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Abstract

While conditional diffusion models have achieved remarkable success in various
applications, they require abundant data to train from scratch, which is often
infeasible in practice. To address this issue, transfer learning has emerged as
an essential paradigm in small data regimes. Despite its empirical success, the
theoretical underpinnings of transfer learning conditional diffusion models remain
unexplored. In this paper, we take the first step towards understanding the sample
efficiency of transfer learning conditional diffusion models through the lens of
representation learning. Inspired by practical training procedures, we assume
that there exists a low-dimensional representation of conditions shared across all
tasks. Our analysis shows that with a well-learned representation from source tasks,
the sample complexity of target tasks can be reduced substantially. Numerical
experiments are also conducted to verify our results.

1 Introduction

Conditional diffusion models (CDMs) utilize a user-defined condition to guide the generative process
of diffusion models (DMs) to sample from the desired conditional distribution. In recent years, CDMs
have achieved groundbreaking success in various generative tasks, including text-to-image generation
[Ho et al., 2020, Song et al., 2020, Ho and Salimans, 2022, Rombach et al., 2022], reinforcement
learning [Janner et al., 2022, Chi et al., 2023, Wang et al., 2022, Reuss et al., 2023], time series
[Tashiro et al., 2021, Rasul et al., 2021], and life science [Song et al., 2021, Watson et al., 2022,
Gruver et al., 2024, Guo et al., 2024].

Training a CDM from scratch requires a large amount of data to achieve good generalization. However,
in practical scenarios, users often have access to only limited data for the target distribution due to cost
or risk concerns, making the model prone to over-fitting. In such small data regime, transfer learning
has emerged as a predominant paradigm [Moon et al., 2022, Ruiz et al., 2023, Xie et al., 2023, Han
et al., 2023]. By leveraging knowledge acquired during pre-training on large source datasets, transfer
learning enhances the performance of fine-tuning on target tasks, facilitating few-shot learning and
significantly improving practicality.

Among the successful applications of transfer learning CDMs, the conditions are typically high-
dimensional vectors with embedded low-dimensional representations (features) that encapsulate all
the information required for inference. In addition, these representations are likely to be task-agnostic,
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Tasks Backbone Score Network | Condition Encoder

Text-to-Image [Esser et al., 2024] 2-8B | 4.7B
Text-to-Audio [Liu et al., 2024] | 350-750M | 750M
Robotic Control [Chi et al., 2023] | oM | 20-45M

Table 1: Comparing the number of parameters of different parts in CDMs.

enabling effective knowledge transfer. For example, in text-to-image generation, the text input
is inherently in high-dimensional space, but contains low-dimensional semantic information such
as object attributes, spatial relationships, despite the differences of styles or contents in different
image distributions. To take advantage of this structure, condition encoders are often frozen in the
fine-tuning stage [Rombach et al., 2022, Esser et al., 2024], which typically constitutes a significant
portion of the overall model (see Table 1).

While this paradigm has demonstrated remarkable empirical success, its theoretical underpinnings
remain largely unexplored. The following fundamental question is still open:

Can transfer learning CDMs improve the sample efficiency of target tasks by leveraging the
representation of conditions learned from source tasks?

There are some recent works attempting to study the theoretical underpinnings of CDMs [Fu et al.,
2024, Jiao et al., 2024, Hu et al., 2024], but focus on single task training. Notably, Yang et al. [2024]
investigates transfer learning DMs under the assumption that the data is a linear transformation of a
low-dimensional latent variable following the same distribution across all tasks. However, fine-tuning
merely the data encoder is not a widely adopted training approach in practice.

In this paper, we take the first step towards addressing the above question. Our key assumption is that
there exists a generic low-dimensional representation of conditions shared across all distributions.
Then we show that, with a well-learned representation from source tasks, the sample complexity of
target tasks can be reduced substantially by training only the score network. The main contributions
are summarized as follows:

* In Section 3, we establish the first generalization guarantee for transferring score matching error in
CDMs, showing that transfer learning can reduce the sample complexity for learning condition
encoder in the target task. This is aligned with existing transfer learning theory in supervised
learning. Specifically, we present two results in Theorem 3.4 and Theorem 3.6, under the settings
of task diversity assumption and meta-learning’, respectively. On the technical side, we develop a
novel approach to tackle Lipschitz continuity under weaker assumptions on data distribution in
Lemma 3.1, which may be of independent interest for the analysis of even single-task diffusion
models.

¢ In Section 4, we provide an end-to-end distribution estimation error bound in transfer learning
CDMs. To obtain an L? accurate conditional score estimator, we construct a universal approx-
imation theory using deep ReLU neural networks in Theorem 4.1. Then by combining both
generalization error and approximation error, Theorem 4.2 and 4.3 provide sample complexity
bounds for estimating conditional distribution. Notably, our results are the state of the art even
when reduced to single-task learning setting.

In Section A, we further utilize our results to establish statistical guarantees in practical applications
of CDM:s. In particular, we investigate amortized variational inference (Theorem A.1) and behavior
cloning (Theorem A.2), and present guarantees in terms of posterior estimation and optimality gap,
laying the theoretical foundations of transfer learning CDMs in practice. We also conduct numerical
experiments in Section 5 to verify our results.

’In practice, the terms such as transfer learning, meta-learning, learning-to-learn, efc., often refer to the
same training paradigm, i.e., to fine-tune on target tasks with limited data using knowledge from source tasks.
However, in the theoretical framework, we use meta-learning to emphasize that target tasks and source tasks are
randomly sampled from a meta distribution [Baxter, 2000], whereas in transfer learning, the tasks are fixed.



1.1 Related Works

Score Approximation and Distribution Estimation Recently, some works analyze the score
approximation theory via deep neural networks and corresponding sample complexity bounds for
diffusion models. Oko et al. [2023] considers distributions with density in Besov space and supported
on bounded domain. Chen et al. [2023b] assumes the data distribution lies in a low-dimensional
linear subspace and obtains improved rates only depending on intrinsic dimension. Fu et al. [2024]
studies conditional diffusion models for Holder densities and Hu et al. [2024] further extends the
framework to more advanced neural network architectures, e.g., diffusion transformers. Wibisono
et al. [2024] establishes a minimax optimal rate to estimate Lipschitz score by kernel methods. With
an L? accurate score estimator, several works provide the convergence rate of discrete samplers for
diffusion models [Chen et al., 2022b, 2023a, Lee et al., 2023, Chen et al., 2024]. Combining score
matching error and convergence of samplers, one can obtain an end-to-end distribution estimation
error bound.

Transfer Learning and Meta-learning Theory in Supervised Learning The remarkable empirical
success of transfer learning, meta-learning, and multi-task learning across a wide range of machine
learning applications has been accompanied by gradual progress in their theoretical foundations,
especially from the perspective of representation learning. To the best of our knowledge, Baxter
[2000] is the first theoretical work on meta-learning. It assumes a universal environment to generate
tasks with some shared features. Following this setting, Maurer et al. [2016] provides sample
complexity bound for general supervised learning problem and Aliakbarpour et al. [2024] studies
very few samples per task regime. Another line of research replaces the environment assumption
and instead establishes connections between source tasks and target tasks through various notions
of task diversity [Tripuraneni et al., 2020, Du et al., 2020, Tripuraneni et al., 2021, Watkins et al.,
2023, Chua et al., 2021]. However, theoretical understandings of transfer learning for unsupervised
learning are much more limited.

Few-shot Fine-Tuning of Diffusion Models Adapting pre-trained conditional diffusion models
to specific tasks with limited data remains a challenge in varied application scenarios. Few-shot
fine-tuning aims to bridge this gap by leveraging various techniques to adapt those models to a novel
task with minimal data requirements [Ruiz et al., 2023, Giannone et al., 2022]. A promising paradigm
is to use transfer (meta) learning by constructing a representation for conditions in all the tasks, which
has been widely applied in image generation [Rombach et al., 2022, Ramesh et al., 2022, Sinha et al.,
2021], reinforcement learning [He et al., 2023, Ni et al., 2023], inverse problem [Tewari et al., 2023,
Chung et al., 2023], efc. Another work Yang et al. [2024] is closely related to this paper, proving that
few-shot diffusion models can escape the curse of dimensionality by fine-tuning a linear encoder.

2 Preliminaries and Problem Setup

Notations We use = and y to denote the data and conditions, respectively. The blackboard bold
letter IP represents the joint distribution of (x, y), while the lowercase p denotes its density function.
The superscript k indicates the task index, and the subscript ¢ means the sample index. The norm
|| - || refers to the £2-norm for vectors and the spectral norm for matrices. For the hypothesis class

F, we use FOK to refer its K-fold Cartesian product. For any a,b € R, a A b = min{a, b} and
a Vb = max{a, b}. Finally, we use standard O(-), £2(-) to omit constant factors.

2.1 Conditional Diffusion Models

Let R% denote the data space and [0, 1]D v denote the condition space. Let P be any joint distribution
over R% x [0, 1]P¥ with density p and P(-|y) be the conditional distribution with density p(-|y). As
in diffusion models, the forward process is defined as an Ornstein—Uhlenbeck (OU) process,

dX; = —X,dt + V2dW,, Xo ~ P(-]y). 2.1

where {W; },> is a standard Wiener process. We denote the distribution of X, as P, (+|y). Note that
the limiting distribution P (-|y) is a standard Gaussian A (0, T).

To generate new samples, we can reverse the forward process (2.1) from any 7" > 0,
dX{ = (X7 +2Vlogpr— (X |y))dt + V2dW, X5~ ~ Pr(-]y),0 <t < T. 22



where {Wt}ogtST is a time-reversed Wiener process. Unfortunately, we don’t have access to the
exact conditional score function V log pr_+ and need to estimate it through neural networks. For any
(x,y) ~ P and score estimator s, define the individual denoising score matching objective [Vincent,
2011] as

1 T
Uz, y,s) = T, /T Eome (|2 [IS(2, 9, t) — Vog ¢t(:(;t|x)||2]dt, (2.3)

t

where ¢ (z¢|z) = N (z¢|owz, 071), 00 = e 07 =1 — e~ 2, is the transition kernel of x;|z = =.

And the population error of score matching is
L]P(S) = E(I,y)NPEt,wt [HS(.Tt, Y, t) -V 1ngt («Tt'y)HQ] = E(I,y)NP[K(x’ Y, S) - f(,’]}, Y, S]}:)} (2.4)

Here s° denotes the true score function and t ~ Unif([Ty, T]). We also define £ (x,y,s) =
((z,y,s) — £(x,y,s-). In practice, with a score estimator 3, the generative process is to simulate

AX; = (X7 + 25Xy, T — )dt + V2dW,, X ~N(0,1),0<t < T —T,.  (2.5)

Here T; > 0 is the early-stopping time. And the distribution of )A(‘T__TO is written as @(|y)

Note that we don’t apply the commonly used classifier-free guidance [Ho and Salimans, 2022]
which has a tunable guidance strength since we mainly concentrate on sampling from conditional
distribution instead of optimizing other objectives.

2.2 Transfer Diffusion Models via Learning Representation

Consider K source distributions over R% x [0, I]D v, Pt... PE and a target distribution PY.
Suppose that for each source distribution P¥ 1 < k < K, we have n i.i.d. samples {(zF,y5)}7_, ~
P*, and m i.i.d. samples {(x),9y2)}™, ~ P are available for the target distribution, where typically

m < n. In transfer (meta) learning setup, we assume there exists a shared nonlinear representation

of the condition y for all distributions, i.e., the conditional distribution Pf?‘y = IE”’;‘ h.(y) fOr some

h, : [0,1]Pv — [0,1]% (see also Assumption 3.2). Note that due to the shared features, the score of
p¥(-|y) also has the form of Vlog p¥ (x|y) = f¥(x¢, ha(y),t) for some fF.

Similar to Tripuraneni et al. [2020], our transfer learning procedures consist of two phases. In the
pre-training phase, the goal is to learn a representation map h, through nK samples from K source
distributions. Then during the fine-tuning phase, we learn the target distribution via m new samples
and the representation map learned in the pre-training phase.

Formally, let F, H be the hypothesis classes of score networks and representation maps, respectively.
Further let F° C F be the hypothesis class of score network in fine-tuning phase. In the pre-training
phase, we solve the following Empirical Risk Minimization (ERM),

K n
N 1
f,h= argmin — E g (xF yF s p). (2.6)
FeFer pen MK =~ ™

Then for the fine-tuning task, we solve

m
0. i 0,0 o _
f '_aﬁcger;lomm;axi’yi’sfﬁ)' 2.7

Here s; (2, y,t) := f(2, h(y),t) for f : R% x [0,1]% x [Ty, T] — R% and h : [0,1]Pv — [0, 1]%
and / is defined in (2.3).

In the meta-learning setting, we further assume that all the distributions {P*}, are i.i.d. sampled
from a meta distribution Py, Here Py, can be interpreted as a universal environment [Baxter,
2000, Maurer et al., 2016]. In this case, we posit the existence of a shared representation map that
holds for all P ~ Py,e,. And the performance benchmark is then defined as the expected error on the
target distribution PO ~ Preta.



2.3 Deep ReLU Neural Network Family

We use feedforward neural networks to approximate the score function and representation

map. Let o(z) := max{x,0} be the ReLU activation. Define the score network family
NNy(L,W,M. 8, B, R,7) = {f(z,w,t) = (Apo(:) +br) oo ([’ w’ 1" +by)
2

A€ RIS € RYdpy = doymaxd: S Willfli= < 30140 + [lile) <

S,max [|Aillee V [billoc < B, || f(z,w,t) — f(z,w', )] < ylw - w’lloo,V ||Jf||oo < Rt<T}

and encoder network NNj,(L,W,S,B) = {h(y) = (Apo(-) + bL) o - (Aly + by)

A; € R¥*4m b € R* dpyy = dy,maxd; < W,[|hlleoqyosy < 12 (I 4illo +
=1
[billo) < S,max| Al V ||bilcc < B}. Throughout this paper, we let ]_-0 = F =

NNg(Ly, Wy, Mg, Sy, By, Rg,v¢) and H = NNy(Lp, Wi, Sy, Bp,) unless otherwise specified.

