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Abstract

Given a query image, Visual Place Recognition (VPR) is001
the task of retrieving an image of the same place from a ref-002
erence database with robustness to viewpoint and appear-003
ance changes. Recent works show that some VPR bench-004
marks are solved by methods using Vision-Foundation-005
Model backbones and trained on large-scale and diverse006
VPR-specific datasets. Several benchmarks remain chal-007
lenging, particularly when the test environments differ sig-008
nificantly from the usual VPR training datasets. We pro-009
pose a complementary, unexplored source of information to010
bridge the train-test domain gap, which can further improve011
the performance of State-of-the-Art (SOTA) VPR methods012
on such challenging benchmarks. Concretely, we identify013
that the test-time reference set, the “map”, contains images014
and poses of the target domain, and must be available be-015
fore the test-time query is received in several VPR applica-016
tions. Therefore, we propose to perform simple Reference-017
Set-Finetuning (RSF) of VPR models on the map, boosting018
the SOTA (≈ 2.3% increase on-average for Recall@1) on019
these challenging datasets. Finetuned models retain gener-020
alization, and RSF works across diverse test datasets.021

1. Introduction022

Given a query image and a database of geo-tagged refer-023
ence images, the task of a Visual Place Recognition (VPR)024
method is to retrieve from the database a correct matching025
reference image for this qfrom the database uery. What is026
considered as a correct match is ill-defined, but most VPR027
benchmarks consider any reference image within a fixed028
(e.g., 25-meter) circular radius of the query location as a029
correct match [9]. VPR has many applications, such as in030
landmark retrieval [43], 3D modeling [1], image search [37]031
and map-based localization [35, 49]. These applications of032
VPR require that the test time reference set (the map) is033
available offline, i.e., before a test-time query is received.1034

1We acknowledge that there are other applications of VPR where the
reference map may not be available offline, such as in SLAM. These ap-
plications are not the focus in this work.

Figure 1. Large-scale VPR training datasets are created usually
from Google Street View [2], e.g., the GSV-cities dataset. Thus
models trained in these environments perform well (SOTA Re-
call@5 ∼ 98− 99%) for similar test datasets, e.g., the Tokyo-247
dataset [5] but suffer in unseen environments, e.g., the railway-
tracks of the Nordland dataset [34]. A train-test domain gap exists,
as evident in the T-SNE projection of descriptors computed using
BoQ-DinoV2 [4] for randomly sampled images of these datasets.
Descriptors from the Tokyo-247 dataset form a single cluster with
the GSV-cities dataset, while the Nordland dataset is further away.
Creating a finetuning dataset by using the freely available test-time
reference images could help bridge the train-test domain gap.

Traditionally, the most investigated challenges in VPR 035
have been viewpoint and appearance changes between the 036
matching query and reference images, the so-called query- 037
ref domain gap [23]. Thus, the objective of VPR methods is 038
to extract representations robust to these variations. Given 039
this objective, VPR benefited significantly through neural 040
networks trained on large-scale VPR-specific datasets [9]. 041
More recently, this has been complemented by adapt- 042
ing strong general-purpose Vision-Foundation-Model back- 043
bones (VFM) to the task of VPR, e.g., the DinoV2 vision 044
transformer [4, 17, 24, 29]. As a result, test datasets with 045
large query-ref domain gap (e.g., Tokyo-247 [5] and SVOX- 046
night/snow [10]) that were previously challenging for VPR 047
methods now seem solved (∼ 98 − 99% Recall@5) by the 048
State-of-the-Art (SOTA) [4, 17, 24]. 049
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However, another important but less investigated chal-050
lenge in VPR is the train-test domain gap, i.e., when the test051
dataset is from a different environment and/or device than052
the training dataset. It could be hypothesized that SOTA053
VPR methods would be already robust to this gap, since054
VFM backbones are known to generalize across datasets055
and tasks [6], and more so, when finetuned on diverse VPR-056
specific training data [2]. We examine this hypothesis, re-057
vealing that the current SOTA VPR methods still suffer058
from the train-test domain gap. Details of this will follow059
later in the section 3.2.060

