
Provable Sample-Efficient Transfer Learning
Conditional Diffusion Models via Representation

Learning

Ziheng Cheng1, Tianyu Xie2, Shiyue Zhang2, Cheng Zhang2,3,∗
1 Department of Industrial Engineering and Operations Research, University of California, Berkeley

2 School of Mathematical Sciences, Peking University
3 Center for Statistical Science, Peking University

ziheng_cheng@berkeley.edu, tianyuxie@pku.edu.cn,
zhangshiyue@stu.pku.edu.cn, chengzhang@math.pku.edu.cn

Abstract

While conditional diffusion models have achieved remarkable success in various
applications, they require abundant data to train from scratch, which is often
infeasible in practice. To address this issue, transfer learning has emerged as
an essential paradigm in small data regimes. Despite its empirical success, the
theoretical underpinnings of transfer learning conditional diffusion models remain
unexplored. In this paper, we take the first step towards understanding the sample
efficiency of transfer learning conditional diffusion models through the lens of
representation learning. Inspired by practical training procedures, we assume
that there exists a low-dimensional representation of conditions shared across all
tasks. Our analysis shows that with a well-learned representation from source tasks,
the sample complexity of target tasks can be reduced substantially. Numerical
experiments are also conducted to verify our results.

1 Introduction

Conditional diffusion models (CDMs) utilize a user-defined condition to guide the generative process
of diffusion models (DMs) to sample from the desired conditional distribution. In recent years, CDMs
have achieved groundbreaking success in various generative tasks, including text-to-image generation
[Ho et al., 2020, Song et al., 2020, Ho and Salimans, 2022, Rombach et al., 2022], reinforcement
learning [Janner et al., 2022, Chi et al., 2023, Wang et al., 2022, Reuss et al., 2023], time series
[Tashiro et al., 2021, Rasul et al., 2021], and life science [Song et al., 2021, Watson et al., 2022,
Gruver et al., 2024, Guo et al., 2024].

Training a CDM from scratch requires a large amount of data to achieve good generalization. However,
in practical scenarios, users often have access to only limited data for the target distribution due to cost
or risk concerns, making the model prone to over-fitting. In such small data regime, transfer learning
has emerged as a predominant paradigm [Moon et al., 2022, Ruiz et al., 2023, Xie et al., 2023, Han
et al., 2023]. By leveraging knowledge acquired during pre-training on large source datasets, transfer
learning enhances the performance of fine-tuning on target tasks, facilitating few-shot learning and
significantly improving practicality.

Among the successful applications of transfer learning CDMs, the conditions are typically high-
dimensional vectors with embedded low-dimensional representations (features) that encapsulate all
the information required for inference. In addition, these representations are likely to be task-agnostic,
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Tasks Backbone Score Network Condition Encoder

Text-to-Image [Esser et al., 2024] 2-8B 4.7B

Text-to-Audio [Liu et al., 2024] 350-750M 750M

Robotic Control [Chi et al., 2023] 9M 20-45M

Table 1: Comparing the number of parameters of different parts in CDMs.

enabling effective knowledge transfer. For example, in text-to-image generation, the text input
is inherently in high-dimensional space, but contains low-dimensional semantic information such
as object attributes, spatial relationships, despite the differences of styles or contents in different
image distributions. To take advantage of this structure, condition encoders are often frozen in the
fine-tuning stage [Rombach et al., 2022, Esser et al., 2024], which typically constitutes a significant
portion of the overall model (see Table 1).

While this paradigm has demonstrated remarkable empirical success, its theoretical underpinnings
remain largely unexplored. The following fundamental question is still open:

Can transfer learning CDMs improve the sample efficiency of target tasks by leveraging the
representation of conditions learned from source tasks?

There are some recent works attempting to study the theoretical underpinnings of CDMs [Fu et al.,
2024, Jiao et al., 2024, Hu et al., 2024], but focus on single task training. Notably, Yang et al. [2024]
investigates transfer learning DMs under the assumption that the data is a linear transformation of a
low-dimensional latent variable following the same distribution across all tasks. However, fine-tuning
merely the data encoder is not a widely adopted training approach in practice.

In this paper, we take the first step towards addressing the above question. Our key assumption is that
there exists a generic low-dimensional representation of conditions shared across all distributions.
Then we show that, with a well-learned representation from source tasks, the sample complexity of
target tasks can be reduced substantially by training only the score network. The main contributions
are summarized as follows:

• In Section 3, we establish the first generalization guarantee for transferring score matching error in
CDMs, showing that transfer learning can reduce the sample complexity for learning condition
encoder in the target task. This is aligned with existing transfer learning theory in supervised
learning. Specifically, we present two results in Theorem 3.4 and Theorem 3.6, under the settings
of task diversity assumption and meta-learning2, respectively. On the technical side, we develop a
novel approach to tackle Lipschitz continuity under weaker assumptions on data distribution in
Lemma 3.1, which may be of independent interest for the analysis of even single-task diffusion
models.

• In Section 4, we provide an end-to-end distribution estimation error bound in transfer learning
CDMs. To obtain an L2 accurate conditional score estimator, we construct a universal approx-
imation theory using deep ReLU neural networks in Theorem 4.1. Then by combining both
generalization error and approximation error, Theorem 4.2 and 4.3 provide sample complexity
bounds for estimating conditional distribution. Notably, our results are the state of the art even
when reduced to single-task learning setting.

In Section A, we further utilize our results to establish statistical guarantees in practical applications
of CDMs. In particular, we investigate amortized variational inference (Theorem A.1) and behavior
cloning (Theorem A.2), and present guarantees in terms of posterior estimation and optimality gap,
laying the theoretical foundations of transfer learning CDMs in practice. We also conduct numerical
experiments in Section 5 to verify our results.

2In practice, the terms such as transfer learning, meta-learning, learning-to-learn, etc., often refer to the
same training paradigm, i.e., to fine-tune on target tasks with limited data using knowledge from source tasks.
However, in the theoretical framework, we use meta-learning to emphasize that target tasks and source tasks are
randomly sampled from a meta distribution [Baxter, 2000], whereas in transfer learning, the tasks are fixed.
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1.1 Related Works

Score Approximation and Distribution Estimation Recently, some works analyze the score
approximation theory via deep neural networks and corresponding sample complexity bounds for
diffusion models. Oko et al. [2023] considers distributions with density in Besov space and supported
on bounded domain. Chen et al. [2023b] assumes the data distribution lies in a low-dimensional
linear subspace and obtains improved rates only depending on intrinsic dimension. Fu et al. [2024]
studies conditional diffusion models for Hölder densities and Hu et al. [2024] further extends the
framework to more advanced neural network architectures, e.g., diffusion transformers. Wibisono
et al. [2024] establishes a minimax optimal rate to estimate Lipschitz score by kernel methods. With
an L2 accurate score estimator, several works provide the convergence rate of discrete samplers for
diffusion models [Chen et al., 2022b, 2023a, Lee et al., 2023, Chen et al., 2024]. Combining score
matching error and convergence of samplers, one can obtain an end-to-end distribution estimation
error bound.

Transfer Learning and Meta-learning Theory in Supervised Learning The remarkable empirical
success of transfer learning, meta-learning, and multi-task learning across a wide range of machine
learning applications has been accompanied by gradual progress in their theoretical foundations,
especially from the perspective of representation learning. To the best of our knowledge, Baxter
[2000] is the first theoretical work on meta-learning. It assumes a universal environment to generate
tasks with some shared features. Following this setting, Maurer et al. [2016] provides sample
complexity bound for general supervised learning problem and Aliakbarpour et al. [2024] studies
very few samples per task regime. Another line of research replaces the environment assumption
and instead establishes connections between source tasks and target tasks through various notions
of task diversity [Tripuraneni et al., 2020, Du et al., 2020, Tripuraneni et al., 2021, Watkins et al.,
2023, Chua et al., 2021]. However, theoretical understandings of transfer learning for unsupervised
learning are much more limited.

Few-shot Fine-Tuning of Diffusion Models Adapting pre-trained conditional diffusion models
to specific tasks with limited data remains a challenge in varied application scenarios. Few-shot
fine-tuning aims to bridge this gap by leveraging various techniques to adapt those models to a novel
task with minimal data requirements [Ruiz et al., 2023, Giannone et al., 2022]. A promising paradigm
is to use transfer (meta) learning by constructing a representation for conditions in all the tasks, which
has been widely applied in image generation [Rombach et al., 2022, Ramesh et al., 2022, Sinha et al.,
2021], reinforcement learning [He et al., 2023, Ni et al., 2023], inverse problem [Tewari et al., 2023,
Chung et al., 2023], etc. Another work Yang et al. [2024] is closely related to this paper, proving that
few-shot diffusion models can escape the curse of dimensionality by fine-tuning a linear encoder.

2 Preliminaries and Problem Setup

Notations We use x and y to denote the data and conditions, respectively. The blackboard bold
letter P represents the joint distribution of (x, y), while the lowercase p denotes its density function.
The superscript k indicates the task index, and the subscript i means the sample index. The norm
∥ · ∥ refers to the ℓ2-norm for vectors and the spectral norm for matrices. For the hypothesis class
F , we use F⊗K to refer its K-fold Cartesian product. For any a, b ∈ R, a ∧ b = min{a, b} and
a ∨ b = max{a, b}. Finally, we use standard O(·),Ω(·) to omit constant factors.

2.1 Conditional Diffusion Models

Let Rdx denote the data space and [0, 1]Dy denote the condition space. Let P be any joint distribution
over Rdx × [0, 1]Dy with density p and P(·|y) be the conditional distribution with density p(·|y). As
in diffusion models, the forward process is defined as an Ornstein–Uhlenbeck (OU) process,

dXt = −Xtdt+
√
2dWt, X0 ∼ P(·|y). (2.1)

where {Wt}t≥0 is a standard Wiener process. We denote the distribution of Xt as Pt(·|y). Note that
the limiting distribution P∞(·|y) is a standard Gaussian N (0, I).

To generate new samples, we can reverse the forward process (2.1) from any T > 0,

dX←t = (X←t + 2∇ log pT−t(X
←
t |y))dt+

√
2dW t, X

←
0 ∼ PT (·|y), 0 ≤ t ≤ T. (2.2)
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where {W t}0≤t≤T is a time-reversed Wiener process. Unfortunately, we don’t have access to the
exact conditional score function ∇ log pT−t and need to estimate it through neural networks. For any
(x, y) ∼ P and score estimator s, define the individual denoising score matching objective [Vincent,
2011] as

ℓ(x, y, s) :=
1

T − T0

∫ T

T0

Ext∼ϕt(·|x)
[
∥s(xt, y, t)−∇ log ϕt(xt|x)∥2

]
dt, (2.3)

where ϕt(xt|x) = N (xt|αtx, σ2
t I), αt = e−t, σ2

t = 1− e−2t, is the transition kernel of xt|x0 = x.
And the population error of score matching is

LP(s) := E(x,y)∼PEt,xt [∥s(xt, y, t)−∇ log pt(xt|y)∥2] = E(x,y)∼P[ℓ(x, y, s)− ℓ(x, y, sP∗)]. (2.4)

Here sP∗ denotes the true score function and t ∼ Unif([T0, T ]). We also define ℓP(x, y, s) :=
ℓ(x, y, s)− ℓ(x, y, sP∗). In practice, with a score estimator ŝ, the generative process is to simulate

dX̂←t = (X̂←t + 2ŝ(X̂←t , y, T − t))dt+
√
2dW t, X̂

←
0 ∼ N (0, I), 0 ≤ t ≤ T − T0. (2.5)

Here T0 > 0 is the early-stopping time. And the distribution of X̂←T−T0
is written as P̂(·|y).

Note that we don’t apply the commonly used classifier-free guidance [Ho and Salimans, 2022]
which has a tunable guidance strength since we mainly concentrate on sampling from conditional
distribution instead of optimizing other objectives.

2.2 Transfer Diffusion Models via Learning Representation

Consider K source distributions over Rdx × [0, 1]Dy , P1, · · · ,PK , and a target distribution P0.
Suppose that for each source distribution Pk, 1 ≤ k ≤ K, we have n i.i.d. samples {(xki , yki )}ni=1 ∼
Pk, and m i.i.d. samples {(x0i , y0i )}mi=1 ∼ P0 are available for the target distribution, where typically
m≪ n. In transfer (meta) learning setup, we assume there exists a shared nonlinear representation
of the condition y for all distributions, i.e., the conditional distribution Pkx|y = Pkx|h∗(y)

for some
h∗ : [0, 1]

Dy → [0, 1]dy (see also Assumption 3.2). Note that due to the shared features, the score of
pkt (·|y) also has the form of ∇ log pkt (xt|y) = fk∗ (xt, h∗(y), t) for some fk∗ .

Similar to Tripuraneni et al. [2020], our transfer learning procedures consist of two phases. In the
pre-training phase, the goal is to learn a representation map h∗ through nK samples from K source
distributions. Then during the fine-tuning phase, we learn the target distribution via m new samples
and the representation map learned in the pre-training phase.

Formally, let F ,H be the hypothesis classes of score networks and representation maps, respectively.
Further let F0 ⊆ F be the hypothesis class of score network in fine-tuning phase. In the pre-training
phase, we solve the following Empirical Risk Minimization (ERM),

f̂ , ĥ = argmin
f∈F⊗K ,h∈H

1

nK

K∑
k=1

n∑
i=1

ℓ(xki , y
k
i , sfk,h). (2.6)

Then for the fine-tuning task, we solve

f̂0 := argmin
f∈F0

1

m

m∑
i=1

ℓ(x0i , y
0
i , sf,ĥ). (2.7)

Here sf,h(x, y, t) := f(x, h(y), t) for f : Rdx×[0, 1]dy×[T0, T ] → Rdx and h : [0, 1]Dy → [0, 1]dy

and ℓ is defined in (2.3).

In the meta-learning setting, we further assume that all the distributions {Pk}k are i.i.d. sampled
from a meta distribution Pmeta. Here Pmeta can be interpreted as a universal environment [Baxter,
2000, Maurer et al., 2016]. In this case, we posit the existence of a shared representation map that
holds for all P ∼ Pmeta. And the performance benchmark is then defined as the expected error on the
target distribution P0 ∼ Pmeta.
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2.3 Deep ReLU Neural Network Family

We use feedforward neural networks to approximate the score function and representation
map. Let σ(x) := max{x, 0} be the ReLU activation. Define the score network family
NNf (L,W,M,S,B,R, γ) :=

{
f(x,w, t) = (ALσ(·) + bL) ◦ · · · ◦ (A1[x

⊤, w⊤, t]⊤ + b1) :

Ai ∈ Rdi×di+1 , bi ∈ Rdi+1 , dL+1 = dx,max di ≤ W, ∥f∥L∞ ≤ M,

L∑
i=1

(∥Ai∥0 + ∥bi∥0) ≤

S,max ∥Ai∥∞ ∨ ∥bi∥∞ ≤ B, ∥f(x,w, t) − f(x,w′, t)∥ ≤ γ∥w − w′∥∞,∀ ∥x∥∞ ≤ R, t ≤ T
}

,
and encoder network NNh(L,W, S,B) :=

{
h(y) = (ALσ(·) + bL) ◦ · · · ◦ (A1y + b1) :

Ai ∈ Rdi×di+1 , bi ∈ Rdi+1 , dL+1 = dy,max di ≤ W, ∥h∥L∞([0,1]Dy ) ≤ 1,

L∑
i=1

(∥Ai∥0 +

∥bi∥0) ≤ S,max ∥Ai∥∞ ∨ ∥bi∥∞ ≤ B
}
. Throughout this paper, we let F0 = F =

NNf (Lf ,Wf ,Mf , Sf , Bf , Rf , γf ) and H = NNh(Lh,Wh, Sh, Bh) unless otherwise specified.

Remark 1. In practice, F0 ⊆ F may (and typically will) depend on f̂ for parameter efficient
fine-tuning (PEFT), e.g., LoRA [Hu et al., 2021]. This will substantially reduce the complexity of F0

and further improve sample efficiency. The analysis of PEFT is beyond the scope of this paper.

3 Statistical Guarantees for Transferring Score Matching Error

In this section, we present our main theoretical results, a statistical theory of transferring the con-
ditional score matching loss. We provide two upper bounds of the score matching loss on target
distribution, based on whether task diversity [Tripuraneni et al., 2020] is explicitly assumed. Our
analysis introduces novel techniques to address the smoothness properties of the noised data distribu-
tion—a challenge that remains nontrivial even in single-task settings. Additionally, we extend the
classical theory of local Rademacher complexity to quantify the empirical estimation error.

Throughout this paper, we make the following standard and mild regularity assumptions [Tripuraneni
et al., 2020, Chen et al., 2023b] on the initial data distribution P and the representation map h∗.
Assumption 3.1 (Sub-gaussian tail). For any source or target distribution P, P is supported on
Rdx × [0, 1]Dy and admits a continuous density p(x, y) ∈ C2(Rdx × [0, 1]Dy ). Moreover, the
conditional distribution p(x|y) ≤ C1 exp(−C2∥x∥2) for some constant C1, C2.
Assumption 3.2 (Shared low-dimensional representation). There exists an L-Lipschitz function
h∗ : [0, 1]Dy → [0, 1]dy with dy ≤ Dy, such that for any source and target distribution P, the
conditional density p(x|y) = gP∗(x, h∗(y)) for some gP∗ ∈ C2(Rdx × [0, 1]dy ).

