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Abstract

Given a query image, Visual Place Recognition (VPR) is
the task of retrieving an image of the same place from a ref-
erence database with robustness to viewpoint and appear-
ance changes. Recent works show that some VPR bench-
marks are solved by methods using Vision-Foundation-
Model backbones and trained on large-scale and diverse
VPR-specific datasets. Several benchmarks remain chal-
lenging, particularly when the test environments differ sig-
nificantly from the usual VPR training datasets. We pro-
pose a complementary, unexplored source of information to
bridge the train-test domain gap, which can further improve
the performance of State-of-the-Art (SOTA) VPR methods
on such challenging benchmarks. Concretely, we identify
that the test-time reference set, the “map”, contains images
and poses of the target domain, and must be available be-
fore the test-time query is received in several VPR applica-
tions. Therefore, we propose to perform simple Reference-
Set-Finetuning (RSF) of VPR models on the map, boosting
the SOTA (=~ 2.3% increase on-average for Recall@1) on
these challenging datasets. Finetuned models retain gener-
alization, and RSF works across diverse test datasets.

1. Introduction

Given a query image and a database of geo-tagged refer-
ence images, the task of a Visual Place Recognition (VPR)
method is to retrieve from the database a correct matching
reference image for this qfrom the database uery. What is
considered as a correct match is ill-defined, but most VPR
benchmarks consider any reference image within a fixed
(e.g., 25-meter) circular radius of the query location as a
correct match [9]. VPR has many applications, such as in
landmark retrieval [43], 3D modeling [ 1], image search [37]
and map-based localization [35, 49]. These applications of
VPR require that the test time reference set (the map) is
available offline, i.e., before a test-time query is received.'

'We acknowledge that there are other applications of VPR where the
reference map may not be available offline, such as in SLAM. These ap-
plications are not the focus in this work.
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Figure 1. Large-scale VPR training datasets are created usually
from Google Street View [2], e.g., the GSV-cities dataset. Thus
models trained in these environments perform well (SOTA Re-
call@5 ~ 98 — 99%)) for similar test datasets, e.g., the Tokyo-247
dataset [5] but suffer in unseen environments, e.g., the railway-
tracks of the Nordland dataset [34]. A train-test domain gap exists,
as evident in the T-SNE projection of descriptors computed using
BoQ-DinoV2 [4] for randomly sampled images of these datasets.
Descriptors from the Tokyo-247 dataset form a single cluster with
the GSV-cities dataset, while the Nordland dataset is further away.
Creating a finetuning dataset by using the freely available test-time
reference images could help bridge the train-test domain gap.

Traditionally, the most investigated challenges in VPR
have been viewpoint and appearance changes between the
matching query and reference images, the so-called query-
ref domain gap [23]. Thus, the objective of VPR methods is
to extract representations robust to these variations. Given
this objective, VPR benefited significantly through neural
networks trained on large-scale VPR-specific datasets [9].
More recently, this has been complemented by adapt-
ing strong general-purpose Vision-Foundation-Model back-
bones (VFM) to the task of VPR, e.g., the DinoV2 vision
transformer [4, 17, 24, 29]. As a result, test datasets with
large query-ref domain gap (e.g., Tokyo-247 [5] and SVOX-
night/snow [10]) that were previously challenging for VPR
methods now seem solved (~ 98 — 99% Recall@5) by the
State-of-the-Art (SOTA) [4, 17, 24].
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However, another important but less investigated chal-
lenge in VPR is the train-test domain gap, i.e., when the test
dataset is from a different environment and/or device than
the training dataset. It could be hypothesized that SOTA
VPR methods would be already robust to this gap, since
VFM backbones are known to generalize across datasets
and tasks [6], and more so, when finetuned on diverse VPR-
specific training data [2]. We examine this hypothesis, re-
vealing that the current SOTA VPR methods still suffer
from the train-test domain gap. Details of this will follow
later in the section 3.2.