To address the challenge posed by the large train-test do-061
main gap in VPR, we propose a strategy complementary062
to the typical curation of larger training datasets and/or us-063
ing stronger VFM backbones. A case is made for using064
the unexplored reference set in test datasets to finetune the065
SOTA in VPR. We argue that since this reference set with066
labeled (poses) images is freely available beforehand in var-067
ious VPR applications and/or could even be obtained on-068
line, it is permissible to use it to bridge the train-test domain069
gap. Thus, outlining the two assumptions made in our work:070
a) the test-time reference set is available offline, b) there are071
resources available at test-time to finetune a VPR model.072

Given this argument, we illustrate in Fig. 1 the train-073
test domain gap in VPR. A T-SNE [38] projection of two074
VPR test datasets, Tokyo-247 [5] and Nordland [34], is075
shown along with the diverse GSV-Cities training dataset.076
The Tokyo-247 dataset contains urban scenes similar to the077
GSV-Cities and hence both form a single cluster, while the078
Nordland dataset contains railway-tracks unlike GSV-Cities079
and forms a separate cluster. Our proposal is simply that the080
reference set in test datasets (e.g., Nordland) could be com-081
bined with image augmentations to create a new finetun-082
ing dataset that has a smaller train-test domain gap than the083
original GSV-Cities dataset. Domain knowledge can then084
be injected into the model using this proposed finetuning085
dataset, akin to domain adaptation in other computer vision086
tasks such as classification [19].087

However, this raises several questions: a) Is finetuning088
of VFM-based VPR methods on small test datasets use-089
ful? b) Do the finetuned models still generalize to other test090
datasets? c) Can a single finetuning strategy work across di-091
verse test datasets? We will present a simple self-supervised092
strategy, namely, Reference-Set-Finetuning (RSF), to an-093
swer these questions.094

2. Related Work095

Visual place recognition was first surveyed in the seminal096
work of Lowry et al. [23], which coincided well with the097
rise of deep learning for computer vision. The three most098
fundamental challenges identified by Lowry et al. in VPR099
are matching images given viewpoint changes, appearance100
changes due to illumination, seasons, dynamic objects, etc.,101

and perceptual-aliasing [47]. For handling viewpoint and 102
appearance changes, VPR requires robust image represen- 103
tations, and thus this formulation of VPR as a (deep) repre- 104
sentation learning problem led to many works that achieved 105
state-of-the-art VPR performance under challenging condi- 106
tions [3, 5, 8, 20–22, 31, 32, 40, 46]. 107

Deep-learning-based VPR methods can be broadly cat- 108
egorized based on their underlying novelty, such as the 109
use of a novel loss function [22, 32, 36], better training 110
data [2, 8], new architectures [40, 45, 48], different data 111
augmentations [12, 18, 28], and new methods for feature 112
aggregation [3, 5, 16, 31]. The work of Berton et al. [9] 113
recently created a model zoo based on different combina- 114
tions of the aforementioned key modules of a VPR sys- 115
tem, which is freely accessible online. Since deep-learning 116
mainly benefits from larger training datasets, a number of 117
training datasets have been proposed and used in VPR, 118
e.g., the Pitts-250k dataset [5], Mapillary Street Level Se- 119
quences dataset [42], San-francisco-XL [8] dataset, or the 120
GSV-Cities dataset [2]. 121

The use of vision-transformers in VPR was first studied 122
in TransVPR [40], where image features are first extracted 123
using a CNN and then a transformer encoder is used to ag- 124
gregate these features into a global descriptor. This work 125
was followed up by R2former [50], where a vision trans- 126
former is used for both retrieval and re-ranking, and oper- 127
ates directly on image patches. 128