Equivalently, h∗(y) is a sufficient statistic for x, which indicates that pt(x|y) = pt(x|h∗(y)). There-
fore, with a little abuse of notation, for any w ∈ [0, 1]dy , we define p(x;w) = p(x|h∗(y) = w) =
gP∗(x,w). Also note that by definition, for any x, y, we have p(x;h∗(y)) = p(x|h∗(y)) = p(x|y).
Assumption 3.3 (Lipschitz score). For any source and target distribution P and its density function
p, the conditional score ∇x log p(x|y) = ∇x log g

P
∗(x, h∗(y)). The score function ∇x log g

P
∗(x,w)

is L-Lipschitz in x and w. And ∥∇x log g
P
∗(0, w)∥ ≤ B for some constant B and any w.

3.1 Tackling Lipschitz Continuity under Weaker Assumptions

Notice that we only impose smoothness assumption on the original data distribution p(·|y), instead
of the entire trajectory pt(·|y) in forward process. This is substantially weaker than the Lipschitzness
assumption required in Chen et al. [2023b, 2022b], Yuan et al. [2024], Yang et al. [2024]. However,
Lipschitzness of loss function ℓ and class F is a crucial hypothesis in theoretical analysis of transfer
learning [Tripuraneni et al., 2020, Chua et al., 2021]. The intuition is that without Lipschitz conti-
nuity of the score network f , it is generally impossible to characterize the error from an imperfect
representation map h. Hence it is inevitable to show the smoothness of pt(·|y) to some extent.

Fortunately, even with assumptions merely on the initial data distribution, we are still able to prove
smoothness of the forward process in any bounded region, as shown in the following lemma. The
proof can be found in Appendix B.1.
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Lemma 3.1. Under Assumption 3.1, 3.2, 3.3, for any w ∈ [0, 1]dy , denote the conditional score
of forward process ∇x log pt(x;w) by f∗(x,w, t). There exist constants CX , C ′X , such that for any
R > 0, the function f∗(x,w, t) is (CX +C ′XR

2)-Lipschitz in x, (CX +C ′XR)-Lipschitz in w, in the
domain BR × [0, 1]dy × [0, T ]. Here BR denotes the ball with radius R centered at the origin.

3.2 Results under Task Diversity: Sample-Efficient Transfer Learning

In the literature of transfer learning, task diversity is an important assumption that connects target
tasks with source tasks [Tripuraneni et al., 2020, Du et al., 2020, Chua et al., 2021]. In the context of
conditional diffusion models, we state the formal definition as follows.

Definition 3.1 (Task diversity). Given hypothesis classes F ,H, we say the source distributions
P1, · · · ,PK are (ν,∆)-diverse over target distribution P0, if for any representation h ∈ H,

inf
f0∈F0

LP0

(sf0,h) ≤
1

ν
inf

f∈F⊗K

1

K

K∑
k=1

LPk(sfk,h) + ∆. (3.1)

Here LP is defined in (2.4). This notion of diversity ensures that the representation error on the target
task caused by ĥ can be controlled by the error on the source tasks, thereby establishing certain
relationships in between. More detailed discussions are deferred to Appendix B.5.

We first present the generalization guarantee for each phase respectively.

Proposition 3.2 (Fine-tuning phase generalization). Under Assumption 3.1, 3.2, 3.3, for any ĥ ∈ H,
the population loss of f̂0 can be bounded by

E{(xi,yi)}mi=1∼P0E(x,y)∼P0 [ℓP
0

(x, y, sf̂0,ĥ)] ≲ inf
f∈F

E(x,y)∼P0 [ℓP
0

(x, y, sf,ĥ)] + log3(m)rx, (3.2)

where rx =
log ÑF
m

and log ÑF is some complexity measures of F .

Proposition 3.3 (Pre-training phase generalization). Under Assumption 3.1, 3.2, 3.3, if Rf ≳

log
1
2 (nKMf/δ), with probability no less than 1− δ, the population loss can be bounded by

1

K

K∑
k=1

E(x,y)∼Pkℓ
Pk(x, y, sf̂k,ĥ) ≲ inf

f∈F⊗K ,h∈H

1

K

K∑
k=1

E(x,y)∼Pk [ℓ
P(x, y, sfk,h)]+log3(nK/δ)

(
rz +

log(1/δ)

nK

)
,

(3.3)

where rz :=
K log ÑF + log ÑH

nK
and log ÑF , log ÑH are some complexity measures of F ,H.

Combining these two propositions with the notion of task diversity in Definition 3.1, we are able to
show the statistical rate of transfer learning as follows.

Theorem 3.4. Under Assumption 3.1, 3.2, 3.3, suppose P1, · · · ,PK are (ν,∆)-diverse over target
distribution P0 given F ,H. If Rf ≳ log

1
2 (nKMf/δ), then with probability no less than 1− δ,

E{(xi,yi)}mi=1
E(x,y)∼P0 [ℓP

0

(x, y, sf̂0,ĥ)] ≲
1

ν
inf
h∈H

1

K

K∑
k=1

inf
f∈F

E(x,y)∼Pk [ℓ
Pk(x, y, sf,h)] + ∆

+
log3(m) logNF

m
+

log3(nK/δ)(K logNF + log(NH/δ))
νnK

.

(3.4)
where

logNF : =M2
fSfLf log (mnLfWf (Bf ∨ 1)MfT log(1/δ)) ,

logNH : = ShLh log (nKLhWh(Bh ∨ 1)Mfγf log(1/δ)) .
(3.5)

The formal statements and proofs are provided in Appendix B.2.
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Let εapprox = inf
h∈H

1

K

K∑
k=1

inf
f∈F

E(x,y)∼Pk [ℓ
Pk(x, y, sf,h)] be the approximation error. The lead-

ing terms can be simplified to Õ
(
εapprox +

K logNF + logNH
nK

+
logNF
m

)
, where logNF and

logNH capture the complexity of the hypothesis classes.

Improving Sample Efficiency Theorem 3.4 demonstrates the sample efficiency of transfer learn-
ing. Compared to naively training the full CDM for target distribution, which has an error of

Õ
(
εapprox +

logNF + logNH
m

)
, transfer learning saves the complexity of learning H and thus the

performance is much better when m is relatively small to n,K (i.e., in few-shot learning setting).

3.3 Results without Task Diversity: Meta-Learning Perspective

The results in previous section heavily depend on the task diversity assumption, which is hard to
verify in practice. An alternative is to consider meta-learning setting, where all source and target
distributions are sampled from the same environment, i.e., a meta distribution.

For any h ∈ C([0, 1]Dy ; [0, 1]dy ) and distribution P over Rdx × [0, 1]Dy , define the representation
error as

L(P, h) := inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)] ≥ 0. (3.6)

We characterize the generalization bound of source tasks on the entire meta distribution as follows.

Proposition 3.5 (Generalization on meta distribution). Under Assumption 3.1, 3.2, 3.3, there exists
constant CP such that for {Pk}Kk=1

i.i.d.∼ Pmeta, with probability no less than 1− δ,

EP∼PmetaL(P, h) ≤
2

K

K∑
k=1

L(Pk, h) + CP

(
rP +

log(1/δ)

K

)
, (3.7)

1

K

K∑
k=1

L(Pk, h) ≤ 2EP∼PmetaL(P, h) + CP

(
rP +

log(1/δ)

K

)
, (3.8)

holds for any h ∈ H, where rP =M2
f exp(−Ω(R2

f )) +
ShLh log (KLhWh(Bh ∨ 1)Mfγf )

K
.

Theorem 3.6. Under Assumption 3.1, 3.2, 3.3, if Rf ≳ log
1
2 (nKMf/δ), then with probability no

less than 1− δ, the expected population loss of new task can be bounded by

EP0∼PmetaE{(xi,yi)}mi=1∼P0E(x,y)∼P0 [ℓP(x, y, sf̂0,ĥ)]

≲ inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)] +

log3(m) logNF
m

+
log3(nK/δ) logNF

n
+

log(NH/δ)
K

,

(3.9)
where logNF , logNH are defined in (3.5).

The formal statements and proofs are provided in Appendix B.3.

Let ε̃approx = inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)] be the approximation error in meta-learning.

The results above can be further simplified to Õ
(
ε̃approx +

logNF
m ∧ n

+
logNH
K

)
. Different from

transfer learning bound in Theorem 3.4, the leading term decays only in K and not in n. This is
because that without task diversity assumption, the connection between source distributions and target
distributions can only be constructed through meta distribution. And according to Proposition 3.5, the
source distributions P1, · · · ,PK collectively form a K-shot empirical estimation of Pmeta, leading to
an estimation error of O(1/K). Despite this, Theorem 3.6 still demonstrates the sample efficiency of
meta-learning compared to naive training method when m is small and n,K are sufficient large.
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4 End-to-End Distribution Estimation via Deep Neural Network

Section 3 provides a statistical guarantee for transferring score matching. In this section, we establish
an approximation theory using deep neural network to quantify the misspecification error. Combining
both results we are able to obtain an end-to-end distribution estimation error bound for transfer
learning diffusion models.

4.1 Score Neural Network Approximation

The following theorem provides a guarantee for the ability of deep ReLU neural networks to approxi-
mate score and representation. The proof is provided in Appendix C.1.

Theorem 4.1. Under Assumption 3.1, 3.2, 3.3, to achieve Rf ≳ log
1
2 (nKMf/δ) and

inf
h∈H

1

K

K∑
k=1

inf
f∈F

E(x,y)∼Pk [ℓ
Pk(x, y, sf,h)] = O

(
log2(nK/(εδ))ε2

)
, (transfer learning) (4.1)

inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)] = O

(
log2(nK/(εδ))ε2

)
, (meta-learning) (4.2)

the configuration of F and H should satisfy

Lf = O
(
log

(
log(nK/(εδ))

ε

))
,Wf = O

(
log3(dx+dy)/2(nK/(εδ))

εdx+dy+1T 3
0

)
,

Sf = O

(
log3(dx+dy)/2+1(nK/(εδ))

εdx+dy+1T 3
0

)
, Bf = O

(
T log

3
2 (nK/(εδ))

ε

)
,

Rf = O
(
log

1
2 (nK/(εδ))

)
,Mf = O

(
log3(nK/(εδ))

)
, γf = O (log(nK/(εδ))) ,

(4.3)

Lh = O (log(1/ε)) ,Wh = O
(
ε−Dy log(1/ε)

)
, Sh = O

(
ε−Dy log2(1/ε)

)
, Bh = O(1). (4.4)

Here O(·) hides all the polynomial factors of dx, dy, Dy, C1, C2, L,B.

Universal approximation of deep ReLU neural networks in a bounded region has been widely studied
[Yarotsky, 2017, Schmidt-Hieber, 2020]. However, we have to deal with an unbounded domain here,
hence more refined analysis is required, e.g. truncation arguments.

In addition, traditional approximation theories typically cannot provide Lipschitz continuity guaran-
tees, which is crucial in transfer learning analysis. Following the constructions in Chen et al. [2023b],
the Lipschitzness restriction doesn’t compromise the approximation ability of neural networks, while
ensuring validity of the generalization analysis in Section 3.

4.2 Distribution Estimation Error Bound

Given the approximation and generalization results, we are in the position of bounding the distribution
estimation error of our transfer (meta) learning procedures. The formal statements and proofs can be
found in Appendix C.2.
Theorem 4.2 (Transfer learning). Under Assumption 3.1, 3.2, 3.3 and (ν,∆)-diversity with proper
configuration of neural network family and T, T0, it holds that with probability at least 1− δ,

E{(xi,yi)}mi=1∼P0Ey∼P0
y
[TV(P̂0

x|y,P
0
x|y)] ≲

log
5
2 (nK/δ) log3((m/ν) ∧ n)
ν

1
2 ((m/ν) ∧ n)

1
dx+dy+9

+
log2(nK/δ)

ν
1
2 (nK)

1
Dy+2

+
√
∆.

(4.5)
Theorem 4.3 (Meta-learning). Under Assumption 3.1, 3.2, 3.3 and meta-learning setting, with proper
configuration of neural network family and T, T0, it holds that with probability at least 1− δ,

EP0∼PmetaE{(xi,yi)}mi=1∼P0Ey∼P0
y
[TV(P̂0

x|y,P
0
x|y)] ≲

log
5
2 (nK/δ) log3(m ∧ n)
(m ∧ n)

1
dx+dy+9

+
log2(nK/δ)

K
1

Dy+2

.

(4.6)
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m 10 20 30 40 50 100

fine-tuning 14.47 3.68 2.45 1.82 1.9 0.91
train-from-scratch 21.99 10.61 5.71 2.38 1.77 1.04

Table 2: MSEs for β0 = 5.5.

m 10 20 30 40 50 100

fine-tuning 6.14 2.65 1.61 1.08 0.96 0.45
train-from-scratch 24.41 20.62 18.67 13.49 7.03 1.23

Table 3: MSEs for β0 = 15.

Theorem 4.2 and 4.3 again unveil the benefits of transfer (meta) learning for conditional diffusion
models, with a rate of Õ((m ∧ n)−

1
dx+dy+9 + (nK)

− 1
Dy+2 ) or Õ((m ∧ n)−

1
dx+dy+9 +K

− 1
Dy+2 ).

To compare, naively learning the target distribution in isolation will yield Õ(m
− 1
dx+Dy+9 ). When

the condition dimension Dy is much larger than feature dimension dy, transfer (meta) learning can
substantially improve sample efficiency on target tasks, thanks to representation learning.

Comparison with Existing Complexity Bounds of CDMs Fu et al. [2024] studies conditional
diffusion model for sub-gaussian distributions with β-Hölder density. Since the Lipschitzness of
score is analogous to the requirement of twice differentiability of density [Wibisono et al., 2024],
it is reasonable to let β = 2 for a fair comparison. In this case, the TV distance is bounded
by Õ(m

− 1
2(dx+Dy+2) ) with sample size m according to Fu et al. [2024], which is worse than our

naive bound Õ(m
− 1
dx+Dy+9 ) due to the inefficiency of score approximation. We are also aware

of another work [Jiao et al., 2024] that assumes Lipschitz density and score, obtaining a rate of
Õ(m

− 1
2(dx+3)(dx+Dy+3) ).

Relation to Yang et al. [2024] Unlike our setup, Yang et al. [2024] considers transfer learning
unconditional diffusion models with only one source task, i.e., Dy = dy = 0,K = 1. The
unconditional distribution is assumed to be supported in a low-dimensional linear subspace, where
the source task and the target task have the same latent variable distribution. Hence, only a linear
encoder is trained for fine-tuning instead of the full score network. In this case, Yang et al. [2024]
is able to bound the TV distance by Õ(m−

1
4 + n−

1−α(n)
dx+5 ), escaping the curse of dimensionality for

target task. However, the assumption on shared latent variable distribution is stringent and we believe
our analysis methods can be extended to this setting as well.

5 Experiments

Our theoretical results can be readily applied in various real world settings. In Appendix A, we
investigate amortized variational inference and behavior cloning utilizing our theories, providing
statistical guarantees of practical applications of CDMs. In addition, we conduct experiments on both
synthetic and real world data to numerically verify the sample efficiency of transfer learning.

Conditioned Diffusion The first numerical example is the high-dimensional conditioned diffusion
[Cui et al., 2016, Yu et al., 2023] arising from the following Langevin SDE

dus = βus(1− u2s)ds+ dws, u0 = 0, (5.1)

where β > 0 and ws is a one-dimensional standard Brownian motion. The SDE (5.1) is discretized
by the Euler-Maruyama scheme with a step size of 0.02, which defines the prior distribution pβ(x)
for the (discretized) trajectory x = (u0.02, u0.04, . . . , u1.00)

⊤ ∈ R50. We consider a conditional
Gaussian likelihood function, p(y|x) = N (Mx, I100/4), where M ∈ R100×50 is a pre-defined
projection matrix. Given a set of pre-selected {βk; 1 ≤ k ≤ K} with βk = k and K = 10, the k-th
joint source distribution is given by Pk(x, y) = pβk(x)p(y|x). The target distribution P0(x, y) is
given by β0 = 5.5 (in-domain) or β0 = 15 (out-of-domain). More details are found in Appendix E.1.

We report the MSEs of the estimated posterior mean of P0(x|y) on the test samples in Table 2 and 3.
We see that across different values of β and m, the fine-tuned models can provide significantly more
accurate posterior mean estimations in most cases, suggesting the effectiveness of the representation
map ĥ learned in the pre-training phase. Notably, as the number of fine-tuning samples m increases,
the performance gaps between fine-tuned models and train-from-scratch models get smaller, since
more training samples yield more generalization benefits and thus less dependence on the pre-trained
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m 10 20 30 40 50 100

fine-tuning 0.3799 0.2846 0.2544 0.2406 0.2404 0.2268
train-from-scratch 0.4409 0.3180 0.2746 0.2551 0.2501 0.2344

Table 4: MSEs on the image restoration task.

model. This is aligned with our theoretical results. We also notice a large variance among the
results of different replicates, and attribute the slightly worse performance of fine-tuned models at
m = 50, β0 = 5.5 to the potential randomness.

Image Restoration For a real data experiment, we consider the image restoration task on MNIST.
We have K = 9 source tasks with Pk(x, y) = pk(x)p(y|x), where the prior pk(x) is the data
distribution of the digit k in the MNIST data set (1 ≤ k ≤ K) and p(y|x) = N (x, I784/4). The
target task is P0(x, y) = p0(x)p(y|x), where p0(x) is the data distribution of the digit 0. We use
the full MNIST 1-9 data for pre-training which corresponds to n = 5000. For the finetuning phase,
we consider m = 10, 20, 30, 40, 50, 100 training samples and 100 test samples from P

0(x, y). More
details can be found in Appendix E.2.

