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Abstract

The prediction modeling of drug-target interactions is crucial to drug discovery and design,
which has seen rapid advancements owing to deep learning technologies. Recently developed
methods, such as those based on graph neural networks (GNNs) and Transformers, demon-
strate exceptional performance across various datasets by effectively extracting structural
information. However, the benchmarking of these novel methods often varies significantly
in terms of hyperparameter settings and datasets, which limits algorithmic progress. In
view of these, we conducted a comprehensive survey and benchmark for drug-target inter-
action modeling from a structural perspective via integrating tens of explicit (i.e., GNN-
based) and implicit (i.e., Transformer-based) structure learning algorithms. We conducted
a macroscopical comparison between these two classes of encoding strategies as well as the
different featurization techniques that inform molecules’ chemical and physical properties.
We then carry out the microscopical comparison between all the integrated models across
the six datasets via comprehensively benchmarking their effectiveness and efficiency. To
comprehensively assess fairness, we investigate model performance under two experimental
scenarios: one with unified hyperparameter settings and the other with individually opti-
mized configurations. Remarkably, the summarized insights from the benchmark studies
lead to the design of model combos. We demonstrate that our combos can achieve new
state-of-the-art performance on various datasets associated with cost-effective memory and
computation.

1 Introduction

The prediction modeling of drug-target interactions (DTI) has emerged as an irreplaceable task for efficacious
therapeutic interventions. The binding affinity between a drug molecule and its target protein plays a
significant role in the design and repurposing of drugs, where a high affinity typically indicates the desired
therapeutics, target specificity, long residence, and drug resistance delay (Hughes et al., 2011; Copeland et al.,
2006; Swinney, 2004). The precise modeling of DTI can expedite the drug discovery process and circumvent
the associated cost (Ashburn & Thor, 2004; Strittmatter, 2014). Deep learning-based frameworks have
recently revolutionized this field, enabling more accurate predictions and accelerating the discovery of new
compounds by guiding laboratory experiments more efficiently (Wen et al., 2017; Abbasi et al., 2021; Huang
et al., 2020a).

Within deep learning frameworks (Öztürk et al., 2018; 2019), drugs are commonly represented using the
Simplified Molecular Input Line Entry System (SMILES)(Weininger, 1988a), and proteins are represented
as sequences of amino acids. These representations are typically processed using various neural network
architectures, such as convolutional neural networks (CNNs) (Krizhevsky et al., 2017; He et al., 2016),
recurrent neural networks (RNNs), Transformers, and so on, before being integrated and processed by
a multi-layer perceptron (MLP) for DTI prediction. It is notorious that the reliance on sequence-based
representations can result in the loss of structural information, which can potentially compromise the DTI
predictive capability. From the drug perspective, molecular structure modeling helps identify the specific
binding sites (Ma et al., 2011), contributes to predicting pharmacokinetic properties (Ekins et al., 2007), and
allows conformational flexibility (Karplus & Kuriyan, 2005).
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To address this problem, a number of drug algorithms have been proposed to promote DTI prediction, which
can be categorized into explicit and implicit structure learning. First, graph neural networks (GNNs) (Kipf
& Welling, 2016; Nguyen et al., 2020) have been widely adopted to learn the molecular structures, owing
to their ability to directly operate on graph-based representations of molecules. By explicitly propagating
information through the graph, GNNs can learn node and edge features and thereby capture the structural
and functional relationships between atoms and bonds. Second, Transformers, originally focused on natural
language processing (Vaswani et al., 2017a), have also shown promise in biomedical applications (Huang
et al., 2020b; Chen et al., 2020). They rely on self-attention mechanisms to implicitly weight the correla-
tions between different parts of the input SMILES, allowing them to capture long-range dependencies and
contextual information.

While these techniques contribute to the learning of drug structures, there is still a key knob under-explored:
we lack a systematic study to benchmark their effectiveness and efficiency. Without such a standardized
benchmark, it is unachievable to offer fair comparisons and subsequently summarize the design philosophy
necessary to inform DTI. There have been several surveys and benchmarks on computational methods for
DTI prediction(Öztürk et al., 2018; Huang et al., 2020a; 2021; Xu et al., 2022), which leave out the recent
developments of structure learning algorithms and unavoidably fail to focus on drug structure benchmarking.
Moreover, although massive efforts (Bal et al., 2024; Zhu et al., 2023; Nguyen et al., 2020) have been made
to explore the effectiveness of modeling structural information, they predominantly use their proprietary
training hyperparameters, datasets, and evaluation metrics. Due to the various settings, one cannot reach
convincing answers as to whether a configuration of structure encoders and/or featurization methods gen-
erally performs well. The complex of DTI classification and regression tasks and datasets complicates the
benchmark comparison.

In this study, we introduce GTB-DTI, a comprehensive benchmark customized for GNN and Transformer-
based methodologies for DTI prediction. I) We thoroughly examine the implementation details for each
category of drug structure learning methods and integrate three widely used datasets for classification and
regression tasks, respectively. Then, we harmonize the sensitive hyperparameters across different methods
using a greedy search to identify an optimal sweet spot configuration. The unified setting lays the foundation
for a fair and reproducible benchmark. II) To gain macroscopical insights into the structure encoders and
featurization methods, we fix the drug encoder to be either GNN or Transformer-based approaches and
benchmark these two strategies in the various settings. We also integrate tens of drug features given their
importance to inform molecules’ chemistry and physical properties and evaluate them on the representative
datasets. III) To gain macroscopical insights into nuance between 31 concerned models, we conduct the
benchmark studies of their effectiveness on the six datasets with the unified setting. Moreover, we assess the
efficiency of each method by measuring peak GPU memory usage, running time, and convergences. IV) The
comprehensive study finally provides a number of surprising observations: i) The CNN encoder accompanied
by integer features has close protein embedding performance compared to the Transformer or larger language
models, but they are more efficient. ii) The explicit and implicit structure encoders for drugs exhibit unequal
performances across the different datasets, which suggests their hybrid usage for generalization purposes. iii)
Inspired by these insights, we conclude with a model combo that leads us to attaining state-of-the-art (SOTA)
regression results and performing similarly to SOTA in the DTI classifications. Our combos further deliver
cost-effective memory usage and running time as well as faster convergence, which can serve as a new baseline
for the following explorations.

2 Formulations for Drug-target Interaction Modeling

In this research, we focus on the formulations of recently emerging structure modeling approaches for drug
molecules, which could be categorized into explicit methods based on graph neural networks and implicit
methods based on Transformers. The target proteins are learned by the sophisticated tools of convolu-
tional/recurrent neural networks (CNNs/RNNs) or Transformers, after which both the molecules’ and pro-
teins’ embeddings are integrated to facilitate interaction prediction. We will also summarize and benchmark
the various widely adopted molecule features.
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2.1 Graph Neural Networks based Methods

A drug molecule is typically represented as a graph G = (V, E), where V and E denote the sets of atoms
and chemical bonds, respectively. The classical GNN frameworks involve key processes of aggregating and
updating node features, collectively referred to as message passing, which can be mathematically represented
as follows(Scarselli et al., 2008; Duan et al., 2022):
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node
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where h(l)
i is the feature representation of node vi at layer l, e(l)

ij is the feature representation of edge between
nodes vi and vj , Ni refers to the set of neighboring nodes next to node vi. Functions AGGREGATE(l),
COMBINE(l) aim to aggregate the neighborhood representations and integrate them together with the node
features, respectively. Additionally, fα and gβ are feature mapping functions, parameterized by α and β,
respectively. The molecule’s representation can be derived using READOUT a function that processes the
set of vertex features H(L) at the last layer.
Graph Convolutional Networks (GCN). Given a molecule with N atoms, the adjacency matrix A ∈
RN×N indicates its connectivity, with Aij = 1 if atom vi is adjacent to atom vj , and 0 otherwise. Considering
the self-connection of atoms, we have Ã = A + I. Let’s X ∈ RN×C denote the initial atom feature matrix.
GCN (Kipf & Welling, 2017) models the message passing as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W(l)), (3)

where H(l) is the node feature matrix at layer l, starting with H(0) = X. Matrix W(l) represents the
learnable weights for layer l, σ denotes a non-linear activation function, e.g., ReLU, and D̃ is a diagonal
degree matrix of Ã. A couple of pioneering works have leveraged GCN to facilitate drug-protein interaction
prediction (Mukherjee et al., 2022; Tran et al., 2022; Tsubaki et al., 2018; Pan et al., 2023b). For example,
DeepGLSTM (Mukherjee et al., 2022) uses mixture-of-depths GCNs to capture drug representations from
different scales. CPI (Tsubaki et al., 2018) considers cross-atom distance and introduces the concept of
r-radius subgraphs (Costa & Grave, 2010), using r-radius vertices and edges to redefine the structure of
graphs.
Graph Isomorphism Networks (GIN). GIN excels in learning distinct graph features by approximating
the Weisfeiler-Lehman test, enabling it to distinguish a wide range of graph structures (Xu et al., 2018). The
message-passing process at the (l + 1)-th layer is of the following form:

h(l+1)
i = MLP(l)((1 + ϵ(l))h(l)

i +
∑
j∈Ni

h(l)
j ), (4)

where MLP(l) is a multi-layer perceptron that parameterizes the update function, and ϵ(l) is a learnable
parameter. We benchmark several GIN-based drug-target interaction modeling methods. GraphCPI (Quan
et al., 2019) and GraphDTA (Nguyen et al., 2020) adopt GIN-based models with batch normalization to ob-
tain the drug representation. SubMDTA (Pan et al., 2023a) uses a subgraph’s generation task and contrastive
learning to pretrain a molecular graph encoder with multiple GIN layers for further prediction.
Graph Attention Networks (GAT). Unlike fixed-weight aggregation, GAT (Velikovi et al., 2018) employs
an attention mechanism to determine neighborhood importance and learn the node embeddings as follows:

h(l+1)
i = σ(

∑
j∈i∪Ni

softmax(LeakyReLU(WT
a [W(l)h(l)

i ||W(l)h(l)
j ]))W(l)h(l)

j ). (5)

WT
a denotes attention weights, and || is a concatenating operation. GraphDTA (Nguyen et al., 2020) and

AMMVF (Wang et al., 2023) leverage the multi-head GAT layers to optimize the atom messaging. They inte-
grate GAT with other architectural modules, such as GCN, facilitating a more comprehensive representation
of drugs.
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Graph Transformers. Graph Transformers (Rong et al., 2020; Maziarka et al., 2020) have emerged as
powerful alternatives to traditional graph neural networks (GNNs) for molecular representation learning.
Unlike conventional GNNs, which rely on message-passing mechanisms to propagate local node information,
Graph Transformers leverage self-attention mechanisms to capture both local and global dependencies more
effectively. By integrating Message Passing Networks into Transformer-style architectures, these models
enhance expressiveness, enabling more comprehensive encoding of molecular structures. This hybrid ap-
proach allows Graph Transformers to preserve structural information while benefiting from the flexibility of
attention-based learning.

2.2 Transformer-based Methods

Besides the graph representation, drugs could also be decorated as SMILES strings (Weininger, 1988b)
and encoded similarly to natural language processing. Specifically, after tokenizing SMILES strings, the
Transformer model utilizes multi-head attention to model the interactions between different segments of the
input and obtain the molecular representations. Positional encodings are also integrated to preserve the
sequence order, enhancing the model’s ability to process sequential information effectively. We review and
benchmark two typical types of attention mechanisms used for molecular representations.

Self-Attention(Huang et al., 2020b; Qian et al., 2023; Yin et al., 2024). Self-attention computes a weighted
sum of all input values based on their relevance to each other. Considering an embedding of a SMILES
sequence H(l) ∈ Rd×N at a specific Transformer layer, where N and d are token length and dimension,
respectively, the attention is calculated by Attention(Q, K, V) = softmax(QKT/

√
dk)V. Q, K ∈ Rdk×N

and V ∈ Rdv×N are projections of the input matrix H(l). Multi-head attention combines these projections
across different subspaces for a more detailed analysis. Followed by normalization and feed-forward neural
networks, the SMILES embedding is updated, H(l+1) and the output from the last layer is treated as
molecular representations. Transformer encoders like MolTrans (Huang et al., 2020b) and FOTFCPI (Yin
et al., 2024) are adopted to enhance substructure embeddings in proteins and drugs.

Cross-Attention(Kurata & Tsukiyama, 2022; Qian et al., 2023). Cross-attention is designed to capture
the interaction between the drug and protein sequences, with the query matrix Q derived from one sequence
and the key and value matrices K, V from another. This mechanism is particularly useful in integrating
hybrid representations such as drug graphs and SMILES (Wang et al., 2023), as well as drugs and proteins
(Pan et al., 2023b; Kurata & Tsukiyama, 2022).

