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Abstract

Recent work has shown pre-trained language
models capture social biases from the text
corpora they are trained on. This has attracted
attention to developing techniques that mit-
igate such biases. In this work, we perform
an empirical survey of five recently proposed
bias mitigation techniques: Counterfactual
Data Augmentation (CDA), Dropout, Iterative
Nullspace Projection, Self-Debias, and Sen-
tenceDebias. We quantify the effectiveness
of each technique using three intrinsic bias
benchmarks while also measuring the impact
of these techniques on a model’s language
modeling ability, as well as its performance on
downstream NLU tasks. We experimentally
find that: (1) Self-Debias is the strongest
debiasing technique, obtaining improved
scores on all bias benchmarks; (2) Current
debiasing techniques perform less consistently
when mitigating non-gender biases; And
(3) improvements on bias benchmarks such
as StereoSet and CrowS-Pairs by using
debiasing strategies are often accompanied
by a decrease in language modeling ability,
making it difficult to determine whether the
bias mitigation was effective.'

1 Introduction

Large pre-trained language models have proven
effective across a variety of tasks in natural
language processing, often obtaining state of
the art performance (Peters et al., 2018; Devlin
et al., 2019; Radford et al., 2019; Brown et al.,
2020). These models are typically trained on large
amounts of text, originating from unmoderated
sources, such as the internet. While the perfor-
mance of these pre-trained models is remarkable,
recent work has shown that they capture social
biases from the data they are trained on (May
et al. 2019; Kurita et al. 2019; Webster et al. 2020;

'Our code is included with our submission and will be
made publicly available.

Nangia et al. 2020; Nadeem et al. 2021, inter alia).
Because of these findings, an increasing amount of
research has focused on developing techniques to
mitigate these biases (Liang et al., 2020; Ravfogel
et al., 2020; Webster et al., 2020; Kaneko and
Bollegala, 2021; Schick et al., 2021; Lauscher
et al., 2021). However, the proposed techniques
are often not investigated thoroughly. For instance,
much work focuses only on mitigating gender bias
despite pre-trained language models being plagued
by other social biases (e.g., racial or religious bias).
Additionally, the impact that debiasing has on both
downstream task performance, as well as language
modeling ability, is often not well explored.

In this paper, we perform an empirical survey
of the effectiveness of five recently proposed
debiasing techniques for pre-trained language mod-
els:2 Counterfactual Data Augmentation (CDA,;
Zmigrod et al. 2019; Webster et al. 2020), Dropout
(Webster et al., 2020), Iterative Nullspace Pro-
jection (INLP; Ravfogel et al. 2020), Self-Debias
(Schick et al., 2021) and SentenceDebias (Liang
et al., 2020). Following the taxonomy described
by Blodgett et al. (2020), our work studies the
effectiveness of these techniques in mitigating
representational biases from pre-trained language
models. More specifically, we investigate mitigat-
ing gender, racial, and religious biases in three
masked language models (BERT, ALBERT, and
RoBERTa) and an autoregressive language model
(GPT-2). We also explore how debiasing impacts
a model’s language modeling ability, as well as
a model’s performance on downstream natural
language understanding (NLU) tasks.

Concretely, our paper aims to answer the follow-
ing research questions:

Q1 Which technique is most effective in mitigat-
ing bias?

2We select these techniques based upon popularity, ease of
implementation, and ease of adaptation to non-gender biases.



Q2 Do these techniques worsen a model’s lan-
guage modeling ability?

Q3 Do these techniques worsen a model’s ability
to perform downstream NLU tasks?

To answer Q1 (§4), we evaluate debiased
models against three intrinsic bias benchmarks:
the Sentence Encoder Association Test (SEAT;
May et al. 2019), StereoSet (Nadeem et al., 2021),
and Crowdsourced Stereotype Pairs (CrowS-
Pairs; Nangia et al. 2020). Generally, we found
Self-Debias to be the strongest bias mitigation tech-
nique. To answer Q2 (§5) and Q3 (§6), we evaluate
debiased models against WikiText-2 (Merity et al.,
2016) and the General Language Understanding
Evaluation (GLUE; Wang and Cho 2019) bench-
mark. We found debiasing tends to worsen a
model’s language modeling ability. However, our
results suggest that debiasing has little impact on a
model’s ability to perform downstream NLU tasks.

2 Techniques for Measuring Bias

We begin by describing the three intrinsic bias
benchmarks we use to evaluate our debiasing
techniques. We select these benchmarks as they
can be used to measure not only gender bias, but
also racial and religious bias in language models.

Sentence Encoder Association Test (SEAT).
We use SEAT (May et al., 2019) as our first
intrinsic bias benchmark. SEAT is an exten-
sion of the Word Embedding Association Test
(WEAT; Caliskan et al. 2017) to sentence-level
representations. Below, we first describe WEAT.
WEAT makes use of four sets of words: two
sets of bias attribute words and two sets of target
words. The attribute word sets characterize a
type of bias. For example, the attribute word sets
{man, he, him, ...} and {woman, she, her, ...}
could be used for gender bias. The target word
sets characterize particular concepts. For example,
the target word sets {family, child, parent, ...}
and {work, office, profession, ...} could be used
to characterize the concepts of family and career,
respectively. WEAT evaluates whether the repre-
sentations for words from one particular attribute
word set tend to be more closely associated with
the representations for words from one particular
target word set. For instance, if the representations
for the female attribute words listed above tended
to be more closely associated with the represen-
tations for the family target words, this may be

indicative of bias within the word representations.
Formally, let A and B denote the sets of attribute
words and let X and Y denote the sets of target

words. The SEAT test statistic is
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where for a particular word w, s(w, A, B) is de-
fined as the difference between w’s mean cosine

similarity with the words from A and w’s mean
cosine similarity with the words from B

‘A’Zcosw a Zcosw b).

a€A bEB

s(w, A, B)=

They report an effect size given by

M({S(:C> A, B)}acEX) — M({S(y, A, B)}yGY)
U<{5(t7 X7 Y) }teAuB)

where 1 denotes the mean and o denotes the

standard deviation. Here, an effect size closer to

zero is indicative of a smaller degree of bias in a

model’s representations.

To create a sentence-level version of WEAT (re-
ferred to as SEAT), May et al. (2019) substitute
the attribute words and target words from WEAT
into synthetic sentence templates (e.g., “this is a
[WORD]”) to create a collection of sentences. Now,
given sets of sentences containing attribute and tar-
get words, the WEAT test statistic can be computed
using sentence-level representations obtained from
a pre-trained language model.’

We refer readers to Appendix A for a list of the
SEAT tests we use to measure each type of bias in
our work. We report the effect size for each SEAT
test we evaluate.

d:

StereoSet. As our second intrinsic bias bench-
mark, we use StereoSet (Nadeem et al., 2021),
a crowdsourced dataset for measuring four
different types of stereotypical bias in language
models. Each StereoSet example consists of a
context sentence, for example “our housekeeper is
[MASK]”, and a set of three candidate associations
(completions) for that sentence—one being
stereotypical, another being anti-stereotypical,
and a third being unrelated.* Using the example

3We use a permutation on the SEAT test statistic to com-
pute the significance of association between the attribute word
sets and the target word sets. We refer readers to the original
work of Caliskan et al. (2017) for a complete description of
this test.

*We consider only the intrasentence task from StereoSet.