We report the MSEs between estimated posterior mean of P0(x, y) = p0(x)p(y|x) and the ground
truth sample x on the test samples in Table 4. We see that for all fine-tuning sample sizes m, the
results obtained by fine-tuning consistently outperform those obtained by training from scratch,
indicating the benefits of transfer learning. Similarly to the experiment on conditioned diffusion, we
also observe a reduced performance gap as m increases.

6 Conclusion and Discussion

In this paper, we take the first step towards understanding the sample efficiency of transfer learning
conditional diffusion models from the perspective of representation learning. We provide a generaliza-
tion guarantee for transferring score matching in CDMs in different settings. We further establish an
end-to-end distribution estimation error bound using deep neural networks. Two practical applications
are investigated based on our theoretical results. We hope this work can motivate future theoretical
study on the popular transfer learning paradigm in generative AIs.

Although this work provides the first statistical guarantee for transfer learning in CDMs, it has several
limitations that we plan to address in future research. First, our theoretical results heavily rely on the
task diversity notion introduced in Section 3.1, which can be challenging to verify in practice. While
we provide some preliminary empirical evidence in Appendix B.5, a more fine-grained theoretical
and empirical analysis will be essential for a deeper understanding of CDMs. Second, our analysis
focuses on the ERM estimator, whereas in practice, fine-tuning typically starts from a pre-trained
model and may employ techniques such as LoRA. Incorporating these settings would allow for an
optimization-based perspective on the sample efficiency of transfer learning. Finally, in our current
formulation, the sample efficiency gain arises from reducing the complexity associated with learning
the conditional encoder. Consequently, our results primarily apply to CDMs in which the conditional
encoder constitutes a substantial part of the overall model. Extending the theory to settings where
this assumption does not hold is an important direction for future work.
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A Applications

We explore two applications of transfer learning for conditional diffusion models, supported by
theoretical guarantees derived from our earlier results. In particular, we study amortized variational
inference and behavior cloning. These real-world use cases not only validate the applicability of our
theoretical findings but also lay the foundations of transferring diffusion models in practice.

A.1 Amortized Variational Inference

Diffusion models have exhibited groundbreaking success in probabilistic inference, especially latent
variable models. We study a simple amortized variational inference model, where the observation y
given latent variable x is distributed according to an exponential family FΨ with density

pψ(y|x) = ψ(y) exp(⟨x, h∗(y)⟩ −Aψ(x)), (A.1)

where ψ ∈ Ψ is non-negative and supported on [0, 1]D and h∗(y) ∈ [0, 1]d. Note that we also have
dx = d in this case. The prior distribution of variable x is denoted as pϕ for some ϕ ∈ Φ. Let
θ = (ψ, ϕ) and we aim to sample from the posterior distribution of pθ(x|y) ∝ pϕ(x)pψ(y|x) ∝
pϕ(x) exp(⟨x, h∗(y)⟩ −Aψ(x)). Due to the special structure, the posterior pθ(x|y) only depends on
the low-dimensional feature h∗(y), shared across all θ ∈ Θ := Ψ×Φ. This formulation encompasses
various applications including independent component analysis [Comon, 1994], inverse problem
[Song et al., 2021, Ajay et al., 2022] and variational Bayesian inference [Kingma, 2013].

Consider source tasks consisting of θ1, · · · , θK ∈ Θ, and for each θk we have n i.i.d. samples
{(xki , yki )}ni=1. For the target task θ0, we only have m samples {(x0i , y0i )}mi=1. We conduct our
transfer learning procedures to train a conditional diffusion models P̂θ0(·|y). For theoretical analysis,
we further impose some assumptions on the probabilistic model as follows.
Assumption A.1. The prior distribution satisfies pϕ(x) ≤ C1 exp(−C2∥x∥2) and ∇x log pϕ(x) is
L-Lipshcitz in x, ∥∇x log pϕ(0)∥ ≤ B for any ϕ ∈ Φ. The representation h∗ is L-Lipschitz. The

integral
∫
ψ(y)dy ∈ [1/C,C] for any ψ ∈ Ψ.

Theorem A.1. Suppose Assumption A.1 holds. Then under meta-learning setting, we have with
probability no less than 1− δ,

Eθ0E{(x0
i ,y

0
i )}mi=1

Ey∼Pθ0 [TV(P̂θ0(·|y),Pθ0(·|y))] ≲
log

5
2 (nK/δ) log3(m ∧ n)

(m ∧ n)
1

2d+9

+
log2(nK/δ)

K
1

D+2

.

(A.2)
If (ν,∆)-diversity holds, then we have with probability no less than 1− δ,

E{(x0
i ,y

0
i )}mi=1

Ey∼Pθ0 [TV(P̂θ0(·|y),Pθ0(·|y))] ≲
log

5
2 (nK/δ) log3((m/ν) ∧ n)
ν

1
2 ((m/ν) ∧ n)

1
2d+9

+
log2(nK/δ)

ν
1
2 (nK)

1
D+2

+
√
∆.

(A.3)

The proof is deferred to Appendix D.1. We show that under mild assumptions, transfer (meta)
learning diffusion models can improve the sample efficiency for target task in the context of amortized
variational inference. This error bound can be further extended to establish guarantees for statistical
inference such as moment prediction, uncertainty assessment, etc.

A.2 Behavior Cloning via Meta-Diffusion Policy

Although originally developed for image generation tasks, diffusion models have recently been
extended to reinforcement learning (RL) [Janner et al., 2022, Chi et al., 2023, Wang et al., 2022],
enabling the modeling of complex distributions of dynamics and policies. In the context of meta-RL,
some works have further utilized diffusion models for planning and synthesis tasks [Ni et al., 2023,
He et al., 2023]. In this application, we focus on a popular framework of behavior cloning, diffusion
policy [Chi et al., 2023], which uses conditional diffusion models to learn multi-modal expert policies
in high-dimensional state spaces. In such settings, the state often corresponds to visual observations of
the robot’s surroundings, such as high resolution images, and thus typically share a low-dimensional
underlying representation.
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Let M be the space of decision-making environments, where each M ∈ M is an infinite horizon
Markov Decision Process (MDP) sharing the same state space S , action space A, discount factor γ and
initial distribution ρ ∈ ∆(S). And each M ∈ M has its own transition kernel TM : S ×A → ∆(S),
and reward function rM : S ×A → [0, 1]. The policy is defined as a map π : S → ∆(A). The value
function of MDP M under policy π is

VM (π, s0) := E
[ ∞∑
t=0

γtrM (st, at)
]
, at ∼ π(·|st), st+1 ∼ TM (·|st, at),

VM (π) := Es0∼ρ[VM (π, s0)].

(A.4)

Denote the visitation measure as dπM (s, a) := (1− γ)Es0∼ρ
∞∑
t=0

γtP(st = s|π, s0)π(a|s).

Suppose there are K source tasks M1, · · · ,MK ∈ M, and the expert policy of each task is denoted

as πk∗ . In behavior cloning, for each source taskMk, we have n pairs of {(ski , aki )}ni=1
i.i.d.∼ dk∗ := d

πk∗
Mk .

The goal is to imitate the expert policy of target task M0 ∈ M, of which the sample size is only
m≪ n.

To unify the notation, let x = a, y = s and assume A = Rda ,S = [0, 1]Ds and representation
space [0, 1]ds . Our meta diffusion-policy framework aims to learn a state encoder h : S → [0, 1]ds

during pre-training, which acts as a shared representation map in different MDPs and consequently
enhances sample efficiency on fine-tuning tasks. Let π̂0 be the learned policy in fine-tuning phase.
The following theorem shows the optimality gap between the learned policy and the expert policy.

Theorem A.2. Suppose the expert policy πk∗ satisfies Assumption 3.1, 3.2, 3.3. Then under meta-
learning setting, it holds that with probability no less than 1− δ,

EM0E{(s0i ,a0i )}mi=1∼d0∗ [VM0(π0
∗)−VM0(π̂0)] ≲

1

(1− γ)2

[
log

5
2 (nK/δ) log3(m ∧ n)
(m ∧ n)

1
da+ds+9

+
log2(nK/δ)

K
1

Ds+2

]
.

(A.5)
If we further assume π1

∗, · · · , πK∗ are (ν,∆)-diverse over π0
∗, then the gap can be improved by

E{(s0i ,a0i )}mi=1∼d0∗ [VM0(π0
∗)−VM0(π̂0)] ≲

1

(1− γ)2

[
log

5
2 (nK/δ) log3((m/ν) ∧ n)
ν

1
2 ((m/ν) ∧ n)

1
da+ds+9

+
log2(nK/δ)

ν
1
2 (nK)

1
Ds+2

+
√
∆

]
.

(A.6)

The proof can be found in Appendix D.2. This provides the first statistical guarantee of diffusion
policy in behavior cloning. Notably, in both cases, the number of source tasks K has an exponential
dependence on Ds, further suggesting the importance of data coverage when tackling distribution
shift in offline meta-RL [Pong et al., 2022].

B Proofs in Section 3

B.1 Preliminaries

Lemma B.1. If x0 ∼ p(x0|y), the density of forward process pt(x|y) can be written as

pt(x|y) =
∫
ϕt(x|x0)p(x0|y)dx0, ϕt(x|x0) =

1

(2πσ2
t )

dx
2

exp
(
− ∥x− αtx0∥2

2σ2
t

)
. (B.1)

Besides, the score function has the form of

∇x log pt(x|y) =
∫

∇x log ϕt(x|x0)
ϕt(x|x0)p(x0|y)∫
ϕt(x|z)p(z|y)dz

dx0 (B.2)

=
1

αt

∫
∇x log p(x0|y)

ϕt(x|x0)p(x0|y)∫
ϕt(x|z)p(z|y)dz

dx0. (B.3)
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Proof. (B.1) can be directly implied by the definition of forward process. And it yields

∇x log pt(x|y) =
∇xpt(x|y)
pt(x|y)

=

∫
∇xϕt(x|x0)p(x0|y)dx0∫
ϕt(x|x0)p(x0|y)dx0

=

∫
∇x log ϕt(x|x0)

ϕt(x|x0)p(x0|y)∫
ϕt(x|z)p(z|y)dz

dx0,

(B.4)

which is (B.2). Moreover, noticing that ∇xϕt(x|x0) = − 1

αt
∇x0

ϕt(x|x0), then by integration by
parts, ∫

∇xϕt(x|x0)p(x0|y)dx0∫
ϕt(x|x0)p(x0|y)dx0

= − 1

αt

∫
∇x0

ϕt(x|x0)p(x0|y)dx0∫
ϕt(x|x0)p(x0|y)dx0

=
1

αt

∫
ϕt(x|x0)∇x0p(x0|y)dx0∫
ϕt(x|x0)p(x0|y)dx0

=
1

αt

∫
∇x log p(x0|y)

ϕt(x|x0)p(x0|y)∫
ϕt(x|z)p(z|y)dz

dx0.

(B.5)

Hence (B.3) is proved.

Lemma B.2. [Lem. 3.1] For any w ∈ [0, 1]dy , denote the conditional score of forward process
∇x log pt(x;w) by f∗(x,w, t). Then there exist constants CX , C ′X , such that for any R > 0, the
function f∗(x,w, t) is (CX + C ′XR

2)-Lipschitz in x, (CX + C ′XR)-Lipschitz in w, in the domain
BR × [0, 1]dy × [0, T ]. Here BR denotes the ball with radius R centered at the origin.

Proof. Define density function qt(x0|x,w) ∝ ϕt(x|x0)p(x0;w). Our proof strategy will depend on

whether t ≥ 1

2(L+ 1)
.

When t ≥ 1

2(L+ 1)
, according to (B.2), we have

∇xf∗(x,w, t) = ∇2
x log pt(x;w)

= Eqt(x0|x,w)

[
∇2
x log ϕt(x|x0)

]
+Varqt(x0|x,w)(∇x log ϕt(x|x0))

= − I

σ2
t

+Varqt(x0|x,w)

(αtx0 − x

σ2
t

) (B.6)

For any R > 0, we have

Varqt(x0|x,w)

(αtx0 − x

σ2
t

)
⪯ 1

σ2
t

∫ ∥∥αtx0 − x

σt

∥∥2 ϕt(x|x0)p(x0|y)∫
ϕt(x|z)p(z|y)dz

dx0

≤ R2

σ2
t

+

∫
∥αtx0−x

σt
∥≥R ∥αtx0−x

σt
∥2 exp

(
−∥αtx0−x∥2

2σ2
t

)
p(x0;w)dx0

σ2
t

∫
exp

(
−∥αtx0−x∥2

2σ2
t

)
p(x0;w)dx0

≤ R2

σ2
t

+

∫
∥αtx0−x

σt
∥≥R exp(−R2

4 )p(x0;w)dx0

σ2
t

∫
∥αtx0−x

σt
∥≤R/2 exp(−

R2

8 )p(x0;w)dx0
.

(B.7)

Let R =
2∥x∥+ 2C0

σt
, then the domain

{
x0 : ∥αtx0 − x

σt
∥ ≤ R/2

}
includes

{
x0 : ∥x0∥ ≤ C0

}
,

indicating∫
∥αtx0−x

σt
∥≤R/2

p(x0;w)dx0 ≥
∫
∥x0∥≤C0

p(x0;w)dx0 ≥ 1− 2 exp(−C ′1C2
0 ) ≥

1

2
,∫

∥αtx0−x
σt

∥≥R
p(x0;w)dx0 ≤

∫
∥x0∥≥C0

p(x0;w)dx0 ≤ 1

2
.

(B.8)
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and

∥∇xf∗(x,w, t)∥ ≤ 1

σ2
t

+
∥∥Varqt(x0|x,w)

(αtx0 − x

σ2
t

)∥∥ ≤ R2

σ2
t

+
2

σ2
t

≤ 8∥x∥2 + 8C2
0 + 2σ2

t

σ4
t

. (B.9)

Similarly, for w we have

∇wf∗(x,w, t) = Covqt(x0|x,w)

(
∇x log ϕt(x|x0),∇w log p(x0;w)

)
= Covqt(x0|x,y)

(αtx0
σ2
t

,∇w log p(x0;w)
) (B.10)

which implies

∥∇wf∗(x,w, t)∥ ≤ B

√∥∥Varqt(x0|x,w)

(αtx0 − x

σ2
t

)∥∥
≤ B(2∥x∥+ 2C0 + 1)

σt

(B.11)

When t ≤ 1

2(L+ 1)
, we have σ2

t ≤ α2
t

2L
and

∇xf∗(x,w, t) = ∇2
x log pt(x;w)

=
∇2
xpt(x;w)

pt(x;w)
−∇x log pt(x;w)(∇x log pt(x;w))

⊤

=
1

α2
t

∫
ϕt(x|x0)∇2

xp(x0;w)dx0
pt(x;w)

−∇x log pt(x;w)(∇x log pt(x;w))
⊤

=
1

α2
t

Eqt(x0|x,w)

[
∇2
xp(x0;w)

p(x0;w)

]
−∇x log pt(x;w)(∇x log pt(x;w))

⊤

=
1

α2
t

Eqt(x0|x,w)

[
∇2
x log p(x0;w) +∇x log p(x0;w)(∇x log p(x0;w))

⊤]
−∇x log pt(x;w)(∇x log pt(x;w))

⊤

(B.3)
=

1

α2
t

Eqt(x0|x,y)
[
∇2
x log p(x0;w)

]
+

1

α2
t

Varqt(x0|x,w)

(
∇x log p(x0;w)

)
.

(B.12)

Note that when σ2
t ≤ α2

t

2L
, the distribution qt(x0|x,w) ∝ exp

(
− ∥αtx0 − x∥2

2σ2
t

)
p(x0;w) is L-

strongly log-concave, and thus satisfies the Poincare inequality with a constant L−1 [Chen et al.,
2023a],

Varqt(x0|x,w)

(
∇x log p(x0;w)

)
⪯ L−1E

[
∇2
x log p(x0;w)(∇2

x log p(x0;w))
⊤] ≤ L. (B.13)

And thus
∥∇xf∗(x,w, t)∥ ≤ 2L

α2
t

. (B.14)

Analogously,

∇wf∗(x,w, t) =
1

αt
Eqt(x0|x,w) [∇w∇x log p(x0;w)] +

1

αt
Covqt(x0|x,w)

(
∇x log p(x0;w),∇w log p(x0;w)

)
≤ L

αt
+
B

αt

√
Varqt(x0|x,w)

(
∇x log p(x0;w)

)
≤ L+B

√
L

αt
(B.15)

Combine all the arguments in (B.9),(B.11),(B.14),(B.15) and we complete the proof.