To address the challenge posed by the large train-test do-
main gap in VPR, we propose a strategy complementary
to the typical curation of larger training datasets and/or us-
ing stronger VFM backbones. A case is made for using
the unexplored reference set in test datasets to finetune the
SOTA in VPR. We argue that since this reference set with
labeled (poses) images is freely available beforehand in var-
ious VPR applications and/or could even be obtained on-
line, it is permissible to use it to bridge the train-test domain
gap. Thus, outlining the two assumptions made in our work:
a) the test-time reference set is available offline, b) there are
resources available at test-time to finetune a VPR model.

Given this argument, we illustrate in Fig. | the train-
test domain gap in VPR. A T-SNE [38] projection of two
VPR test datasets, Tokyo-247 [5] and Nordland [34], is
shown along with the diverse GSV-Cities training dataset.
The Tokyo-247 dataset contains urban scenes similar to the
GSV-Cities and hence both form a single cluster, while the
Nordland dataset contains railway-tracks unlike GSV-Cities
and forms a separate cluster. Our proposal is simply that the
reference set in test datasets (e.g., Nordland) could be com-
bined with image augmentations to create a new finetun-
ing dataset that has a smaller train-test domain gap than the
original GSV-Cities dataset. Domain knowledge can then
be injected into the model using this proposed finetuning
dataset, akin to domain adaptation in other computer vision
tasks such as classification [19].

However, this raises several questions: a) Is finetuning
of VFM-based VPR methods on small test datasets use-
ful? b) Do the finetuned models still generalize to other test
datasets? c) Can a single finetuning strategy work across di-
verse test datasets? We will present a simple self-supervised
strategy, namely, Reference-Set-Finetuning (RSF), to an-
swer these questions.

2. Related Work

Visual place recognition was first surveyed in the seminal
work of Lowry et al. [23], which coincided well with the
rise of deep learning for computer vision. The three most
fundamental challenges identified by Lowry ef al. in VPR
are matching images given viewpoint changes, appearance
changes due to illumination, seasons, dynamic objects, etc.,

and perceptual-aliasing [47]. For handling viewpoint and
appearance changes, VPR requires robust image represen-
tations, and thus this formulation of VPR as a (deep) repre-
sentation learning problem led to many works that achieved
state-of-the-art VPR performance under challenging condi-
tions [3, 5, 8, 20-22, 31, 32, 40, 46].

Deep-learning-based VPR methods can be broadly cat-
egorized based on their underlying novelty, such as the
use of a novel loss function [22, 32, 36], better training
data [2, 8], new architectures [40, 45, 48], different data
augmentations [12, 18, 28], and new methods for feature
aggregation [3, 5, 16, 31]. The work of Berton et al. [9]
recently created a model zoo based on different combina-
tions of the aforementioned key modules of a VPR sys-
tem, which is freely accessible online. Since deep-learning
mainly benefits from larger training datasets, a number of
training datasets have been proposed and used in VPR,
e.g., the Pitts-250k dataset [5], Mapillary Street Level Se-
quences dataset [42], San-francisco-XL [8] dataset, or the
GSV-Cities dataset [2].

The use of vision-transformers in VPR was first studied
in TransVPR [40], where image features are first extracted
using a CNN and then a transformer encoder is used to ag-
gregate these features into a global descriptor. This work
was followed up by R2former [50], where a vision trans-
former is used for both retrieval and re-ranking, and oper-
ates directly on image patches.

VPR has benefited from advances in related fields that
also require learning robust image representations. Thus,
after the release of DinoV2 [29] Vision-Foundation Model
(VFM), it was quickly adopted for VPR, where Anyloc [20]
investigated using DinoV2 as an off-the-shelf feature ex-
tractor. Many concurrent works subsequently showed that
the performance benefits are significantly larger when Di-
noV2 is finetuned on VPR-specific data and training ob-
jectives [4, 17, 24, 25]. CricaVPR [24] proposes to use
correlation between images in the batch with feature ag-
gregation at multiple scales to produce robust global fea-
tures. SALAD [17] uses the Sinkhorn algorithm to ag-
gregate the global and local DinoV2 tokens for VPR. Au-
thors of SelaVPR [25] add serial and parallel adapters to
the DinoV2 architecture. Finally, BoQ [4] proposes to learn
queries from scratch that are useful for VPR using the at-
tention mechanism of transformers, and demonstrates that
these learnable queries work with both older (ResNet) and
newer (DinoV?2) feature extraction backbones.