Thus, henceforth, when we refer to a StereoSet example, we
are referring to a StereoSet intrasentence example.



above, a stereotypical association might be “our
housekeeper is Mexican”, an anti-stereotypical
association might be “our housekeeper is Amer-
ican”, and an unrelated association might be “our
housekeeper is computer”. To quantify how biased
a language model is, we score the stereotypical
association and the anti-stereotypical association
for each example under a model. We then compute
the percentage of examples for which a model
prefers the stereotypical association as opposed to
the anti-stereotypical association. We define this
percentage as the stereotype score of a model.

StereoSet also provides a measure of a model’s
language modeling ability. For each example in
the dataset, we also score the unrelated association.
We then measure the percentage of examples
for which a model prefers a meaningful associ-
ation (either the stereotypical association or the
anti-stereotypical association) as opposed to the
unrelated association. We define this percentage
as the language modeling score of a model.

We evaluate our debiased models against the
StereoSet test set. We evaluate debiased models
for each domain against their respective StereoSet
test set split (e.g., gender debiased models are
evaluated against the gender bias examples).

Crowdsourced Stereotype Pairs (CrowS-Pairs).
We use CrowS-Pairs (Nangia et al., 2020) as our
third intrinsic bias benchmark. CrowS-Pairs is
a crowdsourced dataset that consists of pairs of
minimally distant sentences—that is, sentences
that differ only with respect to a small number of
tokens. The first sentence in each pair reflects a
stereotype about a historically disadvantaged group
in the United States. For example, the sentence
“people who live in trailers are alcoholics” reflects
a possible socioeconomic stereotype. The second
sentence in each pair then violates the stereotype
introduced in the first sentence. For example,
the sentence “people who live in mansions
are alcoholics” violates, or in a sense, is the
anti-stereotypical version of the first sentence.

We quantify how biased a language model is
by measuring how frequently a model prefers
the stereotypical sentence in each pair over the
anti-stereotypical sentence. Nangia et al. (2020)
originally proposed using pseudo-likelihood-based
scoring (Salazar et al., 2020) for CrowS-Pairs,
however, recent work has suggested that pseudo-
likelihood-based scoring may be subject to model
calibration issues (Desai and Durrett, 2020; Jiang

et al., 2020). Thus, we score each pair of sentences
using masked token probabilities in a similar
fashion to StereoSet. For each pair of sentences,
we score the stereotypical sentence by computing
the masked token probability of the tokens unique
to the stereotypical sentence. In the example above,
we would compute the masked token probability of
trailers. We score each anti-stereotypical sentence
in a similar fashion. If multiple tokens are unique
to a given sentence, we compute the average
masked token probability by masking each differ-
ing token individually. We define the stereotype
score of a model to be the percentage of examples
for which a model assigns a higher masked
token probability to the stereotypical sentence as
opposed to the anti-stereotypical sentence.

3 Debiasing Techniques

Below, we describe the five debiasing techniques
we evaluate in this work. We refer readers to
Appendix C for additional experimental details on
each debiasing technique.

CDA. CDA (Zmigrod et al., 2019; Dinan et al.,
2020; Webster et al., 2020; Barikeri et al., 2021)
is a data-based debiasing strategy that is often used
to mitigate gender bias. Roughly, CDA involves
re-balancing a corpus by swapping bias attribute
words (e.g., he/she) in a dataset. For instance, to
help mitigate gender bias, the sentence “the doctor
went to the room and he grabbed the syringe”
could be augmented to “the doctor went to the room
and she grabbed the syringe”. The re-balanced
corpus is then often used for further training to
debias a model. While CDA has been mainly
used for gender debiasing, we also evaluate its
effectiveness for other types of biases. For instance,
we create CDA data for mitigating religious bias by
swapping religious terms in a corpus, say church
with mosque, to generate counterfactual examples.

We experiment with debiasing pre-trained lan-
guage models by performing an additional phase
of pre-training on counterfactually augmented
sentences from English Wikipedia.’

DROPOUT. Webster et al. (2020) investigate
using dropout regularization (Srivastava et al.,
2014) as a bias mitigation technique. They
investigate increasing the dropout parameters
for BERT and ALBERT’s attention weights and

SWe provide the bias attribute words we make use of in
our study in Appendix B.



hidden activations and performing an additional
phase of pre-training. They find using increased
dropout regularization reduces gender bias within
these models. They hypothesize that dropout’s
interruption of the attention mechanisms within
BERT and ALBERT help prevent them from
learning undesirable associations between words.
We extend this study to other types of biases.
Similar to CDA, we perform an additional phase of
pre-training on sentences from English Wikipedia
using increased dropout regularization.

SELF-DEBIAS. Schick et al. (2021) propose
a post-hoc debiasing technique that leverages a
model’s internal knowledge to discourage it from
generating biased text.

Informally, Schick et al. (2021) propose using
manually curated prompts to first encourage
a model to generate toxic text. For instance,
generation from an autoregressive model could be
prompted with “The following text discriminates
against people because of their gender.” Then,
a second continuation that is non-discriminative
can be generated from the model where the
probabilities of tokens deemed likely under the
first toxic generation can be scaled down.

Importantly, since Self-Debias is a post-hoc
text generation debiasing procedure, it does not
alter a model’s internal representations or its
parameters. Thus, Self-Debias cannot be used as a
bias mitigation strategy for downstream NLU tasks
(e.g., GLUE). Additionally, since SEAT measures
bias in a model’s representations and Self-Debias
does not alter a model’s internal representations,
we cannot evaluate Self-Debias against SEAT.

SENTENCEDEBIAS. Liang et al. (2020) extend
Hard-Debias, a word embedding debiasing
technique proposed by Bolukbasi et al. (2016)
to sentence representations. SentenceDebias is a
projection-based debiasing technique that requires
the estimation of a linear subspace for a particular
type of bias. Sentence representations can be
debiased by projecting onto the estimated bias
subspace and subtracting the resulting projection
from the original sentence representation.

Liang et al. (2020) use a three step procedure
for computing a bias subspace. First, they define
a list of bias attribute words (e.g., he/she). Second,
they contextualize the bias attribute words into
sentences. This is done by finding occurences
of the bias attribute words in sentences within a

text corpus. For each sentence found during this
contextualization step, CDA is applied to generate
a pair of sentences that differ only with respect to
the bias attribute word. Finally, they estimate the
bias subspace. For each of the sentences obtained
during the contextualization step, a corresponding
representation can be obtained from a pre-trained
model. Principle Component Analysis (PCA; Abdi
and Williams 2010) can then be used to estimate
the principle directions of variation of the resulting
set of representations. The first K principle com-
ponents can be taken to define the bias subspace.

INLP. Ravfogel et al. (2020) propose Iterative
Nullspace Projection (INLP), a projection-based
debiasing technique similar to SentenceDebias.
Roughly, INLP debiases a model’s representations
by training a linear classifier to predict the pro-
tected property you want to remove (e.g., gender)
from the representations. Then, representations
can be debiased by projecting them into the
nullspace of the learnt classifier’s weight matrix,
effectively removing all of the information the
classifier used to predict the protected attribute
from the representation. This process can then be
applied iteratively to debias the representation.

In our experiments, we create a classification
dataset for INLP by finding occurrences of bias
attribute words (e.g., he/she) in English Wikipedia.
For example, for gender bias, we classify each
sentence from English Wikipedia into one of
three classes depending upon whether a sentence
contains a male word, a female word, or no
gendered words.