Lemma B.3 (Lemma 7, Chen et al. [2022a]). The covering number of F =
NNf (Lf ,Wf ,Mf , Sf , Bf , Rf , γf ) can be bounded by

logN (F , ∥ · ∥L∞([−R,R]dx+dy+1), ε) ≲ SfLf log

(
LfWf (Bf ∨ 1)R

ε

)
. (B.16)

18



The covering number of H = NNh(Lh,Wh, Sh, Bh) can be bounded by

logN (H, ∥ · ∥L∞([0,1]Dy ), ε) ≲ ShLh log

(
LhWh(Bh ∨ 1)

ε

)
. (B.17)

B.2 Proofs of Transfer Learning

Proposition B.4 (Prop. 3.2). Under Assumption 3.1, 3.2, 3.3, there exists some constant Cxy such

that the following holds. For any h ∈ H and (x1, y1), · · · , (xm, ym)
i.i.d.∼ P, define the empirical

minimizer

f̂ := argmin
f∈F

1

m

m∑
i=1

ℓ(xi, yi, sf,h). (B.18)

The population loss of f̂ can be bounded by

E{(xi,yi)}mi=1∼PE(x,y)∼P[ℓ
P(x, y, sf̂ ,h)] ≤ 4 inf

f∈F
E(x,y)∼P[ℓ

P(x, y, sf,h)]+Cxy log
3(m)rx, (B.19)

where rx =
M2
fSfLf log (mLfWf (Bf ∨ 1)MfT )

m
.

Proof. Consider the truncated function class defined on Rdx × [0, 1]Dy ,

Φ = {(x, y) 7→ ℓ̃(x, y, f) := (ℓ(x, y, sf,h)− ℓ(x, y, sP∗)) · 1∥x∥∞≤R : f ∈ F}, (B.20)

where the truncation radius R ≥ 1 will be defined later. It is easy to show that with probability no
less than 1− 2m exp(−C ′1R2), it holds that ∥xi∥∞ ≤ R for all 1 ≤ i ≤ m. Hence by definition, the

empirical minimizer also satisfies f̂ = argmin
f∈F

1

m

m∑
i=1

ℓ̃(xi, yi, f). Below we reason conditioned on

this event and verify the conditions required in Lemma B.11.

Step 1. To bound the individual loss,

ℓ̃(x, y, f) ≤ Et,xt|x∥sf,h(xt, y, t)−∇x log ϕt(xt|x)∥2 ≲M2
f + dx

( log(1/T0)
T − T0

+ 1
)
.

(B.21)
And by Lemma B.10,

−ℓ̃(x, y, f) ≤ Et,xt|x∥s
P
∗(xt, y, t)−∇x log ϕt(xt|x)∥2 · 1∥x∥∞≤R ≲ C

′′

XR
6 + dx

( log(1/T0)
T

+ 1
)
.

(B.22)

Let M := C

(
C

′′

XR
6 +M2

f + dx

( log(1/T0)
T

+ 1
))

and thus |ℓ̃(x, y, f)| ≤M .

Step 2. To bound the second order moment, we have

E(x,y)∼P

[
1∥x∥∞≤R

(
ℓ(x, y, sf,h)− ℓ(x, y, sP∗)

)2]
= E(x,y)∼P

[
1∥x∥∞≤R

(
Et,xt|x∥sf,h(xt, y, t)−∇x log ϕt(xt|x)∥2 − ∥sP∗(xt, y, t)−∇x log ϕt(xt|x)∥2

)2]
≤ E(x,y)∼P

[
1∥x∥∞≤R

(
Et,xt|x∥sf,h(xt, y, t)− sP∗(xt, y, t)∥2

)
·
(
Et,xt|x∥sf,h(xt, y, t) + sP∗(xt, y, t)− 2∇x log ϕt(xt|x)∥2

)]
≤ 4ME(x,y)∼P

[
1∥x∥∞≤R

(
Et,xt|x∥sf,h(xt, y, t)− sP∗(xt, y, t)∥2

)]
≤ 4ME(x,y)∼P

(
ℓ(x, y, sf,h)− ℓ(x, y, sP∗)

)
≤ 4ME(x,y)∼P[ℓ̃(x, y, f)] + 8M2 exp(−C ′1R2).

(B.23)
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Step 3. To bound the local Rademacher complexity, note that∥∥∥ 1√
m

m∑
i=1

σiℓ̃(xi, yi, f1)−
1√
m

m∑
i=1

σiℓ̃(xi, yi, f2)
∥∥∥
ψ2

≤ 4∥ℓ̃(·, ·, f1)− ℓ̃(·, ·, f2)∥L2(P̂m),

(B.24)

where P̂m :=
1

m

m∑
i=1

δ(xi,yi). Define Φr := {φ ∈ Φ :
1

m

m∑
i=1

φ(xi, yi)
2 ≤ r} and it is

easy to show that diam
(
Φr, ∥ · ∥L2(P̂m)

)
≤ 2

√
r. By Dudley’s bound [Van Handel, 2014,

Wainwright, 2019], there exists an absolute constant C0 such that for any θ > 0,

Rm(Φr) ≤ C0

θ + ∫ 2
√
r

θ

√
logN (Φr, ∥ · ∥L2(P̂m), ε)

m
dε

 . (B.25)

Since ∥xi∥ ≤ R,

1

m

m∑
i=1

(ℓ̃(xi, yi, f1)− ℓ̃(xi, yi, f2))
2 =

1

m

m∑
i=1

(ℓ(xi, yi, sf1,h)− ℓ(xi, yi, sf2,h))
2

≤ 1

m

m∑
i=1

[
Et,xt|xi∥f1 − f2∥2

]
·
[
Et,xt|xi∥f1 + f2 − 2∇x log ϕt∥2

]
≤ 4M

m

m∑
i=1

Et,xt|xi∥f1(xt, h(yi), t)− f2(xt, h(yi), t)∥2.

(B.26)
Let R1 = 2R. Since xt|xi ∼ N (xt;αtxi, σ

2
t I), we have P(∥xt∥∞ ≥ R1) ≤

dxP(|N (0, 1)| ≤ R) ≤ 2dx exp(−C ′0R2) for some absolute constant C ′0. Therefore,

Et,xt|xi∥f1(xt, h(yi), t)− f2(xt, h(yi), t)∥2

≤ Et,xt|xi [1∥xt∥≤R1
][∥f1(xt, h(yi), t)− f2(xt, h(yi), t)∥2] + 8dxM

2
f exp(−C ′0R2)

≤ ∥f1 − f2∥2L∞(ΩR1
) + 8dxM

2
f exp(−C ′0R2)

(B.27)
where ΩR1

:= [−R1, R1]
dx × [0, 1]dy × [T0, T ]. Plug in the bound above,√√√√ 1

m

m∑
i=1

(ℓ̃(xi, yi, f1)− ℓ̃(xi, yi, f2))2 ≤ 4M
1
2 ∥f1−f2∥L∞(ΩR1

)+8d
1
2
xM exp(−C ′0R2/2).

(B.28)
For any ε ≥ 16d

1
2
xM exp(−C ′0R2/2), according to B.3,

logN (Φr, ∥ · ∥L2(P̂m), ε) ≤ logN (F , ∥ · ∥L∞(ΩR1
), ε/(8M

1
2 ))

≤ C4SfLf log

(
LfWf (Bf ∨ 1)(R ∨ T )M

ε

)
.

(B.29)

Plug in (B.25) and let θ = 16d
1
2
xM exp(−C ′0R2/2),

Rm(Φr) ≤ C0

θ + ∫ 2
√
r

θ

√√√√C4SfLf log
(
LfWf (Bf∨1)(R∨T )M

ε

)
m

dε



≤ C0

16d
1
2
xM exp(−C ′0R2/2) +

√√√√C ′4SfLf log
(
LfWf (Bf∨1)(R∨T )M

r

)
· r

m


=: R̃m(r)

(B.30)
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Combine the three steps above, by Lemma B.11 with B0 = 8M2 exp(−C ′1R2), B = 4M, b =M , it
holds that with probability no less than 1− 2m exp(−C ′1R2)− δ/2, for any f ∈ F ,

E(x,y)∼P[ℓ̃(x, y, f)] ≤
2

m

m∑
i=1

ℓ̃(xi, yi, f) + C5M

(
r∗m +

log(log(m)/δ)

m

)

+ C5

√
M2 log(log(m)/δ)

m
exp(−C ′1R2),

(B.31)

1

m

m∑
i=1

ℓ̃(xi, yi, f) ≤ 2E(x,y)∼P[ℓ̃(x, y, f)] + C5M

(
r∗m +

log(log(m)/δ)

m

)

+ C5

√
M2 log(log(m)/δ)

m
exp(−C ′1R2).

(B.32)

where r∗m is the largest fixed point of R̃m, and it can be bounded as

r∗m ≤ C6

(
d

1
2
xM exp(−C ′0R2/2) +

SfLf log (mLfWf (Bf ∨ 1)(R ∨ T )M)

m

)
, (B.33)

for some absolute constant C6. Moreover, we have∣∣∣E(x,y)∼P[ℓ(x, y, sf,h)− ℓ(x, y, sP∗)]− E(x,y)∼P[ℓ̃(x, y, f)]
∣∣∣ ≤ 2M exp(−C ′1R2). (B.34)

Combine this with (B.31),(B.32),

E(x,y)∼P[ℓ(x, y, sf,h)− ℓ(x, y, sP∗)] ≤
2

m

m∑
i=1

[ℓ(xi, yi, sf,h)− ℓ(xi, yi, s
P
∗)]

+ C5M

(
r∗m +

log(log(m)/δ)

m
+ exp(−C ′1R2)

)
,

(B.35)

1

m

m∑
i=1

[ℓ(xi, yi, sf,h)− ℓ(xi, yi, s
P
∗)] ≤ 2E(x,y)∼P[ℓ(x, y, sf,h)− ℓ(x, y, sP∗)]

+ C5M

(
r∗m +

log(log(m)/δ)

m
+ exp(−C ′1R2)

)
,

(B.36)

Plug in the definition of M = C

(
C

′′

XR
6 +M2

f + dx

( log(1/T0)
T

+ 1
))

and let R =

C log
1
2 (mdxMf/δ) for some large constant C. Hence (B.35) and (B.36) reduce to

E(x,y)∼P[ℓ
P(x, y, sf,h)] ≤

2

m

m∑
i=1

[ℓ(xi, yi, sf,h)− ℓ(xi, yi, s
P
∗)] + C7M

2
f log

3(m/δ)

(
r†m +

log(log(m)/δ)

m

)
,

(B.37)

1

m

m∑
i=1

[ℓ(xi, yi, sf,h)− ℓ(xi, yi, s
P
∗)] ≤ 2E(x,y)∼P[ℓ

P(x, y, sf,h)] + C7M
2
f log

3(m/δ)

(
r†m +

log(log(m)/δ)

m

)
,

(B.38)

where r†m :=
SfLf log (mLfWf (Bf ∨ 1)TMf log(1/δ))

m
.
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Therefore, we obtain that with probability no less than 1 − δ, the population loss of the empirical
minimizer f̂ can be bounded by

E(x,y)∼P[ℓ
P(x, y, sf̂ ,h)] ≤

2

m

m∑
i=1

[ℓ(xi, yi, sf̂ ,h)− ℓ(xi, yi, s
P
∗)] + 2C7M

2
f log

3(m/δ)

(
r†m +

log(1/δ)

m

)

≤ inf
f∈F

2

m

m∑
i=1

[ℓ(xi, yi, sf,h)− ℓ(xi, yi, s
P
∗)] + 2C7M

2
f log

3(m/δ)

(
r†m +

log(1/δ)

m

)
≤ 4 inf

f∈F
E(x,y)∼P[ℓ

P(x, y, sf,h)] + 6C7M
2
f log

3(m/δ)

(
r†m +

log(1/δ)

m

)
,

(B.39)

We conclude the proof by noticing that E[X] =

∫ ∞
0

P(X ≥ x)dx and plugging in the bound

above.

Proposition B.5 (Prop. 3.3). There exists some constant CZ , CR such that the following holds. For
any P1, · · · ,PK , let xk1 , · · · , xkn

i.i.d.∼ Pk for any k and (xki )i,k are all independent. Consider the
empirical minimizer

f̂ , ĥ = argmin
f∈F⊗K ,h∈H

1

nK

K∑
k=1

n∑
i=1

ℓ(xki , y
k
i , sfk,h). (B.40)

For any δ ∈ (0, 1), if the configuration of F satisfiesRf ≥ CR log
1
2 (nKMf/δ), then with probability

no less than 1− δ, the population loss of f̂ , ĥ can be bounded by

1

K

K∑
k=1

E(x,y)∼Pkℓ
Pk(x, y, sf̂k,ĥ) ≤ inf

f∈F⊗K ,h∈H

4

K

K∑
k=1

E(x,y)∼Pk [ℓ
P(x, y, sfk,h)]+CZ log3(nK/δ)

(
rz +

log(1/δ)

nK

)
,

(B.41)

where rz :=
M2
f [KSfLf log (nLfWf (Bf ∨ 1)MfT log(1/δ)) + ShLh log (nKLhWh(Bh ∨ 1)Mfγf log(1/δ))]

nK
.

Proof. Throughout the proof, we will use z = (k, x, y) to denote the tuple of task index k and data
(x, y). With a little abuse of notation, we will also let sk∗ = sP

k

∗ . Consider the function class defined
on [K]× Rdx × [0, 1]Dy ,

Φ =
{
z = (k, x, y) 7→ ℓ̃(z,f , h) := (ℓ(x, y, sfk,h)− ℓ(x, y, sk∗)) · 1∥x∥∞≤R : f ∈ F⊗K , h ∈ H

}
,

(B.42)

where 1 ≤ R ≤ Rf
2

will be specified later. It is easy to show that with probability no less than

1 − 2nK exp(−C ′1R2), it holds that ∥xki ∥∞ ≤ R for all i, k. Hence by definition, the empirical
minimizer also satisfies

f̂ , ĥ = argmin
f∈F⊗K ,h∈H

1

nK

K∑
k=1

n∑
i=1

ℓ̃(zki ,f , h). (B.43)

where zki = (k, xki , y
k
i ). Below we reason conditioned on this event and verify the conditions in

Lemma B.12.

Following Step 1 and 2 in Proposition B.4, we have for any f ∈ F⊗K , h ∈ H,

|ℓ̃(z,f , h)| ≤M := C

(
C

′′

XR
6 +M2

f + dx

( log(1/T0)
T

+ 1
))

. (B.44)

1

K

K∑
k=1

E(x,y)∼Pk [ℓ̃(z
k,f , h)2] ≤ 4M

K

K∑
k=1

E(x,y)∼Pk [ℓ̃(z
k,f , h)] + 8M2 exp(−C ′1R2). (B.45)
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For the local Rademacher complexity bound, note that∥∥∥ 1√
nK

K∑
k=1

n∑
i=1

σki ℓ̃(z
k
i ,f1, h1)−

1√
nK

K∑
k=1

n∑
i=1

σki ℓ̃(z
k
i ,f2, h2)

∥∥∥
ψ2

≤ 4∥ℓ̃(·,f1, h1)−ℓ̃(·,f2, h2)∥L2(P̂(K)
n )

,

(B.46)

where P̂(K)
n :=

1

nK

K∑
k=1

n∑
i=1

δzki and diam
(
Φr, ∥ · ∥L2(P̂(K)

n )

)
≤ 2

√
r. By Dudley’s bound [Van Han-

del, 2014, Wainwright, 2019], there exists an absolute constant C0 such that for any θ > 0,

RK,n(Φr) ≤ C0

θ + ∫ 2
√
r

θ

√
logN (Φr, ∥ · ∥L2(P̂(K)

n )
, ε)

nK
dε

 . (B.47)

Since ∥xki ∥∞ ≤ R,

1

nK

K∑
k=1

n∑
i=1

(ℓ̃(zki ,f1, h1)− ℓ̃(zki ,f2, h2))
2

=
1

nK

K∑
k=1

n∑
i=1

(ℓ(xki , y
k
i , sfk1 ,h1

)− ℓ(xki , y
k
i , sfk2 ,h2

))2

≤ 1

nK

K∑
k=1

n∑
i=1

[
Et,xt|xki ∥f

k
1 − fk2 ∥2

]
·
[
Et,xt|xki ∥f

k
1 + fk2 − 2∇x log ϕt∥2

]
≤ 4M

nK

K∑
k=1

n∑
i=1

Et,xt|xki ∥f
k
1 (xt, h1(y

k
i ), t)− fk2 (xt, h2(y

k
i ), t)∥2

≤ 8M

nK

K∑
k=1

n∑
i=1

Et,xt|xki ∥f
k
1 (xt, h1(y

k
i ), t)− fk2 (xt, h1(y

k
i ), t)∥2

+
8M

nK

K∑
k=1

n∑
i=1

Et,xt|xki ∥f
k
2 (xt, h1(y

k
i ), t)− fk2 (xt, h2(y

k
i ), t)∥2.

(B.48)

Let R1 = 2R. Since xt|xki ∼ N (xt;αtx
k
i , σ

2
t I), we have P(∥xt∥∞ ≥ R1) ≤ dxP(|N (0, 1)| ≤

R) ≤ 2dx exp(−C ′0R2) for some absolute constant C ′0. Therefore,

Et,xt|xki ∥f
k
1 (xt, h1(y

k
i ), t)− fk2 (xt, h1(y

k
i ), t)∥2

≤ Et,xt|xki [1∥xt∥≤R1
][∥fk1 (xt, h1(yki ), t)− fk2 (xt, h1(y

k
i ), t)∥2] + 8dxM

2
f exp(−C ′0R2)

≤ ∥fk1 − fk2 ∥2L∞(ΩR1
) + 8dxM

2
f exp(−C ′0R2),

(B.49)
where ΩR1

:= [−R1, R1]
dx × [0, 1]dy × [T0, T ]. Moreover, notice that Rf ≥ 2R = R1,

Et,xt|xki ∥f
k
2 (xt, h1(y

k
i ), t)− fk2 (xt, h2(y

k
i ), t)∥2

≤ Et,xt|xki [1∥xt∥≤Rf ][∥f
k
2 (xt, h1(y

k
i ), t)− fk2 (xt, h2(y

k
i ), t)∥2] + 8dxM

2
f exp(−C ′0R2)

≤ γ2f∥h1 − h2∥2L∞([0,1]Dy )
+ 8dxM

2
f exp(−C ′0R2).