VPR has benefited from advances in related fields that 129
also require learning robust image representations. Thus, 130
after the release of DinoV2 [29] Vision-Foundation Model 131
(VFM), it was quickly adopted for VPR, where Anyloc [20] 132
investigated using DinoV2 as an off-the-shelf feature ex- 133
tractor. Many concurrent works subsequently showed that 134
the performance benefits are significantly larger when Di- 135
noV2 is finetuned on VPR-specific data and training ob- 136
jectives [4, 17, 24, 25]. CricaVPR [24] proposes to use 137
correlation between images in the batch with feature ag- 138
gregation at multiple scales to produce robust global fea- 139
tures. SALAD [17] uses the Sinkhorn algorithm to ag- 140
gregate the global and local DinoV2 tokens for VPR. Au- 141
thors of SelaVPR [25] add serial and parallel adapters to 142
the DinoV2 architecture. Finally, BoQ [4] proposes to learn 143
queries from scratch that are useful for VPR using the at- 144
tention mechanism of transformers, and demonstrates that 145
these learnable queries work with both older (ResNet) and 146
newer (DinoV2) feature extraction backbones. 147

These methods collectively show that VFMs (e.g., Di- 148
noV2) have directly benefited the VPR community and that 149
stronger backbones, i.e., larger models trained on larger 150
datasets, can directly improve VPR. However, we report 151
that some VPR benchmarks, with a large train-test domain 152
gap still remain unsolved. In this context, the contributions 153
of our work are as follows: 154
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• Our comparison of concurrent VFM-based SOTA VPR155
methods reveals that these methods suffer from a train-156
test domain gap. It is demonstrated that the freely avail-157
able test-time reference set can be used to extract useful158
domain knowledge for VPR applications where the refer-159
ence map is available offline.160

• A simple Reference-Set-Finetuning (RSF) strategy is pro-161
posed to address the train-test domain gap for such162
VPR applications. The proposed finetuning improves the163
SOTA in VPR, and the RSF models retain generalization164
to other test datasets. RSF works across diverse datasets165
and is compatible with different VPR methods.166

3. Methodology167

We first formalize VPR, then formulate the use of deep168
learning in VPR, and finally describe the RSF strategy pro-169
posed in this work.170

3.1. Formalizing VPR171

The goal of VPR is to find one or multiple reference images172
Ii ∈ IR that match the place of a query image Iq ∈ IQ173
given a set of reference images IR with known poses PR.174
The pose of Iq is then approximated by the pose of its near-175
est neighbour references in IR. In its standard formulation,176
VPR consists of an offline map preparation stage and an on-177
line retrieval stage. The unknown pose pq for the query Iq178
can then be approximated from the poses of the matched179
references pi ∈ PR [30].180

In the offline phase, a VPR method G is applied to ev-181
ery reference image Ii ∈ IR to obtain D-dimensional ref-182
erence feature descriptors fi = G(Ii). The method G183
is usually a trained neural network [26] or a handcrafted184
feature descriptor [14]. The resulting VPR map M =185
(IR,R,PR) contains the reference feature descriptors set186
R = {f1, · · · fN}, where each descriptor fi is associated187
with a corresponding pose pi ∈ PR.188

In the online retrieval stage, the same method G is ap-189
plied to the query image Iq , and its descriptor fq = G(Iq)190
is compared to the reference descriptors in the map M.191
This can be achieved through an efficient K-nearest neigh-192
bor lookup, considering the L2-distances di = ||fi − fq||2193
between each reference i and the query q.194