2.3 Feature Processing Methods

Beyond the drugs’ structure or sequence learning with GNNs or Transformers, the extra molecular properties,
such as molecular weight, solubility, and lipophilicity, are crucial for building accurate and quantitative drug-
target relationship models. We summarize two typical featurization methods.

Sequence Processing Methods. Both drugs and proteins are input as strings of ASCII characters, whose
features can be extracted using statistical solutions. Integer encoding (Nguyen et al., 2020) simply converts
the string to a sequence of integers, which assigns an integer to each character. The N-gram (Dong et al.,
2005) captures the statistical dependencies between characters in an input string. Specifically, a 3-gram model
breaks down a sequence S = {s1, s2, ..., sm} into {[s1, s2, s3], [s2, s3, s4], ..., [sm−2, sm−1, sm]}, analyzing the
relationship between adjacent characters.

Drug-Unique Featurization Methods. The additional chemical properties and structural details of
SMILES strings are often considered to gain a more comprehensive understanding. Extended-Connectivity
Fingerprints (ECFP) (Morgan, 1965; Rogers & Hahn, 2010), involves generating unique identifiers for atoms
based on their local chemical environment and iteratively updating these through a hash function to capture
a broader molecular context, ultimately producing a set of fingerprints that represent the molecules overall
structure. Another approach, RDKit, is used to convert SMILES into molecular graphs (Landrum et al.,
2006; Nguyen et al., 2020), where nodes represent the physical and chemical properties of molecules, and
bonds are represented by an adjacency matrix. For example, atomic properties such as atom type, degree,
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and hydrogen information (like the number of explicit hydrogens) are all crucial for constructing a graph.
More detailed properties can be found in Appendix G.

Embedding Featurization Methods. Embedding methods are used to translate these discrete sequences
into continuous embedding spaces. Notably, Smi2Vec (Quan et al., 2018) and Prot2Vec (Asgari & Mofrad,
2015) convert discrete tokens of drug SMILES and protein sequences into vectors that encapsulate semantic
and syntactic similarities, effectively grouping similar tokens together in vector space. Additionally, pre-
trained language models (Bal et al., 2024; Lin et al., 2022) are increasingly utilized to leverage large-scale
learned patterns, fine-tuned to analyze complex protein data representations effectively.

3 A Fair Benchmark Platform Setup

Benchmark Model and Dataset Selection. From the perspective of reproducibility, we restrict our
analysis to models for which the source code has been publicly released. To enhance the comprehensiveness,
credibility, and sophistication of our benchmark, we conduct experiments on more than 30 models, including
both GNN-based and Transformer-based methods. These models are derived from papers spanning the years
2018 to 2024. We run these models on 6 frequently evaluated datasets, including both binary interaction
classification and continuous affinity regression. For the classification aspect, we utilize datasets including
Human (Liu et al., 2015), Caenorhabditis elegans (C. elegans) (Tsubaki et al., 2018), and DrugBank (Wishart
et al., 2008). For regression, we employ the Davis (Davis et al., 2011), KIBA (Tang et al., 2014), and
BindingDB datasets (Liu et al., 2007) with dissociation constant (Kd) measures, as processed in Huang
et al. (2021). The statistical details of these models and datasets are presented in Appendix B and Table 3,
respectively.

Hyperparameter Configuration. Given the critical role of hyperparameters in achieving optimal perfor-
mance, we perform a systematic review of the hyperparameters for all selected models in Appendix E. To
ensure that comparisons across models are equitable, we consider comparing each model using its optimal
hyperparameters, as reported in the corresponding perspective papers.

Data Split. We treat each dataset independently to prevent any information leakage that could arise from
training a single model on multiple datasets. For duplicate drugprotein pairs in the regression dataset, only
the entry with the maximum affinity score is retained. For duplicates in the classification dataset, all entries
are removed if conflicting labels are present; otherwise, a single instance is kept. Following data cleaning,
each dataset is split into a training set and a test set. We apply k-fold cross-validation on each training
set, where each fold consists of a unique trainingvalidation split, and models trained on different folds are
completely independent, thereby eliminating any possibility of cross-fold leakage. The training sets are used
to fit the models, the validation sets are used to select the best model during training, and the test sets are
for final evaluation.

Other Training Details. We train on the training set and see its performance on the validation set at the
end of every epoch, and the model that achieves the best validation performance will be saved. After training,
we evaluate the saved model on the test set and save their results. We average the final performance metrics
across all folds as the final results. Considering the original training epochs, we use 1000 as maximum epochs
limitation. To avoid overfitting, we consider an early stop mechanism in training. Given the complexity in
the dataset, we use 50 patience for all datasets. We use MSE as an early stopping evaluation metric for
regression and F1 for classification. The detailed results are provided in Appendix F.

4 A Macroscopic Benchmark on Encoder and Featurization Strategies

⋆Encoder Exploration for Drugs and Proteins. To investigate the influence of different encoding
strategies for extracting the structural information of drugs, we employ GIN (Xu et al., 2019) and vanilla
Transformer (Vaswani et al., 2017b) as the encoders for drugs. Meanwhile, integer encoding with CNN,
n-gram encoding with CNN, and the vanilla Transformer are considered to capture protein’s representations,
which are frequently adopted. To leverage the advantages of the pretrained protein information, we include
a language model, i.e., Evolutionary Scale Modeling (ESM2) (Lin et al., 2022). The results of various
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combinations of drug and protein encoders are shown in Fig. 1.All results are averaged by five-fold cross-
validation with an early stop mechanism.

Obs. 1. GNN and Transformer-based drug encoders exhibit unequal performance depending
on DTI tasks. When the encoder for the protein sequence is fixed, drug features extracted by the GNN
structures GIN generally perform better than those by Transformers in regression tasks, but the opposite is
true in classification tasks. This disparity may be due to the smaller size of the Human dataset compared
to the Davis dataset, which allows for faster convergence in classification tasks than in regression tasks.

Obs. 2. Transformer models are better but sensitive in extracting features from protein.
Although we only consider the simplest pretrained protein language model of ESM2, it still significantly
outperforms other encoders in both tasks. This improvement can likely be attributed to the robust and
generalizable representations learned from extensive data by the pretrained model. In addition, the Trans-
former encoder for the protein achieves the best performance on the classification task but shows unstable
performance in the regression task. This is likely due to the smaller size and simpler classification dataset
compared to the regression dataset, making the training stop for a fixed early stop threshold.
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Figure 1: Comparison of different encoding strategies with early stop mechanism for drugs and proteins
when the total epoch is 1000, LR is 0.0005, BS is 512, and DR is 0.2. Trans is a Transformer-based model,
which is composed of two parts: embedding with the position encoding and the encoder in the Transformer.
ESM refers to ESM2.

Obs 3. Integer encoding appears to be more effective when paired with a CNN as the protein
encoder and a fixed drug encoder. Compared to this specific model configuration, the local context
provided by 3-gram encoding does not significantly enhance the model’s predictive performance. This implies
that the simple relationships in amino acids’ immediate neighbors, as modeled by Word2Vec, do not capture
much useful information compared with simple integer encoding.

⋆Featurization Exploration. Despite the efficacy of GNNs in learning drug structures, the featurization
of nodes plays a critical role in capturing both the intrinsic properties of atoms and their contextual rele-
vance. We conduct a detailed analysis of various methods (summarized in Section G of the Appendix) for
constructing graph features within the DTI context. The node feature is constructed via various characteris-
tics, such as chemical and physical properties. We categorize each feature into five main classes, e.g., atomic
properties (AP), hydrogen information (HI), electron properties (EP), stereochemistry (Ste), and structural
information (Str). To better determine which types of features are more effective in capturing the structural
information, we conduct an ablation study on the different featurization strategies. We choose GraphDTA
(Nguyen et al., 2020) and GraphCPI (Quan et al., 2019) with GIN as our backbone models. The results of
feature combinations are reported in Fig. 2.

Obs. 4. More complex featurization does not necessarily bring a positive effect, and its
effectiveness is highly task-dependent. As shown in Fig. 2, adding features like atomic properties (AP),
hydrogen information (HI), and stereochemistry information (Ste) improves performance in the regression
task by reducing the MSE loss, suggesting that these features provide valuable information. However,
features like electron properties (EP) and structural information (Str) may introduce noise rather than useful
information, especially when combined with other features, leading to inconsistent results. Furthermore, in
classification tasks, the trend differs, with additional features sometimes negatively impacting performance
(blue line) rather than providing benefits. This highlights the importance of careful feature selection, as
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Figure 2: Various performances of GraphDTA-GIN and GraphCPI-GIN versus different features on DAVIS
and Human datasets. +x means that x is added to the basic featurization. All means using all features.

indiscriminate inclusion of complex features may lead to increased noise, affecting model generalization and
robustness.

Obs. 5. Protein representation plays a crucial role in the effectiveness of different drug
featurizations. As shown in Fig. 2, even when using the same drug featurization strategies, the trends vary
depending on the protein representation. This suggests that the way proteins are encoded directly influences
how drug features interact with the model. For instance, in GraphDTA, features like atomic properties
(AP) and hydrogen information (HI) help improve performance, but in GraphCPI, those same features dont
always provide the same benefits. In some cases, adding more drug features introduces noise rather than
useful information. This highlights the fact that drug featurization and protein representation are deeply
interconnected, and optimizing one without considering the other may not yield the best results. To build
more effective drug-protein interaction models, both components should be considered holistically rather
than in isolation.

5 A Microscopic Benchmark on DTI Models

⋆Benchmark over Effectiveness. As shown in Table 1 and Table 2, we conduct experiments on models
with their optimal hyperparameters across two tasks and three datasets, respectively (see more comprehensive
model comparisons in Appendix F). For the unified hyperparameters, we summarized the result in Appendix
??. All results are averaged by five-fold cross-validation with an early stop mechanism.

Obs. 6. Molecular graphs are better than fingerprints for capturing the graph features of
a drug. In reference to Table 7, it is evident that GNN-based approaches utilizing the molecular graph
generally yield superior performance compared with fingerprints (CPI (Tsubaki et al., 2018), BACPI (Li et al.,
2022), GANDTI (Wang et al., 2021)). This reinforces the idea that the rich structural and atomic property
information inherent to molecular graphs is pivotal for representation extraction, leading to enhanced model
performance.

Obs. 7. Graph structure is a crucial part of extracting a drug’s features. Different GNNs have
distinct performances in both tasks when the protein representation is fixed. Specifically, GIN, with its unique
ability to distinguish non-isomorphic graphs, consistently outperforms other models across different protein
encoders in regression tasks. Although Transformer-based methods such as MRBDTA are proficient in
handling sequential information from SMILES and proteins, the depth of information they capture appears
to be marginally less comprehensive than that provided by molecular graph-based approaches. This is
substantiated by the superior performance of GNN-based methods, including MGraphDTA, ColdDTA, and
SubMDTA, which suggests that GNN captures intricate structural details more effectively.

⋆Benchmark over Efficiency To analyze the training speed and memory usage, we empirically evaluate
the peak memory and running time for various methods during the training procedure on one regression
dataset and one classification task, respectively. To fairly compare various methods, we set the batch size
as 32, as such maximum batch size is adopted by some methods. All results are measured on an RTX 3090
GPU. The memory and running time comparisons are illustrated in Fig. 3.
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Table 1: Regression task benchmark on DAVIS, KIBA, and BindingDB_Kd datasets, respectively. For the
GraphDTA and GraphCPI, we only show the one with a specific GNN encoder that has the overall best
performance. The best result is highlighted in bold, and the runner-up is underlined. Avg. Reduction of
MSE is computed by the average (across 3 datasets) of the differences between our model’s MSE and each
model’s MSE, divided by the average (across 3 datasets) of each model’s MSE, respectively.