(B.50)
Plug in the bound above,√√√√ 1

nK

K∑
k=1

n∑
i=1

(ℓ̃(zki ,f1, h1)− ℓ̃(zki ,f2, h2))2

≤ 8M
1
2

(
max
k

∥fk1 − fk2 ∥L∞(ΩR1
) + γf∥h1 − h2∥L∞([0,1]Dy )

)
+ 16d

1
2
xM exp(−C ′0R2/2).

(B.51)
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For any ε ≥ 32d
1
2
xM exp(−C ′0R2/2), according to Lemma B.3,

logN (Φr, ∥ · ∥L2(P̂(K)
n )

, ε)

≤ K logN (F , ∥ · ∥L∞(ΩR1
), ε/(16M

1
2 )) + logN (H, ∥ · ∥L∞([0,1]Dy ), ε/(16γfM

1
2 ))

≤ C4KSfLf log

(
LfWf (Bf ∨ 1)(R ∨ T )M

ε

)
+ C4ShLh log

(
LhWh(Bh ∨ 1)Mγf

ε

)
.

(B.52)
Plug in (B.25) and let θ = 32d

1
2
xM exp(−C ′0R2/2),

RK,n(Φr) ≤ C0

θ + ∫ 2
√
r

θ

√√√√C4KSfLf log
(
LfWf (Bf∨1)(R∨T )M

ε

)
+ C4ShLh log

(
LhWh(Bh∨1)Mγf

ε

)
nK

dε



≤ C0

√√√√C ′4

[
KSfLf log

(
LfWf (Bf∨1)(R∨T )M

r

)
+ ShLh log

(
LhWh(Bh∨1)Mγf

r

)]
· r

nK

+ C032d
1
2
xM exp(−C ′0R2/2)

=: R̃K,n(r).
(B.53)

Combine the arguments above, by Lemma B.12 with B0 = 8M2 exp(−C ′1R2), B = 4M, b =M , it
holds that with probability no less than 1− 2nK exp(−C ′1R2)− δ/2, for any f ∈ F⊗K , h ∈ H,

Ez∼P̂(K) [ℓ̃(z,f , h)] ≤
2

nK

K∑
k=1

n∑
i=1

ℓ̃(zki ,f , h) + C5M

(
r∗K,n +

log(log(nK)/δ)

nK

)

+ C5

√
M2 log(log(nK)/δ)

nK
exp(−C ′1R2),

(B.54)

1

nK

K∑
k=1

n∑
i=1

ℓ̃(zki ,f , h) ≤ 2Ez∼P̂(K) [ℓ̃(z,f , h)] + C5M

(
r∗K,n +

log(log(nK)/δ)

nK

)

+ C5

√
M2 log(log(nK)/δ)

nK
exp(−C ′1R2).

(B.55)

where r∗K,n is the largest fixed point of R̃K,n, and it can be bounded by

r∗K,n ≤ C6

(
d

1
2
xMf exp(−C ′0R2/2) +

KSfLf log (nLfWf (Bf ∨ 1)(R ∨ T )M) + ShLh log (nKLhWh(Bh ∨ 1)Mγf )

nK

)
,

(B.56)
for some absolute constant C6. Moreover, we have∣∣∣∣∣ 1K

K∑
k=1

E(x,y)∼Pk [ℓ(x, y, sfk,h)− ℓ(x, y, sk∗)]− Ez∼P̂(K) [ℓ̃(z,f , h)]

∣∣∣∣∣ ≤ 2M exp(−C ′1R2).

(B.57)
Combine this with (B.54),(B.55),

1

K

K∑
k=1

E(x,y)∼Pk [ℓ(x, y, sfk,h)− ℓ(x, y, sP∗)] ≤
2

nK

K∑
k=1

n∑
i=1

[ℓ(xki , y
k
i , sfk,h)− ℓ(xki , y

k
i , s

k
∗)]

+ C5M

(
r∗K,n +

log(log(nK)/δ)

nK
+ exp(−C ′1R2)

)
,

(B.58)
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1

nK

K∑
k=1

n∑
i=1

[ℓ(xki , y
k
i , sfk,h)− ℓ(xki , y

k
i , s

k
∗)] ≤

2

K

K∑
k=1

E(x,y)∼Pk [ℓ(x, y, sfk,h)− ℓ(x, y, sP∗)]

+ C5M

(
r∗K,n +

log(log(nK)/δ)

nK
+ exp(−C ′1R2)

)
,

(B.59)

Plug in the definition of M = C

(
C

′′

XR
6 +M2

f + dx

( log(1/T0)
T

+ 1
))

and define R =

C ′ log
1
2 (nKdxMf/δ) for some large constant C ′. Hence (B.58) and (B.59) reduce to

1

K

K∑
k=1

E(x,y)∼Pk [ℓ(x, y, sfk,h)− ℓ(x, y, sP∗)] ≤
2

nK

K∑
k=1

n∑
i=1

[ℓ(xki , y
k
i , sfk,h)− ℓ(xki , y

k
i , s

k
∗)]

+ C7M
2
f log

3(nK/δ)

(
r†K,n +

log(log(nK)/δ)

nK

)
,

(B.60)

1

nK

K∑
k=1

n∑
i=1

[ℓ(xki , y
k
i , sfk,h)− ℓ(xki , y

k
i , s

k
∗)] ≤

2

K

K∑
k=1

E(x,y)∼Pk [ℓ(x, y, sfk,h)− ℓ(x, y, sP∗)]

+ C7M
2
f log

3(nK/δ)

(
r†K,n +

log(log(nK)/δ)

nK

)
,

(B.61)

where r†K,n :=
KSfLf log (nLfWf (Bf ∨ 1)MfT log(1/δ)) + ShLh log (nKLhWh(Bh ∨ 1)Mfγf log(1/δ))

nK
.

Therefore, we obtain that with probability no less than 1 − δ, the population loss of the empirical
minimizer f̂ , ĥ can be bounded by

1

K

K∑
k=1

E(x,y)∼Pk [ℓ
Pk(x, y, sf̂k,ĥ)]

≤ 2

nK

K∑
k=1

m∑
i=1

[ℓ(xki , y
k
i , sf̂ ,h)− ℓ(xki , y

k
i , s

k
∗)] + 2C7M

2
f log

3(nK/δ)

(
r†K,n +

log(1/δ)

nK

)

≤ inf
f∈F⊗K ,h∈H

2

nK

K∑
k=1

n∑
i=1

[ℓ(xki , y
k
i , sfk,h)− ℓ(xki , y

k
i , s

k
∗)] + 2C7M

2
f log

3(nK/δ)

(
r†K,n +

log(1/δ)

nK

)

≤ inf
f∈F⊗K ,h∈H

4

K

K∑
k=1

E(x,y)∼Pk [ℓ
P(x, y, sfk,h)] + 6C7M

2
f log

3(nK/δ)

(
r†K,n +

log(1/δ)

nK

)
,

(B.62)
which concludes the proof.

Theorem B.6 (Thm. 3.4). Under Assumption 3.1, 3.2, 3.3, suppose P1, · · · ,PK are (ν,∆)-diverse
over target distribution P0 given F ,H. There exists some constant C,CR such that the following
holds. Define the empirical minimizer of training task and new task as

f̂ , ĥ = argmin
f∈F⊗K ,h∈H

1

nK

K∑
k=1

n∑
i=1

ℓ(xki , y
k
i , sfk,h), (B.63)

f̂P
0

:= argmin
f∈F

1

m

m∑
i=1

ℓ(x0i , y
0
i , sf,ĥ). (B.64)
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If Rf ≥ CR log
1
2 (nKMf/δ), then with probability no less than 1− δ, the expected population loss

of new task can be bounded by

E{(xi,yi)}mi=1
E(x,y)∼P0 [ℓP

0

(x, y, sf̂P0 ,ĥ)] ≲
1

ν
inf
h∈H

1

K

K∑
k=1

inf
f∈F

E(x,y)∼Pk [ℓ
Pk(x, y, sf,h)] + ∆

+ C

(
log3(m) logNF

m
+

log3(nK/δ)(K logNF + log(NH/δ))
νnK

)
.

(B.65)
where

logNF :=M2
fSfLf log (mnLfWf (Bf ∨ 1)MfT log(1/δ)) , (B.66)

logNH := ShLh log (nKLhWh(Bh ∨ 1)Mfγf log(1/δ)) . (B.67)

Proof.

E{(xi,yi)}mi=1
E(x,y)∼P0 [ℓP

0

(x, y, sf̂P0 ,ĥ)]

≲ inf
f∈F

E(x,y)∼P0 [ℓP(x, y, sf,ĥ)] + Cxy log
3(m)rx

≲
1

νK

K∑
k=1

inf
f∈F

E(x,y)∼Pk [ℓ
Pk(x, y, sf,ĥ)] + ∆ + Cxy log

3(m)rx

≲
1

νK

K∑
k=1

E(x,y)∼Pk [ℓ
Pk(x, y, sf̂k,ĥ)] + ∆ + Cxy log

3(m)rx

≲
1

ν
inf

f∈F⊗K ,h∈H

1

K

K∑
k=1

E(x,y)∼Pk [ℓ
Pk(x, y, sfk,h)] +

1

ν
CZ log3(nK/δ)

(
rz +

log(1/δ)

nK

)
+∆+ Cxy log

3(m)rx.
(B.68)

Here we apply Proposition B.4 in the first inequality, task diversity in the second inequality, and
Proposition B.5 in the fourth. Plug in the definition of rz, rx and logNF , logNH and we complete
the proof.

B.3 Proofs of Meta-Learning

Proposition B.7 (Prop. 3.5). There exists some constantsC ′1, CP , such that for P1, · · · ,PK i.i.d.∼ Pmeta,
with probability no less than 1− δ, we have for any h ∈ H,

EP∼PmetaL(P, h) ≤
2

K

K∑
k=1

L(Pk, h) + CP

(
rP +

log(1/δ)

K

)
, (B.69)

1

K

K∑
k=1

L(Pk, h) ≤ 2EP∼PmetaL(P, h) + CP

(
rP +

log(1/δ)

K

)
, (B.70)

where rP =M2
f exp(−C ′1R2

f ) +
ShLh log (KLhWh(Bh ∨ 1)Mfγf )

K
.

Proof. Given P1, · · · ,PK i.i.d.∼ Pmeta, we define the empirical Rademacher complexity of a function
class Φ defined on the set of distribution P(Rdx × [0, 1]Dy ) as

RK(Φ) := Eσ sup
φ∈Φ

∣∣∣ 1
K

K∑
k=1

σkφ(Pk)
∣∣∣, σ ∼ Unif({−1, 1}K). (B.71)
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For any r > 0, let Hr :=
{
h ∈ H :

1

K

K∑
k=1

(L(Pk, h))2 ≤ r
}

and Φr := {L(·, h) : h ∈ Hr}. Note

that for any φ1, φ2 ∈ Φr,

∥∥∥ 1√
K

K∑
k=1

σkφ1(Pk)−
1√
K

K∑
k=1

σkφ2(Pk)
∥∥∥
ψ2

≤ 4

√√√√ 1

K

K∑
k=1

∥φ1(Pk)− φ2(Pk)∥2

= 4∥φ1 − φ2∥L2(P(K)
meta )

,

(B.72)

where P(K)
meta :=

1

K

K∑
k=1

δPk and diam
(
Φr, ∥ · ∥L2(P(K))

meta

)
≤ 2

√
r. Then by Dudley’s bound [Van Han-

del, 2014, Wainwright, 2019], there exists an absolute constant C0 such that for any θ ≥ 0,

RK(Φr) ≤ C0

θ + ∫ 2
√
r

θ

√
logN (Φr, ∥ · ∥L2(P(K)

meta )
, ε)

K
dε

 . (B.73)

For any P and h1, h2 ∈ Hr, denote the minimizer of (3.6) in F as f1, f2, respectively. Without loss
of generality, suppose L(P, h1) ≥ L(P, h2). Then

L(P, h1)− L(P, h2) ≤ Et,xt,y
[∣∣∣∥f2(xt, h1(y), t)−∇x log pt(xt|y)∥2 − ∥f2(xt, h2(y), t)−∇x log pt(xt|y)∥2

∣∣∣]
≤ Et,xt,y [∥f2(xt, h1(y), t)− f2(xt, h2(y), t)∥

×∥f2(xt, h1(y), t) + f2(xt, h2(y), t)− 2∇x log pt(xt|y)∥]

≤
√

Et,xt,y [∥f2(xt, h1(y), t)− f2(xt, h2(y), t)∥2] · 8(Mf + C
1/2
L )

(B.74)
In the last inequality we apply ∥fi∥ ≤ Mf and Et,xt,y∥∇x log pt(xt|y)∥2 ≤ CL by Lemma B.9.
Moreover,

E(t,xt,y)

[
∥f2(xt, h1(y), t)− f2(xt, h2(y), t)∥2

]
≤ Et,y

[∫
∥f2(xt, h1(y), t)− f2(xt, h2(y), t)∥2pt(xt|y)dxt

]
≤ Et,y

[∫
∥xt∥∞≤Rf

∥f2(xt, h1(y), t)− f2(xt, h2(y), t)∥2pt(xt|y)dxt + 4M2
fP(∥xt∥∞ > Rf |y)

]
≤ γ2fEy[∥h1(y)− h2(y)∥2] + 8M2

f exp(−C ′1R2
f )

≤ γ2f∥h1 − h2∥2L∞([0,1]Dy )
+ 8M2

f exp(−C ′1R2
f )

(B.75)
Therefore, let C3 = 32(Mf + C

1/2
L )Mf ≤ 64M2

f and we have

|L(P, h1)− L(P, h2)| ≤ C3

(
γf∥h1 − h2∥L∞([0,1]Dy ) + exp(−C ′1R2

f )
)
, (B.76)

which implies that when ε ≥ 2C3 exp(−C ′1R2
f ), by Lemma B.3,

logN (Φr, ∥ · ∥L2(P(K)
meta )

, ε) ≤ logN (Hr, ∥ · ∥L∞([0,1]Dy ), ε/(2C3γf ))

≤ C4ShLh log

(
LhWh(Bh ∨ 1)C3γf

ε

)
.

(B.77)
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Plug in (B.73) and let θ = 2C3 exp(−C ′1R2
f ),

RK(Φr) ≤ C0

θ + ∫ 2
√
r

θ

√√√√C4ShLh log
(
LhWh(Bh∨1)C3γf

ε

)
K

dε



≤ C0

2C3 exp(−C ′1R2
f ) +

√√√√C ′4ShLh log
(
LhWh(Bh∨1)Mfγf

r

)
· r

K


=: R̃K(r).

(B.78)

According to Lemma B.11 (by setting B0 = 0, B = b = CL), for some absolute constant C5, with
probability no less than 1− δ, we have for any h ∈ H,

EP∼PmetaL(P, h) ≤
2

K

K∑
k=1

L(Pk, h) + C5CL

(
r∗K +

log(log(K)/δ)

K

)
, (B.79)

1

K

K∑
k=1

L(Pk, h) ≤ 2EP∼PmetaL(P, h) + C5CL

(
r∗K +

log(log(K)/δ)

K

)
, (B.80)

where r∗K is the unique fixed point of R̃K . And it is easy to show that for some absolute constant C6,

r∗K ≤ C6

(
C3 exp(−C ′1R2

f ) +
ShLh log (KLhWh(Bh ∨ 1)Mfγf )

K

)
. (B.81)

which concludes the proof.

Theorem B.8 (Thm. 3.6). Under Assumption 3.1, 3.2, 3.3, there exists some constant C,CR such
that the following holds. Define the empirical minimizer of training task and new task as

f̂ , ĥ = argmin
f∈F⊗K ,h∈H

1

nK

K∑
k=1

n∑
i=1

ℓ(xki , y
k
i , sfk,h), (B.82)

f̂P := argmin
f∈F

1

m

m∑
i=1

ℓ(xi, yi, sf,ĥ). (B.83)

If Rf ≥ CR log
1
2 (nKMf/δ), then with probability no less than 1− δ, the expected population loss

of new task can be bounded by

EP∼PmetaE{(xi,yi)}mi=1∼PE(x,y)∼P[ℓ
P(x, y, sf̂P,ĥ)]

≲ inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)] + C

(
log3(m) logNF

m
+

log3(nK/δ) logNF
n

+
log(NH/δ)

K

)
,

(B.84)
where

logNF :=M2
fSfLf log (mnLfWf (Bf ∨ 1)MfT log(1/δ)) , (B.85)

logNH := ShLh log (nKLhWh(Bh ∨ 1)Mfγf log(1/δ)) . (B.86)
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Proof.