3.2. Relating the current SOTA in VPR to train-test195
domain gap196

VPR in deep-learning is generally formulated either as197
a representation learning task [5] or a classification [8]198
task. We use the former formulation in this paper. A199
deep-learning-based VPR method G consists of four ma-200
jor choices: a feature extraction backbone B, a feature201
aggregator P , a training dataset D, and a metric-learning202
loss function L. The backbone B and aggregator P are203
compositional and together form the method G, such that204

fi = G(Ii) = P (B(Ii)). This VPR method G is then 205
trained on the training dataset D by minimizing the loss L. 206
The training dataset D is itself composed of four sets, such 207
that D = (IQtrain,PQ

train, IRtrain,PR
train), where for 208

every Iq ∈ IQ, the true and false matching reference im- 209
ages Ii are defined based on the spatial proximity of their 210
corresponding poses in PQ

train and PR
train, respectively. 211

The choice of backbone in VPR is primarily motivated 212
by advances in other vision tasks, and we have thus seen 213
a change from using VGG [5] and ResNet-based back- 214
bones [3, 7] to domain-agnostic Vision-Foundation-Model 215
(VFM) backbones [4, 17, 20, 24]. For a fixed backbone B, 216
different types of aggregators could be used as P , for exam- 217
ple, a NetVLAD layer [5], GeM layer [31], or the recently 218
proposed Bag-of-learnable-Queries (BoQ) [4], etc. BoQ 219
has been shown to outperform other aggregators trained on 220
the same dataset with the same backbone [4]. 221

Once the architecture G = P (B(Ii)) is fixed, the 222
training loss L could be the distance-based loss [36], 223
relative-pose-based loss [27], triplet loss [39], or the multi- 224
similarity loss [41], etc. These losses could be minimized 225
on different training datasets, for example, the Pitts-250k 226
dataset [5], Mapillary Street Level Sequences dataset [42], 227
San-francisco-XL [8] dataset, or the GSV-Cities dataset [2]. 228
The purpose of these training datasets is to learn a general- 229
izable feature extractor G that works well in different do- 230
mains, and thus the training datasets must be as diverse as 231
possible. From existing literature, GSV-cities dataset [2] is 232
the most diverse training dataset in VPR. 233

Provided this formulation, would a VPR method G, 234
employing a VFM backbone (e.g., DinoV2) trained on a 235
large-scale diverse VPR dataset (e.g., GSV-Cities) with 236
SOTA aggregation (e.g., BoQ), resolve the train-test do- 237
main gap? We examine this by benchmarking the per- 238
formance (Recall@5) in Table 1 of three DinoV2-based 239
SOTA VPR methods that were published almost simulta- 240
neously [4, 17, 24]. All methods are trained on the GSV- 241
cities dataset [2]: the most diverse training dataset in VPR, 242
containing viewpoint and appearance changes from many 243
streets across the world. The reported performance suggests 244
that the test datasets with small train-test domain gap are 245
almost solved by these SOTA VPR methods, despite their 246
large query-ref domain gap. But some other test datasets, 247
such as Nordland [34] and AmsterTime [44] with archival 248
reference images, where the test environments differ signif- 249
icantly from the training dataset, still present a challenge.2 250

2Please note that we do not refer to the presence/absence of train-test
domain gap in the various VPR test datasets in binary terms, but in a pro-
portional manner. That is, while there is still a train-test domain gap be-
tween the GSV-cities dataset and the solved test datasets, this gap is larger
for the unsolved datasets.
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Backbone SVOX-Snow SVOX-Night Pitts-250k Tokyo-247 Nord. Eyn. Ams-AR Avg.
Query-Ref gap ✓✓✓ ✓✓✓ ✓✓ ✓✓✓ ✓✓✓ ✓ ✓✓✓
Train-Test gap ✓ ✓ ✓ ✓ ✓✓✓ ✓✓ ✓✓✓

MixVPR [3] (’23) ResNet50 98.4 79.5 98.2 91.7 86.8 93.2 60.4 88.5
BoQ [4] (’24) ResNet50 99.5 94.7 98.5 95.9 91.1 94.9 75.4 93.8

Crica [24] (’24) DinoV2 99.0 95.0 99.0 97.1 96.2 94.9 83.9 95.6
SALAD [17] (’24) DinoV2 99.7 99.3 99.1 96.8 93.5 95.0 79.7 95.4