Remark 1. In practice, F° C F may (and typically will) depend on f for parameter efficient
fine-tuning (PEFT), e.g., LoRA [Hu et al., 2021]. This will substantially reduce the complexity of F°
and further improve sample efficiency. The analysis of PEFT is beyond the scope of this paper.

3 Statistical Guarantees for Transferring Score Matching Error

In this section, we present our main theoretical results, a statistical theory of transferring the con-
ditional score matching loss. We provide two upper bounds of the score matching loss on target
distribution, based on whether task diversity [Tripuraneni et al., 2020] is explicitly assumed. Our
analysis introduces novel techniques to address the smoothness properties of the noised data distribu-
tion—a challenge that remains nontrivial even in single-task settings. Additionally, we extend the
classical theory of local Rademacher complexity to quantify the empirical estimation error.

Throughout this paper, we make the following standard and mild regularity assumptions [Tripuraneni
et al., 2020, Chen et al., 2023b] on the initial data distribution IP and the representation map h..
Assumption 3.1 (Sub-gaussian tail). For any source or target distribution P, P is supported on
R x [0,1]Pv and admits a continuous density p(x,y) € C*(R% x [0,1]Pv). Moreover, the
conditional distribution p(x|y) < Cy exp(—Cs||z||?) for some constant Cy, Cs.

Assumption 3.2 (Shared low-dimensional representation). There exists an L-Lipschitz function
hy @ [0,1)Pv — [0,1]% with d, < D,, such that for any source and target distribution P, the
conditional density p(x|y) = g% (x, h.(y)) for some g¥ € C*(R% x [0,1]%).

Equivalently, h.(y) is a sufficient statistic for x, which indicates that p;(z|y) = p:(x|h«(y)). There-
fore, with a little abuse of notation, for any w € [0,1]%, we define p(z;w) = p(z|h.(y) = w) =
g% (, w). Also note that by definition, for any z,y, we have p(x; h.(y)) = p(x|h.(y)) = p(z|y).
Assumption 3.3 (Lipschitz score). For any source and target distribution P and its density function
p, the conditional score ¥V, log p(z|y) = Vlog g% (, h. (y)). The score function Y, log g (z,w)
is L-Lipschitz in x and w. And ||V, log g% (0, w)|| < B for some constant B and any w.

3.1 Tackling Lipschitz Continuity under Weaker Assumptions

Notice that we only impose smoothness assumption on the original data distribution p(-|y), instead
of the entire trajectory p;(-|y) in forward process. This is substantially weaker than the Lipschitzness
assumption required in Chen et al. [2023b, 2022b], Yuan et al. [2024], Yang et al. [2024]. However,
Lipschitzness of loss function ¢ and class F is a crucial hypothesis in theoretical analysis of transfer
learning [Tripuraneni et al., 2020, Chua et al., 2021]. The intuition is that without Lipschitz conti-
nuity of the score network f, it is generally impossible to characterize the error from an imperfect
representation map h. Hence it is inevitable to show the smoothness of p;(-|y) to some extent.

Fortunately, even with assumptions merely on the initial data distribution, we are still able to prove
smoothness of the forward process in any bounded region, as shown in the following lemma. The
proof can be found in Appendix B.1.



Lemma 3.1. Under Assumption 3.1, 3.2, 3.3, for any w € |0, 1}dy, denote the conditional score
of forward process ¥V ;. 1og ps(x;w) by fi(x,w,t). There exist constants Cx,C’, such that for any
R > 0, the function f.(x,w,t) is (Cx + C% R?)-Lipschitz in x, (Cx + C’ R)-Lipschitz in w, in the
domain B, x [0,1]% x [0, T]. Here Br, denotes the ball with radius R centered at the origin.

3.2 Results under Task Diversity: Sample-Efficient Transfer Learning

In the literature of transfer learning, task diversity is an important assumption that connects target
tasks with source tasks [Tripuraneni et al., 2020, Du et al., 2020, Chua et al., 2021]. In the context of
conditional diffusion models, we state the formal definition as follows.

Definition 3.1 (Task diversity). Given hypothesis classes F, H, we say the source distributions

P!, ... P¥ are (v, A)-diverse over target distribution P, if for any representation i € H,
1
. PO
fouelffﬂL (spop) < ;fGIJI;gKK E ¥ (sfrp) + AL 3.1)

Here LF is defined in (2.4). This notion of diversity ensures that the representation error on the target
task caused by h can be controlled by the error on the source tasks, thereby establishing certain
relationships in between. More detailed discussions are deferred to Appendix B.5.

We first present the generalization guarantee for each phase respectively.

Proposition 3.2 (Fine-tuning phase generalization). Under Assumption 3.1, 3.2, 3.3, for any heH,
the population loss of fo can be bounded by

0 . 0
E (i)}, ~poB(o,y)po [€ (@, 9,570 7)] S lng__]E(z,y)NPO[eP (@, 9,5:3)] +log®(m)ry, (3.2)

fe

where r, = and log N'r is some complexity measures of F.

log./\N/‘]:
m

Proposition 3.3 (Pre-training phase generalization). Under Assumption 3.1, 3.2, 3.3, if Ry 2
log% (nK Mjy/6), with probability no less than 1 — 6, the population loss can be bounded by

K K
. 1 P 3
; ) Npkf (@, 9870 3) S fe.FQl?rfl{f,heH Ve ;E(I,y)wk [0 (2, y, 55 p)|+log” (nK /) (Tz +
N N (3.3)
Kl 1 ~ ~
where 1, 1= 0g N + log N and log Nz,log Ny, are some complexity measures of F, H.

nk

Combining these two propositions with the notion of task diversity in Definition 3.1, we are able to
show the statistical rate of transfer learning as follows.

Theorem 3.4. Under Assumption 3.1, 3.2, 3.3, suppose P, - .. PX are (v, A)-diverse over target
distribution P° given F,H. If Ry > log% (nK Mjy/6), then with probability no less than 1 — §,

log(1/9)

nk

k
Ef(zyym, B y)~po 67 (2,5 )l S ; hfequ{ e Z inf E(x i [0 (2, y, 55.0)] + A
log® (m) 1ogN]: log®(nK /6)(K log N 4 log(Ny /9))
+ m + vnk '
(3.4)
where
log N7 : = M7S¢Lylog (mnLsWg(By V1) MT log(1/6)), 3.5)

log Ny : = S Ly, log (nKLhWh(Bh V 1)Mf’yf log(l/é)) .

The formal statements and proofs are provided in Appendix B.2.

).



1 X
Let gapprox = inf }Z

fHel; E(z,y)~p* [Epk (x,y,sy,n)] be the approximation error. The lead-

R Klog Nz +log Ny log N
+
nk m
log N3, capture the complexity of the hypothesis classes.

ing terms can be simplified to 0] (aapprox + ), where log N7 and

Improving Sample Efficiency Theorem 3.4 demonstrates the sample efficiency of transfer learn-
ing. Compared to naively training the full CDM for target distribution, which has an error of

~< log Nx + log Ny
O Eapprox m

performance is much better when m is relatively small to n, K (i.e., in few-shot learning setting).

, transfer learning saves the complexity of learning  and thus the

3.3 Results without Task Diversity: Meta-Learning Perspective

The results in previous section heavily depend on the task diversity assumption, which is hard to
verify in practice. An alternative is to consider meta-learning setting, where all source and target
distributions are sampled from the same environment, i.e., a meta distribution.

For any h € C([0,1]7¥;[0,1]%) and distribution P over R% x [0, 1]P¥, define the representation
error as

ﬁ(Pv h) = }Q;E(fc,y)wﬂ”[gp(l'v Y, Sf,h)} > 0. (36)

We characterize the generalization bound of source tasks on the entire meta distribution as follows.

Proposition 3.5 (Generalization on meta distribution). Under Assumption 3.1, 3.2, 3.3, there exists
constant C'p such that for {]Pk}kl.{zl Hid P, era» With probability no less than 1 — 6,

K
2 log(1/5)

Ep~ Ph) < = P* — :
or B € 52 EE )+ O (1 R, 6)
1 & log(1/5)

= D" L(P¥,h) < 2Bpns,, L h) + Cp <rp + gK) , (3.8)

k=1

SnLy, log (KLhWh(Bh V 1)Mf’}/f)
K

Theorem 3.6. Under Assumption 3.1, 3.2, 3.3, if Ry 2, log% (nK My /6), then with probability no
less than 1 — ¢, the expected population loss of new task can be bounded by

holds for any h € H, where rp = M]% exp(—Q(Rfc)) +

Ep0 8, B (21,50 y B0 B gy [ (2,4, 8 70 7))

log®(m)log NF  log®(nK/8)logNF  log(Ny/d)
+ +
m n K
3.9)

. . P
rg f:IGI’f{ EPNPmam ;Iel_f/"‘-' E(w,y)NJP’[g (fﬂ, Y, sf,h)] =+

Y

where log Nr,log Ny are defined in (3.5).

The formal statements and proofs are provided in Appendix B.3.
Let Expprox = hm7f_£ Ep-p,., ;ng_ E(%y)NP[EP(x, Yy, Sr,»)] be the approximation error in meta-learning.
€ €

log Nr N log Ny
mAn K
transfer learning bound in Theorem 3.4, the leading term decays only in K and not in n. This is
because that without task diversity assumption, the connection between source distributions and target
distributions can only be constructed through meta distribution. And according to Proposition 3.5, the
source distributions P!, - - - | PX collectively form a K -shot empirical estimation of Py, leading to
an estimation error of O(1/K). Despite this, Theorem 3.6 still demonstrates the sample efficiency of
meta-learning compared to naive training method when m is small and n, K are sufficient large.

. Different from

The results above can be further simplified to 1) <€~appmx +



4 End-to-End Distribution Estimation via Deep Neural Network

Section 3 provides a statistical guarantee for transferring score matching. In this section, we establish
an approximation theory using deep neural network to quantify the misspecification error. Combining
both results we are able to obtain an end-to-end distribution estimation error bound for transfer
learning diffusion models.

4.1 Score Neural Network Approximation

The following theorem provides a guarantee for the ability of deep ReLU neural networks to approxi-
mate score and representation. The proof is provided in Appendix C.1.

Theorem 4.1. Under Assumption 3.1, 3.2, 3.3, to achieve Ry 2, log% (nKMjy/6) and

K
. 1 . P* 2 2 .
iilel?f-[ e Z;Q;E($7y)N]pk [ (z,y,s70)] =0 (log (nK/(€0))e ) , (transfer learning) (4.1)
. . 9 .
iilel?f-[ Ep~p, .. }Ielg_]E(w,y)wP [ﬂp(:m y,sn)) =0 (log (nK/(s§))52) , (meta-learning) 4.2)

the configuration of F and H should satisfy
Lf _ O <10g (10g(TLK/(€(5)) >) Wf _ O <log3(dm+dy)/2(nK/(55)) >
6 ) b

gdatd, F1T3
P i (2 A C) A WA Tlog? (nk/(s5)) 4.3)
! edotd, 173 Dy B ;

Ry = 0 (log* (0 /(20))) , My = O (log® (K /(e0))) 5 = O (los(n K/ (&)))

Ly, = O (log(1/e)) , W), = O (e Pvlog(1/e)),Sp = O (g Pv 10g2(1/5)) ,Br,=0(1). (4.4)
Here O(-) hides all the polynomial factors of d, d,, D, C1,Cs, L, B.

Universal approximation of deep ReLU neural networks in a bounded region has been widely studied
[Yarotsky, 2017, Schmidt-Hieber, 2020]. However, we have to deal with an unbounded domain here,
hence more refined analysis is required, e.g. truncation arguments.

In addition, traditional approximation theories typically cannot provide Lipschitz continuity guaran-
tees, which is crucial in transfer learning analysis. Following the constructions in Chen et al. [2023b],
the Lipschitzness restriction doesn’t compromise the approximation ability of neural networks, while
ensuring validity of the generalization analysis in Section 3.

4.2 Distribution Estimation Error Bound

Given the approximation and generalization results, we are in the position of bounding the distribution
estimation error of our transfer (meta) learning procedures. The formal statements and proofs can be
found in Appendix C.2.

Theorem 4.2 (Transfer learning). Under Assumption 3.1, 3.2, 3.3 and (v, A)-diversity with proper
configuration of neural network family and T, Ty, it holds that with probability at least 1 — 6,

_ log? (nk/d) logg((m/u)An)+ 1og2(nK/f5) VA

E{(mlvyi)}:’;1~POEy~P2 [TVG:/P\)O PO )] ~ 1 1 1
i vz((m/v) An)detdyo vz (nK)Pyt?

zly’ " zly

4.5)

Theorem 4.3 (Meta-learning). Under Assumption 3.1, 3.2, 3.3 and meta-learning setting, with proper
configuration of neural network family and T, Ty, it holds that with probability at least 1 — 6,

< log%(nK/é) log®(m A n) n log?(nK /o)

~ 1 1
(m A n) dy+dy+9 K Dy+2

(4.6)

Ep0 o B (21w 7y ~PO By [TV(PY,,.P%),)]

x|y~ zly



m 10 20 30 40 50 100 m 10 20 30 40 50 100

fine-tuning 1447 3.68 245 182 19 091 fine-tuning 6.14 265 1.61 1.08 096 045
train-from-scratch  21.99 10.61 571 238 1.77 1.04 train-from-scratch  24.41  20.62 18.67 1349 7.03 123
Table 2: MSEs for 5y = 5.5. Table 3: MSEs for 5y = 15.

Theorem 4.2 and 4.3 again unveil the benefits of transfer (meta) learning for conditional diffusion
models, with a rate of O((m A n)” %F4 7 4 (nK) v ) or O((m An)” =Fd® 4 K~ Dyi?),

To compare, naively learning the target distribution in isolation will yield O(m % ¥Ps+9). When
the condition dimension D,, is much larger than feature dimension d,, transfer (meta) learning can
substantially improve sample efficiency on target tasks, thanks to representation learning.