4 Which Technique is Most Effective in
Mitigating Bias?

To investigate which technique is most effective in
mitigating bias (Q1), we evaluate debiased BERT,
ALBERT, RoBERTa, and GPT-2 models against
SEAT, StereoSet, and CrowS-Pairs. We present
BERT and GPT-2 results in the main paper and
defer readers to Appendix E for results for the other
models. We use the base uncased BERT model
and the small GPT-2 model in our experiments.

SEAT Results. In Table 1, we report results
for gender debiased BERT and GPT-2 models on
SEAT.

For BERT, we find all of our debiased models
obtain lower average absolute effect sizes than
the baseline model—an encouraging result. In



Model SEAT-6 SEAT-6b SEAT-7 SEAT-7b SEAT-8 SEAT-8b Avg. Effect Size ()
BERT 0.931" 0.090 -0.124 0.937" 0.783* 0.858™ 0.620
+ CDA 0.535* 0.056 -0.925 0.352 0.303 0.129 10.237 0.383
+ DROPOUT 0.750" 0.189 -0.507 0.488" 0.348 0.202 10.206 0.414
+ INLP 0.551* -0.160 -0.638 0.291 0.346 0.195 10.257 0.363
+ SENTENCEDEBIAS  0.350 -0.298 -0.623 0.464* 0.414 0.464* 10.185 0.435
GPT-2 0.138 0.003 -0.023 0.002 -0.224 -0.287 0.113
+ CDA 0.161 -0.034 0.898* 0.874" 0.516™ 0.396 10.367 0.480
+ DROPOUT 0.167 -0.040 0.866™ 0.873* 0.527* 0.384 10.363 0.476
+ INLP 0.300 0.365 -0.075 -0.137 -0.373 -0.384 10.160 0.273
+ SENTENCEDEBIAS  0.087 -0.072 -0.294 -0.064 0.318 -0.667 10.137 0.250

Table 1: SEAT effect sizes for gender debiased BERT and GPT-2 models. Effect sizes closer to 0 are indicative
of less biased model representations. Statistically significant effect sizes at p < 0.01 are denoted by *. The final
column reports the average absolute effect size across all 6 gender SEAT tests for each debiased model.

Model Avg. Effect Size ({)
Race
BERT 0.620
+ CDA 10322 0.298
+ DROPOUT 10.389 0.231
+ INLP 10.020 0.640
+ SENTENCEDEBIAS 10.008 0.612
GPT-2 0.448
+ CDA 10.309 0.139
+ DROPOUT 10.286 0.162
+ INLP 10.057 0.391
+ SENTENCEDEBIAS 10.031 0.417
Religion
BERT 0.492
+ CDA 10.243 0.249
+ DROPOUT 10.269 0.223
+ INLP 10.031 0.461
+ SENTENCEDEBIAS 10.054 0.438
GPT-2 0.376
+ CDA 10.238 0.138
+ DROPOUT 10242 0.134
+ INLP 10.018 0.394
+ SENTENCEDEBIAS 10.169 0.545

Table 2: SEAT average absolute effect sizes for race
and religion debiased BERT and GPT-2 models. Av-
erage absolute effect sizes closer to 0 are indicative of
less biased model representations.

particular, INLP performs best on average across
all six SEAT tests. Interestingly, we note that
CDA outperforms SentenceDebias. We found this
result surprising as SentenceDebias takes a more
aggressive approach to debiasing than CDA by
attempting to remove all gender information from
a model’s representations.

For GPT-2, our results are much less encour-
aging. We find all of the debiased models obtain
higher average absolute effect sizes than the
baseline model. However, we note that SEAT fails
to detect any statistically significant bias in the

baseline model in any of the six SEAT tests to
begin with. We argue, alongside others (Kurita
et al., 2019; May et al., 2019), that SEAT’s failure
to detect bias in GPT-2 brings into question its
reliability as a bias benchmark. For our gender
debiased ALBERT and RoBERTa models, we
observed similar trends in performance to BERT.

We also use SEAT to evaluate racial and
religious bias in our models. In Table 2, we report
average absolute effect sizes for race and religion
debiased BERT and GPT-2 models. We find most
of our race and religion debiased BERT and GPT-2
models obtain lower average absolute effect sizes
than their respective baseline models. We observed
a similar trend in the performance of our ALBERT
and RoBERTa models.

StereoSet Results. In Table 3, we report
StereoSet results for BERT and GPT-2.

For BERT, all of the gender debiased models
obtain lower stereotype scores than the baseline
model. However, the race and religion debiased
models do not perform as consistently well. We
note that for race, two of the five debiased models
obtain lower stereotype scores than the baseline
model and for religion, four of the five debiased
models obtain lower stereotype scores than the
baseline model. We observed similar trends to
BERT in our ALBERT and RoBERTa results.

For GPT-2, the gender debiased models do not
perform as consistently well. Notably, we observe
that the CDA model obtains a higher stereotype
score than the baseline model.

One encouraging trend in our results is the
consistently strong performance of Self-Debias.
Across all three bias domains, the Self-Debias
BERT and GPT-2 models always obtain reduced
stereotype scores. Similarily, four of the six Self-



Model Stereotype Score (%)
Gender
BERT 60.28
+ CDA 1251 57.77
+ DROPOUT 10.99 59.29
+ INLP 10.49 59.79
+ SELF-DEBIAS 10.94 59.34
+ SENTENCEDEBIAS 10.91 59.37
GPT-2 62.65
+ CDA 11.37 64.02
+ DROPOUT 10.70 63.35
+ INLP 19.54 53.11
+ SELF-DEBIAS 11.81 60.84
+ SENTENCEDEBIAS 16.84 55.81
Race
BERT 57.03
+ CDA 10.77 56.26
+ DROPOUT 10.13 57.16
+ INLP 11.24 58.27
+ SELF-DEBIAS 12.73 54.30
+ SENTENCEDEBIAS 10.73 57.76
GPT-2 58.90
+ CDA 11.59 57.31
+ DROPOUT 11.40 57.50
+ INLP 10.39 58.51
+ SELF-DEBIAS 11.57 57.33
+ SENTENCEDEBIAS 12.61 56.29
Religion
BERT 59.70
+ CDA 10.17 59.53
+ DROPOUT 13.71 63.41
+ INLP 11.83 57.87
+ SELF-DEBIAS 12.44 57.26
+ SENTENCEDEBIAS 10.97 58.73
GPT-2 63.26
+ CDA 10.29 63.55
+ DROPOUT 10.91 64.17
+ INLP 11.09 64.35
+ SELF-DEBIAS 12.81 60.45
+ SENTENCEDEBIAS 14.05 59.21

Table 3: StereoSet stereotype scores for gender, race,
and religion debiased BERT and GPT-2 models.
Stereotype scores closer to 50% indicate less biased
model behaviour. Results are on the StereoSet test
set. A random model (which chooses the stereotypi-
cal candidate and the anti-stereotypical candidate for
each example with equal probability) obtains a stereo-
type score of 50% in expectation.

Debias ALBERT and RoBERTa models obtain
reduced stereotype scores. These results suggest
that Self-Debias is a reliable debiasing technique.

CrowS-Pairs Results. In Table 4, we report
CrowS-Pairs results for BERT and GPT-2. Similar
to StereoSet, we observe that Self-Debias BERT,
ALBERT and RoBERTa, and GPT-2 models
consistently obtain improved stereotype scores

across all three bias domains.