Category Models DAVIS KIBA BindingDB_Kd Avg. Reduction
MSE R2 CI MSE R2 CI MSE R2 CI of MSE (%)

GNN

GraphDTA-GIN 0.253 ± 0.010 0.623 ± 0.015 0.861 ± 0.006 0.255 ± 0.007 −1.840 ± 0.779 0.553 ± 0.019 0.563 ± 0.038 0.693 ± 0.021 0.842 ± 0.007 34.827%
GraphCPI-GIN 0.274 ± 0.009 0.593 ± 0.013 0.851 ± 0.008 1.681 ± 0.946 −17.724 ± 10.533 0.553 ± 0.094 0.557 ± 0.017 0.696 ± 0.009 0.847 ± 0.003 72.213%
MGraphDTA 0.232 ± 0.012 0.655 ± 0.018 0.869 ± 0.007 0.032 ± 0.012 0.642 ± 0.133 0.832 ± 0.040 0.529 ± 0.011 0.712 ± 0.006 0.852 ± 0.005 11.980%
SAGDTA 0.324 ± 0.064 0.518 ± 0.096 0.833 ± 0.027 0.065 ± 0.008 0.279 ± 0.085 0.713 ± 0.032 0.529 ± 0.011 0.712 ± 0.006 0.852 ± 0.005 23.965%
EmbedDTI 0.280 ± 0.024 0.583 ± 0.036 0.851 ± 0.009 0.289 ± 0.142 −2.217 ± 1.579 0.558 ± 0.038 0.542 ± 0.019 0.705 ± 0.010 0.850 ± 0.004 37.174%
DeepGLSTM 0.316 ± 0.023 0.529 ± 0.035 0.841 ± 0.007 8.539 ± 7.479 −94.109 ± 83.400 0.514 ± 0.036 0.594 ± 0.061 0.677 ± 0.033 0.840 ± 0.013 92.613%
CPI 0.402 ± 0.082 0.401 ± 0.122 0.811 ± 0.033 0.052 ± 0.003 0.416 ± 0.036 0.734 ± 0.037 0.762 ± 0.165 0.585 ± 0.090 0.815 ± 0.028 42.599%
BACPI 0.334 ± 0.015 0.502 ± 0.023 0.827 ± 0.006 0.031 ± 0.004 0.658 ± 0.043 0.831 ± 0.020 0.550 ± 0.010 0.700 ± 0.006 0.845 ± 0.002 23.716%
DeepNC-HGC 0.309 ± 0.025 0.541 ± 0.037 0.841 ± 0.005 0.080 ± 0.003 0.110 ± 0.036 0.667 ± 0.022 0.572 ± 0.011 0.689 ± 0.006 0.844 ± 0.003 27.367%
DeepNC-GEN 0.270 ± 0.012 0.597 ± 0.017 0.852 ± 0.009 0.135 ± 0.045 −0.509 ± 0.505 0.608 ± 0.037 0.578 ± 0.020 0.685 ± 0.011 0.840 ± 0.003 28.993%
DrugBAN 0.242 ± 0.007 0.640 ± 0.010 0.869 ± 0.003 0.029 ± 0.003 0.676 ± 0.032 0.832 ± 0.013 0.465 ± 0.018 0.747 ± 0.010 0.862 ± 0.003 5.163%
GANDTI 0.318 ± 0.018 0.527 ± 0.027 0.844 ± 0.006 0.030 ± 0.002 0.662 ± 0.026 0.831 ± 0.007 0.621 ± 0.012 0.662 ± 0.006 0.836 ± 0.002 27.967%
BridgeDPI 1.241 ± 1.432 −0.848 ± 2.133 0.827 ± 0.078 0.325 ± 0.109 0.638 ± 0.121 0.857 ± 0.001 0.514 ± 0.011 0.720 ± 0.006 0.861 ± 0.002 66.442%
ColdDTA 0.220 ± 0.009 0.672 ± 0.014 0.880 ± 0.004 0.110 ± 0.029 −0.224 ± 0.329 0.673 ± 0.079 0.463 ± 0.008 0.748 ± 0.004 0.866 ± 0.001 11.980%
SubMDTA 0.289 ± 0.012 0.570 ± 0.018 0.841 ± 0.007 0.029 ± 0.002 0.678 ± 0.025 0.836 ± 0.011 0.532 ± 0.032 0.710 ± 0.017 0.852 ± 0.006 17.882%
IMAEN 0.230 ± 0.009 0.657 ± 0.014 0.874 ± 0.004 0.046 ± 0.018 0.484 ± 0.196 0.781 ± 0.056 0.479 ± 0.012 0.739 ± 0.006 0.863 ± 0.002 7.550%

Transformer

CSDTI 0.331 ± 0.012 0.508 ± 0.017 0.832 ± 0.005 0.088 ± 0.004 0.014 ± 0.041 0.628 ± 0.047 0.768 ± 0.021 0.582 ± 0.012 0.805 ± 0.004 41.196%
TDGraphDTA 0.222 ± 0.005 0.669 ± 0.008 0.653 ± 0.011 0.091 ± 0.019 −0.009 ± 0.209 0.327 ± 0.125 0.497 ± 0.016 0.729 ± 0.009 0.777 ± 0.005 13.827%
AMMVF 0.377 ± 0.030 0.439 ± 0.044 0.815 ± 0.005 0.075 ± 0.020 0.161 ± 0.221 0.603 ± 0.141 0.682 ± 0.015 0.628 ± 0.008 0.825 ± 0.002 38.448%
IIFDTI 0.313 ± 0.018 0.534 ± 0.027 0.836 ± 0.008 0.054 ± 0.013 0.398 ± 0.143 0.691 ± 0.050 0.634 ± 0.024 0.655 ± 0.013 0.832 ± 0.006 30.270%
ICAN 0.371 ± 0.013 0.448 ± 0.020 0.818 ± 0.006 0.089 ± 0.000 −2.052 ± 0.000 0.500 ± 0.000 0.747 ± 0.031 0.593 ± 0.017 0.813 ± 0.004 42.171%
MolTrans 0.410 ± 0.136 0.390 ± 0.202 0.812 ± 0.039 4.314 ± 2.290 −47.055 ± 25.515 0.540 ± 0.021 0.695 ± 0.183 0.621 ± 0.100 0.822 ± 0.009 87.119%
TransformerCPI 0.393 ± 0.022 0.415 ± 0.032 0.802 ± 0.008 0.070 ± 0.003 0.217 ± 0.033 0.800 ± 0.002 0.659 ± 0.040 0.641 ± 0.022 0.829 ± 0.013 37.790%
MRBDTA 0.241 ± 0.005 0.640 ± 0.008 0.870 ± 0.007 0.050 ± 0.005 0.360 ± 0.058 0.735 ± 0.015 0.507 ± 0.006 0.724 ± 0.003 0.862 ± 0.002 12.531%
FOTFCPI 0.305 ± 0.012 0.546 ± 0.018 0.839 ± 0.009 0.229 ± 0.180 −1.555 ± 2.003 0.587 ± 0.086 0.567 ± 0.008 0.695 ± 0.004 0.848 ± 0.006 36.603%
Our combos 0.211 ± 0.007 0.685 ± 0.011 0.886 ± 0.004 0.026 ± 0.004 0.710 ± 0.051 0.849 ± 0.023 0.461 ± 0.006 0.749 ± 0.003 0.869 ± 0.002 0.000%

Table 2: Classification task benchmark on Human, C.elegans, and DrugBank datasets, respectively. For the
GraphDTA and GraphCPI, we only show the one that has the overall best performance. The best result
is highlighted in bold, and the runner-up is underlined. Avg. Improvement of Accuracy is computed by
the average (across 3 datasets) of the differences between our model’s accuracy and each model’s accuracy,
divided by the average (across 3 datasets) of each model’s accuracy, respectively.

Category Models Human C.elegans Drugbank Avg. Improvement
ROC-AUC Accuracy F1 ROC-AUC Accuracy F1 ROC-AUC Accuracy F1 of Accuracy (%)

GNN

GraphDTA-GIN 0.949 ± 0.007 0.885 ± 0.011 0.869 ± 0.011 0.977 ± 0.003 0.929 ± 0.005 0.915 ± 0.005 0.850 ± 0.001 0.783 ± 0.006 0.785 ± 0.005 3.312%
GraphCPI-GIN 0.941 ± 0.005 0.874 ± 0.007 0.858 ± 0.008 0.971 ± 0.003 0.924 ± 0.008 0.907 ± 0.009 0.838 ± 0.012 0.775 ± 0.010 0.778 ± 0.006 4.275%
MGraphDTA 0.960 ± 0.004 0.905 ± 0.007 0.893 ± 0.007 0.983 ± 0.002 0.943 ± 0.004 0.931 ± 0.004 0.879 ± 0.004 0.800 ± 0.004 0.806 ± 0.003 1.322%
SAGDTA 0.957 ± 0.005 0.901 ± 0.005 0.887 ± 0.006 0.966 ± 0.006 0.912 ± 0.014 0.894 ± 0.017 0.819 ± 0.009 0.752 ± 0.010 0.756 ± 0.010 4.600%
EmbedDTI 0.958 ± 0.003 0.901 ± 0.005 0.888 ± 0.006 0.975 ± 0.003 0.924 ± 0.002 0.908 ± 0.002 0.815 ± 0.007 0.758 ± 0.005 0.765 ± 0.003 3.871%
DeepGLSTM 0.958 ± 0.004 0.903 ± 0.007 0.890 ± 0.008 0.975 ± 0.004 0.923 ± 0.006 0.906 ± 0.007 0.796 ± 0.014 0.745 ± 0.007 0.752 ± 0.006 4.356%
CPI 0.951 ± 0.012 0.900 ± 0.010 0.887 ± 0.012 0.955 ± 0.005 0.913 ± 0.007 0.893 ± 0.010 0.739 ± 0.087 0.678 ± 0.072 0.687 ± 0.074 7.708%
BACPI 0.947 ± 0.003 0.905 ± 0.007 0.893 ± 0.008 0.975 ± 0.003 0.936 ± 0.005 0.921 ± 0.006 0.849 ± 0.004 0.776 ± 0.009 0.782 ± 0.008 2.522%
DeepNC-HGC 0.932 ± 0.009 0.861 ± 0.015 0.845 ± 0.016 0.970 ± 0.003 0.918 ± 0.004 0.903 ± 0.006 0.809 ± 0.006 0.752 ± 0.006 0.762 ± 0.006 6.006%
DeepNC-GEN 0.961 ± 0.002 0.907 ± 0.006 0.894 ± 0.006 0.980 ± 0.002 0.932 ± 0.005 0.917 ± 0.008 0.813 ± 0.007 0.736 ± 0.015 0.756 ± 0.007 4.194%
DrugBAN 0.974 ± 0.002 0.920 ± 0.005 0.910 ± 0.005 0.982 ± 0.002 0.946 ± 0.004 0.935 ± 0.005 0.876 ± 0.004 0.799 ± 0.008 0.801 ± 0.005 0.675%
GANDTI 0.970 ± 0.002 0.917 ± 0.004 0.906 ± 0.004 0.967 ± 0.003 0.919 ± 0.007 0.901 ± 0.007 0.836 ± 0.014 0.752 ± 0.008 0.763 ± 0.004 3.671%
BridgeDPI 0.957 ± 0.012 0.887 ± 0.021 0.877 ± 0.020 0.960 ± 0.004 0.882 ± 0.034 0.857 ± 0.040 0.726 ± 0.076 0.644 ± 0.087 0.685 ± 0.047 11.189%
ColdDTA 0.971 ± 0.002 0.922 ± 0.009 0.912 ± 0.010 0.983 ± 0.003 0.947 ± 0.002 0.936 ± 0.002 0.885 ± 0.004 0.813 ± 0.005 0.816 ± 0.004 0.037%
SubMDTA 0.971 ± 0.003 0.919 ± 0.006 0.909 ± 0.007 0.985 ± 0.001 0.945 ± 0.007 0.933 ± 0.008 0.861 ± 0.005 0.791 ± 0.005 0.793 ± 0.005 1.055%
IMAEN 0.944 ± 0.004 0.878 ± 0.005 0.863 ± 0.003 0.967 ± 0.004 0.911 ± 0.007 0.892 ± 0.007 0.847 ± 0.004 0.777 ± 0.005 0.780 ± 0.004 4.560%