Comparison with Existing Complexity Bounds of CDMs Fu et al. [2024] studies conditional
diffusion model for sub-gaussian distributions with 3-Holder density. Since the Lipschitzness of
score is analogous to the requirement of twice differentiability of density [Wibisono et al., 2024],
it is reasonable to let 5 = 2 for a fair comparison. In this case, the TV distance is bounded

by 5(m_ 2(da *1’3?1”)) with sample size m according to Fu et al. [2024], which is worse than our

~ _ 1 . . . .
naive bound O(m~ %=+Py+9) due to the inefficiency of score approximation. We are also aware
of another work [Jiao et al., 2024] that assumes Lipschitz density and score, obtaining a rate of

O(m~ TEF@TD, 79 ),

Relation to Yang et al. [2024] Unlike our setup, Yang et al. [2024] considers transfer learning
unconditional diffusion models with only one source task, ie., Dy, = dy, = 0,K = 1. The
unconditional distribution is assumed to be supported in a low-dimensional linear subspace, where
the source task and the target task have the same latent variable distribution. Hence, only a linear

encoder is trained for fine-tuning instead of the full score network. In this case, Yang et al. [2024]
~ 1—a(n)
is able to bound the TV distance by O(m*% +n~ @+5 ), escaping the curse of dimensionality for

target task. However, the assumption on shared latent variable distribution is stringent and we believe
our analysis methods can be extended to this setting as well.

5 Experiments

Our theoretical results can be readily applied in various real world settings. In Appendix A, we
investigate amortized variational inference and behavior cloning utilizing our theories, providing
statistical guarantees of practical applications of CDMs. In addition, we conduct experiments on both
synthetic and real world data to numerically verify the sample efficiency of transfer learning.

Conditioned Diffusion The first numerical example is the high-dimensional conditioned diffusion
[Cui et al., 2016, Yu et al., 2023] arising from the following Langevin SDE

du, = fus(1 —u?)ds + dws, ug = 0, (5.1)

where 5 > 0 and w; is a one-dimensional standard Brownian motion. The SDE (5.1) is discretized
by the Euler-Maruyama scheme with a step size of 0.02, which defines the prior distribution pg(z)

for the (discretized) trajectory = (ug.o2, %0.04, - - - ,ulvoo)T € R%. We consider a conditional
Gaussian likelihood function, p(y|z) = N(Mzx, I199/4), where M € R'9*%0 is a pre-defined
projection matrix. Given a set of pre-selected {8x; 1 < k < K} with 8, = k and K = 10, the k-th
joint source distribution is given by P*(x,y) = pg, (x)p(y|x). The target distribution P (z, ) is
given by Sy = 5.5 (in-domain) or 3y = 15 (out-of-domain). More details are found in Appendix E.1.

We report the MSEs of the estimated posterior mean of P’(z|y) on the test samples in Table 2 and 3.
We see that across different values of 5 and m, the fine-tuned models can provide significantly more
accurate posterior mean estimations in most cases, suggesting the effectiveness of the representation
map h learned in the pre-training phase. Notably, as the number of fine-tuning samples m increases,
the performance gaps between fine-tuned models and train-from-scratch models get smaller, since
more training samples yield more generalization benefits and thus less dependence on the pre-trained



m 10 20 30 40 50 100

fine-tuning 0.3799 0.2846 0.2544 0.2406 0.2404 0.2268
train-from-scratch  0.4409 0.3180 0.2746 0.2551 0.2501 0.2344

Table 4: MSEs on the image restoration task.

model. This is aligned with our theoretical results. We also notice a large variance among the
results of different replicates, and attribute the slightly worse performance of fine-tuned models at
m = 50, By = 5.5 to the potential randomness.

Image Restoration For a real data experiment, we consider the image restoration task on MNIST.
We have K = 9 source tasks with P (z,y) = pi(z)p(y|x), where the prior py(z) is the data
distribution of the digit & in the MNIST data set (1 < k < K) and p(y|z) = N (z, I734/4). The
target task is P°(x,y) = po(x)p(y|x), where po(x) is the data distribution of the digit 0. We use
the full MNIST 1-9 data for pre-training which corresponds to n = 5000. For the finetuning phase,
we consider m = 10, 20, 30, 40, 50, 100 training samples and 100 test samples from lPo(gc, y). More
details can be found in Appendix E.2.

We report the MSEs between estimated posterior mean of IP°(z, /) = po(z)p(y|z) and the ground
truth sample = on the test samples in Table 4. We see that for all fine-tuning sample sizes m, the
results obtained by fine-tuning consistently outperform those obtained by training from scratch,
indicating the benefits of transfer learning. Similarly to the experiment on conditioned diffusion, we
also observe a reduced performance gap as m increases.

6 Conclusion and Discussion

In this paper, we take the first step towards understanding the sample efficiency of transfer learning
conditional diffusion models from the perspective of representation learning. We provide a generaliza-
tion guarantee for transferring score matching in CDMs in different settings. We further establish an
end-to-end distribution estimation error bound using deep neural networks. Two practical applications
are investigated based on our theoretical results. We hope this work can motivate future theoretical
study on the popular transfer learning paradigm in generative Als.

Although this work provides the first statistical guarantee for transfer learning in CDMs, it has several
limitations that we plan to address in future research. First, our theoretical results heavily rely on the
task diversity notion introduced in Section 3.1, which can be challenging to verify in practice. While
we provide some preliminary empirical evidence in Appendix B.5, a more fine-grained theoretical
and empirical analysis will be essential for a deeper understanding of CDMs. Second, our analysis
focuses on the ERM estimator, whereas in practice, fine-tuning typically starts from a pre-trained
model and may employ techniques such as LoRA. Incorporating these settings would allow for an
optimization-based perspective on the sample efficiency of transfer learning. Finally, in our current
formulation, the sample efficiency gain arises from reducing the complexity associated with learning
the conditional encoder. Consequently, our results primarily apply to CDMs in which the conditional
encoder constitutes a substantial part of the overall model. Extending the theory to settings where
this assumption does not hold is an important direction for future work.
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A Applications

We explore two applications of transfer learning for conditional diffusion models, supported by
theoretical guarantees derived from our earlier results. In particular, we study amortized variational
inference and behavior cloning. These real-world use cases not only validate the applicability of our
theoretical findings but also lay the foundations of transferring diffusion models in practice.

A.1 Amortized Variational Inference

Diffusion models have exhibited groundbreaking success in probabilistic inference, especially latent
variable models. We study a simple amortized variational inference model, where the observation y
given latent variable z is distributed according to an exponential family Fy with density

Py (ylz) = P(y) exp((z, ha(y)) — Ay (2)), (A.1)

where ¢» € ¥ is non-negative and supported on [0, 1]” and h. (y) € [0, 1]%. Note that we also have
d; = d in this case. The prior distribution of variable x is denoted as py for some ¢ € ®. Let
0 = (¢, ¢) and we aim to sample from the posterior distribution of pg(x|y) o< py(z)py(y|z)
pe () exp({x, hy(y)) — Ay (x)). Due to the special structure, the posterior pg(x|y) only depends on
the low-dimensional feature /. (y), shared across all @ € © := ¥ x ®. This formulation encompasses
various applications including independent component analysis [Comon, 1994], inverse problem
[Song et al., 2021, Ajay et al., 2022] and variational Bayesian inference [Kingma, 2013].

Consider source tasks consisting of 81,--- 0% € ©, and for each 6% we have n i.i.d. samples
{(z¥,y¥)}™_,. For the target task °, we only have m samples {(z?,3)}™,. We conduct our

~

transfer learning procedures to train a conditional diffusion models Pyo (-|y). For theoretical analysis,
we further impose some assumptions on the probabilistic model as follows.

Assumption A.1. The prior distribution satisfies py(x) < Cy exp(—Cs||x||?) and V. log py () is
L-Lipshcitz in z, |V logpe(0)|| < B for any ¢ € ®. The representation h, is L-Lipschitz. The

integral /w(y)dy € [1/C,C] forany ) € V.

Theorem A.1. Suppose Assumption A.1 holds. Then under meta-learning setting, we have with
probability no less than 1 — 9,

5
~ log? (nK/8) log®(m An log?(nK/§
EgoE (20400172, Eypyo [TV (Bo (1), Byo (|y))] < 220t/ log (mAm)  log”(nk/0)

(mAn) 5is K
If (v, A)-diversity holds, then we have with probability no less than 1 — §,

~ log? (nK/8) log®((m/v) An) log2(nk/s
E (a8 901y 02, Eytoo [TV (oo (1), B ()] 5 28 SO o8 (/) Am) | Jlog” (/D) | /R
e vz ((m/v) A n)2a+s vz (nK)Dp+2

(A3)

The proof is deferred to Appendix D.1. We show that under mild assumptions, transfer (meta)
learning diffusion models can improve the sample efficiency for target task in the context of amortized
variational inference. This error bound can be further extended to establish guarantees for statistical
inference such as moment prediction, uncertainty assessment, efc.

A.2 Behavior Cloning via Meta-Diffusion Policy

Although originally developed for image generation tasks, diffusion models have recently been
extended to reinforcement learning (RL) [Janner et al., 2022, Chi et al., 2023, Wang et al., 2022],
enabling the modeling of complex distributions of dynamics and policies. In the context of meta-RL,
some works have further utilized diffusion models for planning and synthesis tasks [Ni et al., 2023,
He et al., 2023]. In this application, we focus on a popular framework of behavior cloning, diffusion
policy [Chi et al., 2023], which uses conditional diffusion models to learn multi-modal expert policies
in high-dimensional state spaces. In such settings, the state often corresponds to visual observations of
the robot’s surroundings, such as high resolution images, and thus typically share a low-dimensional
underlying representation.
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Let M be the space of decision-making environments, where each M € M is an infinite horizon
Markov Decision Process (MDP) sharing the same state space S, action space A, discount factor v and
initial distribution p € A(S). And each M € M has its own transition kernel Ty : S x A — A(S),
and reward function 757 : § X A — [0, 1]. The policy is defined as a map 7 : S — A(A). The value
function of MDP M under policy 7 is

Vi (m, 80) == E{tz_;’ytTM(St,at)} sag ~ (-|se), Se41 ~ Tar(+|se, ar), (A4)

Vi () = g [Var (7, 50))-

Denote the visitation measure as djy; (s, a) := (1 — 7)Esy~p Z V'P(s; = s|m, s0)m(als).

t=0
Suppose there are K source tasks M!, , ME € M, and the expert policy of each task is denoted
as % In behavior cloning, for each source task M*, we have n pairs of {(s¥, f) i e dr = d; M‘ -

The goal is to imitate the expert policy of target task M° € M, of which the sample size is only
m L n.

To unify the notation, let z = a,y = s and assume A = R% S = [0,1]P+ and representation
space [0, 1]%. Our meta d1ffus1on policy framework aims to learn a state encoder h : S — [0, 1]%
during pre-training, which acts as a shared representation map in different MDPs and consequently
enhances sample efficiency on fine-tuning tasks. Let 7° be the learned policy in fine-tuning phase.
The following theorem shows the optimality gap between the learned policy and the expert policy.

Theorem A.2. Suppose the expert policy ©* satisfies Assumption 3.1, 3.2, 3.3. Then under meta-
learning setting, it holds that with probability no less than 1 — 0,

EMOE{( 0 0)}m NdO[VMO( ) VJMO( )] /S

1 log%( K/§) log3(m/\n) log? (nK/5)
(1—9)? (m/\n)m KDir2

(A5)
If we further assume 7ri7 . 77Tf are (v, A)-diverse over 7TS, then the gap can be improved by

E((50,a0)ym  ~ao [Varo (7 N=Varo (7)) S

1 log%(nK/é) log®((m/v) An) n log?(nkK /&)
(1=7)*

(A.6)
The proof can be found in Appendix D.2. This provides the first statistical guarantee of diffusion
policy in behavior cloning. Notably, in both cases, the number of source tasks K has an exponential

dependence on Dy, further suggesting the importance of data coverage when tackling distribution
shift in offline meta-RL [Pong et al., 2022].

B Proofs in Section 3

B.1 Preliminaries

Lemma B.1. If zo ~ p(zo|y), the density of forward process p.(x|y) can be written as

_ 2
exp (- w) (B.1)

20;

a

p(zly) = / bu(alzo)p(zoly)dro,  r(xlze) =

(2n0?)%

Besides, the score function has the form of

V. logpi(zly) = /V log ¢¢(z|xo) ﬁ;(xxo);)((j;'f) dxg (B.2)
_ ot (x|zo)p(w0|y)
- / Ve logplaoly) 15, 0TS0 (B.3)
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Proof. (B.1) can be directly implied by the definition of forward process. And it yields
vat (x|y)
pi(zly)
_ S Vadu(@|mo)p(xoly)dwo
[ dulzlao)p(oly)dao

_ o x|z Or(z|z0)p(zoly) T
—/le BOHlT0) T8 o) p(aly)ds O

1
which is (B.2). Moreover, noticing that V,¢:(x|zg) = —— V4, ¢:(z|20), then by integration by
Qi

Ve log pi(zy) =

B.4)

parts,
J Vaoi(x]xo)p(ao|y)dao _ 1 1 [ Vaydu(z]zo)p(oly)dae
[ ¢e(]zo)p(aoly)dao Y J d(x|zo)p(woly)dzo
1 [ ¢(x]2o)Vap(xo|y)dzo
E—— B.5
atf@ﬂm(mmmo (B-5)
¢t (z|wo)p(z0|Y)
=— | V.1
/ og p(xoly) T ou@l2)p(ely)d o
Hence (B.3) is proved. O

Lemma B.2. [Lem. 3.1] For any w € [0, 1]dy, denote the conditional score of forward process
V. log pi(x;w) by fo(z,w,t). Then there exist constants Cx,C', such that for any R > 0, the
function f.(x,w,t) is (Cx + C% R?)-Lipschitz in x, (Cx + C'% R)-Lipschitz in w, in the domain
Br x [0,1]% x [0, T]. Here Bg denotes the ball with radius R centered at the origin.
Proof. Define density function q;(zo|z, w) o< ¢¢(z|xo)p(xo; w). Our proof strategy will depend on
hethert > ————.
whether ¢ > 5L 1)
1
When t > m, according to (B.2), we have
V:L’f* (377 w, t) = Vi’ Ingt(.T; U))
= Eq, (z0|z,w) [vi log ¢ (2|wo)] + Vary, zo|z,w) (Va log ¢ (z|z0)) (B.6)