BoQ [4] (’24) DinoV2 99.7 99.4 99.1 97.8 95.9 95.5 83.5 96.4

Table 1. Recall@5 of some of the SOTA foundation-model-based VPR methods on various test datasets. All methods are trained on
the most diverse VPR training dataset: the GSV-Cities dataset. The second row represents the domain gap of the respective test dataset
from the GSV-Cities training dataset. ✓ indicates a small gap and ✓✓✓ indicates a large gap. On average, BoQ-DinoV2 is the SOTA in
VPR, outlined in Bold, and thus our primary baseline. To indicate the margin of improvement left for BoQ, the datasets are ranked from
left-to-right and colored. Datasets with small train-test gap are almost solved, but a large train-test domain gap presents a challenge even
for the SOTA VPR methods.

3.3. Our proposed Reference-Set-Finetuning (RSF)251

The preceding discussion suggests that although the train-252
ing dataset D could be carefully curated to maximize di-253
versity, it might still lack the domain knowledge needed for254
G to perform well on the test-time queries IQ. Here we255
make our key observation: IR is already available at the256
map preparation stage as well as its corresponding set of257
poses PR. Therefore, we propose Reference-set-finetuning258
(RSF), an unexplored but straightforward and effective pro-259
cedure to adapt a trained model G to the target domain.260
Concretely, RSF (1) creates a finetuning dataset Dft =261

(IQft,PQ
ft, IRft,PR

ft), and (2) updates G on Dft with262
pose-aware triplet mining, as illustrated in Fig. 2, and de-263
scribed in the following.264

For Dft, the finetuning query set IQft should represent265
a combination of viewpoint and appearance changes typ-266
ically seen between the matching queries and references.267
Thus, a query Iftq ∈ IQft is formulated as Iftq = A(Ifti ),268
where A(.) represents an augmentation operation. Ideally,269
A(.) approximates the viewpoint and appearance changes270
expected between the queries and references. An M num-271
ber of different augmentations could be chosen as A(.). In272
conclusion, the choices follow:273

IRft = IR, (1)274

PR
ft = PQ

ft = PR, (2)275

and |IQft| = M × |IRft|. (3)276

The finetuning queries IQft and references IRft are en-277
coded as feature vectors with G, positives and hard nega-278
tives [5] are mined given the poses PQ

ft and PR
ft, and the279

network G is finetuned using a standard triplet loss [15]:280
Ltriplet = max{d(fft

q , fft
p )− d(fft

q , fft
n ) +m, 0}, with a281

Euclidean distance function d(f1, f2) = ||f1 − f2||2 and a282
margin m. A hard-negative for a given query is the wrong283
reference image further than some fixed physical distance284
threshold that is the closest in the feature space.285

Figure 2. Deep learning for VPR usually utilizes a pretrained neu-
ral network that is further trained on a VPR dataset in a supervised
manner with ground-truth poses. This usual pipeline assumes that
we do not have any access to the test environment and that the
training dataset is diverse enough to cover features of the test do-
main. However, there is always a train-test domain gap. We pro-
pose that the reference images in the test set are freely available
offline in VPR and could be used to finetune VPR methods using
simple data augmentations. This novel take on the problem setting
of VPR, results in reference-set-finetuned (RSF) models that are
more robust than the original trained model.