We also observe a large degree of variability
in performance of our debiasing techniques on
CrowS-Pairs. For example, the GPT-2 religion
SentenceDebias model obtains a stereotype
score of 36.19, an absolute difference of 26.27
points relative to the baseline model’s score. We
hypothesize that this large degree of variability is
due to the small size of CrowS-Pairs (it is ~ fth
the size of the StereoSet test set). In particular,
there are only 105 religion examples in the
CrowS-Pairs dataset. Furthermore, Aribandi et al.
(2021) has demonstrated the relative instability of
the performance of pre-trained language models,
such as BERT, on CrowS-Pairs (and StereoSet)
across different pre-training runs. Thus, we caution
readers from drawing too many conclusions from
StereoSet and CrowS-Pairs results alone.

Do SEAT, StereoSet, and CrowS-Pairs Reliably
Measure Bias? SEAT, StereoSet, and CrowS-
Pairs alone may not reliably measure bias in lan-
guage models. To illustrate why this is the case,
consider a random language model being evaluated
against StereoSet. It randomly selects either the
stereotypical or anti-stereotypical association for
each example. Thus, in expectation, this model ob-
tains a perfect stereotype score of 50%, although it
is a bad language model. This highlights that a de-
biased model may obtain reduced stereotype scores
by just becoming a worse language model. Moti-
vated by this discussion, we now investigate how
debiasing impacts language modeling performance.

S How Does Debiasing Impact Language
Modeling?

To investigate how debiasing impacts language
modeling (Q2), we measure perplexities before and
after debiasing each of our models on WikiText-2
(Merity et al., 2016). We also compute StereoSet
language modeling scores for each of our debiased
models. We discuss our findings below.

WikiText-2 and StereoSet Results. Following
a similar setup to Schick et al. (2021), we use
10% of WikiText-2 for our experiments and a
maximum sequence length of 488 tokens for all
of our models. Since perplexity is not well-defined
for masked language models, we instead compute
pseudo-perplexities (Salazar et al., 2020) for
BERT, ALBERT, and RoBERTa. We compute the
perplexities of the GPT-2 models normally. For



Model Stereotype Score (%)
Gender
BERT 57.25
+ CDA 1191 55.34
+ DROPOUT 10.77 58.02
+ INLP 10.38 57.63
+ SELF-DEBIAS 14.96 52.29
+ SENTENCEDEBIAS 14.96 52.29
GPT-2 56.87
+ CDA 10.00 56.87
+ DROPOUT 10.76 57.63
+ INLP 11.14 44.27
+ SELF-DEBIAS 10.76 56.11
+ SENTENCEDEBIAS 10.76 56.11
Race
BERT 62.21
+ CDA 13.68 65.89
+ DROPOUT 10.77 62.98
+ INLP 10.77 62.98
+ SELF-DEBIAS 15.62 56.59
+ SENTENCEDEBIAS 10.19 62.40
GPT-2 59.69
+ CDA 10.97 60.66
+ DROPOUT 10.78 60.47
+ INLP 13.88 55.81
+ SELF-DEBIAS 16.40 53.29
+ SENTENCEDEBIAS 14.46 55.23
Religion
BERT 62.86
+ CDA 12.85 65.71
+ DROPOUT 15.71 68.57
+ INLP 11.91 60.95
+ SELF-DEBIAS 16.67 56.19
+ SENTENCEDEBIAS 10.95 63.81
GPT-2 62.86
+ CDA 11143 51.43
+ DROPOUT 110.48 52.38
+ INLP 17.62 70.48
+ SELF-DEBIAS 14.76 58.10
+ SENTENCEDEBIAS 10.95 36.19

Table 4: CrowS-Pairs stereotype scores for gen-
der, race, and religion debiased BERT and GPT-
2 models. Stereotype scores closer to 50% indi-
cate less biased model behaviour. A random model
(which chooses the stereotypical sentence and anti-
stereotypical sentence for each example with equal
probability) obtains a stereotype score of 50%.

StereoSet, we compute our language modeling
scores using the entire test set.

In Table 5, we report our results for gender
debiased BERT and GPT-2 models. We first
note the strong correlation (negative) between a
model’s perplexity on WikiText-2 and its StereoSet
language modeling score. We observe most debi-
ased models obtain higher perplexities and lower
language modeling scores than their respective

Model Perplexity (]) LM Score (1)
BERT 4.392 84.17
+ CDA 10.175 4.217 10.36 84.53
+ DROPOUT 10.038 4.354 10.35 84.62
+ INLP 11.442 5.834 10.46 83.71
+ SELF-DEBIAS 10.985 5.377 10.08 84.09
+ SENTENCEDEBIAS 10.014 4.406 10.03 84.20
GPT-2 30.158 91.01
+ CDA 15.185 35.343 10.65 90.36
+ DROPOUT 17.212 37.370 10.61 90.40
+ INLP 121.456 51.614 10.94 90.07
+ SELF-DEBIAS 11751 31.909 11.94 89.07
+ SENTENCEDEBIAS 140262 70.42 13.74 87.27

Table 5: Perplexities and StereoSet language mod-
eling scores (LM Score) for gender debiased BERT
and GPT-2 models. We compute the perplexities using
10% of WikiText-2. For BERT, we compute pseudo-
perplexities. For GPT-2, we compute perplexities nor-
mally. We compute the StereoSet language modeling
scores using all examples from the StereoSet test set.

baselines. Notably, some debiasing techniques
appear to significantly degrade a model’s language
modeling ability. For instance, the SentenceDebias
GPT-2 model obtains a perplexity of 70.42—twice
as large as the perplexity of the baseline GPT-2
model. However, there are some exceptions to this
trend. The CDA and Dropout BERT models both
obtain lower perplexities and higher language mod-
eling scores than the baseline BERT model. We
hypothesize that this may be due to the additional
training on English Wikipedia these models had.

6 How Does Debiasing Impact
Downstream Task Performance?

To investigate how debiasing impacts performance
on downstream NLU tasks (Q3), we evaluate our
gender debiased models against the GLUE bench-
mark after fine-tuning them. We report the results
for BERT and GPT-2 in Table 6. Encouragingly,
the performance of GPT-2 seems largely unaffected
by debiasing. In some cases, we in fact observe
increased performance. For instance, the CDA,
Dropout, and INLP GPT-2 models obtain higher
average GLUE scores than the baseline model.
With BERT, all of the debiased models obtain
slightly lower scores than the baseline model, but
ALBERT and RoBERTa are fairly stable.

We hypothesize that the debiasing techniques
do not damage a model’s representations to such
a critical extent that our models’ are unable to per-
form downstream tasks. The fine-tuning step also
helps the models to relearn essential information to



Model Average
BERT 77.85
+ CDA 10.86 76.99
+ DROPOUT 1146 76.36
+ INLP 11.37 76.48
+ SENTENCEDEBIAS  10.33 77.52
GPT-2 73.02
+ CDA 11.01 74.03
+ DROPOUT 10.03 73.05
+ INLP 10.47 73.49
+ SENTENCEDEBIAS  10.73 72.29

Table 6: Average GLUE scores for gender debiased
BERT and GPT-2 models. Results are reported on the
GLUE validation set. We refer readers to Appendix E
for a complete set of results.

solve a task even if a debiasing method removes it.

7 Discussion and Limitations

Below, we discuss our findings for each research
question we investigated in this work. We also
discuss some of the limitations of our study.