I aprg — T
= 2 +Varqt(mo|m w) (7t )

For any R > 0, we have

(atxo —x /Hatxo —xH2 éi(x|zo)p(xoly) dx
[ ¢e(z)2)p(z|y)dz

R2 f‘laﬂo 2 |>R Hatwo w||2eXp( Hatég | )P(xo;w)dxo

Varg, (zo|z,w)

= 2
T o? [exp <—7”at€?,f”2) p(zo; w)dzo
2
R2 IH%(TIHZRGXP(_RT)p(xo;w)de
S — 5 .
Ot Ut2 L‘%HSR/Q eXp(*%)p(Io; w)dzg
(B.7)
2 2C -
Let R = M, then the domain {xo : ||MH < R/Q} includes {:co ol < C’o},
o
indicating

—_

[ paviwidz > [ plasiw)dae 2 1~ 2exp(~CHCR) 2 5
| 2= |I<R/2 llzol|<Co

[\

1 (B.8)

/ ~ p(zo;w)dzo S/ pwo; w)dwo < 5.
|atze= >R llzoll>Co

17



and

1 Ty — T R* 2 8||z||* +8CE + 20}
IV, ful, w, )| < U—g+||Varqt($o|x7w)<T)|| < Zta s = L. (B.9)
Similarly, for w we have
Vo fe(@,w,t) = Covy, (uo|z,w) (Va 10g @i (z]0), Vo log p(xo; w))
QT (B.10)
= Covih(wo\z,y)( ;_tg s Vi log p(z0; w))
which implies
Qiro — T
||wa* (LL', w, t)” S B\/||Var(h,($017w) (t72) H
O
(B.11)
< B(2||z]| +2Cy + 1)
< o
When t < ; we have o2 < a—tz and
=L+ 1) 7t =90
Ve fula, w, t) = V2 log p (a5 w)
VZpt(x'w) T
== 2V, ; V1 ;
P 9 log () (Ve log (i )
1 z|1o) V2p(2o; w)dz
_ L [elaleoVepCoiw)dss g 1o ) (9, logpulas w)T
o; pi(w;w)
1 V2p(zo;w) T
= SE = : -Vl ) @l )
e | 2] 9, g ) (7 o o)
1
= ?eq(asﬂx,w) [Vi 10gp(900§ ’UJ) + Vg logp(xog ’LU) (vw logp(xo; w))T]
t
— V. log p(;w) (V. log py (z;w))
(B.3) 1 1
= yeq(wo\w,y) [Vi logp(:vo;w)] + ?Varqt($o|z7w)(vm logp(:zro;w)).
t t
(B.12)

2

9 o e oo —
Note that when o; < o the distribution g;(x|z, w) o exp ( — R
Oi

strongly log-concave, and thus satisfies the Poincare inequality with a constant ' [Chen et al.,
2023al],

Vary, (zoz,0) (Va 10g p(2o; w)) = L7'E [V2 log p(wo; w)(Valog p(zo;w)) '] < L. (B.13)
And thus

)p(zo; w) is L-

oL
[V fulz, w, t)|| < o (B.14)

Analogously,

1 1
vwf* (.13, w, t) = OTteq(xo\:c,w) [vwvw Ing(xO; UJ)] + OTtCOVqt (zo|z,w) (Vx 1ng(l'o; w)7 Vu IOgP(QCO; w))

L B
OTt + OTt \/Val"qt(x0|m7w) (Vm 1ng(xo; w))

L+ BVL
e77

IN

(B.15)
Combine all the arguments in (B.9),(B.11),(B.14),(B.15) and we complete the proof.

Lemma B.3 (Lemma 7, Chen et al. [2022a]). The covering number of F =
NNy(Ly, Wy, My, Sy, By, Ry,7vy) can be bounded by

(B.16)

LWy (Bs V 1)R>
e

log N (F, | - ||Lw([7R’R]dm+dy+1),8) S S¢Lylog <

18



The covering number of H = N Ny, (Ly,, Wi, Sk, Bp,) can be bounded by

LyWy(By Vv 1)) .

OB ATCH. | [ 002) S S5 (2220

(B.17)

B.2 Proofs of Transfer Learning

Proposition B.4 (Prop. 3.2). Under Assumption 3.1, 3.2, 3.3, there exists some constant Cy,, such

that the following holds. For any h € H and (x1,y1), -, (Tm, Ym) ~ e, define the empirical
minimizer
f = argmin — Uiy Yiy Spn)- (B.13)
fer m ; s

The population loss of fcan be bounded by

]E{(zi7yi)}£1NpE(m7y)NP[gﬂ”(x, Y, Sf,h)] <4 }22—‘ E(zvy)wp[ﬁp(x, Y, Sf,h)] + Czy 10g3(m)7'1;, (B.19)

M]%Sfo log (mLfo(Bf V 1)MfT)

m

where 1, =

Proof. Consider the truncated function class defined on R% x [0, 1]P,

& = {(z,y) = Ua,y, f) == (Cla,y,s5.0) — L, y,55) - Ljojsr : [ € F}, (B.20)

where the truncation radius R > 1 will be defined later. It is easy to show that with probability no
less than 1 — 2m exp(—C R?), it holds that ||z;]| s S Rforall 1 < i < m. Hence by definition, the

1 .
empirical minimizer also satisfies f = arg min — E E (24,9, f). Below we reason conditioned on
fer i=1

this event and verify the conditions required in Lemma B.11.

Step 1. To bound the individual loss,

~ log(1/T
ey, ) < Epgollssa(eey.t) - Valogoyarfo)|? < M3 + a, (B0 4 ),

T-T,
(B21)
And by Lemma B.10,
~ log(1/T¢
T, 1) < B o8 . 8) — Valog o) Loz S OB + s (B0 1)
(B.22)

log(1/Tp)

LetM::C(C;;RMM]%erI( -

+ 1)) and thus |(z, y, f)| < M.
Step 2. To bound the second order moment, we have

2
Ez,y)~p {ﬂnwnxg\z (U, y,s5.0) — L(z,y, %)) }

2 P 2 2
=Eqy)~p [ﬂuzumszq (Et o jall8s.0 (e, 9, 1) — Vi log ¢e(e|2) || — |85 (24, y, 1) — Vi log ¢e (7)) }
< E(z,y)r\/]lj’ []]-HwHOCSR (Et,ztkv“Sf,h(xhyat) (mta Y, )” )

’ (Etvft‘iE”Sf,h(xt?yvt) + Sf(xtvyv ) —2V;log ¢t(xt|x)||2)}
SAME (g )b [Lja)<r (Bryjallspn(@e v, t) — sty 0)]%)]
< 4ME(¢79)NP (g(xv Y, sf,h) - g(xv Y, Sf))

S 4ME(z,y)~IP’[Z(‘ra Y, f)} + 8M2 eXp(iciR2)'
(B.23)
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Step 3. To bound the local Rademacher complexity, note that

H\/fzo-’t zlaylv.fl Zaz xlayqu H < 4H€(a afl) (7 ’f2)||L2(]P’ )
(B.24)
where P,, := Zé(r i) Define @, := {p € & : Zgo (z5,y:)* < r} and it is

easy to show that dlam( ol W2 @,) < 2V By Dudley s bound [Van Handel, 2014,
Wainwright, 2019], there exists an absolute constant C'y such that for any 6 > 0,

2V [log N (@, || 25 +»€
Ron(®,) < Co 9+/ \/ @]l loee,,) )ds . (B.25)
[

m

Since ||z;]| < R,

1
*Z xuymfl (xmyzaf2 Z xuyush £<xiayi,sf2,h))2
L
Z Et,wtlm
=1

m
< — Z t,xe|x;

S

1

IN

fl - f2||2] ’ [Et,wtlwi

fi+ fa =2V, log 6 ]?]

3

4;

fl Lt h(yi)’t) - f2($t, h(yi)vt)Hz'

(B.26)
Let Ry = 2R. Since z¢|lr; ~ N(xi;aiwi,0ll), we have P(||z¢lloe > Ry) <
dP(IN(0,1)] < R) < 2d,, exp(—CjR?) for some absolute constant Cj,. Therefore,

By otz 1 f1 (e, R(ys), 1) — folae, h(y:),b)|?
< Bty L <o) L1 (e, h(ys), t) — fa(we, h(yi), 1)|17] + 8do M7 exp(—CHR?)
< |y = fall 2o (@, ) + 8de M} exp(—CR?)

(B.27)
where Qr, := [~ Ry, Ri]% x [0,1]% x [Ty, T)]. Plug in the bound above,

m

N Wiy £) = Wi i S2))2 < AME | = foll i e, +802 M exp(~ChR /2).
i=1
(B.28)
1
For any € > 16d2 Mexp(—06R2/2), according to B.3,
1

og N (@, || 1 125,,),€) < 1og N (F, || - [l (r, ). €/ (8M 7))

LyW¢(By V 1)(R\/T)M> (B.29)

< C4SyLylog < .

Plug in (B.25) and let § = 1642 M exp(—CLR2/2),

Rm(q)r) S CVO

27 | C4S¢Lylog (Lfo(Bf\;l)(RVT)M)
’ +/ de
%

m

CiSfo log (Lfo(Bf\/l)(R\/T)M) .

T

< Cy | 1642 M exp(—C,R?/2) +

m

(B.30)
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Combine the three steps above, by Lemma B.11 with By = 8 M? exp(—C| R?), B = 4M,b = M, it
holds that with probability no less than 1 — 2m exp(—C} R?) — §/2, for any f € F,

m

E(m,y)NP[Z(x’ Y, f)} S % Zz(xzv Yi, f) + C5M <r;kn + 10g(10g(,rn)/6)>

= (B.31)
2
+_C%\/A41og<$f<nw/5>exp(_(jiR2%
Ly g ; log(log(m) /6
- Zf(xi:yz’a )< QE(w7y)NP[5(x, y, )]+ Cs M (r:n 4 Og(oi(Lm)/)>
- (B.32)
+_C%\/A42logq2§<nw/é>exp(_(jiRQ)

where 7, is the largest fixed point of ﬁm, and it can be bounded as

1 Ll LWe(BfV1)(RVT)M
rh, < Cs (d%Mexp(—CéR2/2)+Sf rlog (mLgW¢(By vV 1)( ) ))7

m

(B.33)
for some absolute constant C's. Moreover, we have

ety 57.0) = £w,9,55)] = B gpsllla,y, )] < 2M exp(~CIR2). (B34)
Combine this with (B.31),(B.32),

2 m
]E(ac,y)N]Pw(wvyasf,h) —ﬁ(m,y, *Z xzvyzasfh g(xz;yzvsﬂj)]

m
+CsM <r:‘n + 710g(10i(lm)/5) + exp(—C} R?)
(B.35)

m

S M s) — i ) S 2y p [0 51) — U, 5]
i=1
ot (4 SEIE) iy
" (B.36)
log(1/To)
T
C log% (mdy My /6) for some large constant C. Hence (B.35) and (B.36) reduce to

Plug in the definition of M = C (C’;;R6+Mf+dm( +1)> and let R =

2 log(log(m)/6
Bl 510 S S ) = oo )+ O g ) (o, + PO )

(B.37)

m log(log(m)/é
Z (@i, v, sg.n) — U@i, ¥4, S )] < 2E (g, y)NP[E (@, y,s5m)] + C7MJ% logg(m/é) (rjn + g(g()/)) )

m

(B.38)

Sfo 10g (mLfo(Bf V 1)TMf log(l/(S))
- .

where ] :=
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Therefore, we obtain that with probability no less than 1 — §, the population loss of the empirical
minimizer f can be bounded by

2 — log(1/6
E(m,y)~P[£P<x7y7 Sﬁhﬂ < E Zw(inivyia SfA’h) - g(x’uyn )] + 207Mf lOg (m/é) (T;@ + ggn/)>

i=1
. 2 P 273 1 log(1/9)
< ]}Ielg_% ;[g(xmymsf,h) — U(zi,yi,5,)] + 2C7 M7 log” (m /) (Tm t—
. log(1/4)
< 4;2£E(m7y)NP[€P(x,y7 sfgh)| + 607M? log®(m/ ) (r;rn + — )
(B.39)

We conclude the proof by noticing that E[X] = / P(X > z)dz and plugging in the bound
0

above. O

Proposition B.5 (Prop. 3.3). There exists some constant Cz,C'r such that the following holds. For

d.
any P!, ... PX, letxlf,~~~ k T pk

Ty Sfor any k and (z; ) & are all independent. Consider the
empirical minimizer

,h = argmin KZZE l,yZ,ka h)- (B.40)

FEFOK hen N T — T

Forany é € (0, 1), if the configuration of]: sansﬁes Ry > Cgr log (nK My /6), then with probability
no less than 1 — 6, the population loss of f h can be bounded by

log(1/4)

3

e ;E(I v) Npkﬁ (Jc Y55 5 7) < feF®theH % ZEC’” )P [E (w,y,spx 5)]+C7z log” (nK/9) (rz + — K )
(B.41)

M? [KSfo log (TLLfo(Bf vV 1)MfT10g(1/5)) + Sy Ly log (nKLhWh(Bh \Y 1)Mf’}/f log(l/é))]

wherer, =
nk

Proof. Throughout the proof, we will use z = (k, x y) to denote the tuple of task index k and data

(,y). With a little abuse of notation, we will also let s* = s© . Consider the function class defined
on [K] x R% x [0, 1]P

¢ = {Z = (kvxay) = z(sza h) = (é(-’l),y,ka)h) - E(Jj’y,slj)) : ]IHwHOQSR : .f € ]:®K7h € H} )
(B.42)

R
where 1 < R < 7f will be specified later. It is easy to show that with probability no less than

1 — 2nK exp(—CR?), it holds that ||z%||. < R for all i, k. Hence by definition, the empirical
minimizer also satisfies

K n
~ 1 ~
f,h = argmin (=¥, f,h). (B.43)
FEFOK heH nk Zl 1:21 '
where z = (k, a:l Y *). Below we reason conditioned on this event and verify the conditions in