Transformer

CSDTI 0.905 ± 0.007 0.846 ± 0.007 0.826 ± 0.009 0.910 ± 0.006 0.840 ± 0.011 0.805 ± 0.010 0.774 ± 0.011 0.721 ± 0.006 0.730 ± 0.004 11.467%
TDGraphDTA 0.977 ± 0.002 0.927 ± 0.005 0.917 ± 0.005 0.984 ± 0.001 0.943 ± 0.007 0.929 ± 0.010 0.880 ± 0.006 0.805 ± 0.006 0.810 ± 0.003 0.299%
AMMVF 0.962 ± 0.005 0.915 ± 0.007 0.905 ± 0.009 0.984 ± 0.005 0.948 ± 0.006 0.937 ± 0.007 0.692 ± 0.161 0.654 ± 0.088 0.696 ± 0.020 6.595%
IIFDTI 0.973 ± 0.006 0.920 ± 0.006 0.909 ± 0.008 0.987 ± 0.002 0.948 ± 0.005 0.937 ± 0.005 0.849 ± 0.014 0.777 ± 0.010 0.782 ± 0.011 1.437%
ICAN 0.971 ± 0.002 0.927 ± 0.005 0.917 ± 0.005 0.977 ± 0.004 0.942 ± 0.003 0.929 ± 0.004 0.839 ± 0.005 0.764 ± 0.005 0.768 ± 0.004 1.899%
MolTrans 0.979 ± 0.003 0.931 ± 0.002 0.923 ± 0.002 0.980 ± 0.003 0.943 ± 0.004 0.930 ± 0.004 0.868 ± 0.004 0.795 ± 0.005 0.795 ± 0.009 0.525%
TransformerCPI 0.968 ± 0.003 0.917 ± 0.004 0.906 ± 0.004 0.984 ± 0.001 0.941 ± 0.005 0.929 ± 0.006 0.874 ± 0.007 0.799 ± 0.008 0.803 ± 0.007 0.979%
MRBDTA 0.971 ± 0.004 0.920 ± 0.007 0.909 ± 0.007 0.985 ± 0.002 0.953 ± 0.002 0.943 ± 0.002 0.866 ± 0.005 0.789 ± 0.006 0.790 ± 0.004 0.789%
FOTFCPI 0.980 ± 0.003 0.937 ± 0.006 0.929 ± 0.006 0.987 ± 0.001 0.953 ± 0.003 0.942 ± 0.004 0.866 ± 0.002 0.790 ± 0.004 0.793 ± 0.006 0.112%
Our combos 0.981 ± 0.003 0.936 ± 0.007 0.928 ± 0.008 0.987 ± 0.003 0.954 ± 0.005 0.944 ± 0.006 0.866 ± 0.007 0.793 ± 0.009 0.798 ± 0.005 0.000%

Obs. 8. In general, the memory usage of GNN-based methods is smaller than that of
Transformer-based methods, which is positively proportional to run time. This difference is
primarily due to the self-attention mechanism employed in Transformers, which requires significant memory
resources. In contrast, model parameters, such as those in DeepGLSTM, do not exhibit a direct relationship
with either runtime or performance.

⋆Benchmark over Convergence. We select the two representative methods from the GNN-based and
Transformer-based frameworks, respectively, and evaluate them across six datasets on two tasks. The training
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losses are depicted in Fig. 4. To ensure a fair comparison of convergence behavior, we use the previous early
stopping setting. Based on the empirical results, we summarize our key observations as follows:

Obs. 9. GNN-based methods demonstrate quicker convergence compared to Transformer-
based methods. This phenomenon arises from the fact that GNN-based methods have less memory us-
age and fewer model parameters, leading to larger batch size usage or faster convergence compared with
Transformer-based methods.

5.1 Our Best Combo of Drug and Protein Encoders

Deriving Combo from Benchmark Insights. Based on our benchmark results, we summarize the in-
sights of protein and drug encoder usages and propose a light yet effective architecture, which could be
treated as a new strong baseline for future explorations. Regarding the proteins, we observe that multi-
scale CNNs associated with a mixture of model depths can generally learn the effective protein representations
(Yang et al., 2022; Zhu et al., 2023; Fang et al., 2023), which approximate the language model’s accuracy
while having lower memory and computation costs. Regarding the drug molecules, both GNN- and
Transformer-based methods, such as MRBDTA (Zhang et al., 2022), MolTrans (Huang et al., 2020b), and
MGraphDTA (Yang et al., 2022) prove promising in DTI tasks. This encourages us to leverage informa-
tion from hybrid perspectives, i.e., implicit structure (via attention in Transformers) and explicit structure
learning (via message passing along edges in GNNs).

Our model design, illustrated in Fig. 5, integrates these components. Specifically, for drug graphs, we
adopt a hybrid network that augments the self-attention mechanism with inter-atomic distances and graph
adjacency matrices (Maziarka et al., 2020), incorporating both 2D and 3D molecular structural information.
Given the projections of molecular input at an attention head, i.e.Q, K, V ∈ RN×d, the adjacent matrix
A ∈ {0, 1}N×N , and the inter-atomic distances matrix D ∈ RN×N obtained using RDkit, the augmented
attention is calculated as follows:

Multi-Attn = (λa · softmax(QKT/
√

d) + λdg(D) + λgA)V, (6)

where g(·) is a row-wise softmax function, and λa, λd and λg denote scalars weighting the self-attention,
distance, and adjacency matrices, respectively. Besides the implicit and explicit structure learning, we
integrate the features from drug SMILES. It is notable that simply utilizing the SMILES representation
extracted from a Transformer for downstream tasks does not perform as well as GNN. To align with the
protein embedding paradigm, we adopt a simple CNN to unearth potential SMILES information, as suggested
in Zhao et al. (2021). Subsequently, due to the fact that cross-attention is more complex and hard to optimize,
we implement a straightforward attention mechanism to integrate the representations of the drug graph and
SMILES, denoted as fG and fS , respectively, using a weighting parameter λ, as follows:

fD = λ · fG + (1 − λ) · fS , λ = MLP (MLP(fG) + MLP(fS)) . (7)

Finally, the prediction is obtained by processing the concatenated protein and drug representations through
a task-relevant head, as shown in Fig. 5

Novelty. As opposed to the previous strategy, which heuristically stacked a large amount of modules of
different types, our model design is driven by systematic benchmarking and empirical insights. Through ex-
tensive experiments under fair and controlled conditions, we identify key encoder and featurization strategies
that consistently outperform others. Notably, we disentangle and quantify the distinct molecular features.
For instance, atomic properties and hydrogen information significantly enhance predictive performance, while
adding electron properties may introduce noise.

Thus, our combo is not merely an ad hoc combination but a carefully validated design that effectively obtains
a superior balance between accuracy and computational efficiency on both classification and regression tasks.
The clear empirical guidance to model design offered through this study helps to establish a more principled
framework for future work in drug-target interaction modeling and provides a robust, reproducible new
baseline for the community.

Benchmark Comparison to State-of-the-Art Frameworks. We compare the proposed combos with
the SOTA frameworks in Tables 1 and 2, and Figures 3 and 4. It is observed that our model consistently
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Figure 4: Convergence curves for five selected methods.

achieves the best performance in the regression tasks across three datasets and nearly outperforms most
methods in classification tasks. By leveraging the physical conformation information from the molecular
graph, our combos converge faster than the other two Transformer-based methods, MRBDTA (Zhang et al.,
2022) and TDGraphDTA (Zhu et al., 2023), particularly on the KIBA dataset. Moreover, our model uses
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three times less peak memory and fewer parameters than other Transformer-based methods, enabling faster
computation and reduced storage requirements.

6 Conclusion

In this work, we establish a benchmark with fair and consistent experimental configurations, aiming to push
DTI research, particularly emphasizing the utilization of structural information. Our meticulous approach
has entailed thorough exploration of diverse encoder strategies and featurization techniques for both drug
molecules and proteins. Moreover, dozens of existing approaches across six representative datasets for both
regression and classification tasks are investigated on various metrics, including DTI classification and regres-
sion accuracy, peak memory usage, and model convergence. Provided with the comprehensive benchmark
results, we propose a novel approach that integrates the strengths of GNN and Transformer-based methods.
Our studies on benchmarking and rethinking help lay a solid, practical, and systematic foundation for the
DTI community and provide researchers with broader and deeper insights into the intricate dynamics of
drug-target interactions.
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A Related Works

GNN-based Methods GNNs play a crucial role in mining the intricate features of drug molecules for drug-
target prediction. Numerous models, including Graph Convolutional Network (GCN), Graph Isomorphism
Network (GIN), and Graph Attention Network (GAT), have been utilized (Nguyen et al., 2020; Quan et al.,
2019; Wang et al., 2023; Lin et al., 2020; Jin et al., 2021) to process and enhance drug features. Additionally,
MGraphDTA (Yang et al., 2022) employs a multi-scale GNN architecture, while DeepGLSTM (Mukher-
jee et al., 2022) leverages parallel GNN structures for drug representation. DeepNC integrates advanced
techniques from generalized aggregation networks (Li et al., 2020) and hypergraph convolution (Bai et al.,
2021) to improve feature extraction. BACPI (Li et al., 2022) develops a bi-directional attention network to
integrate the representations of drug molecules and proteins, enhancing their mutual interaction. Besides,
BridgeDPI (Wu et al., 2022) innovates by incorporating bridging nodes between proteins and drugs, utilizing
a three-layer GNN for graph embeddings.

Transformer-based Methods Transformers, known for their efficacy in handling sequence data, are ex-
tensively applied in drug and protein feature processing. For instance, models like MolTrans (Huang et al.,
2020b) and FOTFCPI (Yin et al., 2024) employ self-attention mechanisms to refine embeddings by focusing
on drug and protein substructures. MRBDTA (Zhang et al., 2022) uses multi-head attention and skip con-
nection to enhance drug and protein representation. Additionally, a cross-attention mechanism (Pan et al.,
2023b; Kurata & Tsukiyama, 2022) is employed to facilitate the integration of drug and protein features, en-
abling effective mutual querying. TDGraphDTA (Zhu et al., 2023) captures contextual relationships between
molecular substructures by using a multi-head cross-attention mechanism and graph optimization. Lastly,
DrugormerDTI (Hu et al., 2023) incorporates degree centrality with positional information to highlight the
positional relevance of amino acids in proteins.

Input and Featurization Structural information is crucial at the input stage for models such as BridgeDPI
(Wu et al., 2022). Various libraries, such as DGLGraph (Wang et al., 2019), DGL-lifeSci (Li et al., 2021),
and RDKit (Landrum et al., 2006), are employed to process input SMILES of drugs, with RDKit (Landrum
et al., 2006) being pivotal for converting SMILE strings into molecular graphs and extracting diverse chemical
properties, including chemical bonds, hydrogen presence, electron properties, and so on. Additionally, some
approaches (Wang et al., 2023; Lin et al., 2020; Li et al., 2022; Wang et al., 2021) incorporate molecular
fingerprints (Rogers & Hahn, 2010) to capture local chemical information. For protein sequences, typical
preprocessing involves converting amino acid sequences into N-grams (Pan et al., 2023a; Dong et al., 2005) or
integer (Nguyen et al., 2020) sequences. To enhance the expressiveness of embeddings, some models leverage
pre-trained Word2Vec (Mikolov et al., 2013; Quan et al., 2019; Wang et al., 2023; Li et al., 2022; Tsubaki
et al., 2018; Lin et al., 2020; Cheng et al., 2022) or pre-trained protein language models (Bal et al., 2024).
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B Model Descriptions

This section provides a comprehensive overview of 31 DTI methods, which are classified into GNN-based
and Transformer-based approaches. The DTI framework can be simplified as using two encoders to process
drugs and proteins separately, followed by an MLP to handle the integrated representations.

B.1 GNN-based Methods

B.1.1 GCN

⋆ GraphDTA-GCN (Nguyen et al., 2020): GraphDTA-GCN uses GCN to process the molecular graph, which
is derived from SMILES using the RDkit tool, and a simple CNN with integer encoding to handle protein
sequences.

⋆ GraphCPI-GCN (Quan et al., 2019): Similar to GraphDTA, GraphCPI-GCN employs 3-gram encoding
with pretrained Word2Vec to process protein sequences, followed by a CNN to handle the protein embeddings.

⋆ MGraphDTA (Yang et al., 2022): MGraphDTA utilizes a multiscale GCN, inspired by dense connections,
and a multiscale CNN to process drug graphs and protein sequences, respectively.

⋆ SAGDTA (Zhang et al., 2021): Similar to GraphDTA, SAGDTA introduces global or hierarchical pooling
after GCN to aggregate node representations weightedly.

⋆ EmbedDTI (Jin et al., 2021): For protein sequences, EmbedDTI leverages GloVe for pretraining amino
acid feature embeddings, which are then fed into a CNN. For drugs, it constructs both an atom graph and
a substructure graph to capture structural information at different levels, processed by GCN.

⋆ DeepGLSTM (Mukherjee et al., 2022): DeepGLSTM processes molecular graphs using a parallel GCN
module composed of three GCNs with different layers. For protein sequences, it adopts a bi-LSTM.

⋆ CPI (Tsubaki et al., 2018): CPI processes drug graphs using GCN. The protein sequence is handled via
n-gram with integer encoding, followed by a CNN.

⋆ DeepNC (Tran et al., 2022): DeepNC adopts advanced techniques from generalized aggregation networks
and hypergraph convolution, two variants of GCN, to capture the representations of drugs. For protein
sequences, it uses a simple CNN.

⋆ DrugBAN (Zhang et al., 2022): DrugBAN employs GCN and CNN blocks to encode molecular graphs and
proteins, respectively. Then they use a bilinear attention network module to learn local interactions between
the representations of drugs and proteins.