EP∼PmetaE{(xi,yi)}mi=1∼PE(x,y)∼P[ℓ
P(x, y, sf̂P,ĥ)]

≲ EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,ĥ)] + Cxy log

3(m)rx

≲
1

K

K∑
k=1

inf
f∈F

E(x,y)∼Pk [ℓ
Pk(x, y, sf,ĥ)] + CP

(
rP +

log(1/δ)

K

)
+ Cxy log

3(m)rx

≲
1

K

K∑
k=1

E(x,y)∼Pk [ℓ
Pk(x, y, sf̂k,ĥ)] + CP

(
rP +

log(1/δ)

K

)
+ Cxy log

3(m)rx

≲ inf
f∈F⊗K ,h∈H

1

K

K∑
k=1

E(x,y)∼Pk [ℓ
Pk(x, y, sfk,h)] + CZ log3(nK/δ)

(
rz +

log(1/δ)

nK

)
+ CP

(
rP +

log(1/δ)

K

)
+ Cxy log

3(m)rx

≲ inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)] + CZ log3(nK/δ)

(
rz +

log(1/δ)

nK

)
+ CP

(
rP +

log(1/δ)

K

)
+ Cxy log

3(m)rx.

(B.87)
Here we apply Proposition B.4 in the first inequality, Proposition B.7 in the second and last inequality,
Proposition B.5 in the fourth. Plugging in the definition of rz, rP , rx and logNF , logNH and

noticing that Rf ≥ CR log
1
2 (nKdxMf/δ) ≥ C ′R log

1
2

(
MfK

logNH

)
, we have with probability no less

than 1− δ,

EP∼PmetaE{(xi,yi)}mi=1∼PE(x,y)∼P[ℓ
P(x, y, sf̂P,ĥ)]

≲ inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)] + C

(
log3(m) logNF

m
+

log3(nK/δ) logNF
n

+
log(NH/δ)

K

)
.

(B.88)

B.4 Auxiliary Lemmas

Lemma B.9. There exists some constant CL such that for any h,P,

L(P, h) ≤ Et,xt,y∥∇x log pt(xt|y)∥2 ≤ CL. (B.89)

Proof. Note that

E(x,y)∼P[ℓ
P(x, y, sf,h)] = E(x,y)∼PEt,xt|x[∥f(xt, h(y), t)−∇x log pt(xt|y)∥2]

= Et,xt,y[∥f(xt, h(y), t)−∇x log pt(xt|y)∥2]
(B.90)

and 0 ∈ F , it suffices to show that Et,xt,y[∥∇x log pt(xt|y)∥2] is uniformly bounded for any P, h.
According to (B.2),

Ext,y[∥∇x log pt(xt|y)∥2] ≤ Ext,yEx0|(xt,y)[∥∇x log ϕt(xt|x0)∥2]
= Ex0,yExt|x0

[∥∇x log ϕt(xt|x0)∥2]

=
dx
σ2
t

=
dx

1− e−2t
.

(B.91)
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On the other hand, by (B.3) and Assumption 3.3,

Ext,y[∥∇x log pt(xt|y)∥2] ≤ Ext,yEx0|(xt,y)[∥∇x log p(x0|y)∥2 · e2t]
= Ex0,yExt|x0

[∥∇x log p(x0|y)∥2 · e2t]
= Ex0,y[∥∇x log p(x0|y)∥2/α2

t ]

≤ Ex0,y[(B + L∥x0∥)2 · e2t]
≤ C ′2e

2t

(B.92)

Therefore, we have
L(P, h) ≤ Et,xt,y[∥∇x log pt(xt|y)∥2]

≤ Et[
dx

1− e−2t
∧ C ′2e2t]

≤ 2(C ′2 + dx) =: CL.

(B.93)

Lemma B.10. There exists some constant C
′′

X such that for any t ∈ [0, T ] and x ∈ Rdx , y ∈ [0, 1]Dy ,

Ext|x∥∇x log pt(xt|y)∥2 ≤ C
′′

X(∥x∥6 + 1). (B.94)

Proof. Note that xt|x ∼ N (xt|αtx, σ2
t I) and by Lemma B.2,

Ext|x∥∇x log pt(xt|y)∥2 ≤ Ext|x2
[
∥∇x log pt(0|y)∥2 + (CX + C ′X∥xt∥2)2∥xt∥2

]
(B.95)

Let qt(x0|xt, y) ∝ ϕt(xt|x0)p(x0|y). Since ϕt(0|x0) ∝ exp

(
−α

2
t ∥x∥2

2σ2
t

)
is decreasing in ∥x∥, by

Fortuin–Kasteleyn–Ginibre inequality,

Eqt(x0|0,y)∥x0∥
2 ≤ Ep(x0|y)∥x0∥

2 ≤ C0. (B.96)

According to (B.2),

∥∇x log pt(0|y)∥2 ≤ α2
t

σ4
t

Eqt(x0|0,y)∥x0∥
2 ≤ C0α

2
t

σ4
t

. (B.97)

By (B.3), we also have

∥∇x log pt(0|y)∥2 ≤ 1

α2
t

Eqt(x0|0,y)∥∇x log p(x0|y)∥2 ≤ 1

α2
t

Eqt(x0|0,y)[(B+L∥x0∥)2] ≤
2(B2 + L2C0)

α2
t

.

(B.98)
Combine the two inequalities,

∥∇x log pt(0|y)∥2 ≤ (B2 + (L2 + 1)C0) · (
α2
t

σ4
t

∧ 1

α2
t

) ≤ 2(B2 + (L2 + 1)C0). (B.99)

Plug in (B.95) and we obtain for some constant C
′′

X ,

Ext|x∥∇x log pt(xt|y)∥2 ≤ Ext|x2
[
(CX + C ′X∥xt∥2)2∥xt∥2

]
+ 2(B2 + (L2 + 1)C0)

≤ C
′′

X(∥x∥6 + 1).
(B.100)

Lemma B.11. Let Φ be a class of functions on domain Ω and P be a probability distribution over
Ω. Suppose that for any φ ∈ Φ, ∥φ∥L∞(Ω) ≤ b, EP[φ] ≥ 0, and EP[φ

2] ≤ BEP[φ] + B0 for some

b, B,B0 ≥ 0. Let x1, · · · , xn
i.i.d.∼ P and ϕn be a positive, non-decreasing and sub-root function such

that

Rn(Φr) := Eσ sup
φ∈Φr

∣∣∣ 1
n

n∑
i=1

σiφ(xi)
∣∣∣ ≤ ϕn(r). (B.101)
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where Φr :=
{
φ ∈ Φ :

1

n

n∑
i=1

(φ(xi))
2 ≤ r

}
. Define the largest fixed point of ϕn as r∗n. Then for

some absolute constant C ′, with probability no less than 1− δ, it holds that for any φ ∈ Φ,

EP[φ] ≤
2

n

n∑
i=1

φ(xi) + C ′(B ∨ b)

(
r∗n +

log
(
(log n)/δ

)
n

)
+ C ′

√
B0 log

(
(log n)/δ

)
n

,

(B.102)

1

n

n∑
i=1

φ(xi) ≤ 2EP[φ] + C ′(B ∨ b)

(
r∗n +

log
(
(log n)/δ

)
n

)
+ C ′

√
B0 log

(
(log n)/δ

)
n

.

(B.103)

Proof. We follow the procedures in Bousquet [2002]. Let ϵj = b2−j and consider a sequence of
classes

Φ(j) := {φ ∈ Φ : ϵj+1 < EP[φ] ≤ ϵj}. (B.104)

Note that Φ = ∪j≥0Φ(j) and for φ ∈ Φ(j), EP[φ
2] ≤ Bϵk + B0. Let j0 = ⌊log2 n⌋. Then by

Bousquet [2002, Lemma 6.1], it holds that with probability no less than 1− δ, for any j ≤ j0 and
φ ∈ Φ(j),∣∣∣ 1
n

n∑
i=1

φ(xi)− EP[φ]
∣∣∣ ≲ Rn(Φ

(j)) +

√
(Bϵj +B0) log

(
log(b/ϵj)/δ

)
n

+
b log

(
log(b/ϵj)/δ

)
n

,

(B.105)∣∣∣ 1
n

n∑
i=1

(φ(xi))
2 − EP[φ

2]
∣∣∣ ≲ bRn(Φ

(j)) +

√
b2(Bϵj +B0) log

(
log(b/ϵj)/δ

)
n

+
b2 log

(
log(b/ϵj)/δ

)
n

.

(B.106)

Besides, for φ ∈ ∪k>k0Φ(j) =: Φ(j0:),∣∣∣ 1
n

n∑
i=1

φ(xi)− EP[φ]
∣∣∣ ≲ Rn(Φ

(j0:)) +

√
(Bϵj0 +B0) log

(
log(n)/δ

)
n

+
b log

(
(log n)/δ

)
n

(B.107)

From now on we reason on the conjunction of (B.105), (B.106) and (B.107). Define

Uj = Bϵj +B0 + bRn(Φ
(k)) +

√
b2(Bϵj +B0) log

(
log(b/ϵj)/δ

)
n

+
b2 log

(
log(b/ϵj)/δ

)
n

.

(B.108)

and thus for any φ ∈ Φ(j), we have
1

n

n∑
i=1

(φ(xi))
2 ≤ CUj for some absolute constant C by (B.106),

indicating that Rn(Φ
(j)) ≤ ϕn(CUj) ≤

√
Cϕn(Uj). For any j ≤ j0,

Uj ≤ 2(Bϵj +B0) + b
√
Cϕn(Uj) +

2b2 log
(
(log n)/δ

)
n

. (B.109)

Since ϕn is non-decreasing and sub-root, the inequality above implies that

Uj ≲ b2r∗n +Bϵj +B0 +
b2 log

(
(log n)/δ

)
n

=: rn(ϵj). (B.110)

Therefore, for any φ ∈ Φ(j), j ≤ j0, by (B.105),∣∣∣ 1
n

n∑
i=1

φ(xi)− EP[φ]
∣∣∣ ≲ ϕn(rn(ϵj)) +

√
(Bϵj +B0) log

(
(log n)/δ

)
n

+
b log

(
(log n)/δ

)
n

=: Fn(ϵj).
(B.111)
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Noticing that EP[φ] ≤ ϵj ≤ 2EP[φ], it reduces to

∣∣∣ 1
n

n∑
i=1

φ(xi)− EP[φ]
∣∣∣ ≲ Fn(EP[φ]). (B.112)

Hence we have by noting that Fn is also a non-decreasing sub-root function,

EP[φ] ≤
2

n

n∑
i=1

φ(xi) + C ′(B ∨ b)

(
r∗n +

log
(
(log n)/δ

)
n

)
+ C ′

√
B0 log

(
(log n)/δ

)
n

,

(B.113)

1

n

n∑
i=1

φ(xi) ≤ 2EP[φ] + C ′(B ∨ b)

(
r∗n +

log
(
(log n)/δ

)
n

)
+ C ′

√
B0 log

(
(log n)/δ

)
n

.

(B.114)

Here C ′ is an absolute constant. Moreover, when φ ∈ Φ(j) for j > j0, we have EP[φ] ≤
b

n
, and

according to (B.107), ∣∣∣ 1
n

n∑
i=1

φ(xi)− EP[φ]
∣∣∣ ≲ Fn(εj0). (B.115)

Hence the same bounds apply, which completes the proof.

Lemma B.12. Let Φ be a class of functions on domain Ω, P1, · · · ,PK be probability distributions

over Ω, and P̂(K) =
1

K

K∑
k=1

δPk . Suppose that for any φ ∈ Φ, ∥φ∥L∞(Ω) ≤ b, EP̂(K) [φ] ≥ 0, and

EP̂(K) [φ
2] ≤ BEP̂(K) [φ] + B0 for some b, B,B0 ≥ 0. Let xk1 , · · · , xkn

i.i.d.∼ Pk for any k and all
(xki )i,k are independent. Let ϕK,n be a positive, non-decreasing and sub-root function such that

RK,n(Φr) := Eσ sup
φ∈Φr

∣∣∣ 1

nK

K∑
k=1

n∑
i=1

σki φ(x
k
i )
∣∣∣ ≤ ϕK,n(r). (B.116)

where Φr :=
{
φ ∈ Φ :

1

nK

K∑
k=1

n∑
i=1

(φ(xki ))
2 ≤ r

}
. Define the largest fixed point of ϕK,n as r∗K,n.

Then for some absolute constant C ′, with probability no less than 1− δ, it holds that for any φ ∈ Φ,

EP̂(K) [φ] ≤
2

nK

K∑
k=1

n∑
i=1

φ(xi) + C ′(B ∨ b)

(
r∗K,n +

log
(
(log nK)/δ

)
nK

)
+ C ′

√
B0 log

(
(log nK)/δ

)
nK

,

(B.117)

1

nK

K∑
k=1

n∑
i=1

φ(xki ) ≤ 2EP̂(K) [φ] + C ′(B ∨ b)

(
r∗K,n +

log
(
(log nK)/δ

)
nK

)
+ C ′

√
B0 log

(
(log nK)/δ

)
nK

.

(B.118)

Proof. We follow the procedures in Bousquet [2002]. Let ϵk = b2−k and consider a sequence of
classes

Φ(j) := {φ ∈ Φ : ϵj+1 < EP̂(K) [φ] ≤ ϵj}. (B.119)
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Note that Φ = ∪j≥0Φ(j) and for φ ∈ Φ(j), EP̂(K) [φ
2] ≤ Bϵj +B0. Let j0 = ⌊log2(nK)⌋. Then by

Massart [2000, Theorem 3], with probability no less than 1− δ, for any j ≤ j0 and φ ∈ Φ(j),

∣∣∣ 1

nK

K∑
k=1

n∑
i=1

φ(xki )− EP̂(K) [φ]
∣∣∣ ≲ RK,n(Φ

(j)) +

√
(Bϵj +B0) log

(
log(b/ϵj)/δ

)
nK

+
b log

(
log(b/ϵj)/δ

)
nK

,

(B.120)∣∣∣ 1

nK

K∑
k=1

n∑
i=1

(φ(xki ))
2 − EP̂(K) [φ

2]
∣∣∣ ≲ bRK,n(Φ

(j)) +

√
b2(Bϵj +B0) log

(
log(b/ϵj)/δ

)
nK

+
b2 log

(
log(b/ϵj)/δ

)
nK

.

(B.121)

Besides, for any φ ∈ ∪j>j0Φ(j) =: Φ(j0:),

∣∣∣ 1

nK

K∑
k=1

n∑
i=1

φ(xki )−EP̂(K) [φ]
∣∣∣ ≲ RK,n(Φ

(j0:))+

√
(Bϵj0 +B0) log

(
(log nK)/δ

)
nK

+
b log

(
(log nK)/δ

)
nK

.

(B.122)

From now on we reason on the conjunction of (B.120), (B.121) and (B.122). Define

Uj = Bϵj +B0 + bRK,n(Φ
(j)) +

√
b2(Bϵj +B0) log

(
log(b/ϵj)/δ

)
nK

+
b2 log

(
log(b/ϵj)/δ

)
nK

.

(B.123)

and thus for any φ ∈ Φ(j), we have
1

nK

K∑
k=1

n∑
i=1

(φ(xki ))
2 ≤ CUj for some absolute constant C by

(B.121), indicating that RK,n(Φ
(j)) ≤ ϕK,n(CUj) ≤

√
CϕK,n(Uj). For any j ≤ j0,

Uj ≤ 2(Bϵj +B0) + b
√
CϕK,n(Uj) +

2b2 log
(
(log nK)/δ

)
nK

. (B.124)

Since ϕK,n is non-decreasing and sub-root, the inequality above implies that

Uj ≲ b2r∗K,n +Bϵj +B0 +
b2 log

(
(log nK)/δ

)
nK

=: rK,n(ϵj). (B.125)

Therefore, for any φ ∈ Φ(j), j ≤ j0, by (B.120),

∣∣∣ 1

nK

K∑
k=1

n∑
i=1

φ(xki )− EP̂(K) [φ]
∣∣∣ ≲ ϕK,n(rK,n(ϵj)) +

√
(Bϵj +B0) log

(
(log nK)/δ

)
nK

+
b log

(
(log nK)/δ

)
nK

=: FK,n(ϵj).
(B.126)

Noticing that EP̂(K) [φ] ≤ ϵj ≤ 2EP̂(K) [φ], it reduces to∣∣∣ 1

nK

K∑
k=1

n∑
i=1

φ(xki )− EP̂(K) [φ]
∣∣∣ ≲ FK,n(EP̂(K) [φ]). (B.127)

Hence we have by noting that FK,n is also a non-decreasing sub-root function,

EP̂(K) [φ] ≤
2

nK

K∑
k=1

n∑
i=1

φ(xki ) + C ′(B ∨ b)

(
r∗K,n +

log
(
(log nK)/δ

)
nK

)
+ C ′

√
B0 log

(
(log nK)/δ

)
nK

,

(B.128)

1

nK

K∑
k=1

n∑
i=1

φ(xki ) ≤ 2EP̂(K) [φ] + C ′(B ∨ b)

(
r∗K,n +

log
(
(log nK)/δ

)
nK

)
+ C ′

√
B0 log

(
(log nK)/δ

)
nK

.

(B.129)
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Here C ′ is an absolute constant. Moreover, when φ ∈ Φ(j) for j > j0, we have EP̂(K) [φ] ≤
b

nK
,

and according to (B.122),

∣∣∣ 1

nK

K∑
k=1

n∑
i=1

φ(xki )− EP̂(K) [φ]
∣∣∣ ≲ FK,n(εj0). (B.130)

Hence the same bounds apply, which completes the proof.

B.5 Verifying Task Diversity Assumption

When F is linear function class, Tripuraneni et al. [2020] provides an explicit bound on (ν,∆).
However, in general, performing a fine-grained analysis is challenging, especially for complex
function classes such as neural networks. In the following proposition, we present a very pessimistic
bound for (ν,∆) based on density ratio, which is independent of the specific choice of hypothesis
classes F and H.