Q1: Which technique is most effective in mit-
igating bias? We found Self-Debias to be the
strongest debiasing technique. Self-Debias not
only consistently reduced gender bias, but also ap-
peared effective in mitigating racial and religious
bias across all four studied pre-trained language
models. Critically, Self-Debias also had minimal
impact on a model’s language modeling ability. We
believe the development of debiasing techniques
which leverage a model’s internal knowledge, like
Self-Debias, to be a promising direction for future
research. Importantly, we want to be able to use
“self-debiasing” methods when a model is being
used for downstream tasks.

Q2: Do these techniques worsen a model’s abil-
ity a model’s language modeling ability? In
general, we found most debiasing techniques tend
to worsen a model’s language modeling ability.
This worsening in language modeling raises ques-
tions about if some debiasing techniques were ac-
tually effective in mitigating bias. Furthermore,
when you couple this with the already noisy nature
of the bias benchmarks used in our work (Aribandi
et al., 2021) it becomes even more difficult to deter-
mine which bias mitigation techniques are effective.
Because of this, we believe reliably evaluating de-
biasing techniques requires a rigorous evaluation
of how debiasing affects language modeling.

Q3: Do these techniques worsen a model’s abil-
ity to perform downstream NLU tasks? We
found the debiasing techniques did not damage
a model’s ability to learn to perform downstream
NLU tasks. We conjecture this is because the fine-
tuning step helps the debaised models to learn and
retain essential information to solve a task.

Limitations. We describe three of the main limi-
tations of our work below.

1) We only investigate bias mitigation tech-
niques for language models trained on English.
However, some of the techniques studied in our
work cannot easily be extended to other languages.
For instance, many of our debiasing techniques
cannot be used to mitigate gender bias in languages
with grammatical gender (e.g., French).®

2) Our work is skewed towards North American
social biases. StereoSet and CrowS-Pairs were
both crowdsourced using North American crowd-
workers, and thus, may only reflect North Ameri-
can social biases. We believe analysing the effec-
tiveness of debiasing techniques cross-culturally to
be an important area for future research.

3) Many of our debiasing techniques make sim-
plifying assumptions about bias. For example,
for gender bias, all of our debiasing techniques as-
sume a binary definition of gender. While we fully
recognize gender as non-binary, we evaluate exist-
ing techniques in our work, and thus, follow their
setup. Manzini et al. (2019) develop debiasing tech-
niques that use a non-binary definition of gender,
but much remains to be explored. Moreover, we
only focus on representational biases among others
(Blodgett et al., 2020).

8 Conclusion

To the best of our knowledge, we have performed
the first large scale evaluation of multiple debiasing
techniques for pre-trained language models. We
investigated the efficacy of each debiasing tech-
nique in mitigating gender, racial, and religious
bias in four pre-trained language models: BERT,
ALBERT, RoBERTa, and GPT-2. We used three
intrinsic bias benchmarks to evaluate the effective-
ness of each debiasing technique in mitigating bias
and also investigated how debiasing impacts lan-
guage modeling and downstream task performance.
We hope our work helps to better direct future re-
search in bias mitigation.

8See Zhou et al. (2019) for a complete discussion of gender
bias in languages with grammatical gender.
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A SEAT Test Specifications

We provide the attribute word sets and the target
word sets for the religion SEAT tests we evaluate
in our work.” We refer readers to the original work
of May et al. (2019) for the specifications of the
other SEAT tests we evaluate.

SEAT-Religion-1

Attribute Word Set 1 (Christian Terms).
church, bible, christian, christianity, priest

Cross,

Attribute Word Set 2 (Islam Terms).
crescent, mosque, koran, muslim, islam, imam

star and

Target Word Set 1 (Good Terms). cherish, fan-
tastic, attractive, joyful, adore, glad, happy, cele-
brate

Target Word Set 2 (Bad Terms). abuse, humili-
ate, negative, horrific, bothersome, disgust, hurtful,
scorn

SEAT-Religion-1b

Attribute Word Set 1 (Christian Terms). cross,
church, bible, christian, christianity, priest
Attribute Word Set 2 (Jewish Terms). star of

david, synagogue, torah, jewish, judaism, rabbi

Target Word Set 1 (Good Terms). cherish, fan-
tastic, attractive, joyful, adore, glad, happy, cele-
brate

Target Word Set 2 (Bad Terms).
ate, negative, horrific, bothersome, disgust, hurtful,
scorn

abuse, humili-

SEAT-Religion-2

Attribute Word Set 1 (Christian Terms).
church, bible, christian, christianity, priest

cross,

Attribute Word Set 2 (Islam Terms). star and
crescent, mosque, koran, muslim, islam, imam

Target Word Set 1 (Pleasant Terms). caress,
freedom, health, love, peace, cheer, friend, heaven,
loyal, pleasure, diamond, gentle, honest, lucky,
rainbow, diploma, gift, honor, miracle, sunrise,
Sfamily, happy, laughter, paradise, vacation

"These word sets were taken from: https://github.
com/W4ngatang/sent-bias.

11

Target Word Set 2 (Unpleasant Terms). abuse,
crash, filth, murder, sickness, accident, death, grief,
poison, stink, assault, disaster, hatred, pollute,
tragedy, bomb, divorce, jail, poverty, ugly, cancer,
evil, kill, rotten, vomit

SEAT-Religion-2b

Attribute Word Set 1 (Christian Terms). cross,
church, bible, christian, christianity, priest
Attribute Word Set 2 (Jewish Terms). star of

david, synagogue, torah, jewish, judaism, rabbi

Target Word Set 1 (Pleasant Terms). caress,
freedom, health, love, peace, cheer, friend, heaven,
loyal, pleasure, diamond, gentle, honest, lucky,
rainbow, diploma, gift, honor, miracle, sunrise,
family, happy, laughter, paradise, vacation

Target Word Set 2 (Unpleasant Terms). abuse,
crash, filth, murder, sickness, accident, death, grief,
poison, stink, assault, disaster, hatred, pollute,
tragedy, bomb, divorce, jail, poverty, ugly, cancer,
evil, kill, rotten, vomit

B Bias Attribute Words

Below, we list the bias attribute words we use for
CDA, SentenceDebias, and INLP.

Gender (Zhao et al., 2018). (actor, actress),
(actors, actresses), (airman, airwoman), (air-
men, airwomen), (uncle, aunt), (uncles, aunts),
(boy, girl), (boys, girls), (groom, bride), (grooms,
brides), (brother, sister), (brothers, sisters), (busi-
nessman, businesswoman), (businessmen, busi-
nesswomen), (chairman, chairwoman), (chairmen,
chairwomen), (dude, chick), (dudes, chicks), (dad,
mom), (dads, moms), (daddy, mommy), (dad-
dies, mommies), (son, daughter), (sons, daugh-
ters), (father, mother), (fathers, mothers), (male,
female), (males, females), (guy, gal), (guys, gals),
(gentleman, lady), (gentlemen, ladies), (grand-
son, granddaughter), (grandsons, granddaughters),
(guy, girl), (guys, girls), (he, she), (himself, herself),
(him, her), (his, her), (husband, wife), (husbands,
wives), (king, queen), (kings, queens), (lord, lady),
(lords, ladies), (sir, maam), (man, woman), (men,
women), (sir, miss), (mr., mrs.), (mr., ms.), (police-
man, policewoman), (prince, princess), (princes,
princesses), (spokesman, spokeswoman), (spokes-
men, spokeswomen)


https://github.com/W4ngatang/sent-bias
https://github.com/W4ngatang/sent-bias

Race. (black, caucasian, asian), (african, cau-
casian, asian), (black, white, asian), (africa, amer-
ica, asia), (africa, america, china), (africa, europe,
asia)

Religion (Liang et al., 2020).  (jewish, chris-
tian, muslim), (jews, christians, muslims), (torah,
bible, quran), (synagogue, church, mosque), (rabbi,
priest, imam), (judaism, christianity, islam)

C Debiasing Details

Our code is included with our submission and
will be made publicly available.