These methods collectively show that VFMs (e.g., Di-
noV2) have directly benefited the VPR community and that
stronger backbones, i.e., larger models trained on larger
datasets, can directly improve VPR. However, we report
that some VPR benchmarks, with a large train-test domain
gap still remain unsolved. In this context, the contributions
of our work are as follows:
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e Our comparison of concurrent VFM-based SOTA VPR
methods reveals that these methods suffer from a train-
test domain gap. It is demonstrated that the freely avail-
able test-time reference set can be used to extract useful
domain knowledge for VPR applications where the refer-
ence map is available offline.

* A simple Reference-Set-Finetuning (RSF) strategy is pro-
posed to address the train-test domain gap for such
VPR applications. The proposed finetuning improves the
SOTA in VPR, and the RSF models retain generalization
to other test datasets. RSF works across diverse datasets
and is compatible with different VPR methods.

3. Methodology

We first formalize VPR, then formulate the use of deep
learning in VPR, and finally describe the RSF strategy pro-
posed in this work.

3.1. Formalizing VPR

The goal of VPR is to find one or multiple reference images
I; € Ir that match the place of a query image I, € Ig
given a set of reference images Zr with known poses Pr.
The pose of I is then approximated by the pose of its near-
est neighbour references in Zr . In its standard formulation,
VPR consists of an offline map preparation stage and an on-
line retrieval stage. The unknown pose p, for the query I,
can then be approximated from the poses of the matched
references p; € Pr [30].

In the offline phase, a VPR method G is applied to ev-
ery reference image I; € T to obtain D-dimensional ref-
erence feature descriptors f; = G(I;). The method G
is usually a trained neural network [26] or a handcrafted
feature descriptor [14]. The resulting VPR map M =
(Zr, R, Pr) contains the reference feature descriptors set
R = {f1, - fn}, where each descriptor f; is associated
with a corresponding pose p; € Pr.

In the online retrieval stage, the same method G is ap-
plied to the query image I,;, and its descriptor f, = G(I,)
is compared to the reference descriptors in the map M.
This can be achieved through an efficient K -nearest neigh-
bor lookup, considering the L2-distances d; = ||f; — fq|2
between each reference ¢ and the query g.

3.2. Relating the current SOTA in VPR to train-test
domain gap

VPR in deep-learning is generally formulated either as
a representation learning task [5] or a classification [8]
task. We use the former formulation in this paper. A
deep-learning-based VPR method G consists of four ma-
jor choices: a feature extraction backbone B, a feature
aggregator P, a training dataset D, and a metric-learning
loss function £. The backbone B and aggregator P are
compositional and together form the method G, such that

fi = G(I;) = P(B(I;)). This VPR method G is then
trained on the training dataset D by minimizing the loss L.
The training dataset D is itself composed of four sets, such
that D = (IQtrain’ zPQtrain’ :Z’Rtrain7 rPRtrain)’ where for
every I, € Io, the true and false matching reference im-
ages I; are defined based on the spatial proximity of their
corresponding poses in Po'" "™ and Pr """, respectively.

The choice of backbone in VPR is primarily motivated
by advances in other vision tasks, and we have thus seen
a change from using VGG [5] and ResNet-based back-
bones [3, 7] to domain-agnostic Vision-Foundation-Model
(VEM) backbones [4, 17, 20, 24]. For a fixed backbone B,
different types of aggregators could be used as P, for exam-
ple, a NetVLAD layer [5], GeM layer [31], or the recently
proposed Bag-of-learnable-Queries (BoQ) [4], etc. BoQ
has been shown to outperform other aggregators trained on
the same dataset with the same backbone [4].