Lemma B 12.
Following Step 1 and 2 in Proposition B.4, we have for any f € F&X h e H,
~ " log(1/T
[0(z, f, )| < M :=C (CXR6 + M3 +d, (M + 1)) . (B.44)

—ZE(MNW kFoh)? <—ZE(MNW B F.h)] +8M%exp(—CiR?). (B.45)
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For the local Rademacher complexity bound, note that

H\/—ZZUW 2y i) — \/—ZZUW wfz,hz)H <4\\57("f1,h1)—z('7fz,h2)||L2(ﬁsg<>),

k=11i=1 k=1 11=1
(B.46)
N 1 K n
where IP’%K) =x Z Z 6k and diam(‘br, - HLQ(@(K))) < 2¢/r. By Dudley’s bound [Van Han-
n k2 n
k=1i=1
del, 2014, Wainwright, 2019], there exists an absolute constant Cjy such that for any 6 > 0,
2vr IOgN(‘I)T”7 || : HL2(@(K))7E)
Rin(®r) < C 0+/ z de | . (B.47)
0 TLK
Since ||z%||o < R,
1 K n B .
= > D (U fro ) = U(=E, fo.ha))?
k=1 i=1
1 K n
oK DD (s g ) — O uE s 0,))°
k=1i=1
1 K n
< ’I’L? ZZ [Et,zﬂxf"ff - f2k||2] ’ [Et,zdfoff + f2k -2V, 10g¢t“2
=1t (B.48)
AM N k k 2
< nk Z Z t,a |k ||f1 (@1, hl(yz )’t) — /2 (xt’ hQ(yi )7t)||
k=1 i=1
SM o &
S SO B I @ ba (uf), t) = £3 (e, ha (), O]
k=11i=1
M K n
T SO By ok 15 (e ha(yF), ) — £5 (e, ha(yf), )]

=~
Il
—
.
Il
-

Let Ry = 2R. Since x|z ~ N(z;; oqz?, 021), we have P(||z¢]0o > R1) < d,P(IN(0,1)] <
R) < 2d, exp(—C}R?) for some absolute constant Cj. Therefore,
Et,wt\zf Hff(xh hl(yzl'c)7 t) - féﬂ(xh h1(yf), t)HQ
< Ep ot W <r U (e ha (), 1) = £ (e, ha (5F), 6)|1%] + 8do M7 exp(~Cg R?)

< |Iff - f2k|\2Loo(QR1) + 84, M7 exp(—CyR?),
(B.49)
where Qp, 1= [~Ry, Ri]% x [0,1]% x [Ty, T]. Moreover, notice that Ry > 2R = Ry,

Et,mﬂr,’f”féc(xtv hl(yf)’ t) - féc(xt? hQ(yf)vt)‘P

< Ep ot Lo <r 12 (@, ha(yF), 8) = f3 (e, ha(yi), 1)IIP) + 8du M exp(~CoR?)

< AFIh1 = 2|l (o 1100 ) + 8de M} exp(~CoR?).
(B.50)
Plug in the bound above,

K n
: ZZZ fa.fl;hl _6(17.f27h2))

k=11i=1

1
(maxnfl Pl + 7l — hgleqo,uDy))+16d§Mexp<—csR2/2>.
(B.51)

nk

1
2

<8M
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For any € > 32d§M exp(fC’(’)RQ/Q), according to Lemma B.3,

IOgN(q)Tv H ’ ”L%@LK))’{_:)
1 1
< KIog N(F, || - o< (ny ), €/ (16M2)) +10g N (H, || - || 1o 0,120y, €/ (1677 M 2))

LWe(B:NV1)(RVT)M LWy (B, V1)M
Wy (By E)( ) >+C’4ShL;L10g( h h,(i; )M~y

< C4KSfo log <

(B.52)
1
Plug in (B.25) and let § = 32d2 M exp(—C})R?/2),

de

2v7 | C4KSsLy log(Lfo(Bf\gl)(RVT)M) + C4SpLy log (w)
0 nk

cr [KSfo log <L,fwf<3fv7_1><RvT>M) + SpLy log (M)] o
< Cy —
+ Co32d2 M exp(—C{R?/2)
= ﬁK,n(r). .

Combine the arguments above, by Lemma B.12 with By = 8 M? exp(—Cj R?), B = 4M,b = M, it
holds that with probability no less than 1 — 2nK exp(—C} R?) — §/2, forany f € F®X h c H,

K
pa gt " (B.54)

i \/ M? 1og(:}g<(nf<) /6)

K
B, soolls £,1)] < —= SN UG, £,0) + G M (Kn+bg<bg<fﬂ<>/5>>

exp(—C} R?),

1 K n _ o] s
TKE E 0zF, f,h) < 2E, 500 [l(2, f.h)] + CsM (r;(}n + ‘W)
o (B.55)

M?log(log(nK)/d) .

C
t0s nk

xp(—C1 R?).

where 77 , is the largest fixed point of ﬁK,n, and it can be bounded by

1 KS¢L;1 L B 1 M Lyl KL B 1M
f <O (d%MfGXp(—CéR2/2)+ SgLylog (nLWys(By V1)(RVT)M) + SpLylog (RK LW (Bp V 1) ’Yf)>7

nkK
(B.56)
for some absolute constant Cg. Moreover, we have
1 & -
K ZE(x,y)~Pk [U(z,y, spen) — L, y, 85)] —E, saoll(z, f,h)]| < 2M exp(—C1R?).
k=1
(B.57)
Combine this with (B.54),(B.55),
K 9 K n
KZ (a:yNIP’k[g(m y,kah)—g(.’E Y,s Sn ZZ z7ylasfkh)_£< zayza )]
k=1 k=11=1
log(1 )
+ C5M | ri w}{)/) + exp(—C R?)
(B.58)



M=

K n
1 2
nk ZZ €T 7y7 y Sfk, h) - E( €T 7y7 ) *)} < ? ]E(;C,y),\,]pk [E(:r?ya ka,h) - E(‘T’yﬂsg)]

k=11=1

>
Il
-

log(log(nk)/)

oM (r}n * nk

Fep(~CAY) ).
(B.59)
log(1/Tp)
T
c’ log% (nKd,M;y/§) for some large constant C”. Hence (B.58) and (B.59) reduce to

Plug in the definition of M = C (O;;RG +M)% +dx< + 1)) and define R =

K K n
1 2
g;&mmwm%wmfm%£Mﬁ?;ZMﬁﬁ@mwmﬁﬁﬁ1
log(log(nk)/5)
M?log®(nK/8) ( rl. , + —— 2
+C7 fog(n /)<TKn+ nk )
(B.60)
1 K n K
K DOk yf s pen) — Lty sh)] < = Z (@)t [0,y s g1 ) — L(2, y, 1)
k=1 i=1 k
log(log(nK)/J)
M?log®(nK /8 ! _—
+ C7 M7 log™ (n /)(TKnJr e ’
(B.61)
where ’I‘T KSfo log (’anWf(Bf V l)MfTIOg(1/5 ) + Sy Ly log (’nKLhWh(Bh V I)Mf’yf 10g<1/(5>)
K .

nK
Therefore, we obtain that with probability no less than 1 — §, the population loss of the empirical
minimizer f, h can be bounded by

ZEw,yMk (@,9,55.7)]
K

2
S
k=1 z:l

/0
nk
9 K n
. k ko, k
< inf —KZZ al oyl spe ) — 0(@F, yf, *)]+207Mflog (nK/9) (

m

27y17 fh)_g( 27y17 )]+2C7Mf log (TLK/(S) (TK,,L log( ))

log 1/5)
FEFOK heH N P )
< £ > 6C7 M2 log® (nK /6 log
fefcla% hen K z:l arl e W spen)] + 6 M log nK/3) ( fon >
.62)
which concludes the proof. O

Theorem B.6 (Thm. 3.4). Under Assumption 3.1, 3.2, 3.3, suppose P, --- | PX are (v, A)-diverse
over target distribution P° given F,H. There exists some constant C, Cr such that the following
holds. Define the empirical minimizer of training task and new task as

,ﬁ: arg min ZZE Z,ywsfkh) (B.63)

fEFSK heH nk b1 im1

0

]/‘IP := arg min — 022,99, (B.64)
feF m; fh)
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IfR; > Cr log% (nKMjy/6), then with probability no less than 1 — 6, the expected population loss
of new task can be bounded by

K
0 1, 1 . k
E{(xl,yl) f;lE(m,y)NIF’U [EIP ((E, Y, Sﬁpo ﬁ)] 5 ; h}g’f—[ E Z ]}Iel,f/".: E(z,y)wﬂ’k [KIP (.’E, Y, sf,h)] +A
k=
log®(m)log Nz log®(nK/8)(K log NF + log(N# /3))
+C +
m vnK
(B.65)
where
log NF := M7SsLylog (mnLsWy(By vV 1)MsTlog(1/5)) (B.66)
log N3 := S Ly log (nK Ly, Wy, (By, V 1) My log(1/6)) . (B.67)
Proof.

0
E{(gci,y,:)};';lE(ar,y)NlP"’ [@P (x7 Y, s]apo ﬁ)]

: P 3
5 ]}gg__ E(z,y)NPO [é (LU, Y, Sfﬁ)] + Cmy log (m)rz

K
R o )
S R I; J}Ielg:]E(Ivy)N]P’k [E (93, Y, Sf,ﬂ)] + A + Ogjy IOg (m)rr

K
1 k
S ﬁ Z E(m,y)NIF’k [ZP (:E’ Y, ka,ﬁ)] + A + C:ch 10g3 (m)ra:
k=1

K
1 ) 1 K 1 log(1/9)
- f =>E P , ~Cyzlog®(nK —
v fe]:}grll()heﬂ K — (@,y)~Pk [E (x7y’ ka;h)} + I/CZ og (n /6) (er + nk

A

+ A+ Cypylog? (m)r.
(B.68)
Here we apply Proposition B.4 in the first inequality, task diversity in the second inequality, and
Proposition B.5 in the fourth. Plug in the definition of r, r,, and log N7, log N3; and we complete
the proof. O

B.3 Proofs of Meta-Learning

Proposition B.7 (Prop. 3.5). There exists some constants C', Cp, such that for P*, - .. [ PE £ Pretas
with probability no less than 1 — 6, we have for any h € H,

2 X~ ik log(1/6)
Ep~p,,,L(P,h) < 74 g_lﬁ(P h) +Cp <rp +—5 ) , (B.69)
1 §Kj/:(ﬁv’f, h) < 2Bpp.. L(P,h) + Cp <rp 4 log(1/9) 6)) : (B.70)
K P meta K

Sy Ly, log (KLhWh(Bh vV 1)Mf’}/f)
K

where rp = M7 exp(—C]R}) +

Proof. Given IP’l, S ,IP’K b Pheta, We define the empirical Rademacher complexity of a function
class ® defined on the set of distribution P(R% x [0,1]7¥) as

1 K
Ric(®) = Eo sup | 1o kz_:lakgo(IP’k)’, o ~ Unif({—1,1}%). (B.71)
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K
For any r > 0, let H,. := {h eH: %Z(E(IPI“, h))? < 7'} and ®,. := {L(-,h) : h € H,}. Note
k=1

that for any 1, @2 € ®,.,

1 & . 1 - L ¢
[ Er ) Sl < or s

= 4||§01 - SDQHLQ(P;(;‘@))’

K
1
where anﬁg = Z Spr and diam (®,., || < 24/r. Then by Dudley’s bound [Van Han-

k=1
del, 2014, Wainwright, 2019], there exists an absolute constant Cy such that for any 6 > 0,

’ ||L2(Pr(n§a)))

27 [log N (@, || || 1211, €)
Ric(®,) < Co | 0+ / \/ K“(P'W de | . (B.73)
6

For any P and h1, hy € H,., denote the minimizer of (3.6) in F as f1, fa, respectively. Without loss
of generality, suppose L(P, hy) > L(P, hy). Then

L(P,h1) = £(P,ha) < Eoay [| 121 ha (), 1) = Vi Tog pr(aaly) | = || folar, ha(y). 1) = Vo log pelaely) |2

< Etﬂ?t,y [HfQ(xtvhl(y)vt) - fQ(xhh?(y)’t)”
x| fa(@e, ha(y),t) + fa(we, ha(y),t) — 2V log pe (e ]y)|]]

<\ By 1ol b (9),1) — ol ha(y), )]12) - 8(My + C}/°)

(B.74)
In the last inequality we apply ||f;|| < M; and E; ., , ||V log pi(z:|y)||* < Cr by Lemma B.9.
Moreover,

E(tary) 12, 1 (y), ) — folze, ha(y), 1)|%]

<E., [ [ 15261100, = Satoes o) O Py

<Eiy /” H 1 f2(e, ha(y),t) = fa(@e, ha(y), )P pe(@ely)day + AMFP(||2¢]l oo > Ryly)
Ttlloo <Ry

< AFEy [ (y) = ha(y)l|*] + 8MF exp(~C{R})
< A = hall]w o.1y00 ) + 8MF exp(—C1R})

(B.75)
Therefore, let Cs = 32(M; + C’i/Q)Mf < 64M7 and we have
IL(P, hy) — L(P, hs)| < Cs (yfuhl — hall e (o.1yv) + exp<—c;R})) . (B.76)
which implies that when ¢ > 2C3 exp(—C] Rfc), by Lemma B.3,
log N'(®,., || - ”LZ(ang})vE) <log N (Hor, ||+ | oo ((0,124): €/ (2C37¢))
LyWy(Br VvV 1)C B.77)
< C4SuLy log ( nWi( hg ) 3”) .
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Plug in (B.73) and let 6 = 2C5 exp(—C' R}),

L}LW;L(B;LVUCS’Yf)
d

2yr | CySp Ly, log( -
Ri(®,) < Co 9+/ %
6

3

B.78
C!S, Ly log (M) . (B.78)

K

< Co | 2C5exp(—C{R?) +

= RK(T).

According to Lemma B.11 (by setting By = 0, B = b = ('), for some absolute constant C, with
probability no less than 1 — &, we have for any h € H,

K
1 1)
Epop, L(P, 1) < — ]; (B*, 1) + C5C ( ‘W) R
RS log(log(K)/3)
I k; L(P*, h) < 2Bp~rp,,L(P,h) + C5C1 (r} + K> : (B.80)

where 7% is the unique fixed point of Ri. And it is easy to show that for some absolute constant Cy,

(B.81)

T = o <C3 exp(—C1R}) + SnLnlog (K Ly Wi(Bn v 1)Mf7f)> .