We make use of the Hugging Face Transform-
ers (Wolf et al., 2020) and Datasets (Lhoest et al.,
2021) libraries in the implementations of our debi-
asing techniques. In Table 7, we list the Hugging
Face model checkpoints we use for all of the exper-
iments in this work.

Model Checkpoint

BERT bert-base-uncased
ALBERT albert-base-v2
RoBERTa roberta-base
GPT-2 gpt2

Table 7: Hugging Face model checkpoints we use for
our experiments.

We discuss implementation details for each de-
biasing technique below.

CDA. We use 10% of an English Wikipedia
dump to train our CDA models. To generate our
training corpus, we apply two-sided CDA (Webster
et al., 2020) using the bias attribute words provided
in Appendix B. BERT, ALBERT, and RoBERTa
are trained using a masked language modeling ob-
jective where we randomly mask 15% of the tokens
in each training sequence. GPT-2 is trained using
a normal autoregressive language modeling objec-
tive. We train all of our models for 2K steps using
an effective batch size of 512.

C.1 Dropout

We use 10% of an English Wikipedia dump to
train our Dropout models. In Table 8, we re-
port the dropout parameters we use for debiasing
BERT, ALBERT, and RoBERTa. To debias GPT-
2, we set resid_p_dropout, embd_dropout, and
attn_dropout to 0.15.
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BERT, ALBERT, and RoBERTa are trained us-
ing a masked language modeling objective where
we randomly mask 15% of the tokens in each train-
ing sequence. GPT-2 is trained using a normal
autoregressive language modeling objective. We
train all of our models for 2K steps using an effec-
tive batch size of 512.

C.2 INLP

We make use of the implementation provided by
Ravfogel et al. (2020).8 We use 2.5% of an En-
glish Wikipedia dump to generate our training set
for INLP and we use the bias attribute provided
in Appendix B. We randomly sample 10000 sen-
tences containing words from each bias attribute
class to form our training set. We encode each sen-
tence using a pre-trained language model. We take
the average token representation from the model’s
last hidden state (last_hidden_state) as the sen-
tence representation. We train 80 classifiers on the
resulting set of representations.

C.3 Self-Debias

We make use of the implementation provided by
Schick et al. (2021).° We provide the prompts we
use to debias each model in Table 9.

C.4 SentenceDebias

We make use of the implementation provided by
Liang et al. (2020).'° We use 2.5% of an English
Wikipedia dump and the bias attribute words pro-
vided in Appendix B to estimate our bias subspaces.
We use the average token representation from each
model’s last hidden state (Last_hidden_state) as
our sentence representation.

D GLUE Details

We train each of our models for three epochs using
a maximum sequence length of 128, a batch size
of 32, and a learning rate of 2e-5.

E Additional Results

In this section, we provide a complete set of results
for all four of our pre-trained models. We briefly
summarize the contents of each table below:

» Table 10 contains SEAT results for gender
debiased models.

8https: //github.com/shauli-ravfogel/nullspace_
projection

‘https://github.com/timoschick/self-debiasing

10https: //github.com/pliang279/sent_debias


https://github.com/shauli-ravfogel/nullspace_projection
https://github.com/shauli-ravfogel/nullspace_projection
https://github.com/timoschick/self-debiasing
https://github.com/pliang279/sent_debias

Model hidden_dropout_prob attention_probs_dropout_prob
BERT 0.20 0.15
ALBERT  0.05 0.05
RoBERTa 0.20 0.15

Table 8: Dropout parameters used to debias BERT, ALBERT, and RoBERTa.

Bias Domain Prompt

Gender The following text discriminates against people because of their gender:
Race The following text discriminates against people because of their race/color:
Religion The following text discriminates against people because of their religion:

Table 9: Self-Debias prompts we use in our experiments.

e Table 11 contains SEAT results for race debi-
ased models.

» Table 12 contains SEAT results for religion
debiased models.

* Table 13 contains StereoSet results for gender
debiased models.

e Table 14 contains StereoSet results for race
debiased models.

e Table 15 contains StereoSet results for reli-
gion debiased models.

» Table 16 contains CrowS-Pairs results for gen-
der debiased models.

¢ Table 17 contains CrowS-Pairs results for race
debiased models.

e Table 18 contains CrowS-Pairs results for reli-
gion debiased models.

» Table 19 contains GLUE results for gender
debiased models.
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Model SEAT-6 SEAT-6b SEAT-7 SEAT-7b SEAT-8 SEAT-8b Avg. Effect Size ()

BERT 0.931 0.090 -0.124 0.937 0.783 0.858 0.620
+ CDA 0.535 0.056 -0.925 0.352 0.303 0.129 0.383
+ DROPOUT 0.750 0.189 -0.507 0.488 0.348 0.202 0.414
+ INLP 0.551 -0.160 -0.638 0.291 0.346 0.195 0.363
+ SENTENCEDEBIAS  0.350 -0.298 -0.623 0.464 0.414 0.464 0.435

ALBERT 0.637 0.151 0.487 0.956 0.683 0.823 0.623
+ CDA 0.432 0.170 -0.302 0.103 0.287 -0.299 0.266
+ DROPOUT 0.512 0.247 -0.403 0.792 0.029 0.479 0.410
+ INLP 0.621 0.183 0.362 0.676 0.657 0.711 0.535
+ SENTENCEDEBIAS  0.491 -0.026 -0.031 0.489 0.431 0.647 0.352

RoBERTa 0.922 0.208 0.979 1.460 0.810 1.261 0.940
+ CDA 0.559 0.036 0.037 0.697 0.600 0.711 0.440
+ DROPOUT 0.761 0.007 0.133 0.810 0.626 0.862 0.533
+ INLP 0.711 0.099 0.755 1.404 0.573 1.291 0.806
+ SENTENCEDEBIAS  0.756 0.068 0.871 1.374 0.775 1.240 0.847

GPT-2 0.138 0.003 -0.023 0.002 -0.224 -0.287 0.113
+ CDA 0.161 -0.034 0.898 0.874 0.516 0.396 0.480
+ DROPOUT 0.167 -0.040 0.866 0.873 0.527 0.384 0.476
+ INLP 0.300 0.365 -0.075 -0.137 -0.373 -0.384 0.273
+ SENTENCEDEBIAS  0.087 -0.072 -0.294 -0.064 0.318 -0.667 0.250

Table 10: SEAT effect sizes for gender debiased BERT, ALBERT, RoBERTa and GPT-2 models. Effect sizes
closer to O are indicative of less biased model representations. The final column reports the average absolute effect
size across all six gender SEAT tests for each debiased model.