Once the architecture G = P(B(l;)) is fixed, the
training loss £ could be the distance-based loss [36],
relative-pose-based loss [27], triplet loss [39], or the multi-
similarity loss [41], etc. These losses could be minimized
on different training datasets, for example, the Pitts-250k
dataset [5], Mapillary Street Level Sequences dataset [42],
San-francisco-XL [8] dataset, or the GSV-Cities dataset [2].
The purpose of these training datasets is to learn a general-
izable feature extractor GG that works well in different do-
mains, and thus the training datasets must be as diverse as
possible. From existing literature, GSV-cities dataset [2] is
the most diverse training dataset in VPR.

Provided this formulation, would a VPR method G,
employing a VFM backbone (e.g., DinoV2) trained on a
large-scale diverse VPR dataset (e.g., GSV-Cities) with
SOTA aggregation (e.g., BoQ), resolve the train-test do-
main gap? We examine this by benchmarking the per-
formance (Recall@5) in Table 1 of three DinoV2-based
SOTA VPR methods that were published almost simulta-
neously [4, 17, 24]. All methods are trained on the GSV-
cities dataset [2]: the most diverse training dataset in VPR,
containing viewpoint and appearance changes from many
streets across the world. The reported performance suggests
that the test datasets with small train-test domain gap are
almost solved by these SOTA VPR methods, despite their
large query-ref domain gap. But some other test datasets,
such as Nordland [34] and AmsterTime [44] with archival
reference images, where the test environments differ signif-
icantly from the training dataset, still present a challenge.’

ZPlease note that we do not refer to the presence/absence of train-test
domain gap in the various VPR test datasets in binary terms, but in a pro-
portional manner. That is, while there is still a train-test domain gap be-
tween the GSV-cities dataset and the solved test datasets, this gap is larger
for the unsolved datasets.
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Backbone | SVOX-Snow SVOX-Night Pitts-250k Tokyo-247 Nord. Eyn. Ams-AR | Avg.

Query-Ref gap VY VY vV VY VY v v

Train-Test gap v v v v aRss 24
MixVPR [3] ("23) | ResNet50 98.4 79.5 98.2 91.7 86.8 932 60.4 88.5
BoQ [4] (C24) ResNet50 99.5 94.7 98.5 95.9 91.1 949 75.4 93.8
Crica [24] (°24) DinoV2 99.0 95.0 99.0 97.1 96.2 949 83.9 95.6
SALAD [17] C24) | DinoV2 99.7 99.3 99.1 96.8 93,5 950 79.7 95.4
BoQ [4] ("24) DinoV2 99.7 99.4 99.1 96.4

Table 1. Recall@5 of some of the SOTA foundation-model-based VPR methods on various test datasets. All methods are trained on
the most diverse VPR training dataset: the GSV-Cities dataset. The second row represents the domain gap of the respective test dataset
from the GSV-Cities training dataset. v indicates a small gap and v'v'v" indicates a large gap. On average, BoQ-DinoV2 is the SOTA in
VPR, outlined in Bold, and thus our primary baseline. To indicate the margin of improvement left for BoQ, the datasets are ranked from
left-to-right and colored. Datasets with small train-test gap are almost solved, but a large train-test domain gap presents a challenge even

for the SOTA VPR methods.

3.3. Our proposed Reference-Set-Finetuning (RSF)

The preceding discussion suggests that although the train-
ing dataset D could be carefully curated to maximize di-
versity, it might still lack the domain knowledge needed for
G to perform well on the test-time queries Zo. Here we
make our key observation: Zy is already available at the
map preparation stage as well as its corresponding set of
poses Pr. Therefore, we propose Reference-set-finetuning
(RSF), an unexplored but straightforward and effective pro-
cedure to adapt a trained model G to the target domain.
Concretely, RSF (1) creates a finetuning dataset Dy =
(Igft, ngt,Ith, Pth), and (2) updates G on Dy, with
pose-aware triplet mining, as illustrated in Fig. 2, and de-
scribed in the following.