K

which concludes the proof. O

Theorem B.8 (Thm. 3.6). Under Assumption 3.1, 3.2, 3.3, there exists some constant C, C'r such
that the following holds. Define the empirical minimizer of training task and new task as

f,h = argmin ZZE af yl s n), (B.82)

FEFSK heH nk b1 im1

m

P 1
= argmin — Uz, i, 8 (B.83)
e gin E YirS7)-

IfR; > Cgr log% (nK My /6), then with probability no less than 1 — 0, the expected population loss
of new task can be bounded by

Eet o B (w1 y)) ., ~PE ()€ (2,9, )

log(N/6)

< inf Epp_ inf B, ol (z,y, C
S inf Eevg,, 0L Ey)pll (2,9, 500)] +

n
(B.84)
where
log N7 := M7 Sy Lylog (mnLyWy(By V1) M;T log(1/4)), (B.85)
10g./\/7.[ = Sth log (nKLhWh(Bh V I)Mf")/f 10g(1/§)) . (B86)
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Proof.

Eeoo E((aip) ) ~BE () € (2,4, 5 72 3)]
: P 3
f, EPN]P’mm ;gg—‘ E(x,y)NIP’[E (.’t, Y, Sfﬁ)] + Cﬂcy IOg (m)rz

Ly : log(1/6)
. ]P) 3
SE g Inf Eey)npr [ (@,9,5,7)] + Cp (TP TR ) 7 Cay log (m)r

1 K

K
k=1

* log(1/¢
]E(QC,y)NPk [@P (1'7 Y, kaﬁ)] + CP <7"p =+ g(/)> + Czy 10g3(m)’]"m

<
~ K

< inf iiE k[ﬂpk(l‘ Y, S rk )]+C ]0g3(nK/§) r +M
™ ferer nen K (@y)~P Y Sfn z 2 K
log(1/%)

+Cp (TP + K) + Cuy logg (m)ry

. . log(1/)
< P 3 o\ /7
S jof Bpnp, 108 B y)~pll (2,4, 57.0)] + Cz log” (nK/0) (Tz +

nK
log(1/6
+Cp (rp + g(K/)> + Coy 10g3(m)rz.
(B.87)
Here we apply Proposition B.4 in the first inequality, Proposition B.7 in the second and last inequality,

Proposition B.5 in the fourth. Plugging in the definition of r,,rp,r; and log Nr,log N3 and

M:K

noticing that Ry > Cg log% (nKdyMys/6) > Ch log% (1 gj.c/\f > , we have with probability no less
0] H

than 1 — 4,

EprPoes B (o900, ~PEo )~ [ (95 570 7)]

3 3
S 08 Bep, 10 Bogporlf (o sp)] + € (FELEAT O (/D)0 SoRlTu/D) )
heH feF m

n K
(B.88)
O
B.4 Auxiliary Lemmas
Lemma B.9. There exists some constant C'y, such that for any h, P,
L(P,h) <Ky 4,4l Ve logpe(wely)|? < Cf. (B.89)
Proof. Note that
E(x,y)N]P’[ép(ma Y, Sﬁh)] = E(I7y)NPEt,$tIZ[Hf(It7 h(y)a t) - vx Ingt (1’t|y) ||2] (B 90)

= Et o, ylllf (e, h(y), 1) — Vo log pe(xe]y)]|*]

and 0 € F, it suffices to show that E, ,, ,[|| V. log p;(2¢|y)||*] is uniformly bounded for any P, h.
According to (B.2),

Ewt,y[Hvx logpt(xt|y)||2] < E:L’t,yEocol(zt,y) [”Vm log ¢¢(z¢]x0) HQ]

= ]ErOJJEwtlxo[”Vf log ¢t(xt|x0)”2] (B.91)
e de
o7 1—e2t
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On the other hand, by (B.3) and Assumption 3.3,

B,y (V2 10g pe (22[9) 1] < Eay B (0, |V log plaoly) | - €]
= EayyEay oo IV log p(zoly) |* - €*]

= K.y [|Va log p(zo|y)||* /o] (B.92)
< Eapy[(B + Li|zo|))? - €]
S Cé@Qt

Therefore, we have
L(P,h) < Bty Ve log pi(ey) ]
dy
SEfr——5 A Che?] (B.93)
O

Lemma B.10. There exists some constant C’;{ such that for any t € [0, T) and x € R%y € [0,1]P¥,

E,, 2 ||Va log pe(a]y)]|* < Cx(||2]|® + 1). (B.94)

Proof. Note that z¢|x ~ N (¢, 021) and by Lemma B.2,
B, o[V 108 p1(1[)|[* < B, 2| IV 1og pi OI)II? + (Cx + Cillaal2)2lje2]  (B.95)

. a?|lz|? . ..
Let q;(zo|me,y) o ¢s(xs|xo)p(z0ly). Since ¢4 (0]zg) ox exp (_t2||02|) is decreasing in ||z ||, by
t
Fortuin—Kasteleyn—Ginibre inequality,

Eq, olo.) [%0]|* < Epiagy |20l* < Co. (B.96)
According to (B.2),
a? Coa?
1V 10g pr(Ofy)[I* < =g, (w000 l20l* < =5+ (B.97)
T 0y
By (B.3), we also have
1 1 2(B? + L*C))
172108 2: OW)I* < Z5Equwat0) [V g p(@oly) P < Z7Eactanpoun (B+Lifwol)Y] € ===
(B.98)
Combine the two inequalities,
2
1
IV log pi(Oly)[|* < (B* + (L* +1)Co) - (% N—3) S2(B”+ (L +1)Co).  (B9Y)
t t
Plug in (B.95) and we obtain for some constant C’!{,
Ey, 2]V log pe(ey)lI* < Eq,o2|(Cx + O llael*)[lel|* | +2(B* + (L* +1)Co) (B.100)
< Cx(||l2]|° +1).
O

Lemma B.11. Let ® be a class of functions on domain 2 and P be a probability distribution over
Q. Suppose that for any ¢ € ®, ||p||~ ) < b, Eplp] > 0, and Ep[p?] < BEp[p] + By for some
b,B,By > 0. Letxq, - ,xp P and ¢n be a positive, non-decreasing and sub-root function such
that

Rp(®;) :=Es sup 1 Zaiap(xi) < @ (r). (B.101)
=1

ped,. 1T i
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n

1
where O, {gp €d: Z (o(x:))? < r}. Define the largest fixed point of ¢, as r;.. Then for
n
i=1
some absolute constant C', with probability no less than 1 — 6, it holds that for any ¢ € ®,

g - , log((logn)/é) , [ Bolog ((logn)/d)
Z (z;) + C'(BV b) —_—— 1

n - .
(B.102)
1 1 1 5 Bl 1 5
n ;‘P(xz) < 2Ep[p] 4+ C'(B V b) (r: + og((({)ngn)/)> + C’\/ o log ((nogn)/ ) .
(B.103)

Proof. We follow the procedures in Bousquet [2002]. Let €¢; = b277 and consider a sequence of
classes

P = {p e ®:ejy1 < Eplp] < ¢} (B.104)
Note that ® = U;5o®") and for ¢ € ®9), Ep[p?] < Bey + By. Let jo = [log,n|. Then by
Bousqug:t [2002, Lemma 6.1], it holds that with probability no less than 1 — 4, for any j < jo and
%) c q)(])’

‘% i o(z;) — E]P’[QD]‘ < Rn(q)(j)) + \/(BEj + By) log (log(b/ej)/d) N blog (log(b/gj)/(;)

)

(B.105)
%Z": — Epfp ]’ < R, (B + \/b2(Bej +Bo)1<;g (log(b/e;)/9) . b? log (IOi(b/ej)/(S).
(B.106)

Besides, for ¢ € Uk>k0<1>(j) —. plio),

’% Eniso(m - Ep[cp]‘ S R (®U0)) \/(B% + Bo) 1§g (log(n)/3) | blog ((1Zg n)/9)
i=1

(B.107)
From now on we reason on the conjunction of (B.105), (B.106) and (B.107). Define

b2(Bej + By) log (log(b/ej)/é) N b2 log (log(b/ej)/é) .

Uj = Bej + By + bRn(@(k)) + \/
(B.108)

n

. 1
and thus for any ¢ € ®V), we have — Z((p( :))? < CUj for some absolute constant C' by (B.106),

indicating that R,,(®)) < ¢,,(CU;) < \ngn( U,). For any j < jo,
2b* log ((log n) /)

U; < 2(Bej + Bo) + bV Co,(U;) + - (B.109)
Since ¢,, is non-decreasing and sub-root, the inequality above implies that
b?1 1 )
U; < b2 + Bej + By + Og((:g”)/ ) _. rale;). (B.110)

Therefore, for any ¢ € <I>(j),j < jo, by (B.105),

’% i(p(%) CEblg]| S Onrales)) + \/(Bej + By)log ((logn)/4) N blog ((logn)/é)

n n

=: F,,(¢j).
(B.111)
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Noticing that Ep[¢] < €; < 2Ep[¢], it reduces to

‘*ZW& — Eplp ‘ Fr(Ep[p]). (B.112)

Hence we have by noting that F}, is also a non-decreasing sub-root function,

Eplp] < % zn: o(x;) +C'(B Vb) (T; 4 l‘)g((l"g”)/‘s)> n C’\/BO log ((logn)/9) ’

Pt n n
(B.113)
1 — _ , . log((logn)/é) , [ Bolog ((logn)/é)
E;ga(xl)gﬂfip[cp]—i—C(B\/b) <rn+n >+C\/ - :
(B.114)

) b
Here C’ is an absolute constant. Moreover, when pE ®Y) for J > jo, we have Ep[p] < —, and
n’
according to (B.107),

‘f Z o(z:) — Bplyl| < Fules). (B.115)
Hence the same bounds apply, which completes the proof. O
Lemma B.12. Let ® be a class of functions on domain Q, P, --- P be probability distributions

over ), and pE)

@ < b Esu ] >0, and
k=1 -
Esx [¢%] < BEsx [¢] + Bo for some b, B,By > 0. Let a%,--- ,xk PR for any k and all

(;E,]f )i,k are independent. Let ¢ ,, be a positive, non-decreasing and sub-root function such that

n

K
Rk n(®r) :=Es sup ZZUfgﬁ

PED, klzl

(7). (B.116)

. . - E\\2 . .
where ®,. 1= {go €d: e ; Zl (p(z})) < r}. Define the largest fixed point of ¢rc n as T ,,-
Then for some absolute constant C', with probability no less than 1 — 6, it holds that for any ¢ € ®,

K n
Esuo ¢] < 2 Z Z o(x;) +C'(BVD) (r;n + log((lognK)/5)> i O/\/BO log ((lognK)/5) ’

nk nk nk
k=11=1
(B.117)
K n
1 A . log ((log nK)/é) By log ((lognK)/4)
(B.118)

Proof. We follow the procedures in Bousquet [2002]. Let e, = b2~* and consider a sequence of
classes

D = {p e ®: i1 < Bpuo le] < €5} (B.119)
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Note that & = U;»o®") and for ¢ € ), Eg ) [p?] < Be; + By. Let jo = |log,(nK)]. Then by
Massart [2000, Theorem 3], with probability no less than 1 — 4, for any j < jg and ¢ € oU ),

K n
i ZZ@(xf) — E@(K) [cp]’ < RK,n((I)(j)) + \/(Béj + By) log (1og(b/ej)/5) n blog (log(b/ej)/§)

nk nk nk )
k=11i=1
(B.120)
o 5 S (et ~ Bpo 2] £ WRic (@) + ) LB+ Bu)los (log(b/es)/0) , #los (loslb/e;) /o)
Tk:l i:l(w ) B [7]] 5 DR s nK nk :
(B.121)
Besides, for any ¢ € Uj>j0c1>(i) —. plio),
K n
1 k . (Bej, + Bo)log ((lognK)/8) blog ((lognK)/s)
_— ) —E ‘ < n PUo?) jo .
nk ;Z;p(xz) 5o (]| S Ricn( )+\/ - n il
(B.122)

From now on we reason on the conjunction of (B.120), (B.121) and (B.122). Define

Vs — B+ Bot bR () + \/ b2(Be; + Bu) log (log(b/e;)/0)  ¥*1og (log(b/e;)/0)

nkK nkK
(B.123)
1 K n
) il kyy2 ,
and thus for any ¢ € ®Y/, we have e ,; ;(cp(scl ))° < CU;, for some absolute constant C' by
(B.121), indicating that R, (®7)) < ¢ ,(CU;) < VO n(U;). For any j < jo,
20%log ((lognK)/§
U; < 2(Bej + Bo) + b0V Cohrn(U;) + & (Eﬂ? /%) . (B.124)
Since ¢, is non-decreasing and sub-root, the inequality above implies that
b2 1 lognK)/é
Uj S bzrf(m + Bﬁj + Bo + o8 (( oen )/ ) = TKﬁn(Gj). (B125)

nK
Therefore, for any p € d)_j < jo, by (B.120),

‘L 3 Z": () — Esvo[9l] < dxn(ricm(es)) + \/ (Bej + Bo)log ((lognk)/6) . blog ((lognK)/9)

n nk nk
k=11i=1
=: F n(€5).
(B.126)
Noticing that Egx, [¢] < €; < 2Egx, [¢], it reduces to
1 K n
— 3" elaf) — Epuo [l S Frcn (Epro [4)- (B.127)

k=11i=1

Hence we have by noting that Fx , is also a non-decreasing sub-root function,

K n
Epoo 0] < —= > Y elah) +C(BVY) (r;(m n WW) N C/\/BO log ((log nK)/d) ,

nk nk nk
k=1 1i=1
(B.128)
K n
1 i , . log ((log nK)/é) By log ((lognK)/4)
(B.129)
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. b
Here C’ is an absolute constant. Moreover, when ¢ € ®Y) for 7 > jo, we have ]E@ e < —
n

and according to (B.122),

>

1 K n
2 22 9@) = EBauo [4]| S Frn(gjo)- (B.130)
k 14i=1
Hence the same bounds apply, which completes the proof. O

B.5 Verifying Task Diversity Assumption

When F is linear function class, Tripuraneni et al. [2020] provides an explicit bound on (v, A).
However, in general, performing a fine-grained analysis is challenging, especially for complex
function classes such as neural networks. In the following proposition, we present a very pessimistic
bound for (v, A) based on density ratio, which is independent of the specific choice of hypothesis
classes F and H.