Proposition B.13. Suppose F = conv(F), and inf
x,y

pk(x, y)

p0(x, y)
≥ λk for any 1 ≤ k ≤ K. Let

λ =

K∑
k=1

λk. Then P1, · · · ,PK are (ν̃, ∆̃)-diverse over P0 with ν̃ = λ/(2K),

∆̃ = 2E(x,y)∼P0Et,xt

∥∥∥∥∥ 1λ
K∑
k=1

λk∇ log pkt (xt|y)−∇ log p0t (xt|y)

∥∥∥∥∥
2
 . (B.131)

We mention that the only requirement is F is a convex hull of itself, which can be easily satisfied by
most hypothesis classes such as neural networks. More refined analysis on specific neural network
class is an interesting future work.

Proof. For any h ∈ H, let fk ∈ F be the corresponding minimizer for 1 ≤ k ≤ K. Further define

λ =

K∑
k=1

λk and f̃0 =
1

λ

K∑
k=1

λkf
k ∈ conv(F) ∈ F . Then we have

LP0

(sf̃0,h) = EP0

[
∥f̃0(xt, h(y), t)−∇ log p0t (xt|y)∥2

]
≤ 2EP0

[
∥f̃0(xt, h(y), t)−

K∑
k=1

λk
λ
∇ log pkt (xt|y)∥2 + ∥

K∑
k=1

λk
λ
∇ log pkt (xt|y)−∇ log p0t (xt|y)∥2

]

≤ 2

λ

K∑
k=1

EP0λk
[
∥fk(xt, h(y), t)−∇ log pkt (xt|y)∥2

]
+ ∆̃

≤ 2

λ

K∑
k=1

EPk
[
∥fk(xt, h(y), t)−∇ log pkt (xt|y)∥2

]
+ ∆̃

=
1

ν̃
inf

f∈F⊗K

1

K

K∑
k=1

LPk(sfk,h) + ∆̃.

(B.132)
We conclude the proof by noticing that inf

f∈F
LP0

(sf,h) ≤ LP0

(sf̃0,h).
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C Proofs in Section 4

C.1 Proofs of Score Network Approximation

Theorem C.1 (Thm. 4.1). Under Assumption 3.1, 3.2, 3.3, to achieve Rf ≥ CR log
1
2 (nKMf/δ)

and

inf
h∈H

1

K

K∑
k=1

inf
f∈F

E(x,y)∼Pk [ℓ
Pk(x, y, sf,h)] = O

(
log2(nK/(εδ))ε2

)
, (transfer learning) (C.1)

inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)] = O

(
log2(nK/(εδ))ε2

)
, (meta-learning) (C.2)

the configuration of F = NNf (Lf ,Wf ,Mf , Sf , Bf , Rf , γf ),H = NNh(Lh,Wh, Sh, Bh) should
satisfy

Lf = O
(
log

(
log(nK/(εδ))

ε

))
,Wf = O

(
log3(dx+dy)/2(nK/(εδ))

εdx+dy+1T 3
0

)
,

Sf = O

(
log3(dx+dy)/2+1(nK/(εδ))

εdx+dy+1T 3
0

)
, Bf = O

(
T log

3
2 (nK/(εδ))

ε

)
,

Rf = O
(
log

1
2 (nK/(εδ))

)
,Mf = O

(
log3(nK/(εδ))

)
, γf = O (log(nK/(εδ))) ,

(C.3)

Lh = O (log(1/ε)) ,Wh = O
(
ε−Dy log(1/ε)

)
,

Sh = O
(
ε−Dy log2(1/ε)

)
, Bh = O(1).

(C.4)

Here O(·) hides all the polynomial factors of dx, dy, Dy, C1, C2, L,B.

Proof. With a little abuse of notation, in transfer learning setting, we define Pmeta :=
1

K

K∑
k=1

δPk and

it directly reduces to meta-learning case. Therefore, we only focus on the proof in meta-learning.

We first decompose the misspecification error into two components: representation error and score
approximation error.

inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)]

= inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼PEt,xt|x[∥f(xt, h(y), t)− fP∗ (xt, h∗(y), t)∥2]

≤ inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼PEt,xt|x2
[
∥f(xt, h(y), t)− f(xt, h∗(y), t)∥2 + ∥f(xt, h∗(y), t)− fP∗ (xt, h∗(y), t)∥2

]
.

(C.5)
Further note that for any f ∈ F ,

E(x,y)∼PEt,xt|x[∥f(xt, h(y), t)− f(xt, h∗(y), t)∥2] ≤ Et,xt,y∥f(xt, h(y), t)− f(xt, h∗(y), t)∥2 · 1∥xt∥≤Rf
+ 8M2

f exp(−C ′1R2
f )

≤ Ey∼P[γ2f∥h(y)− h∗(y)∥2] + 8M2
f exp(−C ′1R2

f ),
(C.6)
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where ΩRf = [−Rf , Rf ]dx × [0, 1]dy × [T0, T ]. By Proposition C.2, C.3,

inf
h∈H

EP∼Pmeta inf
f∈F

E(x,y)∼P[ℓ
P(x, y, sf,h)]

≤ inf
h∈H

EP∼PmetaEy∼P[2γ2f∥h(y)− h∗(y)∥2] + 16M2
f exp(−C ′1R2

f )

+ EP∼Pmeta inf
f∈F

2∥f(xt, h∗(y), t)− fP∗ (xt, h∗(y), t)∥2

≤ 2 inf
h∈H

γ2f∥h− h∗∥2L∞([0,1]Dy )
+ 16M2

f exp(−C ′1R2
f )

+ 2EP∼Pmeta inf
f∈F

∥f(xt, h∗(y), t)− fP∗ (xt, h∗(y), t)∥2

≲
(
log2(nK/(εδ))dy + dx

)
ε2

= O
(
log2(nK/(εδ))ε2

)
.

(C.7)

Proposition C.2. To achieve Rf ≥ CR log
1
2 (nKMf/δ) and

inf
f∈F

E(x,y)∼PEt,xt|x[∥f(xt, h∗(y), t)− fP(xt, h∗(y), t)∥2] ≤ dxε
2, (C.8)

the configuration of F = NNf (Lf ,Wf ,Mf , Sf , Bf , Rf , γf ) should satisfy

Lf = O
(
log

(
log(nK/(εδ))

ε

))
,Wf = O

(
log3(dx+dy)/2(nK/(εδ))

εdx+dy+1T 3
0

)
,

Sf = O

(
log3(dx+dy)/2+1(nK/(εδ))

εdx+dy+1T 3
0

)
, Bf = O

(
T log

3
2 (nK/(εδ))

ε

)
,

Rf = O
(
log

1
2 (nK/(εδ))

)
,Mf = O

(
log3(nK/(εδ))

)
, γf = O (log(nK/(εδ))) .

(C.9)

Here O(·) hides all the polynomial factors of dx, dy, Dy, C1, C2, L,B.

Proof. For notation simplicity, we will f∗ = fP∗ throughout the proof. Our procedures consist of
two main steps. The first is to clip the whole input space to a bounded set ΩRf := [−Rf , Rf ]dx ×
[0, 1]dy × [T0, T ] thanks to the light tail property of P. Then we approximate fP∗ on ΩRf .

By Lemma B.2 and C.6, f∗ is γ1-Lipschitz in x, γ2-Lipschitz in w, and γ3-Lipshcitz in t in a bounded

domain ΩRf , where γ1 = CX + C ′XR
2
f , γ2 = CX + C ′XRf , γ3 =

CsR
3
f

T 3
0

.

We first rescale the input domain by x′ =
x

2Rf
+

1

2
, w′ = w, t′ = t/T , which can be implemented

by a single ReLU layer. Denote v = (x′, w′, t′). We only need to approximate g(v) := f∗(Rf (2x
′ −

1), w′, T t′) defined on Ω := [0, 1]dx+dy × [T0/T, 1]. And g is γx := 2γ1Rf -Lipschitz in x′,
γw := γ2-Lipschitz in w′ and γt := γ2T -Lipschitz in t′. We will approximate each coordinate of
g = [g1, · · · , gdx ]⊤ separately and then concatenate them together.

Now we partition the domain Ω into non-overlapping regions. For the first dx + dy dimensions,
the space [0, 1]dx+dy is uniformly divided into hypercubes with an edge length of e1. For the last
dimension, the interval [T0/T, 1] is divided into subintervals of length e2, where the values of e1
and e2 will be specified later. Let the number of intervals in each partition be N1 = ⌈1/e1⌉ and
N2 = ⌈1/e2⌉, respectively.

Let u = [u1, · · · , udx+dy ] ∈ {0, · · · , N1 − 1}dx+dy be a multi-index. Define

ḡi(x
′, w′, t′) =

∑
u,j

gi(u/N1, j/N2)Ψu,j(x
′, w′, t′), (C.10)
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where Ψ is the coordinate-wise product of trapezoid function:

Ψu,j(x
′, w′, t′) := ψ

(
3N2(t

′ − j/N2)
) dx∏
r=1

ψ
(
3N1(x

′
r − ur/N1)

) dy∏
r=1

ψ
(
3N1(w

′
r − ur+dx/N1)

)
,

(C.11)

ψ(a) :=

{
1, |a| < 1
2− |a|, 1 ≤ |a| < 2
0, |a| >≥ 2

(C.12)

We claim that ḡi is an approximation to gi since for any o′ = (x′, w′) ∈ [0, 1]dx+dy , t′ ∈ [T0/T, 1],

sup
o′,t′

∣∣∣ḡi(o′, t′)− gi(o
′, t′)| ≤ sup

o′,t′

∣∣∣∑
u,j

(gi(
u

N1
,
j

N2
)− gi(o

′, t′))Ψu,j(o
′, t′)

∣∣∣
≤ sup

o′,t′

∑
u:| uiN1

−o′i|≤
2N1
3 ,j:| jN2

−t′|≤ 2N2
3

∣∣∣gi( u
N1

,
j

N2
)− gi(o

′, t′)
∣∣∣Ψu,j(o′, t′)

≤ 2γx
3N1

+
2γt
3N2

.

(C.13)

Below we construct a ReLU neural network to approximate ḡi. Let σ be ReLU activation and
r(a) = 2σ(a)− 4σ(a− 0.5) + 2σ(a− 1) for any scalar a ∈ [0, 1]. Define

ϕlsquare(a) = a−
l∑

m=1

2−2mrm(a), rm = r ◦ · · · ◦ r︸ ︷︷ ︸
m compositions

(C.14)

ϕlmul(a, b) = ϕlsquare(
a+ b

2
)− ϕlsquare(

a− b

2
) (C.15)

According to Yarotsky [2017],

|ϕlmul(a, b)− ab| ≤ 2−2l−2, ∀a, b ∈ [0, 1]. (C.16)

Then we approximate Ψu,j by recursively apply ϕlmul:

Ψ̂u,j(x
′, w′, t′) := ϕlmul

(
ψ
(
3N2(t

′ − j/N2)
)
, ϕlmul

(
ψ
(
3N1(x

′
1 − u1/N2)

)
, · · ·

))
(C.17)

And we construct the final neural network approximation as

ĝi(x
′, w′, t′) :=

∑
u,j

gi(u/N1, j/N2)Ψ̂u,j(x
′, w′, t′). (C.18)

The approximation error of ĝi can be bounded by

∥ĝi − gi∥L∞(Ω) ≤ ∥ĝi − ḡi∥L∞(Ω) + |ḡi − gi∥L∞(Ω)

≤ 2dx+dy+1∥gi∥L∞(Ω) sup
u,j

∥Ψ̂u,j −Ψu,j∥L∞(Ω) +
2γx(dx + dy)

1
2

3N1
+

2γt
3N2

≤ (dx + dy + 1)2dx+dy+1∥gi∥L∞(Ω)2
−(2l+2) +

2γx(dx + dy)
1
2

3N1
+

2γt
3N2

.

(C.19)
Besides, by Chen et al. [2020, Lemma 15], for l ≳ dx + dy and ∀x′, w′, w′′, t′,

|ĝi(x′, w′, t′)− ĝi(x
′, w′′, t′)| ≲ (dx+ dy)

(
γw +N1∥gi∥L∞(Ω)2

−l+dx+dy
)
∥w′−w′′∥∞. (C.20)

Let l = O
(
dx + dy + log

γw(∥g∥L∞(Ω) + 1)

ε

)
, N1 = O

(γx
ε

)
, N2 = O

(γt
ε

)
. Then

∥ĝi − gi∥L∞(Ω) ≤ ε/2, |ĝi(x′, w′, t′)− ĝi(x
′, w′′, t′)| ≲ γw(dx + dy)∥w′ − w′′∥∞. (C.21)
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Define ĝ := [ĝ1, · · · , ĝdx ] and f̂(x,w, t) := ĝ

(
x

2Rf
+

1

2
, w, t/T

)
. Then the approximation error

of f̂ in ΩRf can be bounded by

∥f̂ − f∥L∞(ΩRf )
≤ ∥ĝ − g∥L∞(Ω) ≤

√
dxε/2, and f̂(x,w, t) = 0,∀ ∥x∥∞ > Rf . (C.22)

Therefore, when Rf ≥ CR log
1
2
(
(M2

f + CL)/ε
)
, the overall approximation error is

E(x,y)∼PEt,xt|x[∥f(xt, h∗(y), t)− fP∗ (xt, h∗(y), t)∥2] ≤ Et,xt,y∥f(xt, h(y), t)− f(xt, h∗(y), t)∥2 · 1∥xt∥≤Rf
+ 4(M2

f + CL) exp(−C ′1R2
f )

≤ ∥f − fP∗ ∥2L∞(ΩRf )
+ 4(M2

f + CL) exp(−C ′1R2
f )

≤ dxε
2.

(C.23)

Now we characterize the configuration of neural network f̂(x,w, t). For boundedness, by Lemma
B.10,

∥f̂(x,w, t)∥ ≤ ∥f∗∥L∞(ΩRf )
+ ε ≤ 2C ′′XR

6
f =:Mf . (C.24)

Hence we can let Rf = O
(
log

1
2

(
nK

εδ

))
to ensure the lower bound of Rf mentioned above and

in Theorem B.8. For Lipschitzness, by (C.21),

∥f̂(x,w, t)− f̂(x, w̃, t)∥ ≲ γw(dx + dy)∥w − w̃∥∞
≲ (CX + C ′XR

2
f )(dx + dy)∥w − w̃∥∞.

(C.25)

Hence γf = O
(
(CX + C ′XR

2
f )(dx + dy)

)
= O

(
log

(
nK

εδ

))
.

For the size of neural network, for each coordinate, by the construction in (C.18), the neu-
ral network ĝi consists of Ndx+dy

1 N2 parallel subnetworks, i.e., gi(u/N1, j/N2)Ψ̂u,j(·, ·, ·). By

definition in (C.17), the subnetwork consists of O
(
(dx + dy)(dx + dy + log

Rf
ε
)

)
layers and

the width is bounded by O(dx + dy). Therefore, the whole neural network ĝi can be imple-

mented by O ((dx + dy)(dx + dy + log(Rf/ε))) layers with width O
(
N
dx+dy
1 N2(dx + dy)

)
=

O

(
R

3(dx+dy)
f

εdx+dy+1T 3
0

)
, and the number of parameter is bounded by O

(
R

3(dx+dy)
f log(Rf/ε)

εdx+dy+1T 3
0

)
. Com-

bine these arguments together, we can claim that the size of neural network f̂ is

L = O ((dx + dy)(dx + dy + log(Rf/ε))) = O
(
log

(
log(nK/(εδ))

ε

))
,

W = O

(
R

3(dx+dy)
f

εdx+dy+1T 3
0

)
= O

(
log3(dx+dy)/2(nK/(εδ))

εdx+dy+1T 3
0

)
,

S = O

(
(dx + dy)R

3(dx+dy)
f log(Rf/ε)

εdx+dy+1T 3
0

)
= O

(
log3(dx+dy)/2+1(nK/(εδ))

εdx+dy+1T 3
0

)
.

(C.26)

To bound of the neural network parameters, note that the trapezoid function ψ is rescaled by 3N1

or 3N2 and the weight parameter of ϕlmul is bounded by a constant. Moreover, the input of f̂ is first
rescaled by Rf or T . Hence we have

B = O (N1Rf +N2T ) = O

(
R3
fT

ε

)
= O

(
T log

3
2 (nK/(εδ))

ε

)
, (C.27)

which concludes the proof.
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Proposition C.3. To achieve

inf
h∈H

∥h− h∗∥L∞([0,1]Dy ) ≤
√
dyε, (C.28)

the configuration of H = NNh(Lh,Wh, Sh, Bh) should satisfy

Lh = O (log(1/ε)) ,Wh = O
(
ε−Dy log(1/ε)

)
,

Sh = O
(
ε−Dy log2(1/ε)

)
, Bh = O(1).

(C.29)

Here O(·) hides all the polynomial factors of dx, dy, L.

Proof. The main idea replicates Yarotsky [2017, Theorem 1]. We approximate each coordinate of
h∗ = [h∗1, · · · , h∗dy ] respectively and then concatenate all them together. By Yarotsky [2017,
Theorem 1], h∗i can be approximated up to ε by a network ĥi with O (log(1/ε)) layers and
O
(
ε−Dy log(1/ε)

)
width. Besides, the range of all the parameters are bounded by some constant,

and the number of parameters is O
(
ε−Dy log2(1/ε)

)
. Then we concatenate all the subnetworks to

get ĥ = [ĥ1, · · · , ĥdy ] and ∥ĥ− h∗∥L∞([0,1]Dy ) ≤
√
dyε.