4. Experiments 286

First, we present the experimental setup of our work, then 287
report the qualitative and quantitative performance of RSF 288
models compared to baselines, and finally evaluate the var- 289
ious aspects of RSF. 290

4.1. Datasets and evaluation metric 291

To evaluate RSF, we use three public VPR datasets which 292
have large train-test domain gap and hence pose challenges 293
to SOTA VPR methods, and one dataset with a small train- 294
test domain gap. Our ground-truth usage is similar to the 295
standard formats in VPR [9], All of these datasets are sum- 296
marized in Table 2. 297
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Queries Refs. Q-R gap Train-test gap
Nord. 27.6k 27.6k ✓✓ ✓✓✓

Amst-AR 1231 1231 ✓✓✓ ✓✓✓
Eyns. 24k 24k ✓ ✓ ✓

SVOX-Ni 823 17.2k ✓✓ ✓

Table 2. The datasets used in this work. We report the total num-
ber of query images, the total number of reference images, the
presence of a domain gap between the queries and references, and
the presence of a domain gap between the respective test dataset
and the GSV-Cities training dataset. ✓ indicates a small gap and
✓✓✓ indicates a large gap.

The Nordland dataset [34] consists of a railway-track298
traversal through Norway during two different seasons:299
summer and winter. The summer traversal acts as reference300
images while the winter images are queries. This dataset is301
challenging due to the unstructured environment depicted302
in different seasons. We also use the challenging Amster-303
Time dataset [44] that contains archival imagery of Amster-304
dam and their corresponding Google Street View images.305
We use the archival images as references and street view306
images as queries, which depicts the task of retrieving an307
archival image of a place given a query image. We refer to308
this version as AmsterTime-AR dataset, outlining that the309
Archival images acts as References. We use the Eynsham310
dataset [13] that contains only grayscale images present-311
ing a lack of color information for VPR. Finally, we use312
the SVOX-Night dataset [10] that contains night-time im-313
ages as queries and day-time images as references collected314
through Google Street View in Oxford.315

Following the existing literature, Recall@N is used as316
the evaluation metric. Ground-truths are as-is used by oth-317
ers [4, 9, 17, 24]. A retrieval is successful if the Top-N318
retrieved reference images were within a 25-meter radius of319
the query image.320

4.2. Implementation details321

Given the standards and SOTA described earlier in sec-322
tion 3.2, Dino-V2 [29] backbone with BoQ [4] aggre-323
gation trained on the GSV-cities dataset is used as the324
primary baseline VPR method G, since it is the current325
SOTA in VPR. Nevertheless, we also report performance326
of SALAD [17] when used with the proposed RSF. We use327
the complete reference set of each respective test dataset328
for performing RSF as described in section 3.3. A small329
learning rate of 1e-7 is used for all datasets for both the330
VPR techniques. Simple image-level augmentations from331
the Kornia library [33] are used as A; examples are shown332
in Fig. 3. More sophisticated augmentations such as do-333
main translations using image-to-image vision foundation334
models could also be considered [11]. The Kornia augmen-335
tations are applied on the fly and randomly chosen during336
training. To avoid overfitting the test set, we validate our337
model on the Pitts30k validation set [9]. RSF is done on338

Figure 3. Examples of the augmentations applied to create fine-
tuning queries using Kornia augmentations [33]. Left-most is the
original reference image.

a single NVIDIA A100 80GB GPU and on-average takes 339
only a few hours (≈ 3 − 5) depending on the size of the 340
reference set. 341

4.3. Results 342

Baseline comparison: Table 3 contains the performance of 343
RSF models in comparison to baselines. Models finetuned 344
using our proposed RSF outperform existing methods by 345
a large margin for both the metrics. Please note that this 346
performance improvement is without the use of new train- 347
ing data or a stronger backbone. The performance bene- 348
fits are more significant for the challenging Nordland and 349
AmsterTime-AR datasets, which are the primary focus due 350
to their large train-test domain gap. We also note that the 351
proposed RSF is beneficial for the datasets without a large 352
train-test domain gap, e.g., the SVOX-Night and Eynsham 353
datasets. However, the performance improvement is less 354
significant than on other datasets. More importantly, we 355
show that both the SOTA VPR methods, BoQ and SALAD, 356
benefit from RSF. 357

We further show in Fig. 4 examples of queries that 358
are correctly matched after the proposed RSF, and also 359
some failure cases. Since BoQ with RSF is the best- 360
performing method in our baseline comparison, we focus 361
on this method in the remainder of the experiments. 362