Proposition B.13. Suppose F = conv(F), and inf pogx :Z; > Mg forany 1 < k < K. Let
T,y P
K ~
A= Z M. Then Pt - | PK are (7, A)-diverse over P° with v = \/(2K),
k=1

2

K
1
3 2 Ak Vlogpf (wely) — Vlog pf (. [y) (B.131)

k=1

A =2E(, ypoEe s,

We mention that the only requirement is F is a convex hull of itself, which can be easily satisfied by
most hypothesis classes such as neural networks. More refined analysis on specific neural network
class is an interesting future work.

Proof For any h € H, let f¥ € F be the corresponding minimizer for 1 < k < K. Further define

)\:Z)\kandfo

k=1 k

A\ f¥ € conv(F) € F. Then we have

>/\~
Mx

Il
—

0

L (70 ) = Ezo [|F° (1, h(y), 1) = 7 log pf (1]

K K
= Ak Ak
< 2Ep l|f°<xt,h<y>,t> =25 Viogpf(aely)[I® + 1Y 5 Viog pf (wely) — Vlog pf (aely)|

K

< 3 Broke [ (a1, ly)ot) - Vlogpk(aedy)l] +
k=1
K

<3 > Bes (175G h(w).0) — Vog i (arly)|?] + B
k=1

ﬁfel%x KZL (s700) + &.
(B.132)

We conclude the proof by noticing that ;ng_ s (sfn) < ¥ (s 7 O
€

fo,h)'
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C Proofs in Section 4

C.1 Proofs of Score Network Approximation

Theorem C.1 (Thm. 4.1). Under Assumption 3.1, 3.2, 3.3, to achieve Ry > Crlog? (nK M /5)
and

K
. 1 . Pk 2 2 .
hlg;f{ o ,;_1 J}Ielg:]E(mvy)Npk (6" (2, y,s5,n)] = O (log”(nK/(£6))e) , (transfer learning) (C.1)

. . P o 2 2 : .
hlg’f-i EIP’N]P’mm ]}2;__ ]E(I,y)NIF’[g (LL', Y, Sf,h)] =0 (log (nK/(Eé))E ) , (meta learmng) (C2)

the configuration of F = NN¢(Ly, Wy, My, Sy, By, Ry, vs), H = NNy (Lp, W, Sh, By,) should
satisfy

L;=0 (1og (W)) W,—0 <1og3(d”d”/2(nf</(eé))) |

Edm—&-dy—&-ng
S o log®( e+ d)/ 241 (K /(26)) B — o [ Tlog® (nK/(£0)) (C.3)
f= €dw+dy+1T(i)’) y P f = c )

Ry = 0 (log} (1 /(e8)) ) , My = O (log®(nK/(c6))) , 77 = O (log(nK/ (5))

L, = O (log(1/e)) , Wy, = O (e~ P log(1/e)),

(C4)
Sp=0 (5_Dy logz(l/s)) , By, = 0O(1).
Here O(-) hides all the polynomial factors of d, d,,, D,,, C1,Ca, L, B.
| X
Proof. With a little abuse of notation, in transfer learning setting, we define Py, := Ve Z Opr and

k=1
it directly reduces to meta-learning case. Therefore, we only focus on the proof in meta-learning.

We first decompose the misspecification error into two components: representation error and score
approximation error.

. . P
inf E]PN]P’mcm ]}25__ E(z,y)wﬂ’[‘g (‘T7 Y, Sf,h)]

heH

. . _ P 2

- huelg-l E]PNPme(a fnel_f;: E(I,y)NPEt,CEt|$ [Hf(‘rh h’(y)) t) f* (xt7 h* (y)a t) || ]

S f:g’f'l EPNPmew }Q;E(Ly)NIP’Et,mﬁz? [”f(xta h(y)7 t) - f(xta h*(y)v t)Hz + Hf(xﬁ h* (y)a t) - ff(xh h* (y)a t)||2] .

(C.5)
Further note that for any f € F,

E e )nbBtle (I (26, h(0),8) = f@e (), )] < Beop Il f (2, h(»), 8) = f@e, (), O - Ljayi<r,
+ 8M7 exp(—C| R})

< Eyer[1FlIR(y) = hu(y)]?] + 8M exp(~C|R}),
(C.6)
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where Qp, = [-Ry, Ry]% x [0,1]% x [Ty, T]. By Proposition C.2, C.3,
heH
< Jof Bepy Byr 297 0(y) — ha()|?] + 16 M exp(=C )
+ Eppy, I0f 20|f (22, ha(y), 1) — £ (e, hay), )2

1Py) T 16M7 exp(—C| R}) (C.7)

. . P
inf Ep~p,,, ]}gfr]E(x,y)W[f (z,9,5¢n)]

. 2 2
< 2;2% '7th - h*”Loo([(Ll

+ 2Bpp, L[S (e ha(y) 1) - £ (e ha(y) O
< (logQ(nK/(eé))dy +dy)e?
= O (log*(nK/(e0))e?) .

O
Proposition C.2. To achieve Ry > Cg log% (nK My /6) and
J}gfr]E(w)Np]Et,m,,\z[||f(wt, ha(y),t) = f7 (e, ha(y), 1)[|7] < dae?, (C.3)
the configuration of F = NN¢(Ly, Wy, Mg, S, By, Ry, v¢) should satisfy
B log(nkK/(d)) o (1ogP T2 (n K (£6))
log®(+du) /241 (n ¢/ (26)) Tlog? (nK/(5)) (C.9)
Sp=0 dotd, 4173 B =0 )
gletay 1Ty €

Ry = 0 (log} (nk/(e6)) ) , My = O (log(n/(20))) , 75 = O (1og(nK/(29))) .

Here O(-) hides all the polynomial factors of d, d,;, D, C1,Ca, L, B.

Proof. For notation simplicity, we will f, = f¥ throughout the proof. Our procedures consist of
two main steps. The first is to clip the whole input space to a bounded set Qg := [-Rf, R f]dm X
[0,1]% x [Ty, T] thanks to the light tail property of P. Then we approximate f* on Qp ;-

By Lemma B.2 and C.6, f, is «y;-Lipschitz in x, vo-Lipschitz in w, and ~y3-Lipshcitz in ¢ in a bounded

C,R?
domain Qg , where 71 = C'x + C&Rfc,*yg =Cx +CxRy,y3 = Ff
0
1
We first rescale the input domain by 2’ = . + =, w’ = w,t =t/T, which can be implemented

2R 2
by a single ReLU layer. Denote v = (', w’, t’])f. We only need to approximate g(v) := fi(Rs(22" —
1),w',Tt') defined on Q := [0,1]% % x [Ty/T,1]. And g is v, := 2y Ry-Lipschitz in 2/,
Y := Y2-Lipschitz in w’ and 7; := 2 T-Lipschitz in ¢'. We will approximate each coordinate of
g=1Ig1, - ,94,] " separately and then concatenate them together.

Now we partition the domain €2 into non-overlapping regions. For the first d, + d, dimensions,
the space [0, l]dﬁd” is uniformly divided into hypercubes with an edge length of e;. For the last
dimension, the interval [Ty /T, 1] is divided into subintervals of length es, where the values of e;
and eo will be specified later. Let the number of intervals in each partition be Ny = [1/e;] and
Ny = [1/es], respectively.

Letw=[u1, " ,uq,+a,] € {0, -+, N1 — 1}%*% be a multi-index. Define
gi(a w' t) =Y gi(u/Ny, j/No)Wy (2, w', 1), (C.10)
u,j
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where U is the coordinate-wise product of trapezoid function:

dy dy
U, (2w’ t) = (3Na(t = j/Na)) [ w(3Nu (), — ue/N1)) [ [ ¥ (BN1 (W) = trya, /NY)),
= = (C.11)
1, la] < 1
¥(a) = { 2—lal, 1<lal<2 (C.12)
0, la| >> 2

We claim that g; is an approximation to g; since for any o’ = (z/,w’) € [0,1]% T4 ¢’ € [T, /T, 1],

CE

)

J
" Ny
< sup Z

sup |gi(o', ') — gi(o',t")| < sup

o't o t’

Ty a0 ) s )

u ] /oy .
gi(ﬁ’ﬁ)—gi(oﬂf) u,j(0',1")
ot/ . 2 . oN 1 2
wi gk —of | <=5 g g —t [< 52
292 2
< i %.
- 3NV 3Ny
(C.13)

Below we construct a ReLU neural network to approximate g;. Let o be ReLU activation and
r(a) = 20(a) — 40(a — 0.5) + 20 (a — 1) for any scalar a € [0, 1]. Define

équm(a) =aq-— Z 272my (), rpp = r0---0T (C.14)
= m compositions
a+b a—b
¢mul(a b) squdre( 2 ) - lsquare(T) (C.15)
According to Yarotsky [2017],
|p i (a,b) —ab| < 27272 Va,b e [0,1]. (C.16)

Then we approximate ¥, ; by recursively apply @

mul*

(I}%j(x/’w/ﬂt/) ¢mu1 (1/)(3N2(t 7]/N2)) mul (1/)(3N1(£L'/1 7U1/N2)),”~)) (C17)

And we construct the final neural network approximation as

gi(z" W' 1) Zgl U/Nl,j/NQ) @ ' t). (C.18)

The approximation error of g; can be bounded by

19: — gillLe () < 19i — Gill L) + 19i — gill L= ()
27, (dy + dy)% 274

< 2dm+dy+1 i oo su \/I}u ;i \Ij'u, 1 el + + 2
< gill Lo () WP W, dllz=) 3N, 3N
B 27, (d, +d,)? | 2
< (dy +dy + 12555 g oo ) 271D 4 % * 31;
(C.19)

Besides, by Chen et al. [2020, Lemma 15], for I 2 d, + d,, and Va', w’, w", ¢/,
1Gi (2", w' ) = Gi(a',w” )| S (do + dy) (Yo + Nil|gill oo ()27 T4) w' — w” |- (C.20)
Yo (9]l Lo (@) + 1))
€

Letlz(’)(dz—kdy—klog ,leO(l—z),NQ:O(%).Then
19 = gill ) < €/2, [gi(a’, 0’ t') — Gi(@, w" )| S Yo (ds + dy)||0" — 0" || (C.21)
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~

Define g := [g1, - ,gq4,] and f(z,w,t) :=¢ (22]0 + %, w, t/T). Then the approximation error
of fin (g, can be bounded by

1f = Fles@n,) < 15— gl < Vdoe/2, and fla,w,8) =0,V o > Ry (C22)
Therefore, when R > Cr log? ((M7 + Cp)/e), the overall approximation error is

E (e )b Bot o [|f (@, B (9): 8) = £ (0, B (), O] < Bty | £ (5 ()5 8) = f (e, P (), DI - Ly <,
+4(M7} + Cr) exp(—C} R})
<NIf = £ 7= (0, ) + 4MF + Cr) exp(~C RY)
< dIEQ.
(C.23)

o~

Now we characterize the configuration of neural network f(z,w,t). For boundedness, by Lemma
B.10,

1F @, w, O < 1 fell e (@) + & < 20% R} =: M. (C.24)

K
Hence we canlet Ry = O <logé (né)) to ensure the lower bound of Ry mentioned above and
€
in Theorem B.8. For Lipschitzness, by (C.21),

~ -~

1f (2, w, 8) = [, 0, O] S Ywlda + dy)[w — @|oo

~ (C.25)
< (Cx + CxR})(dy + dy) |w — @ .-

K
Hence vf = O ((Cx + Cx R})(dy +dy)) = O (log (%))
€
For the size of neural network, for each coordinate, by the construction in (C.18), the neu-
ral network g; consists of N{i’+d?’Ng parallel subnetworks, i.e., g;(u/N1,5/N2)¥, ;(-,-,-). By
R
definition in (C.17), the subnetwork consists of O ((dm +dy)(dy + dy + log f)) layers and
€

the width is bounded by O(d, + d,). Therefore, the whole neural network g; can be imple-
mented by O ((d, + dy)(dy + dy + log(Ry/¢c))) layers with width O (Nldﬁd”Ng(dz + dy)> =

10) LA d the number of is bounded by O Ry log(Ry /) C
——— |, an the number o parameter 1S bounde Yy gdm+d1/+1Tg . Com-

6dﬂc—',-oiy—t-ng

bine these arguments together, we can claim that the size of neural network f is

log(nK /(8
L=0((dy +dy)(dy + d, + log(R;/2))) = O (1Og (M)) 7
Ri(dm-i-dy) logS(d1+dy)/2(nK/(€6))
W=0 m =0 ety F 1T ; (C.26)

3(dy+dy i
‘o (de + dy) RF " log(Ry f2)\ o (o2 (e (e6)
- edetdy T173 = edstdy T173 :

To bound of the neural network parameters, note that the trapezoid function v is rescaled by 3Ny

or 3N, and the weight parameter of gi)fnul is bounded by a constant. Moreover, the input of f is first
rescaled by Ry or T'. Hence we have

R3T 3
B=0O(NRy+ NoT) = O <£> -0 (Tlog ("K/(g‘s))> , (C.27)

e

which concludes the proof. O
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Proposition C.3. To achieve
hlg’J;-[ ||h_ h*”Loo([O,l]Dy) S \/dy{‘:, (C28)
the configuration of H = NNy (Lp, Wy, Sy, Bi,) should satisfy

Ly = O (log(1/e)) , Wy, = O (¢~ Pvlog(1/e)) ,
Sp=0 (E_Dy logz(l/g)) , B =0(1).
Here O(-) hides all the polynomial factors of d, d,, L.