C.2 Proofs of Distribution Estimation

Theorem C.4 (Thm. 4.2). Suppose Assumption 3.1, 3.2, 3.3 hold. For sufficiently large integers
n,K,m and δ > 0, further suppose that P1, · · · ,PK are (ν,∆)-diverse over target distribution P0

with proper configuration of neural network family and T, T0. It holds that with probability no less
than 1− δ,

E{(xi,yi)}mi=1
Ey∼P0

y
[TV(P̂0

x|y,P
0
x|y)] ≲

log
5
2 (nK/δ) log3((m/ν) ∧ n)
ν

1
2 ((m/ν) ∧ n)

1
dx+dy+9

+
log2(nK/δ)

ν
1
2 (nK)

1
Dy+2

+
√
∆.

(C.30)

Proof. Combine Theorem C.1 and Theorem B.6 and plug in the configuration of F ,H, we have with
probability no less than 1− δ

E{(xi,yi)}mi=1
E(x,y)∼P0 [ℓP

0

(x, y, sf̂P0 ,ĥ)]

≲
1

ν
log2(nK/(εδ))ε2 +∆+

log
3(dx+dy)+15

2 (nK/εδ) log(T/T0)

(m ∧ (νn))εdx+dy+1T 3
0

+
log4(1/ε) log(nK/(εδ))

νnKεDy
(C.31)

By Lemma C.7,

TV(P̂0
x|y,P

0
x|y) ≲

√
T0 log

dx+1
2 (1/T0) + e−T +

√
EP0

x|y
[ℓP0(x, y, sf̂P0 ,ĥ)] (C.32)

Taking expectation of y, f̂P,P, we have

E{(xi,yi)}mi=1
Ey∼P0

y
[TV(P̂0

x|y,P
0
x|y)] ≲

√
T0 log

dx+1
2 (1/T0) + e−T + ν−

1
2 log(nK/(εδ))ε+

√
∆

+
log

3(dx+dy)+15

4 (nKεδ ) log
1
2 ( TT0

)

(m ∧ (νn))
1
2 ε

dx+dy+1

2 T
3
2
0

+
log2( 1ε ) log

1
2 (nKεδ )

(νnK)
1
2 ε

Dy
2

.

(C.33)
Let T0 = O

(
ε20/ log

dx+1(1/ε0)
)
, T = O(log(1/ε0)), ε = O(ε0/ log(nK/(ε0δ0))) for some

small ε0 > 0 defined later. Then it reduces to

E{(xi,yi)}mi=1
Ey∼P0

y
[TV(P̂0

x|y,P
0
x|y)] ≲

ε0

ν
1
2

+
√
∆+

log
5(dx+dy)+17

4 (nKε0δ ) log
3dx+5

2 ( 1
ε0
)

(m ∧ (νn))
1
2 ε

dx+dy+7

2
0

+
log2( 1

ε0
) logDy+

1
2 (nKε0δ )

(νnK)
1
2 ε

Dy
2

0

.

(C.34)
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Let ε0 = Cmax

{
log

5
2 (nK/δ) log3((m/ν) ∧ n)
((m/ν) ∧ n)

1
dx+dy+9

,
log2(nK/δ)

(nK)
1

Dy+2

}
, and we can conclude that

E{(xi,yi)}mi=1
Ey∼P0

y
[TV(P̂0

x|y,P
0
x|y)] ≲

log
5
2 (nK/δ) log3((m/ν) ∧ n)
ν

1
2 ((m/ν) ∧ n)

1
dx+dy+9

+
log2(nK/δ)

ν
1
2 (nK)

1
Dy+2

+
√
∆.

(C.35)

Theorem C.5 (Thm. 4.3). Suppose Assumption 3.1, 3.2, 3.3 hold. For sufficiently large integers
n,K,m and δ > 0, with proper configuration of neural network family and T, T0, it holds that with
probability no less than 1− δ,

EP∼PmetaE{(xi,yi)}mi=1∼PEy∼Py [TV(P̂x|y,Px|y)] ≲
log

5
2 (nK/δ) log3(m ∧ n)
(m ∧ n)

1
dx+dy+9

+
log2(nK/δ)

K
1

Dy+2

.

(C.36)

Proof. Combine Theorem C.1 and Theorem B.8 and plug in the configuration of F ,H, we have with
probability no less than 1− δ

EP∼PmetaE{(xi,yi)}mi=1∼PE(x,y)∼P[ℓ
P(x, y, sf̂P,ĥ)]

≲ log2(nK/(εδ))ε2 +
log

3(dx+dy)+15

2 (nK/εδ) log(T/T0)

(m ∧ n)εdx+dy+1T 3
0

+
log4(1/ε) log(nK/(εδ))

KεDy
(C.37)

By Lemma C.7,

TV(P̂x|y,Px|y) ≲
√
T0 log

dx+1
2 (1/T0) + e−T +

√
EPx|y [ℓ

P(x, y, sf̂P,ĥ)] (C.38)

Taking expectation of y, f̂P,P, we have

EP∼PmetaE{(xi,yi)}mi=1∼PEy∼Py [TV(P̂x|y,Px|y)] ≲
√
T0 log

dx+1
2 (1/T0) + e−T + log(nK/(εδ))ε

+
log

3(dx+dy)+15

4 (nKεδ ) log
1
2 ( TT0

)

(m ∧ n) 1
2 ε

dx+dy+1

2 T
3
2
0

+
log2( 1ε ) log

1
2 (nKεδ )

K
1
2 ε

Dy
2

.

(C.39)
Let T0 = O

(
ε20/ log

dx+1(1/ε0)
)
, T = O(log(1/ε0)), ε = O(ε0/ log(nK/(ε0δ0))) for some

small ε0 > 0 defined later. Then it reduces to

EP∼PmetaE{(xi,yi)}mi=1∼PEy∼Py [TV(P̂x|y,Px|y)] ≲ ε0 +
log

5(dx+dy)+17

4 (nKε0δ ) log
3dx+5

2 ( 1
ε0
)

(m ∧ n) 1
2 ε

dx+dy+7

2
0

+
log2( 1

ε0
) logDy+

1
2 (nKε0δ )
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Dy
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0

.
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Let ε0 = Cmax

{
log

5
2 (nK/δ) log3(m ∧ n)
(m ∧ n)

1
dx+dy+9

,
log2(nK/δ)

K
1

Dy+2

}
, and we can conclude that

EP∼PmetaE{(xi,yi)}mi=1∼PEy∼Py [TV(P̂x|y,Px|y)] ≲
log

5
2 (nK/δ) log3(m ∧ n)
(m ∧ n)

1
dx+dy+9

+
log2(nK/δ)

K
1

Dy+2

.

(C.41)
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C.3 Auxiliary Lemmas

Lemma C.6. Let ΩRf = [−Rf , Rf ]dx × [0, 1]dy × [T0, T ] for some Rf ≥ 1. Then there exists some

constant Cs, such that the score function fP∗ (x,w, t) is
CsR

3
f

T 3
0

-Lipschitz with respect to t in ΩRf .

Proof. According to (B.2),

fP∗ (x,w, t) = − x

σ2
t

+
αt
σ2
t

∫
x0

ϕt(x|x0)p(x0;w)∫
ϕt(x|z)p(z;w)dz

dx0. (C.42)

Define density function qt(x0|x,w) ∝ ϕt(x|x0)p(x0;w). Then

∂

∂t
fP∗ (x,w, t) = −2α2

tx

σ2
t

+
αt
σ2
t

Covqt(x0|x,w)

(
x0,

∂

∂t
log ϕt(x|x0)

)
− αt(1 + α2

t )

σ4
t

Eqt(x0|x,w)[x0].

(C.43)
Note that

Covqt(x0|x,w)

(
x0,

∂

∂t
log ϕt(x|x0)

)
= −Covqt(x0|x,w)

(
x0,

∂

∂t

∥x− αtx0∥2

2σ2
t

)
= Covqt(x0|x,w)

(
x0,

αt(x− αtx0)
⊤1

σ2
t

− 2α2
t ∥x− αtx0∥2

σ4
t

)
(C.44)

Hence for any x ∈ [−Rf , Rf ]dx , w ∈ [0, 1]dy ,∥∥∥∥ ∂∂tfP∗ (x,w, t)
∥∥∥∥
∞

≲
α2
tRf
σ2
t

+ Eqt(x0|x,w)

∥∥∥x− αtx0
σ2
t

∥∥∥3 + αt(1 + α2
t )

σ4
t

Eqt(x0|x,w)[∥x0∥∞]

(C.45)

Let R =
2Rf + 2C0

σt
. We have

Eqt(x0|x,w)

∥∥∥αtx0 − x

σ2
t

∥∥∥3 ⪯ 1

σ3
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∫ ∥∥αtx0 − x
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dx0
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∥2 exp

(
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∫
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+

∫
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∥≥R exp(−R2
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σt
∥≤R/2 exp(−
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The domain
{
x0 : ∥αtx0 − x

σt
∥ ≤ R/2

}
includes

{
x0 : ∥x0∥ ≤ C0

}
, indicating∫

∥αtx0−x
σt

∥≤R/2
p(x0;w)dx0 ≥
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2
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Therefore, for any (x,w, t) ∈ ΩRf ,∥∥∥∥ ∂∂tfP∗ (x,w, t)
∥∥∥∥
∞

≲
R2
f

σ2
t

+
R3
f + C3

0

σ6
t

+
Rf + C0

σ3
t

≲
R3
f

T 3
0

. (C.48)

Lemma C.7. Suppose KL(P0
x|y∥N (0, I)) ≤ CKL for some constant CKL. Then

TV(P̂0
x|y,P

0
x|y) ≲

√
T0 log

dx+1
2 (1/T0) + e−T +

√
EP0

x|y
[ℓP0(x, y, sf̂ ,ĥ)]. (C.49)
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Proof. With a little abuse of notation, we will use pt(xt|y) to denote the conditional density of xt|y
under P0

x|y . Consider the following two backward processes

dx̃t = (x̃t + 2∇ log pT−t(x̃t|y))dt+
√
2dWt, x̃0 ∼ N (0, I), 0 ≤ t ≤ T − T0, (C.50)

dx̄t = (x̄t + 2∇ log pT−t(x̃t|y))dt+
√
2dWt, x̄0 ∼ pT , 0 ≤ t ≤ T − T0. (C.51)

Denote the distribution of x̃t as P̃T−t. And note that x̄t ∼ pT−t by classic reverse-time SDE results
[Anderson, 1982]. Then by Fu et al. [2024, Lemma D.5],

TV(PT0
,P0) ≲

√
T0 log

dx+1
2 (1/T0). (C.52)

At the same time, we apply Data Processing inequality and Pinsker’s inequality to get

TV(PT0
, P̃T0

) ≤ TV(PT ,N (0, I)) ≲
√

KL(PT ∥N (0, I)) ≲
√
KL(P0∥N (0, I))e−T . (C.53)

Again according to Pinsker’s inequality and Oko et al. [2023, Proposition D.1],

TV(P̂, P̃T0) ≲
√

KL(P̃T0∥P̂) ≲
√

Ex|y[ℓP(x, y, sf̂ ,ĥ)]. (C.54)

Combine three inequalities above and we complete the proof.

D Proofs in Section A

D.1 Proof of Theorem A.1

Proof. Due to the structure of exponential family, Assumption 3.2 holds obviously. To apply previous
results, we only need to verify Assumption 3.1 and 3.3. Recall that a basic property of exponential
family is

∇xAψ(x) = Epψ(y|x)[h∗(y)] ∈ [0, 1]d, (D.1)

0 ⪯ ∇2
xAψ(x) = Varpψ(y|x)(h∗(y)) ⪯ I. (D.2)

Hence by Assumption A.1, Aψ(x) ≤ Aψ(0) + ∥x∥1 ≤ log

(∫
ψ(y)dy

)
+ ∥x∥1 ≤ logC + ∥x∥1.

And Aψ(x) ≥ Aψ(0)− ∥x∥1 ≥ − logC − ∥x∥1. Further note that the posterior density pθ(x|y) =
pϕ(x) exp(⟨x, h∗(y)⟩ −Aψ(x))

Zθ
, where the normalizing constant Zθ(y) is lower bounded by

Zθ(y) =

∫
pϕ(x) exp(⟨x, h∗(y)⟩ −Aψ(x))dx

≥
∫
pϕ(x) exp(−2∥x∥1)/Cdx

≥ exp(−2
√
dR)(1− 2 exp(−C ′1R2))/C =: C0.

(D.3)

where in the second inequality we apply Pϕ(∥x∥ ≥ R) ≤ 2 exp(−C ′1R2) and let R = 1/
√
C ′1 to

get C0. Therefore, by Assumption A.1,

pθ(x|y) ≤ C1 exp(−C2∥x∥2 + 2∥x∥1 + logC)/C0 ≤ C ′1 exp(−C ′2∥x∥2), (D.4)

and thus Assumption 3.1 holds. At the same time, ley w = h∗(y), then the score function is

∇x log pθ(x|y) = ∇x log pθ(x,w) = ∇x log pϕ(x) + w −∇xAψ(x). (D.5)

Since ∇x log pϕ(x) is L-Lipschitz, ∇Aψ(x) is also 1-Lipschitz, the score function ∇x log pθ(x,w)

is (L+ 1)-Lipschitz in x and 1-Lipschitz in w. And ∥∇x log pθ(0, w)∥ ≤ ∥∇x log pϕ(0)∥+ 2
√
d =

B + 2
√
d, indicating that Assumption 3.3 holds with L′ = L+ 1, B′ = B + 2

√
d.

We conclude the proof by applying Theorem 4.3 under meta-learning setting or Theorem 4.2 under
(ν,∆)-diversity.
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D.2 Proof of Theorem A.2

Proof. Let AπM (s, a) = QπM (s, a)− VM (π, s) be the advantage function of policy π. Note that the

reward function rM ∈ [0, 1], we have |AπM (s, a)| ≤ 2

1− γ
for any M,π. According to performance

difference lemma,

VM0(π0
∗)− VM0(π̂0) =

1

1− γ
E(s,a)∼d0∗ [A

π̂0

M0(s, a)]

=
1

1− γ
Es∼d0∗

[
Ea∼π0

∗(·|s)[A
π̂0

M0(s, a)]− Ea∼π̂0(·|s)[A
π̂0

M0(s, a)]
]

≤ 2

(1− γ)2
Es∼d0∗ [TV(π0

∗(·|s), π̂0(·|s))].

(D.6)

Hence in meta-learning setting, we plug in Theorem 4.3 to obtain

EM0E{(s0i ,a0i )}mi=1∼d0∗ [VM0(π0
∗)−VM0(π̂0)] ≲

1

(1− γ)2

[
log
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2 (nK/δ) log3(m ∧ n)
(m ∧ n)

1
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+
log2(nK/δ)

K
1

Ds+2

]
.

(D.7)
If we further assume (ν,∆)-diversity holds, then we plug in Theorem 4.2,

E{(s0i ,a0i )}mi=1∼d0∗ [VM0(π0
∗)−VM0(π̂0)] ≲

1

(1− γ)2

[
log

5
2 (nK/δ) log3((m/ν) ∧ n)
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2 ((m/ν) ∧ n)

1
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+
log2(nK/δ)

ν
1
2 (nK)

1
Ds+2

+
√
∆

]
.

(D.8)

E Experiment Details

E.1 Conditioned Diffusion

Each fk and f0 are implemented as a 2-layer MLP with 128 internal channels and 60 input channels.
The representation map h is implemented as a 5-layer MLP with 512 internal channels and 10
output channels. We have n = 1000 pre-training samples from each source distribution Pk, m ∈
{10, 20, 30, 40, 50, 100} fine-tuning samples from the target distribution P0. We run Langevin Monte
Carlo for sufficiently long time to obtain 100 test samples from the target distribution P0 for evaluating
the test error of different models. In the pre-training phase, the {f̂k; 1 ≤ k ≤ K} and ĥ are trained
on the K = 10 source distributions with 400K iterations and a batch size of 512. In the fine-tuning
phase, the pre-trained representation map ĥ is fixed, and the f̂0 is trained on the target distribution
with 200K iterations and a batch size ofm. As an important baseline, we also consider jointly training
h and f0 on the target distribution from scratch, using the same fine-tuning samples.

E.2 Image Restoration on MNIST

Each fk and f0 are implemented as a 3-layer MLP with 512 internal channels and 784 input channels.
The representation map h is implemented as a 5-layer MLP with 512 internal channels and 64
output channels. We have n = 5000 pre-training samples from each source distribution Pk, and
m ∈ {10, 20, 30, 40, 50, 100} fine-tuning samples from the target distribution P0. For evaluation, we
directly compute the mean squared error between the posterior samples and the ground truth images,
based on 100 test samples from P0. In the pre-training phase, the the {f̂k; 1 ≤ k ≤ K = 9} and ĥ
are 2K epochs and a batch size of 512. The initial learning rate is 0.0003 and is annealed according
to a cosine annealing schedule. In the fine-tuning phase, the pre-trained representation map ĥ is
fixed, and the f̂0 is trained on the target distribution with 20K iterations and a batch size of m. As an
important baseline, we also consider jointly training h and f0 on the target distribution from scratch,
using the same fine-tuning samples.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions, i.e.,
proposing a data-efficient training method for machine learning models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides the full set of assumptions and complete (and correct)
proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will provide complete codes upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports experimental results based on the average of independent
random trials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets currently.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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