For Dy, the finetuning query set Igf * should represent
a combination of viewpoint and appearance changes typ-
ically seen between the matching queries and references.
Thus, a query IJ* € Zo/" is formulated as IJ* = A(I{"),
where A(.) represents an augmentation operation. Ideally,
A(.) approximates the viewpoint and appearance changes
expected between the queries and references. An M num-
ber of different augmentations could be chosen as A(.). In
conclusion, the choices follow:

Ir't = Ix, €))
'Pth = ngt = Pr, 2
and  |Zo'!| = M x |Zx'!|. (3)

The finetuning queries Zo It and references Zr 't are en-
coded as feature vectors with G, positives and hard nega-
tives [5] are mined given the poses Pg 7t and P ’t, and the
network G is finetuned using a standard triplet loss [15]:
Liyipiet = max{d(fgt, fgt) — d(f({t7 £t +m, 0}, with a
Euclidean distance function d(f1, f2) = ||f1 — f2||2 and a
margin m. A hard-negative for a given query is the wrong
reference image further than some fixed physical distance
threshold that is the closest in the feature space.

Im Pose

information

@ Seen before
deployment

RSF
g Model
(Proposed)

Pretrained
Model

Pretrained vision
backbone, e.g.,
ResNet or DinoV2
etc.

RSF
Model
(proposed)

Finetuning Finetuning

Query

Data augmentation
Reference-Set-Finetuning

Test dataset

Figure 2. Deep learning for VPR usually utilizes a pretrained neu-
ral network that is further trained on a VPR dataset in a supervised
manner with ground-truth poses. This usual pipeline assumes that
we do not have any access to the test environment and that the
training dataset is diverse enough to cover features of the test do-
main. However, there is always a train-test domain gap. We pro-
pose that the reference images in the test set are freely available
offline in VPR and could be used to finetune VPR methods using
simple data augmentations. This novel take on the problem setting
of VPR, results in reference-set-finetuned (RSF) models that are
more robust than the original trained model.

4. Experiments

First, we present the experimental setup of our work, then
report the qualitative and quantitative performance of RSF
models compared to baselines, and finally evaluate the var-
ious aspects of RSF.

4.1. Datasets and evaluation metric

To evaluate RSF, we use three public VPR datasets which
have large train-test domain gap and hence pose challenges
to SOTA VPR methods, and one dataset with a small train-
test domain gap. Our ground-truth usage is similar to the
standard formats in VPR [9], All of these datasets are sum-
marized in Table 2.
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‘ Queries Refs. Q-Rgap Train-test gap
Nord. 27.6k  27.6k Vv VY
Amst-AR 1231 1231 vV VY
Eyns. 24k 24k v v v
SVOX-Ni 823 17.2k vV v

Table 2. The datasets used in this work. We report the total num-
ber of query images, the total number of reference images, the
presence of a domain gap between the queries and references, and
the presence of a domain gap between the respective test dataset
and the GSV-Cities training dataset. v* indicates a small gap and
v'v'v indicates a large gap.

The Nordland dataset [34] consists of a railway-track
traversal through Norway during two different seasons:
summer and winter. The summer traversal acts as reference
images while the winter images are queries. This dataset is
challenging due to the unstructured environment depicted
in different seasons. We also use the challenging Amster-
Time dataset [44] that contains archival imagery of Amster-
dam and their corresponding Google Street View images.
We use the archival images as references and street view
images as queries, which depicts the task of retrieving an
archival image of a place given a query image. We refer to
this version as AmsterTime-AR dataset, outlining that the
Archival images acts as References. We use the Eynsham
dataset [13] that contains only grayscale images present-
ing a lack of color information for VPR. Finally, we use
the SVOX-Night dataset [10] that contains night-time im-
ages as queries and day-time images as references collected
through Google Street View in Oxford.

Following the existing literature, Recall@N is used as
the evaluation metric. Ground-truths are as-is used by oth-
ers [4, 9, 17, 24]. A retrieval is successful if the Top-N
retrieved reference images were within a 25-meter radius of
the query image.