(C.29)

Proof. The main idea replicates Yarotsky [2017, Theorem 1]. We approximate each coordinate of
hi = [hs1,- -+, haa,] respectively and then concatenate all them together. By Yarotsky [2017,

Theorem 1], h,; can be approximated up to ¢ by a network h; with O (log(1/¢)) layers and
@ (5*D vlog(1/ s)) width. Besides, the range of all the parameters are bounded by some constant,
and the number of parameters is O (5*D Y 1og2(1 / s)) Then we concatenate all the subnetworks to

geth=[hy, - hg,] and [l — hul| o o 1120 < V/dye- O

C.2 Proofs of Distribution Estimation

Theorem C.4 (Thm. 4.2). Suppose Assumption 3.1, 3.2, 3.3 hold. For sufficiently large integers
n, K,m and 6 > 0, further suppose that P, ... ' PX are (v, A)-diverse over target distribution PO

with proper configuration of neural network family and T, Ty. It holds that with probability no less
than 1 — 9,

log? (nK/5) log?’((m/u)/\n) N log? (nK/s) VA

%((m/u) An) Ty T V2(7’LK) 5,73

E (o0 g0y, By [TV (P, P, )] <!

@y le ~

(C.30)

Proof. Combine Theorem C.1 and Theorem B.6 and plug in the configuration of F, H, we have with
probability no less than 1 — §

(J
E{(w“y )} ]E(z,y)N]PO [K (l‘ayvsfp"ﬁ)]

3(dg+dy)+15

log~ 2 (nK/ed)log(T/Ty)  log*(1/e)log(nk/(eh))
(m A (vn))edetdy T3 + vnKePv
(C31)

1
< —log?(nK/(e6))e* + A +
v

By Lemma C.7,

TV(BY,.P,) S Volog ™ (1/Ty) + T+\/Epg‘y[éﬂ”“(x’y,sﬁ,oyﬁ)] (C.32)

Taking expectation of y, fJP7 P, we have

Ef(e;yym, yNPO[Tv( I mly \/Tolog 5 1/T0)—|—e —ﬁ—l/*%log(nK/(&ﬁ))E—l-\/E
3(dg+dy)+15 nK 17
log 1 (s—g)log2(T—o) 1082( )log (25
(m/\(z/n))%sw 0; (me)stz
(C.33)
Let Ty = O (gg/logdz“(l/so)) T = O(log(1/20)),e = O(co/log(nk/(200))) for some
small g > 0 defined later. Then it reduces to

+

1 M(nK)kgsd%F)(l) lg2(1)1
O +dy)+ nK = og (Z-)log
E{(L’yl)}zn EyN 0[ V( oy Px\y)] T+\/7$+ 501 do+dy+7 B €0
T ][D (m A (Vn))fgo 2 ynK)
P (C.34)
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log%( K/6)log®((m/v) An) log®(nK/s)
(mfo) Ay ()P

Let ¢ = C'max { }, and we can conclude that

%(nK/cS)log?’((m/V)/\n) n log?(nK /) VA

1 1
v ((m/v) An)T=FaTo v (nK)Pvi2

E{(ay0)ym , Byro [TV(PY,, 2|y)]§

(C.35)
O

Theorem C.5 (Thm. 4.3). Suppose Assumption 3.1, 3.2, 3.3 hold. For sufficiently large integers
n, K, m and § > 0, with proper configuration of neural network family and T', Ty, it holds that with
probability no less than 1 — §,

log%(nK/(S) log®(m A n) log (nK/é)'

by B s 007~ By, [TV (Papys Pay)] S ;
(m/\n) dy+dy+9 KDy+2

(C.36)

Proof. Combine Theorem C.1 and Theorem B.§ and plug in the configuration of F, H, we have with
probability no less than 1 — §

EPNPme!aE{(zi 1y1)}:1;1N]PE(xvy)NP [eP([L‘, y7 SJ?P,B)]

3(dg+dy)+15

logm 2z (nK/ed)log(T/T) n log*(1/¢) log(nkK/(ed))
(m A n)edetdy 1T KeDy

<log?(nK/(d))e? +

(C.37)
By Lemma C.7,

TV(Bayy Papy) S VTolog ™3 (1/T0) + T + \/]Epm [0 (2,57 7)] (C.38)
Taking expectation of ¥, fP, P, we have

E]P’NIPmmE{(m,yi)}; N]p:EyN[p [TV(Pﬂya}Pz\y < V1o log‘ = (1/T0) +e + 10g(nK/(55))€

3(dg +dy)+15

log™ 4 (M)log%(%) log?(1) log? (2
+ L dotdy 13 1 Dy
(m/\n)ngTo Kze—
(C.39)

LetTy = O (sg/logd“"’l(l/sg)) , T = O(log(1/en)),e = O(go/log(nk/(0dp))) for some
small g > 0 defined later. Then it reduces to

5(da+dy)+17
4

3dgp+5
. log (2E)log™ = ()
Ep oo B (@i iy, ~PEy~p, [TV (Pojy, Popy )] S €0 + S aTa

) (C.40)
N log (50)10g -

5
Let 2o = C max logQ(nK/é)log‘n’(m/\n) logz(nK/(S)
(171/\71)%'*%‘%1+9 T KDy

}, and we can conclude that

log? (nK/8) log®(m A n) log (nK/a)

(m A n)dﬁiﬁy+9 K772
(C4D
O

Bp B B (2,901 ~PEy e, [TV (Pajy, Pajy )] S

40



C.3 Auxiliary Lemmas

Lemma C.6. Let Q, = [—Ry, Ry]* x [0,1]% x [Ty, T) for some Ry > 1. Then there exists some
RS
constant Cs, such that the score function fF (z,w,t) is — ! -Lipschitz with respect to t in g, .
0
Proof. According to (B.2),
o Pt (x|zo)p(20; W)

P __ %

Define density function g;(xo|z, w) o< ¢¢(z|xo)p(zo; w). Then

0 2a T 0 o (1 + a?
aff(xa w, t) = t + COVqt(g;okr w) (.2?0, 5 log ¢t($|l‘o)> - Meq(xo\w,w) [1‘0]
7 o7 L o}
(C.43)
Note that
0 0 ||z — cuxol|?
Cove, (wolz,w) <~T0’ 3, 108 ¢t(»’”|10)> = —Covy, (wo|z,w) (9507 at”%zzo')
ai(r —apm) 1 Qat |z — azzol|?
= COVqt(:rola:,w) <$0, O't2 J?
(C44)
Hence for any = € [~ Ry, Ry]%,w € [0,1]%,
a?Ry T —auxo |3 a(l+a?)
H f* Z,w, t HOO S.; Ut +eq(a?0|$ w)H th H 0,21 eq(wom,w)[HxOHoo}
(C.45)
2 2
Let R = M. We have
Ot
g — x||3 oo — 3 G \1’0 1’0|y)
qt(zolz,w) Ut2 || || f¢t (z]y)dz

2
R3 fuam = >r #95= x||26XP (*%) p(xo; w)dzo

<3
Oy affexp( 7”0”2?7 2l )p(:co;w)dxo
2
RS f” atlo*l I>R eXp(fRi)p(xO; w)dﬂfo
<= .
U? Ut ,fH”‘tl() *H<R/2 eXp( )p($07 )dxo
(C.46)
. g — T . T
The domain {l‘o I < R/Z} includes {aco ol < Co}, indicating
, 1
p(zo; w)dzy > p(zo;w)dzg > 1 — 2exp(—CC2) > =
| 22e== | <R/2 ol <Co 2’ can
1 .
p(zo; w)dzy < p(wo; w)dwo < 5.
2= 1>R llzoll=Co
Therefore, for any (z,w,t) € Qg e
R} R} +CP : R3
Hfﬂ”‘xth P N A S R (C.48)
0o t of g% 1p
O
Lemma C.7. Suppose KL(IP’m|y||N(0, I)) < Cky for some constant Cxy,. Then
TV, P2,) S VIolog™® (1/Ty) + ¢ + \/EPU (wy,577)).  (C49)
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Proof. With a little abuse of notation, we will use p;(z:|y) to denote the conditional density of x|y
under ]P’gl - Consider the following two backward processes

Az, = (T + 2V log pr_¢(Te|y))dt + V2AW,, Fo ~ N(0,1),0 <t < T — T, (C.50)
dz; = (T4 + 2V log pr_(T4|y))dt + V2dWy, T ~ pr,0 <t < T — Ty, (C.51)

Denote the distribution of Z; as I?’T,t. And note that z; ~ pp_; by classic reverse-time SDE results
[Anderson, 1982]. Then by Fu et al. [2024, Lemma D.5],

TV(Pr,,Py) < \/Tolog 5" 1/T0) (C.52)

At the same time, we apply Data Processing inequality and Pinsker’s inequality to get

TV(Pr,, Pr,) < TV(Pr, N(0,1)) £ VKLPr[N(0,1)) £ vVKL(B|N(0,1))e ™. (C53)
Again according to Pinsker’s inequality and Oko et al. [2023, Proposition D.1],

Combine three inequalities above and we complete the proof. O

D Proofs in Section A

D.1 Proof of Theorem A.1

Proof. Due to the structure of exponential family, Assumption 3.2 holds obviously. To apply previous
results, we only need to verify Assumption 3.1 and 3.3. Recall that a basic property of exponential
family is

le’lZJ(x) = Epu (y|x) [h (y)] € [0 1] (D.1)
0= V?cAib(x) Varpw(ylm)( ( )) (D.2)

Hence by Assumption A.1, Ay (z) < Ay(0) + ||z|1 < log (/w(y)dy) + ||z]1 <logC + ||z|1-

And Ay (z) > Ay(0) — ||z|l1 > —log C' — ||z||1. Further note that the posterior density pg(z|y) =
po(x) exp((z, he(y)) — Ay (7))
Zy

, where the normalizing constant Zy(y) is lower bounded by

Zoly) = / po(x) exp((z, ha (1)) — Ay(x))dz

> / po(@) exp(—2l|z]1)/Cdz (D3)
> exp(—2VdR)(1 — 2exp(—C| R?))/C =: Cy.

where in the second inequality we apply Py(||z|| > R) < 2exp(—C;R?) and let R = 1/,/C} to
get C. Therefore, by Assumption A.1,
po(ly) < Crexp(=Ca|lz* + 2]zl +log C)/Co < Cf exp(—Cslz[|*), (D.4)
and thus Assumption 3.1 holds. At the same time, ley w = h.(y), then the score function is
Vi logpe(zly) = Vi logpg(z,w) = Vilogpy(x) + w — Vo Ay (). (D.5)

Since V, log pg(x) is L-Lipschitz, V Ay (z) is also 1-Lipschitz, the score function V,, log pg(z, w)
is (L + 1)-Lipschitz in & and 1-Lipschitz in w. And ||V, log pg (0, w)]|| < ||V log ps(0)]| 4+ 2Vd =
B + 2V/d, indicating that Assumption 3.3 holds with L' = L + 1, B’ = B + 2V/d.

We conclude the proof by applying Theorem 4.3 under meta-learning setting or Theorem 4.2 under
(v, A)-diversity. O
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D.2 Proof of Theorem A.2

Proof. Let A3;(s,a) = Q7;(s,a) — Var(m, s) be the advantage function of policy 7. Note that the

reward function rp; € [0, 1], we have | A7}, (s, a)| < 1 for any M, 7. According to performance

difference lemma,

- 1 ~
Viro(72) = Vapo(7°) = T Bs.amat [A7yo(s,a)]

1 ﬁO %0
= iEswdg [anﬂg(»|s) [AMU (Sa a)] - ECLN/TFO(-‘S) [AMO (57 a)]:| (D.6)

< ﬁﬁswdg TV (r2(-15), 7°(1s))]

Hence in meta-learning setting, we plug in Theorem 4.3 to obtain

o » 1 log? (nK/8)log®(m A n) N log?(nk/s)
)2 '

EyoE m Vi -V <
ME (50,0017, a2 Varo (M) =Varo (T0)] S (11—~ (m An) T T To KDis

>.7

If we further assume (v, A)-diversity holds, then we plug in Theorem 4.2,

(1= vz ((m/v) An)Tarass vz (nK)D:72
(D.8)

O

B (50,00, ~a2 [Varo () =Varo (R7)] S

E Experiment Details

E.1 Conditioned Diffusion

Each f* and f° are implemented as a 2-layer MLP with 128 internal channels and 60 input channels.
The representation map h is implemented as a 5-layer MLP with 512 internal channels and 10
output channels. We have n = 1000 pre-training samples from each source distribution P*, m €
{10, 20, 30, 40, 50, 100} fine-tuning samples from the target distribution PY. We run Langevin Monte
Carlo for sufficiently long time to obtain 100 test samples from the target distribution P for evaluating
the test error of different models. In the pre-training phase, the {fk, 1<k<K}and h are trained
on the K = 10 source distributions with 400K iterations and a batch size of 512. In the fine-tuning
phase, the pre-trained representation map T is fixed, and the ]?0 is trained on the target distribution
with 200K iterations and a batch size of m. As an important baseline, we also consider jointly training
h and f° on the target distribution from scratch, using the same fine-tuning samples.

E.2 Image Restoration on MNIST

Each f* and f are implemented as a 3-layer MLP with 512 internal channels and 784 input channels.
The representation map h is implemented as a 5-layer MLP with 512 internal channels and 64
output channels. We have n. = 5000 pre-training samples from each source distribution P¥, and
m € {10, 20, 30,40, 50, 100} fine-tuning samples from the target distribution IPY. For evaluation, we
directly compute the mean squared error between the posterior samples and the ground truth images,
based on 100 test samples from PY. In the pre-training phase, the the {]?k, 1<k<K=9}and h
are 2K epochs and a batch size of 512. The initial learning rate is 0.0003 and is annealed according
to a cosine annealing schedule. In the fine-tuning phase, the pre-trained representation map h is
fixed, and the ]?0 is trained on the target distribution with 20K iterations and a batch size of m. As an
important baseline, we also consider jointly training 4 and f° on the target distribution from scratch,
using the same fine-tuning samples.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions, i.e.,
proposing a data-efficient training method for machine learning models.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provides the full set of assumptions and complete (and correct)
proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will provide complete codes upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports experimental results based on the average of independent
random trials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets currently.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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