⋆ BridgeDPI (Wu et al., 2022): BridgeDPI innovates by constructing a learnable drugprotein association
network, which is processed using a three-layer GNN for graph embeddings. The learned representations for
drug and protein pairs are then concatenated for further processing.

⋆ ColdDTA (Fang et al., 2023): ColdDTA removes the subgraphs of drugs. For the model, they adopt the
dense GCN and multiscale CNN from MGraphDTA as the encoders for drugs and proteins, respectively.
Additionally, an attention-based method is developed to integrate representations for improved prediction.

⋆ IMAEN (Zhang et al., 2024): IMAEN employs a molecular augmentation mechanism to enhance molecular
structures by fully aggregating molecular node neighborhood information. It then uses multiscale GCN and
CNN for drug and protein processing, respectively.

⋆ GanDTI (Wang et al., 2021): Inspired by residual networks, GanDTI adds the input drug fingerprints to the
output of three GCN layers as graph node features and uses summation to get the final drug representation.

B.1.2 GAT

⋆ GraphDTA-GAT (Nguyen et al., 2020): GraphDTA-GAT adopts a GAT as the encoder for drugs, while
other components remain the same as in GraphDTA-GCN.
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⋆ GraphDTA-GATGCN (Nguyen et al., 2020): GraphDTA-GATGCN adopts a combination of GAT and
GCN as the encoder for drugs, while other components remain the same as in GraphDTA-GCN.

⋆ GraphCPI-GAT (Quan et al., 2019): GraphDTA-CPI adopts a GAT as the encoder for drugs, while other
components remain the same as in GraphCPI-GCN.

⋆ GraphCPI-GATGCN (Quan et al., 2019): GraphCPI-GATGCN adopts a combination of GAT and GCN
as the encoder for drugs, while other components remain the same as in GraphCPI-GCN.

⋆ BACPI (Li et al., 2022): BACPI adopts a GAT and a CNN for the features of the fingerprints and protein
sequence, respectively. These features are then fed into a bidirectional attention neural network to obtain
integrated representations.

⋆ PGraphDTA-CNN (Bal et al., 2024): PGraphDTA-CNN is a straightforward method that utilizes GAT
for drug feature extraction and CNN for protein sequences.

B.2 GIN

⋆ GraphDTA-GIN (Nguyen et al., 2020): GraphDTA-GAT adopts a GAT as the encoder for drugs, while
other components remain the same as in GraphDTA-GCN.

⋆ GraphCPI-GIN (Quan et al., 2019): GraphDTA-GAT adopts a GAT as the encoder for drugs, while other
components remain the same as in GraphDTA-GCN.

⋆ SubMDTA (Pan et al., 2023a): SubMDTA utilizes a pretrained GIN encoder obtained through contrastive
learning for the molecular graph. For protein sequences, it employs N-gram embedding with different N to
extract features at various scales, which are then processed by a BiLSTM.

B.3 Transformer-based Methods

B.3.1 Self-attention

⋆ AMMVF (Wang et al., 2023): AWMVF introduces the multi-head mechanism to GAT to learn features in
different spaces, and the update function is obtained through the concatenation of different heads’ outputs.

⋆ IIFDTI (Cheng et al., 2022): IIFDTI model attains the drug matrix and protein matrix and inputs them to
the bi-directional encoder-decoder block, which considers both the drug and target directions. The decoder
is mainly composed of multi-head attention.

⋆ MolTrans (Huang et al., 2020b): MolTrans uses Transformer encoder layers to augment the embedding of
substructure sequences of proteins and drugs.

⋆ FOTFCPI (Yin et al., 2024): Similar to MolTrans, FOTFCPI uses Transformer encoder layers to extract
the features of protein and drug fragments after the embedding layers.

⋆ TransformerCPI (Chen et al., 2020): TransformerCPI uses the decoder module of Transformer, which
takes in the atom sequence embedding processed by GCN and the protein sequence embedding processed by
word2vec and 1D CNN.

⋆ MRBDTA (Zhang et al., 2022): In MRBDTA, after the embedding layer, drug sequences are directly fed
into a block consisting of three Transformer encoders. The first encoder has a linear layer before it and
the following two encoders are parallel. The protein sequence is also processed by a block with a similar
structure.

B.3.2 Cross attention

⋆ CSDTI (Pan et al., 2023b): CSDTI uses cross-attention to fuse the deep representations of drugs and
proteins. Specifically, the different projections of protein features are used as keys and values, respectively,
while the projection of drug features is used as a query.
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⋆ TDGraphDTA(Zhu et al., 2023): TDGraphDTA uses a multi-head cross-attention mechanism with two
attention heads. Both drug and protein features are linearly transformed into query, key, and value matrices.
One cross-attention layer uses a drug query matrix, a protein key matrix, and a protein value matrix, while
its parallel counterparts use the rest of the matrices. The outputs of these two layers are concatenated and
fed into MLP to get the final output.
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C Datasets Descriptions

In this subsection, we provide a detailed description of the datasets for both the regression task and classifi-
cation task. The statistical characteristics of the datasets are summarized in Table 3. Here we present the
statistics after we cleaned the data as described in Section 3.

Table 3: Statistics of the benchmark dataset for two tasks.

Regression Classification
Davis KIBA BindingDB_Kd Human C. elegans DrugBank

Number of drugs 68 2068 10661 2726 1767 6645
Number of target proteins 379 229 1413 2001 1876 4256
Number of total samples 25772 117657 52284 5997 6552 34740

Label distribution of DVAIS, KIBA and Bind-
ing_Kd for regression tasks.

Label distribution of Human, C. elegans and Drug-
bank for classification tasks.

Figure 6: Label distribution of different datasets for two tasks.
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D Evaluation Metrics

We adopt distinct sets of metrics to evaluate the classification and regression tasks. In particular, considering
the classification task, we utilize the common metrics, including Area Under Receiver Operating Characteris-
tic Curve (ROC-AUC), Precision-Recall Area Under Curve (PR-AUC), LogAUC, accuracy, precision, recall,
and F1 score. For the continuous binding affinity regression, we benchmark the models using metrics of mean
squared error (MSE), mean absolute error (MAE), coefficient of determination (R2), Pearson correlation co-
efficient, concordance index (CI), and Spearman correlation coefficient. Each of these metrics offers unique
insights into different aspects of model performance, allowing us to assess predictive accuracy, correlation
with observed values, and consistency in ranking predictions.
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E Original Hyperparameter

To have a basic understanding of hyperparameters before greedy search and to find the optimized setting for
each model, we summarize the hyperparameters reported in the corresponding paper or codes in Table 4.

Table 4: Configurations of basic hyperparameters adopted to implement different approaches.

Category Models Batch size Total epoch Learning rate & Decay & Decay epoch Weight decay Dropout Optimizer

GNN

GraphDTA-GCN (Nguyen et al., 2020) 512 1000 0.0005 - 0.2 Adam
GraphDTA-GAT (Nguyen et al., 2020) 512 1000 0.0005 - 0.2 Adam
GraphDTA-GATGCN (Nguyen et al., 2020) 512 1000 0.0005 - 0.2 Adam
GraphDTA-GIN (Nguyen et al., 2020) 512 1000 0.0005 - 0.2 Adam
GraphCPI-GCN (Quan et al., 2019) 512 1000 0.0005 - 0.5 Adam
GraphCPI-GAT (Quan et al., 2019) 512 1000 0.0005 - 0.6 Adam
GraphCPI-GATGCN (Quan et al., 2019) 512 1000 0.0005 - - Adam
GraphCPI-GIN (Quan et al., 2019) 512 1000 0.0005 - 0.6 Adam
MGraphDTA (Yang et al., 2022) 512 3000 0.0005 - 0.1 Adam
SAGDTA (Zhang et al., 2021) 512 2000 0.001 - 0.1 Adam
EmbedDTI (Jin et al., 2021) 512 1500 0.0005 - 0.2 Adam
DeepGLSTM (Mukherjee et al., 2022) 512/128 1000 0.0005 - 0.2 Adam
CPI (Tsubaki et al., 2018) 1 100 0.001, 0.5, 10 1e-6 0 Adam
BACPI (Li et al., 2022) 16 20 0.0005, 0.5, 10 - 0.1 Adam
DeepNC-HGC (Tran et al., 2022) 256 1000 0.0005 - 0.2 Adam
DeepNC-GEN (Tran et al., 2022) 256 1000 0.0005 - 0.2 Adam
DrugBAN (Bai et al., 2023) 64 100 0.00005 - 0 Adam
GANDTI (Wang et al., 2021) 1 30/15 0.001 1e-6 0.5 Adam
PGraphDTA-CNN (Bal et al., 2024) 512 1500 0.0005 - 0.2 Adam
BridgeDPI (Wu et al., 2022) 512 100 0.001 - 0.5 Adam
ColdDTA (Fang et al., 2023) 128 700/300 0.0003 - 0 Adam
SubMDTA (Pan et al., 2023a) 512 1200 0.0005 - 0.2 Adam
IMAEN (Zhang et al., 2024) 128 1000 0.0005 - 0.2 Adam

Transformer

CSDTI (Pan et al., 2023b) 256 3000 0.0005 - 0.2 Adam
AMMVF (Wang et al., 2023) 32 40 0.001, 0.5, 5 1e-4 0.1 Adam
TDGraphDTA (Zhu et al., 2023) 1024 3000 0.0005 - 0.1 Adam
IIFDTI (Cheng et al., 2022) 64 200 0.001 1e-6 0.2 AdamW
ICAN (Kurata & Tsukiyama, 2022) 128 50 0.001 - 0.1 Adam
MolTrans (Huang et al., 2020b) 64 30 0.00001 - 0.1 Adam
TransformerCPI (Chen et al., 2020) 8 40 0.0001, 0.5, 5 1e-4 0.2 RAdam
MRBDTA (Zhang et al., 2022) 1024/256 600/300 0.001 - 0.1 Adam
FOTFCPI (Yin et al., 2024) 64 100 0.0001 - 0.1 Adam
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F Full experiment

To evaluate the model’s best performance, based on the hyperparameters given in its paper or codes, we
found the optimized hyperparameters for each model. On top of the mean value, we also provide the standard
deviation across five-fold. The complete result on the regression task is shown in Table 5, and the complete
result on the classification task is shown in Table 6.

Table 5: Regression task benchmark on DAVIS, KIBA, and BindingDB datasets, respectively.

Category Models DAVIS KIBA BindingDB
MSE MAE R2 PCC CI Spearman MSE (×10−2) MAE R2 PCC CI Spearman MSE MAE R2 PCC CI Spearman

