding size of
the Qwen LLM is 3,584. We set the training context length as 4096 for all baselines except for in-context baseline where it is
8,192 as it requires training with longer sequences. The attention-mapper is a single multi-head attention block with § heads.
The token length of the soft prompt P as described in Section 2.2 for the attention mapper is set to m = 256. The total
number of trainable parameters for our model is approximately 24M making our approach significantly parameter-efficient
for finetuning.

A.4. Training Details

Pretraining stage During the pretraining stage, we only train the attention-mapper and soft prompts for 4 epochs and use a
learning rate of 2e-3 with a batch size of 64 per GPU. We perform a train-validation split on the LCS-558K dataset (Liu
et al., 2023) by keeping 98% of the examples for training and 2% for validation and take the checkpoint with the lowest
validation loss. We use this checkpoint as our base for further task-specific finetuning.

“LLaVA v1.5: https://github.com/haotian-1liu/LLaVA/tree/main/llava

SHow to train your MAML: https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
8Qwen2.5-7B-Instruct: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

"CLIP ViT-L/14-336px: https://huggingface.co/openai/clip-vit-large-patchl4-336
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Finetuning stage For finetuning, in order to keep a balanced ratio of train-validation splits across multiple datasets in
Section A.2 used in this stage, we divide each dataset into 98% for training and 2% for validation and then combine them
separately to create the final train and validation splits. We experimented among three different learning rates [1e-3, Se-4,
2e-5]. For Meta-Learned™, we further experimented with three different inner-loop learning rates [le-1, Se-2, Se-1]. Below,
we mention the best learning rates along with other hyperparameters, chosen using our validation set for the different
approaches proposed in Section 2.3. All approaches were finetuned for 1 epoch to ensure a complete pass over the entire
finetuning data mixture.

1. Meta-Learned™: We use 5 inner-loop steps and initialize the inner-loop learning rate a=1e-1. The outer-loop learning
rate is set as le-3 with a per GPU batch size of 1 meta-task with a gradient accumulation of 2 steps. Each meta-task
here contains 10 support and 10 query examples. Training time ~ 10 hours.

2. Multi-Task"P: Similar to Meta-Learned™, we use a learning rate of 1e-3 with a per GPU batch size of 1 meta-task
with a gradient accumulation of 4 steps. Each meta-task here contains 5 support and 5 query examples. Training time
~ 4.5 hours

3. In-Context®™: We use a learning rate of le-3 with a gradient accumulation of 4 steps and 5 meta tasks per GPU.
Each meta task contains 10 support examples and 1 query example. The support examples were concatenated with the
strategy that ensured all image tokens of a meta-task are present in the sequence and we truncate the text tokens if
the sequence exceeded the context length of 8192. Further, the few-shot question and answers were concatenated by
inserting ”"Question:” and ”Answer:” strings in between them, inspired from (Alayrac et al., 2022). Training time ~ 4.5
hours

4. Model-AvgPP: We first finetune individual models on each dataset in the finetuning data mixture (Section A.2) with a
learning rate of 5e-4. For all the datasets, we choose a per GPU batch size of 8 with gradient accumulation of 2 steps.
Average time per dataset ~ 3 hours

5. NoMeta-task"P: Here, we finetune on the complete data mixture in one training run by sampling batches randomly
and again use a per GPU batch size of 8 with a gradient accumulation of 2 steps. We also use a learning rate of Se-4.
Training time ~ 4 hours.

Computational Requirements For the entire model training, we use 4 H200 GPUs with a VRAM of 143GB per GPU.
For both the stages, the hyperparameters were tuned using their corresponding validation sets and we choose the checkpoints
at the end of first epoch to report our results.

A.5. Test-Time Adaptation Details

We choose a similar test-time adaptation procedure as (Qin et al., 2023) to find the best hyperparameter settings for every
prompt distillation method for fair comparison. We first sample 10% of the examples from the training split of each test
task and combine them to create a validation set. After meta-task creation of VL-ICL datasets (Zong et al., 2025) using the
remaining training and test splits, we then performed a maximum of K = 30 inner-loop gradient steps over each support set
of a meta-task and chose the Kth-step model that gave the lowest validation loss. We use this model to calculate the result
over the query set. To further show how the performance varies at different gradient steps, we plot the average test accuracy
curves for different VL-ICL datasets for Meta-Learned®™ for different shots in Figure 3. We see that the accuracies converge
or start decreasing under 30 gradient steps which validates our adaptation procedure designed to achieve best performance.
We also provide examples of how the predictions change during test-time adaptation in Figure 4, Figure 5, Figure 6, and
Figure 7. Further to ensure reproducibility, we provide our best learning rate values in Table 4 used for different methods
based on the validation set after doing a hyperparameter search within the range [0.1, 1.0] with a batch size of 1 meta-task.
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Table 4. Learning rates for finetuning-based (FT) test-time adaptation for results shown in Table 1 and Table 2

Training Methods Learning Rate (LR)
Meta-Learned™ 1.0
Multi-Task"P 0.8
In-Context?? 0.8
ModelAvg™P 0.6
NoMeta-taskP 1.0
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A.6. Evaluation Datasets from VL-ICL Bench

The VL-ICL Bench (Zong et al., 2025) includes a diverse variety of tasks to test different capabilities of models like
Fast-Concept binding, Mathematical Induction, and Fine-grained perception. Given the nature of our model architecture and
training (Section 2.2, Section 2.3), we only focus on the single-image Image-to-text (I2T) tasks.

1. Fast Open-Ended MinilmageNet (OPEN_MI) - This is a variant of the MinilmageNet few-shot object recognition
task (Vinyals et al., 2016), which was repurposed for few-shot prompting (Tsimpoukelli et al., 2021). It is essentially
an open-ended image classfication problem, but contains nonsense categorical names like dax or blicket making the test
performance not influenced by the prior knowledge of an LMM but only dependent on the support examples. This
design ensures to test the few-shot abilities of LMMs and how quickly they can learn about new concepts. For the
results shown in Table 2, we use the 2-way version of this task involving classification between two nonsense categories.
An example of a 2-way 1-shot task is shown in Figure 4.

2. Operator Induction - Initially proposed by (Zong et al., 2025), this dataset tests various capabilties of LMMs like
Task Induction, Perception and Mathematical Reasoning. The support examples involve two operands with a missing
mathematical operation and an answer. When testing, the task is to identify the hidden operation from the support
example and use it to calculate the result over the operands in the query. An example of a 2-shot task is shown in Figure
7.

3. CLEVR Count Induction - This dataset contains images from the widely used CLEVR dataset (Johnson et al., 2017)
where each image contains a set of objects that have certain characteristics based on attributes like shape, size, color
and material. The task is to learn to count the objects of the given attribute in the support example and transfer that
knowledge to count the objects of any attribute in the query example. An example of a 2-shot task is shown in Figure 5.

4. TextOCR - This dataset has been repurposed by (Zong et al., 2025) from the TextOCR dataset (Singh et al., 2021) to
create a task where the LMM should learn to output the text within a red bounding box from the support examples.
Even though this task could be solved in a zero-shot setting as we see in the 0-shot case with a detailed prompt, we still
only focus on inducing task knowledge from the few-shot examples. An example of a 2-shot task is shown in Figure 6.
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A.7. Qualitative Results
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