4.2. Implementation details

Given the standards and SOTA described earlier in sec-
tion 3.2, Dino-V2 [29] backbone with BoQ [4] aggre-
gation trained on the GSV-cities dataset is used as the
primary baseline VPR method G, since it is the current
SOTA in VPR. Nevertheless, we also report performance
of SALAD [17] when used with the proposed RSF. We use
the complete reference set of each respective test dataset
for performing RSF as described in section 3.3. A small
learning rate of le-7 is used for all datasets for both the
VPR techniques. Simple image-level augmentations from
the Kornia library [33] are used as A; examples are shown
in Fig. 3. More sophisticated augmentations such as do-
main translations using image-to-image vision foundation
models could also be considered [11]. The Kornia augmen-
tations are applied on the fly and randomly chosen during
training. To avoid overfitting the test set, we validate our
model on the Pitts30k validation set [9]. RSF is done on

Figure 3. Examples of the augmentations applied to create fine-
tuning queries using Kornia augmentations [33]. Left-most is the
original reference image.

a single NVIDIA A100 80GB GPU and on-average takes
only a few hours (= 3 — 5) depending on the size of the
reference set.

4.3. Results

Baseline comparison: Table 3 contains the performance of
RSF models in comparison to baselines. Models finetuned
using our proposed RSF outperform existing methods by
a large margin for both the metrics. Please note that this
performance improvement is without the use of new train-
ing data or a stronger backbone. The performance bene-
fits are more significant for the challenging Nordland and
AmsterTime-AR datasets, which are the primary focus due
to their large train-test domain gap. We also note that the
proposed RSF is beneficial for the datasets without a large
train-test domain gap, e.g., the SVOX-Night and Eynsham
datasets. However, the performance improvement is less
significant than on other datasets. More importantly, we
show that both the SOTA VPR methods, BoQ and SALAD,
benefit from RSF.

We further show in Fig. 4 examples of queries that
are correctly matched after the proposed RSF, and also
some failure cases. Since BoQ with RSF is the best-
performing method in our baseline comparison, we focus
on this method in the remainder of the experiments.

Model generalization: A key component of this study
is the desire for the RSF models to retain generalization to
the other test datasets. For this, we report in Table 4 the
performance of an RSF model finetuned on a given refer-
ence dataset and evaluated on the other test datasets. In-
terestingly, we note that not only do the finetuned mod-
els retain generalization to other test datasets, but also that
the RSF finetuned models consistently outperform the orig-
inal model, agnostic to the reference set used for finetun-
ing. This is attributed to the additional finetuning of SOTA
on VPR-specific data; however, quite expectedly, we see
a diagonal trend in the bold numbers, such that the best-
performing RSF model for each test dataset is always the
model that was finetuned on the same test dataset’s refer-
ence map.

Attention masks: We visualize the attention masks for a
learned BoQ query in Fig. 5 for the original model and the
RSF model. Note that the RSF model strongly attends to
the unique facades of windows in the building on the right,
while the original BoQ only attends to edges.
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Nordland Amster-AR ~ SVOX-Night Eynsham Average
R@l1 R@5 RQ1 RQ@5 RQl RQ@5 RQl RQ@5 | RQ1 RQ@5
MixVPR [3] 76.1 86.8 383 604 631 795 894 932 | 66.7 80.0
BoQ-Res [3] 833 91.1 521 754 857 947 912 949 | 78.1 89.0
CricaVPR [24] 912 962 647 839 869 950 91.6 949 | 83.6 925
SALAD[17] 859 935 587 797 950 993 915 950 | 82.8 919
BoQ [4] 904 959 619 835 97.1 994 921 955 | 854 936
SALAD-RSF 914 962 599 80.6 96.1 988 91.8 952 | 84.8 92.7
BoQ-RSF 94.2 977 656 863 988 99.6 922 954 | 87.7 948

Table 3. The recalls of SOTA VPR methods tested on various challenging test datasets. The first two rows: MixVPR and BoQ-Res use
ResNet-50 backbone, while the remainder use DinoV2 backbone. All methods are trained on the GSV-Cities dataset. Best is in Bold.

BoQ
Retrieved

BoQ-RSF
Retrieved

Query

BoQ
Retrieved

BoQ-RSF
Retrieved

Query

Figure 4. Examples of queries that are mismatched by the original BoQ-DinoV2 model but correctly matched by our reference-set-finetuned
BoQ-RSF model, except for the last row which demonstrates two BoQ-RSF failure cases.