GNN

GraphDTA-GCN 0.315 ± 0.019 0.332 ± 0.017 0.531 ± 0.028 0.734 ± 0.018 0.840 ± 0.006 0.605 ± 0.010 0.279 ± 0.059 0.041 ± 0.005 −2.114 ± 0.662 0.112 ± 0.026 0.555 ± 0.014 0.156 ± 0.039 0.609 ± 0.033 0.505 ± 0.028 0.669 ± 0.018 0.820 ± 0.011 0.837 ± 0.007 0.744 ± 0.011
GraphDTA-GAT 0.382 ± 0.043 0.380 ± 0.025 0.431 ± 0.064 0.671 ± 0.039 0.828 ± 0.014 0.588 ± 0.024 0.428 ± 0.154 0.051 ± 0.011 −3.769 ± 1.712 0.073 ± 0.061 0.534 ± 0.026 0.098 ± 0.074 1.020 ± 0.032 0.676 ± 0.005 0.445 ± 0.018 0.707 ± 0.035 0.786 ± 0.017 0.653 ± 0.031
GraphDTA-GATGCN 0.306 ± 0.011 0.325 ± 0.013 0.544 ± 0.017 0.741 ± 0.013 0.847 ± 0.003 0.617 ± 0.006 0.311 ± 0.234 0.041 ± 0.018 −2.467 ± 2.604 0.197 ± 0.254 0.578 ± 0.094 0.210 ± 0.240 0.574 ± 0.032 0.478 ± 0.027 0.687 ± 0.017 0.831 ± 0.011 0.844 ± 0.007 0.756 ± 0.012
GraphDTA-GIN 0.253 ± 0.010 0.295 ± 0.014 0.623 ± 0.015 0.791 ± 0.008 0.861 ± 0.006 0.638 ± 0.009 0.255 ± 0.007 0.039 ± 0.006 −1.840 ± 0.779 0.124 ± 0.037 0.553 ± 0.019 0.149 ± 0.052 0.563 ± 0.038 0.494 ± 0.023 0.693 ± 0.021 0.836 ± 0.012 0.842 ± 0.007 0.756 ± 0.011
GraphCPI-GCN 0.394 ± 0.046 0.401 ± 0.025 0.414 ± 0.068 0.652 ± 0.051 0.806 ± 0.016 0.550 ± 0.027 1.185 ± 1.720 0.066 ± 0.057 −12.202 ± 19.159 0.228 ± 0.253 0.602 ± 0.104 0.272 ± 0.270 1.199 ± 0.040 0.756 ± 0.019 0.347 ± 0.022 0.606 ± 0.026 0.727 ± 0.015 0.533 ± 0.033
GraphCPI-GAT 0.612 ± 0.038 0.501 ± 0.021 0.089 ± 0.056 0.419 ± 0.135 0.718 ± 0.069 0.396 ± 0.123 4.558 ± 2.116 0.168 ± 0.048 −49.762 ± 23.563 −0.021 ± 0.023 0.494 ± 0.013 0.031 ± 0.024 1.199 ± 0.040 0.756 ± 0.019 0.347 ± 0.022 0.606 ± 0.026 0.727 ± 0.015 0.533 ± 0.033
GraphCPI-GATGCN 0.338 ± 0.013 0.364 ± 0.007 0.496 ± 0.019 0.708 ± 0.012 0.838 ± 0.004 0.604 ± 0.007 0.445 ± 0.081 0.051 ± 0.005 −3.957 ± 0.907 0.063 ± 0.050 0.522 ± 0.025 0.081 ± 0.045 0.629 ± 0.012 0.520 ± 0.011 0.657 ± 0.007 0.813 ± 0.005 0.834 ± 0.004 0.739 ± 0.007
GraphCPI-GIN 0.274 ± 0.009 0.331 ± 0.007 0.593 ± 0.013 0.773 ± 0.008 0.851 ± 0.008 0.622 ± 0.013 1.681 ± 0.946 0.091 ± 0.042 −17.724 ± 10.533 0.142 ± 0.220 0.553 ± 0.094 0.149 ± 0.246 0.557 ± 0.017 0.475 ± 0.016 0.696 ± 0.009 0.838 ± 0.006 0.847 ± 0.003 0.760 ± 0.006
MGraphDTA 0.232 ± 0.012 0.268 ± 0.008 0.655 ± 0.018 0.812 ± 0.011 0.869 ± 0.007 0.650 ± 0.011 0.032 ± 0.012 0.011 ± 0.002 0.642 ± 0.133 0.803 ± 0.079 0.832 ± 0.040 0.793 ± 0.070 0.529 ± 0.011 0.444 ± 0.025 0.712 ± 0.006 0.847 ± 0.005 0.852 ± 0.005 0.769 ± 0.008
SAGDTA 0.324 ± 0.064 0.329 ± 0.041 0.518 ± 0.096 0.723 ± 0.065 0.833 ± 0.027 0.594 ± 0.044 0.065 ± 0.008 0.017 ± 0.002 0.279 ± 0.085 0.541 ± 0.085 0.713 ± 0.032 0.561 ± 0.075 0.529 ± 0.011 0.444 ± 0.025 0.712 ± 0.006 0.847 ± 0.005 0.852 ± 0.005 0.769 ± 0.008
EmbedDTI 0.280 ± 0.024 0.310 ± 0.028 0.583 ± 0.036 0.764 ± 0.023 0.851 ± 0.009 0.623 ± 0.013 0.289 ± 0.142 0.041 ± 0.012 −2.217 ± 1.579 0.131 ± 0.090 0.558 ± 0.038 0.164 ± 0.106 0.542 ± 0.019 0.446 ± 0.021 0.705 ± 0.010 0.843 ± 0.006 0.850 ± 0.004 0.767 ± 0.007
DeepGLSTM 0.316 ± 0.023 0.322 ± 0.024 0.529 ± 0.035 0.732 ± 0.022 0.841 ± 0.007 0.609 ± 0.011 8.539 ± 7.479 0.243 ± 0.155 −94.109 ± 83.400 0.040 ± 0.083 0.514 ± 0.036 0.071 ± 0.078 0.594 ± 0.061 0.474 ± 0.046 0.677 ± 0.033 0.825 ± 0.021 0.840 ± 0.013 0.750 ± 0.021
CPI 0.402 ± 0.082 0.393 ± 0.054 0.401 ± 0.122 0.629 ± 0.101 0.811 ± 0.033 0.560 ± 0.055 0.052 ± 0.003 0.161 ± 0.008 0.416 ± 0.036 0.654 ± 0.032 0.734 ± 0.037 0.605 ± 0.088 0.762 ± 0.165 0.565 ± 0.068 0.585 ± 0.090 0.768 ± 0.063 0.815 ± 0.028 0.704 ± 0.054
BACPI 0.334 ± 0.015 0.323 ± 0.034 0.502 ± 0.023 0.717 ± 0.014 0.827 ± 0.006 0.584 ± 0.010 0.031 ± 0.004 0.011 ± 0.001 0.658 ± 0.043 0.820 ± 0.019 0.831 ± 0.020 0.798 ± 0.032 0.550 ± 0.010 0.436 ± 0.005 0.700 ± 0.006 0.839 ± 0.003 0.845 ± 0.002 0.759 ± 0.003
DeepNC-HGC 0.309 ± 0.025 0.331 ± 0.022 0.541 ± 0.037 0.738 ± 0.025 0.841 ± 0.005 0.608 ± 0.008 0.080 ± 0.003 0.019 ± 0.001 0.110 ± 0.036 0.342 ± 0.041 0.667 ± 0.022 0.448 ± 0.048 0.572 ± 0.011 0.486 ± 0.010 0.689 ± 0.006 0.833 ± 0.005 0.844 ± 0.003 0.757 ± 0.005
DeepNC-GEN 0.270 ± 0.012 0.298 ± 0.012 0.597 ± 0.017 0.776 ± 0.012 0.852 ± 0.009 0.624 ± 0.014 0.135 ± 0.045 0.027 ± 0.006 −0.509 ± 0.505 0.266 ± 0.073 0.608 ± 0.037 0.301 ± 0.097 0.578 ± 0.020 0.474 ± 0.012 0.685 ± 0.011 0.830 ± 0.006 0.840 ± 0.003 0.749 ± 0.005
DrugBAN 0.242 ± 0.007 0.272 ± 0.007 0.640 ± 0.010 0.801 ± 0.007 0.869 ± 0.003 0.651 ± 0.005 0.029 ± 0.003 0.011 ± 0.001 0.676 ± 0.032 0.826 ± 0.020 0.832 ± 0.013 0.800 ± 0.022 0.465 ± 0.018 0.420 ± 0.016 0.747 ± 0.010 0.865 ± 0.006 0.862 ± 0.003 0.787 ± 0.006
GANDTI 0.318 ± 0.018 0.301 ± 0.021 0.527 ± 0.027 0.732 ± 0.016 0.844 ± 0.006 0.616 ± 0.013 0.030 ± 0.002 0.011 ± 0.000 0.662 ± 0.026 0.816 ± 0.016 0.831 ± 0.007 0.800 ± 0.011 0.621 ± 0.012 0.489 ± 0.007 0.662 ± 0.006 0.815 ± 0.003 0.836 ± 0.002 0.741 ± 0.005
BridgeDPI 1.241 ± 1.432 0.705 ± 0.600 −0.848 ± 2.133 0.657 ± 0.209 0.827 ± 0.078 0.581 ± 0.128 0.325 ± 0.109 0.010 ± 0.000 0.638 ± 0.121 0.821 ± 0.038 0.857 ± 0.001 0.839 ± 0.002 0.514 ± 0.011 0.413 ± 0.006 0.720 ± 0.006 0.853 ± 0.003 0.861 ± 0.002 0.783 ± 0.003
ColdDTA 0.220 ± 0.009 0.259 ± 0.007 0.672 ± 0.014 0.820 ± 0.009 0.880 ± 0.004 0.666 ± 0.006 0.110 ± 0.029 0.026 ± 0.003 −0.224 ± 0.329 0.441 ± 0.217 0.673 ± 0.079 0.459 ± 0.191 0.463 ± 0.008 0.391 ± 0.007 0.748 ± 0.004 0.866 ± 0.002 0.866 ± 0.001 0.789 ± 0.002
SubMDTA 0.289 ± 0.012 0.353 ± 0.020 0.570 ± 0.018 0.766 ± 0.012 0.841 ± 0.007 0.604 ± 0.012 0.029 ± 0.002 0.011 ± 0.001 0.678 ± 0.025 0.825 ± 0.015 0.836 ± 0.011 0.805 ± 0.018 0.532 ± 0.032 0.476 ± 0.026 0.710 ± 0.017 0.845 ± 0.010 0.852 ± 0.006 0.772 ± 0.011
IMAEN 0.230 ± 0.009 0.245 ± 0.004 0.657 ± 0.014 0.812 ± 0.008 0.874 ± 0.004 0.658 ± 0.007 0.046 ± 0.018 0.014 ± 0.003 0.484 ± 0.196 0.684 ± 0.176 0.781 ± 0.056 0.697 ± 0.121 0.479 ± 0.012 0.399 ± 0.008 0.739 ± 0.006 0.861 ± 0.004 0.863 ± 0.002 0.788 ± 0.005

Transformer

CSDTI 0.331 ± 0.012 0.339 ± 0.020 0.508 ± 0.017 0.720 ± 0.009 0.832 ± 0.005 0.593 ± 0.008 0.088 ± 0.004 0.020 ± 0.001 0.014 ± 0.041 0.273 ± 0.084 0.628 ± 0.047 0.350 ± 0.124 0.768 ± 0.021 0.572 ± 0.012 0.582 ± 0.012 0.765 ± 0.008 0.805 ± 0.004 0.689 ± 0.006
TDGraphDTA 0.222 ± 0.005 0.265 ± 0.007 0.669 ± 0.008 0.820 ± 0.004 0.653 ± 0.011 0.871 ± 0.007 0.091 ± 0.019 0.022 ± 0.003 −0.009 ± 0.209 0.330 ± 0.117 0.327 ± 0.125 0.619 ± 0.046 0.497 ± 0.016 0.418 ± 0.010 0.729 ± 0.009 0.855 ± 0.005 0.777 ± 0.005 0.857 ± 0.003
AMMVF 0.377 ± 0.030 0.365 ± 0.043 0.439 ± 0.044 0.669 ± 0.036 0.815 ± 0.005 0.586 ± 0.024 0.075 ± 0.019 0.019 ± 0.003 0.161 ± 0.221 0.679 ± 0.003 0.603 ± 0.141 0.659 ± 0.001 0.682 ± 0.015 0.517 ± 0.010 0.628 ± 0.008 0.796 ± 0.004 0.825 ± 0.002 0.721 ± 0.004
IIFDTI 0.313 ± 0.018 0.378 ± 0.039 0.534 ± 0.027 0.754 ± 0.008 0.836 ± 0.008 0.598 ± 0.013 0.054 ± 0.012 0.015 ± 0.001 0.398 ± 0.143 0.691 ± 0.050 0.767 ± 0.009 0.679 ± 0.021 0.634 ± 0.024 0.527 ± 0.020 0.655 ± 0.013 0.820 ± 0.009 0.832 ± 0.006 0.737 ± 0.009
ICAN 0.371 ± 0.013 0.359 ± 0.007 0.448 ± 0.020 0.681 ± 0.010 0.818 ± 0.006 0.582 ± 0.009 0.089 ± 0.000 0.021 ± 0.000 −2.052 ± 0.000 - 0.500 ± 0.000 - 0.747 ± 0.031 0.580 ± 0.018 0.593 ± 0.017 0.785 ± 0.006 0.813 ± 0.004 0.707 ± 0.005
MolTrans 0.410 ± 0.136 0.382 ± 0.045 0.390 ± 0.202 0.670 ± 0.107 0.812 ± 0.039 0.591 ± 0.042 4.314 ± 2.290 0.169 ± 0.055 −47.055 ± 25.515 0.093 ± 0.053 0.540 ± 0.021 0.112 ± 0.058 0.695 ± 0.183 0.523 ± 0.063 0.621 ± 0.100 0.803 ± 0.053 0.822 ± 0.009 0.745 ± 0.030
TransformerCPI 0.393 ± 0.022 0.445 ± 0.043 0.415 ± 0.032 0.695 ± 0.018 0.802 ± 0.008 0.542 ± 0.015 0.070 ± 0.003 0.019 ± 0.001 0.217 ± 0.033 0.779 ± 0.006 0.800 ± 0.002 0.742 ± 0.004 0.659 ± 0.040 0.548 ± 0.024 0.641 ± 0.022 0.825 ± 0.017 0.829 ± 0.013 0.727 ± 0.022
MRBDTA 0.241 ± 0.005 0.265 ± 0.006 0.640 ± 0.008 0.802 ± 0.003 0.870 ± 0.007 0.651 ± 0.011 0.050 ± 0.005 0.016 ± 0.001 0.360 ± 0.058 0.600 ± 0.050 0.735 ± 0.015 0.613 ± 0.031 0.507 ± 0.006 0.411 ± 0.006 0.724 ± 0.003 0.853 ± 0.002 0.862 ± 0.002 0.786 ± 0.003
FOTFCPI 0.305 ± 0.012 0.302 ± 0.019 0.546 ± 0.018 0.749 ± 0.011 0.839 ± 0.009 0.604 ± 0.015 0.229 ± 0.180 0.034 ± 0.016 −1.554 ± 2.003 0.235 ± 0.264 0.587 ± 0.086 0.414 ± 0.292 0.567 ± 0.008 0.432 ± 0.012 0.695 ± 0.004 0.832 ± 0.004 0.848 ± 0.006 0.763 ± 0.008
Our combos 0.211 ± 0.007 0.251 ± 0.008 0.685 ± 0.011 0.829 ± 0.006 0.886 ± 0.004 0.676 ± 0.007 0.026 ± 0.004 0.010 ± 0.001 0.710 ± 0.051 0.845 ± 0.031 0.849 ± 0.023 0.827 ± 0.037 0.461 ± 0.006 0.389 ± 0.007 0.749 ± 0.003 0.867 ± 0.002 0.869 ± 0.002 0.796 ± 0.003

Table 6: Classification task benchmark on Human, C.elegans, and Drugbank datasets, respectively.