Model generalization: A key component of this study 363
is the desire for the RSF models to retain generalization to 364
the other test datasets. For this, we report in Table 4 the 365
performance of an RSF model finetuned on a given refer- 366
ence dataset and evaluated on the other test datasets. In- 367
terestingly, we note that not only do the finetuned mod- 368
els retain generalization to other test datasets, but also that 369
the RSF finetuned models consistently outperform the orig- 370
inal model, agnostic to the reference set used for finetun- 371
ing. This is attributed to the additional finetuning of SOTA 372
on VPR-specific data; however, quite expectedly, we see 373
a diagonal trend in the bold numbers, such that the best- 374
performing RSF model for each test dataset is always the 375
model that was finetuned on the same test dataset’s refer- 376
ence map. 377

Attention masks: We visualize the attention masks for a 378
learned BoQ query in Fig. 5 for the original model and the 379
RSF model. Note that the RSF model strongly attends to 380
the unique facades of windows in the building on the right, 381
while the original BoQ only attends to edges. 382
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Nordland Amster-AR SVOX-Night Eynsham Average
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

MixVPR [3] 76.1 86.8 38.3 60.4 63.1 79.5 89.4 93.2 66.7 80.0
BoQ-Res [3] 83.3 91.1 52.1 75.4 85.7 94.7 91.2 94.9 78.1 89.0

CricaVPR [24] 91.2 96.2 64.7 83.9 86.9 95.0 91.6 94.9 83.6 92.5
SALAD [17] 85.9 93.5 58.7 79.7 95.0 99.3 91.5 95.0 82.8 91.9

BoQ [4] 90.4 95.9 61.9 83.5 97.1 99.4 92.1 95.5 85.4 93.6
SALAD-RSF 91.4 96.2 59.9 80.6 96.1 98.8 91.8 95.2 84.8 92.7

BoQ-RSF 94.2 97.7 65.6 86.3 98.8 99.6 92.2 95.4 87.7 94.8

Table 3. The recalls of SOTA VPR methods tested on various challenging test datasets. The first two rows: MixVPR and BoQ-Res use
ResNet-50 backbone, while the remainder use DinoV2 backbone. All methods are trained on the GSV-Cities dataset. Best is in Bold.

Query BoQ
Retrieved

BoQ-RSF
Retrieved

Query BoQ
Retrieved

BoQ-RSF
Retrieved

Figure 4. Examples of queries that are mismatched by the original BoQ-DinoV2 model but correctly matched by our reference-set-finetuned
BoQ-RSF model, except for the last row which demonstrates two BoQ-RSF failure cases.

4.4. Ablations383

We have argued in this work that the reference poses are384
freely available offline in VPR and are thus used in pose-385
based triplet mining for RSF. However, it is possible to have386
image-retrieval use-cases where reference images are avail-387
able without pose information, e.g., image cataloging, land-388
mark identification, etc. Table 5 thus reports the perfor-389
mance of our baseline in comparison to RSF models trained390
with and without access to pose information in the reference391
set. It is observed that although the reference pose informa-392
tion is helpful for RSF and such models are consistently the393

best-performing, but even without access to reference pose 394
information, RSF models are still better than the baseline. 395

We further report in Table 6 the effect of Kornia augmen- 396
tations on our proposed RSF for BoQ. These results show 397
that augmentations are required to benefit from fine-tuning 398
on the reference set, and that appearance augmentations are 399
more useful than viewpoint augmentations for the chosen 400
datasets. Only having viewpoint augmentations and no ap- 401
pearance augmentations is hurtful for RSF. We hypothesize 402
that using viewpoint augmentations as A is distractful for 403
the model finetuned on the Nordland dataset, since there is 404
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Query
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Figure 5. Learned attention for the original BoQ and the BoQ-RSF model on a ground-truth reference image is shown. The RSF model
attends more to facades in the building while BoQ attends to edges. These attention masks are for the same BoQ query of the original and
the BoQ-RSF model.