Model ABW-1 ABW-2 SEAT-3 SEAT-3b SEAT-4 SEAT-5 SEAT-5b Avg. Effect Size
BERT -0.079 0.690 0.778 0.469 0.901 0.887 0.539 0.620
+ CDA 0.798 0.191 -0.164 0.121 -0.338 -0.331 0.144 0.298
+ DROPOUT 0.888 0.248 0.110 0.041 -0.076 -0.110 0.142 0.231
+ INLP 0.051 0.684 0.817 0.387 0.990 1.047 0.506 0.640
+ SENTENCEDEBIAS -0.067 0.685 0.776 0.451 0.903 0.892 0.514 0.612
ALBERT -0.014 0.410 1.132 -0.252 0.956 1.041 0.058 0.552
+ CDA -0.182 0.114 0.772 -0.486 0.471 0.607 -0.219 0.407
+ DROPOUT -0.376 0.171 0.807 -0.460 0.413 0.566 -0.339 0.447
+ INLP 0.005 0.491 1.084 -0.266 0.906 1.055 0.011 0.545
+ SENTENCEDEBIAS 0.007 0.396 1.144 -0.265 0.970 1.050 0.052 0.555
RoBERTa 0.395 0.159 -0.114 -0.003 -0.315 0.780 0.386 0.307
+ CDA 0.530 0.040 -0.506 -0.475 -0.774 0.436 0.275 0.434
+ DROPOUT 0.557 -0.047 -0.378 -0.394 -0.698 0.747 0.422 0.463
+ INLP 0.378 0.123 -0.060 0.012 -0.284 0.745 0.316 0.274
+ SENTENCEDEBIAS 0.411 0.089 -0.109 0.005 -0.309 0.735 0.282 0.277
GPT-2 1.060 -0.200 0.431 0.243 0.133 0.696 0.370 0.448
+ CDA 0.434 0.003 0.060 -0.006 -0.150 -0.255 -0.062 0.139
+ DROPOUT 0.672 -0.017 0.204 0.035 -0.049 -0.122 -0.038 0.162
+ INLP 1.080 -0.203 0.244 0.198 -0.005 0.644 0.363 0.391
+ SENTENCEDEBIAS 0.460 0.023 0.905 0.417 0.638 0.258 0.217 0.417

Table 11: SEAT effect sizes for race debiased BERT, ALBERT, RoBERTa and GPT-2 models. Effect sizes
closer to O are indicative of less biased model representations. The final column reports the average absolute effect
size across all seven race SEAT tests for each debiased model.
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Model Religion-1  Religion-1b  Religion-2  Religion-2b  Avg. Effect Size

BERT 0.744 -0.067 1.009 -0.147 0.492
+ CDA 0.293 -0.155 -0.194 -0.355 0.249
+ DROPOUT 0.358 -0.060 -0.134 -0.339 0.223
+ INLP 0.646 -0.162 0.820 -0.218 0.461
+ SENTENCEDEBIAS 0.728 -0.001 0.985 0.037 0.438

ALBERT 0.203 -0.117 0.848 0.555 0.431
+ CDA 0.271 0.256 0.332 -0.201 0.265
+ DROPOUT -0.063 -0.164 0.554 0.074 0.214
+ INLP 0.152 -0.177 0.728 0.446 0.376
+ SENTENCEDEBIAS 0.244 -0.088 0.466 0.176 0.244

RoBERTa 0.132 0.018 -0.191 -0.166 0.127
+ CDA 0.206 0.136 -0.037 0.008 0.097
+ DROPOUT 0.250 0.071 -0.085 -0.088 0.123
+ INLP 0.099 0.050 -0.292 -0.266 0.177
+ SENTENCEDEBIAS -0.000 -0.090 -0.517 -0.477 0.271

GPT-2 -0.332 -0.271 0.617 0.286 0.376
+ CDA -0.101 -0.097 0.273 -0.082 0.138
+ DROPOUT -0.129 -0.048 0.344 -0.015 0.134
+ INLP -0.323 -0.245 0.587 0.421 0.394
+ SENTENCEDEBIAS -0.450 -0.430 0.890 0.410 0.545

Table 12: SEAT effect sizes for religion debiased BERT, ALBERT, RoBERTa and GPT-2 models. Effect sizes
closer to 0 are indicative of less biased model representations. The final column reports the average absolute effect
size across all four religion SEAT tests for each debiased model.

Model Stereotype Score (%) LM Score (%)
Gender
BERT 60.28 84.17
+ CDA 57.77 84.53
+ DROPOUT 59.29 84.62
+ INLP 59.79 83.71
+ SELF-DEBIAS 59.34 84.09
+ SENTENCEDEBIAS 59.37 84.20
ALBERT 59.93 89.77
+ CDA 58.67 82.94
+ DROPOUT 58.22 81.72
+ INLP 55.76 86.54
+ SELF-DEBIAS 61.52 89.54
+ SENTENCEDEBIAS 58.65 88.99
RoBERTa 54.45 72.25
+ CDA 53.99 71.28
+ DROPOUT 53.88 71.20
+ INLP 51.23 70.54
+ SELF-DEBIAS 54.55 71.79
+ SENTENCEDEBIAS 53.62 72.18
GPT-2 62.65 91.01
+ CDA 64.02 90.36
+ DROPOUT 63.35 90.40
+ INLP 58.18 90.07
+ SELF-DEBIAS 60.84 89.07
+ SENTENCEDEBIAS 55.81 87.27

Table 13: StereoSet stereotype scores and language modeling scores (LM Score) for gender debiased BERT,
ALBERT, RoBERTa, and GPT-2 models. Stereotype scores closer to 50% indicate less biased model behaviour.
Results are on the StereoSet test set. A random model (which chooses the stereotypical candidate and the anti-
stereotypical candidate for each example with equal probability) obtains a stereotype score of 50% in expectation.
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Model Stereotype Score (%) LM Score (%)

Race
BERT 57.03 84.17
+ CDA 56.26 84.49
+ DROPOUT 57.16 84.62
+ INLP 58.27 84.38
+ SELF-DEBIAS 54.30 84.24
+ SENTENCEDEBIAS 57.76 83.95
ALBERT 57.51 89.77
+ CDA 55.42 83.11
+ DROPOUT 53.26 81.72
+ INLP 57.88 90.27
+ SELF-DEBIAS 55.94 89.63
+ SENTENCEDEBIAS 58.67 89.59
RoBERTa 54.87 72.25
+ CDA 5491 71.57
+ DROPOUT 54.87 71.20
+ INLP 55.63 71.44
+ SELF-DEBIAS 54.26 71.87
+ SENTENCEDEBIAS 55.78 72.52
GPT-2 58.90 91.01
+ CDA 57.31 90.36
+ DROPOUT 57.50 90.40
+ INLP 58.51 91.76
+ SELF-DEBIAS 57.33 89.53
+ SENTENCEDEBIAS 56.29 91.40

Table 14: StereoSet stereotype scores and language modeling scores (LM Score) for race debiased BERT,
ALBERT, RoBERTa, and GPT-2 models. Stereotype scores closer to 50% indicate less biased model behaviour.
Results are on the StereoSet test set. A random model (which chooses the stereotypical candidate and the anti-
stereotypical candidate for each example with equal probability) obtains a stereotype score of 50% in expectation.
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Model Stereotype Score (%) LM Score (%)