Categories Models Human C.elegans Drugbank
ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1 ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1 ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1

GNN

GraphDTA-GCN 0.959 ± 0.002 0.950 ± 0.002 0.542 ± 0.023 0.898 ± 0.005 0.887 ± 0.016 0.884 ± 0.011 0.886 ± 0.004 0.974 ± 0.002 0.959 ± 0.004 0.587 ± 0.028 0.926 ± 0.003 0.911 ± 0.017 0.910 ± 0.020 0.910 ± 0.004 0.798 ± 0.013 0.757 ± 0.024 0.116 ± 0.046 0.751 ± 0.007 0.737 ± 0.011 0.778 ± 0.005 0.757 ± 0.005
GraphDTA-GAT 0.947 ± 0.004 0.938 ± 0.006 0.499 ± 0.042 0.882 ± 0.008 0.855 ± 0.018 0.884 ± 0.012 0.869 ± 0.007 0.965 ± 0.005 0.952 ± 0.007 0.564 ± 0.035 0.909 ± 0.011 0.887 ± 0.026 0.894 ± 0.015 0.890 ± 0.012 0.804 ± 0.005 0.788 ± 0.013 0.145 ± 0.028 0.751 ± 0.003 0.734 ± 0.009 0.784 ± 0.012 0.758 ± 0.001
GraphDTA-GATGCN 0.960 ± 0.003 0.952 ± 0.007 0.575 ± 0.039 0.907 ± 0.010 0.898 ± 0.018 0.892 ± 0.017 0.895 ± 0.011 0.978 ± 0.003 0.967 ± 0.005 0.641 ± 0.053 0.928 ± 0.005 0.909 ± 0.011 0.916 ± 0.011 0.913 ± 0.006 0.817 ± 0.008 0.787 ± 0.014 0.148 ± 0.046 0.765 ± 0.004 0.749 ± 0.003 0.795 ± 0.007 0.771 ± 0.005
GraphDTA-GIN 0.949 ± 0.007 0.936 ± 0.007 0.491 ± 0.038 0.885 ± 0.011 0.879 ± 0.026 0.859 ± 0.011 0.869 ± 0.011 0.977 ± 0.003 0.970 ± 0.004 0.671 ± 0.058 0.929 ± 0.005 0.910 ± 0.016 0.919 ± 0.012 0.915 ± 0.005 0.850 ± 0.001 0.845 ± 0.003 0.246 ± 0.038 0.783 ± 0.006 0.776 ± 0.011 0.796 ± 0.011 0.785 ± 0.005
GraphCPI-GCN 0.949 ± 0.004 0.934 ± 0.008 0.478 ± 0.047 0.890 ± 0.003 0.865 ± 0.016 0.893 ± 0.024 0.879 ± 0.005 0.968 ± 0.004 0.949 ± 0.006 0.535 ± 0.041 0.913 ± 0.010 0.898 ± 0.024 0.891 ± 0.016 0.894 ± 0.011 0.772 ± 0.007 0.725 ± 0.011 0.099 ± 0.010 0.739 ± 0.005 0.717 ± 0.008 0.788 ± 0.003 0.750 ± 0.004
GraphCPI-GAT 0.921 ± 0.003 0.903 ± 0.006 0.364 ± 0.022 0.859 ± 0.007 0.817 ± 0.015 0.878 ± 0.014 0.847 ± 0.006 0.935 ± 0.008 0.909 ± 0.010 0.417 ± 0.032 0.876 ± 0.006 0.834 ± 0.011 0.871 ± 0.015 0.852 ± 0.008 0.756 ± 0.006 0.723 ± 0.009 0.082 ± 0.008 0.709 ± 0.006 0.678 ± 0.007 0.795 ± 0.011 0.732 ± 0.006
GraphCPI-GATGCN 0.955 ± 0.004 0.944 ± 0.005 0.523 ± 0.043 0.899 ± 0.006 0.881 ± 0.025 0.894 ± 0.018 0.887 ± 0.005 0.970 ± 0.002 0.954 ± 0.005 0.553 ± 0.030 0.916 ± 0.004 0.900 ± 0.029 0.898 ± 0.038 0.898 ± 0.007 0.788 ± 0.010 0.745 ± 0.015 0.096 ± 0.013 0.748 ± 0.005 0.731 ± 0.005 0.783 ± 0.013 0.756 ± 0.006
GraphCPI-GIN 0.941 ± 0.005 0.924 ± 0.006 0.427 ± 0.028 0.874 ± 0.007 0.860 ± 0.016 0.856 ± 0.018 0.858 ± 0.008 0.971 ± 0.003 0.957 ± 0.006 0.575 ± 0.050 0.924 ± 0.008 0.907 ± 0.016 0.908 ± 0.014 0.907 ± 0.009 0.838 ± 0.012 0.831 ± 0.022 0.214 ± 0.051 0.775 ± 0.010 0.765 ± 0.017 0.793 ± 0.008 0.778 ± 0.006
MGraphDTA 0.960 ± 0.004 0.953 ± 0.003 0.542 ± 0.030 0.905 ± 0.007 0.889 ± 0.019 0.898 ± 0.019 0.893 ± 0.007 0.983 ± 0.002 0.976 ± 0.004 0.698 ± 0.050 0.943 ± 0.004 0.926 ± 0.005 0.935 ± 0.004 0.931 ± 0.004 0.879 ± 0.004 0.878 ± 0.004 0.303 ± 0.023 0.800 ± 0.004 0.782 ± 0.016 0.831 ± 0.020 0.806 ± 0.003
SAGDTA 0.957 ± 0.005 0.947 ± 0.008 0.510 ± 0.059 0.901 ± 0.005 0.901 ± 0.018 0.874 ± 0.021 0.887 ± 0.006 0.966 ± 0.006 0.956 ± 0.010 0.603 ± 0.064 0.912 ± 0.014 0.883 ± 0.021 0.904 ± 0.020 0.894 ± 0.017 0.819 ± 0.009 0.809 ± 0.010 0.161 ± 0.010 0.752 ± 0.010 0.744 ± 0.016 0.770 ± 0.019 0.756 ± 0.010
EmbedDTI 0.958 ± 0.003 0.947 ± 0.003 0.550 ± 0.010 0.901 ± 0.005 0.891 ± 0.018 0.886 ± 0.018 0.888 ± 0.006 0.975 ± 0.003 0.965 ± 0.005 0.641 ± 0.056 0.924 ± 0.002 0.899 ± 0.007 0.918 ± 0.009 0.908 ± 0.002 0.815 ± 0.007 0.785 ± 0.014 0.136 ± 0.043 0.758 ± 0.005 0.744 ± 0.014 0.787 ± 0.018 0.765 ± 0.003
DeepGLSTM 0.958 ± 0.004 0.950 ± 0.008 0.571 ± 0.044 0.903 ± 0.007 0.891 ± 0.018 0.890 ± 0.015 0.890 ± 0.008 0.975 ± 0.004 0.963 ± 0.007 0.619 ± 0.048 0.923 ± 0.006 0.906 ± 0.014 0.907 ± 0.013 0.906 ± 0.007 0.796 ± 0.014 0.757 ± 0.022 0.145 ± 0.048 0.745 ± 0.007 0.730 ± 0.010 0.775 ± 0.012 0.752 ± 0.006
CPI 0.951 ± 0.012 0.948 ± 0.012 0.579 ± 0.078 0.900 ± 0.010 0.890 ± 0.013 0.884 ± 0.018 0.887 ± 0.012 0.955 ± 0.005 0.944 ± 0.011 0.547 ± 0.079 0.913 ± 0.007 0.904 ± 0.001 0.881 ± 0.019 0.893 ± 0.010 0.739 ± 0.087 0.756 ± 0.074 0.162 ± 0.069 0.678 ± 0.072 0.666 ± 0.064 0.712 ± 0.097 0.687 ± 0.074
BACPI 0.947 ± 0.003 0.938 ± 0.005 0.478 ± 0.045 0.905 ± 0.007 0.889 ± 0.014 0.898 ± 0.010 0.893 ± 0.008 0.975 ± 0.003 0.967 ± 0.007 0.638 ± 0.077 0.936 ± 0.005 0.932 ± 0.009 0.910 ± 0.010 0.921 ± 0.006 0.849 ± 0.004 0.836 ± 0.005 0.289 ± 0.010 0.776 ± 0.009 0.762 ± 0.013 0.803 ± 0.016 0.782 ± 0.008
DeepNC-HGC 0.932 ± 0.009 0.913 ± 0.010 0.420 ± 0.036 0.861 ± 0.015 0.838 ± 0.019 0.853 ± 0.014 0.845 ± 0.016 0.970 ± 0.003 0.947 ± 0.007 0.477 ± 0.025 0.918 ± 0.004 0.881 ± 0.023 0.927 ± 0.032 0.903 ± 0.006 0.809 ± 0.006 0.777 ± 0.006 0.145 ± 0.032 0.752 ± 0.006 0.731 ± 0.009 0.795 ± 0.011 0.762 ± 0.006
DeepNC-GEN 0.961 ± 0.002 0.954 ± 0.003 0.591 ± 0.038 0.907 ± 0.006 0.900 ± 0.020 0.890 ± 0.020 0.894 ± 0.006 0.980 ± 0.002 0.972 ± 0.004 0.703 ± 0.060 0.932 ± 0.005 0.916 ± 0.009 0.918 ± 0.021 0.917 ± 0.008 0.813 ± 0.007 0.803 ± 0.018 0.170 ± 0.045 0.736 ± 0.015 0.704 ± 0.025 0.817 ± 0.025 0.756 ± 0.007
DrugBAN 0.974 ± 0.002 0.971 ± 0.004 0.688 ± 0.050 0.920 ± 0.005 0.905 ± 0.011 0.915 ± 0.007 0.910 ± 0.005 0.982 ± 0.002 0.974 ± 0.008 0.690 ± 0.082 0.946 ± 0.004 0.930 ± 0.013 0.940 ± 0.012 0.935 ± 0.005 0.876 ± 0.004 0.881 ± 0.006 0.303 ± 0.028 0.799 ± 0.008 0.788 ± 0.021 0.815 ± 0.020 0.801 ± 0.005
GANDTI 0.970 ± 0.002 0.967 ± 0.002 0.676 ± 0.033 0.917 ± 0.004 0.913 ± 0.010 0.899 ± 0.007 0.906 ± 0.004 0.967 ± 0.003 0.963 ± 0.004 0.691 ± 0.052 0.919 ± 0.007 0.905 ± 0.017 0.897 ± 0.008 0.901 ± 0.007 0.836 ± 0.014 0.832 ± 0.026 0.226 ± 0.038 0.752 ± 0.008 0.730 ± 0.017 0.799 ± 0.015 0.763 ± 0.004
BridgeDPI 0.957 ± 0.012 0.950 ± 0.014 0.564 ± 0.065 0.887 ± 0.021 0.849 ± 0.042 0.908 ± 0.012 0.877 ± 0.020 0.960 ± 0.004 0.943 ± 0.010 0.514 ± 0.066 0.882 ± 0.034 0.860 ± 0.081 0.869 ± 0.101 0.857 ± 0.040 0.726 ± 0.076 0.735 ± 0.062 0.138 ± 0.028 0.644 ± 0.087 0.632 ± 0.095 0.774 ± 0.120 0.685 ± 0.047
ColdDTA 0.971 ± 0.002 0.967 ± 0.003 0.635 ± 0.056 0.922 ± 0.009 0.921 ± 0.015 0.903 ± 0.013 0.912 ± 0.010 0.983 ± 0.003 0.978 ± 0.004 0.728 ± 0.059 0.947 ± 0.002 0.937 ± 0.011 0.935 ± 0.012 0.936 ± 0.002 0.885 ± 0.004 0.884 ± 0.006 0.282 ± 0.021 0.813 ± 0.005 0.802 ± 0.008 0.830 ± 0.002 0.816 ± 0.004
SubMDTA 0.971 ± 0.003 0.964 ± 0.004 0.610 ± 0.045 0.919 ± 0.006 0.911 ± 0.017 0.907 ± 0.017 0.909 ± 0.007 0.985 ± 0.001 0.981 ± 0.002 0.784 ± 0.042 0.945 ± 0.007 0.928 ± 0.013 0.939 ± 0.007 0.933 ± 0.008 0.861 ± 0.005 0.859 ± 0.005 0.269 ± 0.013 0.791 ± 0.005 0.783 ± 0.010 0.803 ± 0.012 0.793 ± 0.005
IMAEN 0.944 ± 0.004 0.933 ± 0.007 0.478 ± 0.052 0.878 ± 0.005 0.862 ± 0.021 0.865 ± 0.016 0.863 ± 0.003 0.967 ± 0.004 0.956 ± 0.006 0.605 ± 0.045 0.911 ± 0.007 0.884 ± 0.016 0.901 ± 0.011 0.892 ± 0.007 0.847 ± 0.004 0.837 ± 0.007 0.218 ± 0.028 0.777 ± 0.005 0.766 ± 0.012 0.795 ± 0.011 0.780 ± 0.004