Test dataset
Nord. Amst-AR SVOX-Ni.

Baseline BoQ 90.4 61.9 97.1
BoQ-RSF (Nord.) 94.2 64.4 98.9

BoQ-RSF (Amst-AR) 92.3 65.6 98.9
BoQ-RSF (SVOX-Ni.) 93.4 64.7 98.9

Table 4. The Recall@1 of RSF models on various test datasets.
The first column reports the reference set used for BoQ-RSF. RSF
models retains generalization. Bold numbers in the diagonal indi-
cate that the best-performing method for each dataset is the model
finetuned on that dataset’s reference set.

Nordland Amst-AR
Baseline BoQ 95.9 83.5

BoQ-RSF (without poses) 97.1 85.3
BoQ-RSF (with poses) 97.7 86.3

Table 5. The Recall@5 performance of a baseline BoQ method is
compared with RSF two test datasets with and without access to
the test-time reference poses. The availability of test-time refer-
ence poses allows for hard-negative mining and gives SOTA per-
formance compared to random negative mining when pose infor-
mation is not accessible. However, even without access to the ref-
erence poses, RSF model performs better than the baseline BoQ.

almost no viewpoint change between the queries and the405
references in this dataset. The choice of augmentations in406
practice should follow from the expected query-reference407
domain gap, and in case of no prior knowledge about the408
expected Q-R gap, we recommend that the viewpoint aug-409
mentations be used together with appearance augmentations410
as a thumb rule.411

5. Conclusions412

In this work, we demonstrate that even the strong vision-413
foundation models-based VPR methods trained on large-414

Chosen A Amster-AR Nordland
No augmentations 83.51 95.92

No viewpoint augmentations 86.31 97.80
No appearance augmentations 76.20 91.13

All augmentations 86.32 97.70

Table 6. The Recall@5 performance of BoQ-RSF with different
types of augmentations chosen as A.

scale Google Street View data struggle on test datasets 415
which represent a domain different from the training data. 416
We thus proposed that the reference set in test datasets is 417
a free and valuable source of information that can be used 418
to bridge this train-test domain gap. A simple Reference- 419
Set-Finetuning (RSF) strategy is proposed that boosts the 420
performance of SOTA VPR methods by large margins. The 421
proposed RSF is shown to work for multiple datasets. The 422
resulting finetuned models retain generalization to other test 423
datasets. We also show that the same RSF strategy could be 424
applied to other VPR methods, albeit the performance ben- 425
efits vary. Future works could investigate further how dif- 426
ferent formulations of RSF, particularly the augmentations, 427
could benefit different VPR methods. 428
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search with selective match kernels: aggregation across sin-593
gle and multiple images. International Journal of Computer594
Vision, 116(3):247–261, 2016. 1595

[38] Laurens Van der Maaten and Geoffrey Hinton. Visualizing596
data using t-sne. Journal of machine learning research, 9597
(11), 2008. 2598

[39] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,599
Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learn-600
ing fine-grained image similarity with deep ranking. In Pro-601
ceedings of the IEEE conference on computer vision and pat-602
tern recognition, pages 1386–1393, 2014. 3603

[40] Ruotong Wang, Yanqing Shen, Weiliang Zuo, Sanping Zhou,604
and Nanning Zheng. TransVPR: Transformer-based place605
recognition with multi-level attention aggregation. In Pro-606
ceedings of the IEEE/CVF Conference on Computer Vision607
and Pattern Recognition, pages 13648–13657, 2022. 2608

[41] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong,609
and Matthew R Scott. Multi-similarity loss with general610
pair weighting for deep metric learning. In Proceedings of611
the IEEE/CVF conference on computer vision and pattern612
recognition, pages 5022–5030, 2019. 3613

[42] Frederik Warburg, Soren Hauberg, Manuel López-614
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