Religion
BERT 59.70 84.17
+ CDA 59.53 84.67
+ DROPOUT 63.41 84.62
+ INLP 57.87 83.56
+ SELF-DEBIAS 57.26 84.23
+ SENTENCEDEBIAS 58.73 84.27
ALBERT 60.32 89.77
+ CDA 61.83 82.67
+ DROPOUT 60.18 81.72
+ INLP 61.39 88.18
+ SELF-DEBIAS 59.83 89.59
+ SENTENCEDEBIAS 56.09 88.83
RoBERTa 52.54 72.25
+ CDA 51.67 71.37
+ DROPOUT 52.99 71.20
+ INLP 50.59 72.53
+ SELF-DEBIAS 49.41 71.81
+ SENTENCEDEBIAS 50.60 72.14
GPT-2 63.26 91.01
+ CDA 63.55 90.36
+ DROPOUT 64.17 90.40
+ INLP 64.35 88.90
+ SELF-DEBIAS 60.45 89.36
+ SENTENCEDEBIAS 59.21 90.44

Table 15: StereoSet stereotype scores and language modeling scores (LM Score) for religion debiased BERT,
ALBERT, RoBERTa, and GPT-2 models. Stereotype scores closer to 50% indicate less biased model behaviour.
Results are on the StereoSet test set. A random model (which chooses the stereotypical candidate and the anti-
stereotypical candidate for each example with equal probability) obtains a stereotype score of 50% in expectation.
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Model Stereotype Score (%)

Gender
BERT 57.25
+ CDA 55.34
+ DROPOUT 58.02
+ INLP 57.63
+ SELF-DEBIAS 52.29
+ SENTENCEDEBIAS 52.29
ALBERT 48.09
+ CDA 48.85
+ DROPOUT 49.62
+ INLP 45.04
+ SELF-DEBIAS 45.04
+ SENTENCEDEBIAS 47.33
RoBERTa 59.92
+ CDA 55.73
+ DROPOUT 58.78
+ INLP 52.67
+ SELF-DEBIAS 56.87
+ SENTENCEDEBIAS 51.91
GPT-2 56.87
+ CDA 56.87
+ DROPOUT 57.63
+ INLP 56.87
+ SELF-DEBIAS 56.11
+ SENTENCEDEBIAS 56.11

Table 16: CrowS-Pairs stereotype scores for gen-
der debiased BERT, ALBERT, RoBERTa, and GPT-
2 models. Stereotype scores closer to 50% indi-
cate less biased model behaviour. A random model
(which chooses the stereotypical sentence and anti-
stereotypical sentence for each example with equal
probability) obtains a stereotype score of 50%.
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Model Stereotype Score (%)
Race
BERT 62.21
+ CDA 65.89
+ DROPOUT 62.98
+ INLP 62.98
+ SELF-DEBIAS 56.59
+ SENTENCEDEBIAS 62.40
ALBERT 62.40
+ CDA 59.88
+ DROPOUT 53.88
+ INLP 68.99
+ SELF-DEBIAS 56.98
+ SENTENCEDEBIAS 62.02
RoBERTa 63.57
+ CDA 65.50
+ DROPOUT 61.24
+ INLP 64.92
+ SELF-DEBIAS 62.40
+ SENTENCEDEBIAS 64.34
GPT-2 59.69
+ CDA 60.66
+ DROPOUT 60.47
+ INLP 55.81
+ SELF-DEBIAS 53.29
+ SENTENCEDEBIAS 55.23

Table 17: CrowS-Pairs stereotype scores for race
debiased BERT, ALBERT, RoBERTa, and GPT-
2 models. Stereotype scores closer to 50% indi-
cate less biased model behaviour. A random model
(which chooses the stereotypical sentence and anti-
stereotypical sentence for each example with equal
probability) obtains a stereotype score of 50%.



Model Stereotype Score (%)

Race
BERT 62.86
+ CDA 65.71
+ DROPOUT 68.57
+ INLP 60.95
+ SELF-DEBIAS 56.19
+ SENTENCEDEBIAS 63.81
ALBERT 60.00
+ CDA 66.67
+ DROPOUT 61.90
+ INLP 57.14
+ SELF-DEBIAS 57.14
+ SENTENCEDEBIAS 25.71
RoBERTa 60.00
+ CDA 61.90
+ DROPOUT 59.05
+ INLP 55.24
+ SELF-DEBIAS 51.43
+ SENTENCEDEBIAS 40.95
GPT-2 62.86
+ CDA 51.43
+ DROPOUT 52.38
+ INLP 70.48
+ SELF-DEBIAS 58.10
+ SENTENCEDEBIAS 36.19

Table 18: CrowS-Pairs stereotype scores for religion debiased BERT, ALBERT, RoBERTa, and GPT-2 mod-
els. Stereotype scores closer to 50% indicate less biased model behaviour. A random model (which chooses the
stereotypical sentence and anti-stereotypical sentence for each example with equal probability) obtains a stereotype
score of 50%.

Model CoLA MNLI MRPC OQNLI QQP RTE SST STS-B  WNLI Average
BERT 56.49 84.72 88.45 9140 90.99 63.30 92.20 88.48 44.60 77.85
+ CDA 57.01 84.74 88.88 91.32 91.04 6270 92.28 89.27 35.68 76.99
+ DROPOUT 51.85 84.79 87.33 91.33 90.44 61.61 9247 88.95 38.50 76.36
+ INLP 57.27 84.73 88.02 9134 91.04 6438 92.62 88.40 30.52 76.48
+ SENTENCEDEBIAS 56.67 84.55 88.91 91.48 9093 63.06 92.70 88.50 40.85 77.52
ALBERT 57.31 85.36 90.67 91.63 9049 71.12 91.86 90.61 42.72 79.08
+ CDA 55.14 85.47 91.65 9149 90.64 7485 92.05 91.04 46.48 79.87
+ DROPOUT 50.66 85.50 90.73 91.83 90.39 7220 91.97 90.56 44.13 78.66
+ INLP 58.88 85.54 90.78 91.43 90.62 7256 92.28 90.83 42.72 79.52
+ SENTENCEDEBIAS 56.81 85.36 91.25 91.50 90.66 69.19 92.28 90.58 3991 78.62
RoBERTa 58.13 87.71 91.10 9270 91.31 71.72 94.19 90.00 52.58 81.05
+ CDA 57.20 87.48 91.08 92.83 9137 72.08 94.53 90.39 56.34 81.48
+ DROPOUT 52.33 87.50 90.24 9272 9045 6739 94.11 89.05 46.95 78.97
+ INLP 56.76 87.66 91.39 92,67 9134 6895 94.30 89.86 52.11 80.56
+ SENTENCEDEBIAS 59.14 87.54 91.02 92.64 91.33 70.64 94.72 90.04 56.34 81.49
GPT-2 29.10 82.55 84.68 87.69 89.22 64.74 91.78 84.26 43.19 73.02
+ CDA 37.18 82.52 86.00 88.08 89.31 65.70 91.90 85.16 40.38 74.03
+ DROPOUT 29.94 82.45 8552 87.69 88.57 63.18 91.90 84.12 44.13 73.05
+ INLP 31.40 82.65 84.43 88.00 89.12 67.39 91.67 83.99 42.72 73.49

+ SENTENCEDEBIAS ~ 28.80 82.49 84.58 87.86 89.16 63.78 91.70 83.78 38.50 72.29

Table 19: GLUE validation set results for gender debiased BERT, ALBERT, RoBERTa, and GPT-2 models.
We report the F1 score for MRPC, the Spearman correlation for STS-B, and Matthew’s correlation for CoLA. For
all other tasks, we report the accuracy. Reported results are means over three training runs.
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