4.4. Ablations

We have argued in this work that the reference poses are
freely available offline in VPR and are thus used in pose-
based triplet mining for RSF. However, it is possible to have
image-retrieval use-cases where reference images are avail-
able without pose information, e.g., image cataloging, land-
mark identification, etc. Table 5 thus reports the perfor-
mance of our baseline in comparison to RSF models trained
with and without access to pose information in the reference
set. It is observed that although the reference pose informa-
tion is helpful for RSF and such models are consistently the

best-performing, but even without access to reference pose
information, RSF models are still better than the baseline.

We further report in Table 6 the effect of Kornia augmen-
tations on our proposed RSF for BoQ. These results show
that augmentations are required to benefit from fine-tuning
on the reference set, and that appearance augmentations are
more useful than viewpoint augmentations for the chosen
datasets. Only having viewpoint augmentations and no ap-
pearance augmentations is hurtful for RSF. We hypothesize
that using viewpoint augmentations as A is distractful for
the model finetuned on the Nordland dataset, since there is
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BoQ
Retrieved

BoQ-RSF
Retrieved

BoQ
Attention

BoQ-RSF
Attention

Figure 5. Learned attention for the original BoQ and the BoQ-RSF model on a ground-truth reference image is shown. The RSF model
attends more to facades in the building while BoQ attends to edges. These attention masks are for the same BoQ query of the original and

the BoQ-RSF model.

Test dataset Chosen A Amster-AR  Nordland
Nord. Amst-AR  SVOX-Ni. No augmentations 83.51 95.92
Baseline BoQ 90.4 61.9 97.1 No viewpoint augmentations 86.31 97.80
BoQ-RSF (Nord.) 94.2 64.4 98.9 No appearance augmentations 76.20 91.13
BoQ-RSF (Amst-AR) | 92.3 65.6 98.9 All augmentations 86.32 97.70
BoQ-RSF (SVOX-Ni.) | 93.4 64.7 98.9

Table 4. The Recall@1 of RSF models on various test datasets.
The first column reports the reference set used for BoQ-RSFE. RSF
models retains generalization. Bold numbers in the diagonal indi-
cate that the best-performing method for each dataset is the model
finetuned on that dataset’s reference set.

| Nordland  Amst-AR

Baseline BoQ 95.9 83.5
BoQ-RSF (without poses) 97.1 85.3
BoQ-RSF (with poses) 97.7 86.3

Table 5. The Recall@5 performance of a baseline BoQ method is
compared with RSF two test datasets with and without access to
the test-time reference poses. The availability of test-time refer-
ence poses allows for hard-negative mining and gives SOTA per-
formance compared to random negative mining when pose infor-
mation is not accessible. However, even without access to the ref-
erence poses, RSF model performs better than the baseline BoQ.

almost no viewpoint change between the queries and the
references in this dataset. The choice of augmentations in
practice should follow from the expected query-reference
domain gap, and in case of no prior knowledge about the
expected Q-R gap, we recommend that the viewpoint aug-
mentations be used together with appearance augmentations
as a thumb rule.

5. Conclusions

In this work, we demonstrate that even the strong vision-
foundation models-based VPR methods trained on large-

Table 6. The Recall@5 performance of BoQ-RSF with different
types of augmentations chosen as A.

scale Google Street View data struggle on test datasets
which represent a domain different from the training data.
We thus proposed that the reference set in test datasets is
a free and valuable source of information that can be used
to bridge this train-test domain gap. A simple Reference-
Set-Finetuning (RSF) strategy is proposed that boosts the
performance of SOTA VPR methods by large margins. The
proposed RSF is shown to work for multiple datasets. The
resulting finetuned models retain generalization to other test
datasets. We also show that the same RSF strategy could be
applied to other VPR methods, albeit the performance ben-
efits vary. Future works could investigate further how dif-
ferent formulations of RSF, particularly the augmentations,
could benefit different VPR methods.
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