Transformer

CSDTI 0.905 ± 0.007 0.883 ± 0.012 0.339 ± 0.035 0.846 ± 0.007 0.831 ± 0.009 0.821 ± 0.019 0.826 ± 0.009 0.910 ± 0.006 0.877 ± 0.010 0.344 ± 0.041 0.840 ± 0.011 0.805 ± 0.025 0.805 ± 0.010 0.805 ± 0.010 0.774 ± 0.011 0.744 ± 0.024 0.096 ± 0.029 0.721 ± 0.006 0.705 ± 0.009 0.757 ± 0.005 0.730 ± 0.004
TDGraphDTA 0.977 ± 0.002 0.973 ± 0.003 0.679 ± 0.035 0.927 ± 0.005 0.923 ± 0.011 0.911 ± 0.013 0.917 ± 0.005 0.984 ± 0.001 0.979 ± 0.002 0.739 ± 0.041 0.943 ± 0.007 0.950 ± 0.008 0.910 ± 0.025 0.929 ± 0.010 0.880 ± 0.006 0.882 ± 0.008 0.303 ± 0.028 0.805 ± 0.006 0.786 ± 0.014 0.836 ± 0.011 0.810 ± 0.003
AMMVF 0.962 ± 0.005 0.957 ± 0.008 0.576 ± 0.068 0.915 ± 0.007 0.904 ± 0.011 0.906 ± 0.024 0.905 ± 0.009 0.984 ± 0.005 0.977 ± 0.011 0.721 ± 0.130 0.948 ± 0.006 0.941 ± 0.018 0.934 ± 0.011 0.937 ± 0.007 0.692 ± 0.161 0.695 ± 0.149 0.115 ± 0.077 0.654 ± 0.088 0.643 ± 0.081 0.784 ± 0.121 0.696 ± 0.020
IIFDTI 0.973 ± 0.006 0.966 ± 0.010 0.647 ± 0.057 0.920 ± 0.006 0.916 ± 0.017 0.904 ± 0.027 0.909 ± 0.008 0.987 ± 0.002 0.981 ± 0.004 0.760 ± 0.073 0.948 ± 0.005 0.935 ± 0.015 0.939 ± 0.010 0.937 ± 0.005 0.849 ± 0.014 0.840 ± 0.024 0.204 ± 0.045 0.777 ± 0.010 0.763 ± 0.007 0.801 ± 0.015 0.782 ± 0.011
ICAN 0.971 ± 0.002 0.966 ± 0.006 0.668 ± 0.043 0.927 ± 0.005 0.921 ± 0.018 0.913 ± 0.013 0.917 ± 0.005 0.977 ± 0.004 0.971 ± 0.006 0.709 ± 0.044 0.942 ± 0.003 0.940 ± 0.010 0.919 ± 0.006 0.929 ± 0.004 0.839 ± 0.005 0.841 ± 0.004 0.276 ± 0.007 0.764 ± 0.005 0.754 ± 0.007 0.781 ± 0.005 0.768 ± 0.004
MolTrans 0.979 ± 0.003 0.975 ± 0.005 0.685 ± 0.071 0.931 ± 0.002 0.919 ± 0.015 0.927 ± 0.016 0.923 ± 0.002 0.980 ± 0.003 0.975 ± 0.004 0.715 ± 0.053 0.943 ± 0.004 0.939 ± 0.018 0.921 ± 0.015 0.930 ± 0.004 0.868 ± 0.004 0.873 ± 0.003 0.278 ± 0.006 0.795 ± 0.005 0.794 ± 0.010 0.796 ± 0.026 0.795 ± 0.009
TransformerCPI 0.968 ± 0.003 0.958 ± 0.006 0.553 ± 0.052 0.917 ± 0.004 0.911 ± 0.014 0.901 ± 0.010 0.906 ± 0.004 0.984 ± 0.001 0.977 ± 0.002 0.699 ± 0.018 0.941 ± 0.005 0.918 ± 0.014 0.939 ± 0.009 0.929 ± 0.006 0.874 ± 0.007 0.877 ± 0.008 0.292 ± 0.027 0.799 ± 0.008 0.786 ± 0.013 0.820 ± 0.011 0.803 ± 0.007
MRBDTA 0.971 ± 0.004 0.966 ± 0.006 0.625 ± 0.076 0.920 ± 0.007 0.916 ± 0.021 0.903 ± 0.019 0.909 ± 0.007 0.985 ± 0.002 0.983 ± 0.002 0.814 ± 0.058 0.953 ± 0.002 0.948 ± 0.008 0.939 ± 0.007 0.943 ± 0.002 0.866 ± 0.005 0.868 ± 0.007 0.273 ± 0.023 0.789 ± 0.006 0.781 ± 0.013 0.799 ± 0.009 0.790 ± 0.004
FOTFCPI 0.980 ± 0.003 0.978 ± 0.003 0.718 ± 0.037 0.937 ± 0.006 0.928 ± 0.017 0.931 ± 0.009 0.929 ± 0.006 0.987 ± 0.001 0.984 ± 0.003 0.781 ± 0.072 0.953 ± 0.003 0.950 ± 0.009 0.935 ± 0.009 0.942 ± 0.004 0.866 ± 0.002 0.867 ± 0.008 0.261 ± 0.029 0.790 ± 0.004 0.780 ± 0.007 0.806 ± 0.018 0.793 ± 0.006
Our combos 0.981 ± 0.003 0.979 ± 0.003 0.745 ± 0.042 0.936 ± 0.007 0.926 ± 0.012 0.929 ± 0.007 0.928 ± 0.008 0.987 ± 0.003 0.982 ± 0.004 0.732 ± 0.056 0.954 ± 0.005 0.950 ± 0.019 0.938 ± 0.014 0.944 ± 0.006 0.866 ± 0.007 0.862 ± 0.016 0.243 ± 0.042 0.793 ± 0.009 0.773 ± 0.017 0.825 ± 0.014 0.798 ± 0.005
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G Comparison of different featurization

In this section, we present the summarized featurization methods in Table 7, the detailed description of all
properties is shown in Table 8. Besides, an ablation study on featurization strategies is in Table 9.

Table 7: Summary of the featurization of the GNN-based model. Mol. Graphs means molecular graphs, and
both mean using molecular graphs and fingerprints.

Model Information Atomic Properties Hydrogen Information Electron Properties Stereochemistry Structure
Models Graph Atom Type Degree Implicit Valence Explicit Valence Hybridization Aromaticity Formal Charge # Atom # Hs # Explicit Hs # Implicit Hs # Radical Electrons Electron Affinity CIP Chirality Ring
GraphDTA Mol. Graphs 3 3 3 3 3
GraphCPI Mol. Graphs 3 3 3 3 3
MGraphDTA Mol. Graphs 3 3 3 3 3 3 3 3 3 3 3 3
SAGDTA Mol. Graphs 3 3 3 3 3
EmbedDTI Mol. Graphs 3 3 3 3 3 3 3 3 3
DeepGLSTM Mol. Graphs 3 3 3 3 3
CPI Fingerprints 3 3
BACPI Fingerprints 3 3
DeepNC Mol. Graphs 3 3 3 3 3
DrugBAN Mol. Graphs 3 3 3 3 3 3 3 3 3 3
GANDTI Fingerprints 3 3
PGraphDTA-CNN Mol. Graphs 3 3 3 3 3 3 3 3 3 3
BridgeDPI Mol. Graphs 3 3 3 3 3 3
ColdDTA Mol. Graphs 3 3 3 3 3 3 3
SubMDTA Mol. Graphs 3 3 3 3 3
IMAEN Mol. Graphs 3 3 3 3 3
CSDTI Mol. Graphs 3 3 3 3 3 3 3 3 3 3 3 3
TDGraphDTA Mol. Graphs 3 3 3 3 3
AMMVF Both 3 3 3 3 3 3 3
TransformerCPI Mol. Graphs 3 3 3 3 3 3 3 3 3

Table 8: Description of atomic and molecular properties for node featurization

Name Description
Atomic Properties

Atom Type Type of the atom (e.g., C, N, O, H)
Degree Number of directly bonded neighbors

Implicit Valence Number of implicit valence of the atom
Explicit Valence Number of explicit valence of the atom
Hybridization The state of hybridization (e.g., sp3, sp2)
Aromaticity Whether the atom is part of an aromatic system

Formal Charge The charge assigned to an atom
# Atom Total number of atoms

Hydrogen Information
# Hs Total number of hydrogens

# Explicit Hs Number of explicit hydrogens on the atom
# Implicit Hs Number of implicit hydrogens on the atom

Electron Properties
# Radical Electrons Number of radical electrons

Electron Affinity Tendency of an atom to accept electrons
Stereochemistry

CIP The CIP code (R or S) of the atom
Chirality If an atom is a possible chiral center

Structure
Ring Whether the atom is part of a ring structure
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Table 9: Extra Graph embedding feature exploration. Here Basic: {Atom Type, Degree, Implicit Valence,
Aromaticity, # Hs}

Models Intial Feature Regression Classification
MSE MAE R2 PCC CI Spearman ROC-AUC PR-AUC Range-AUC Acc. Precision Recall F1

GraphDTA

Basic 0.2771 0.2947 0.5873 0.7695 0.8521 0.6241 0.9170 0.8873 0.4830 0.9171 0.9204 0.9189 0.9194
Basic+AP 0.2772 0.2978 0.5873 0.7671 0.8496 0.6200 0.9153 0.8817 0.4517 0.9157 0.9099 0.9290 0.9191
Basic+HI 0.2783 0.2983 0.5855 0.7663 0.8483 0.6185 0.9211 0.8903 0.4815 0.9214 0.9188 0.9296 0.9241
Basic+EP 0.2775 0.3068 0.5868 0.7682 0.8499 0.6205 0.9165 0.8862 0.4795 0.9166 0.9185 0.9198 0.9191
Basic+Ste 0.2838 0.3030 0.5773 0.7624 0.8523 0.6254 0.9200 0.8905 0.4869 0.9200 0.9216 0.9235 0.9224
Basic+Str 0.2783 0.2991 0.5857 0.7668 0.8505 0.6228 0.9198 0.8865 0.4649 0.9202 0.9124 0.9351 0.9235
Basic+AP+HI 0.2851 0.3029 0.5755 0.7610 0.8504 0.6222 0.9163 0.8822 0.4629 0.9168 0.9094 0.9313 0.9201
Basic+AP+HI+EP 0.2845 0.2917 0.5763 0.7620 0.8510 0.6227 0.9140 0.8811 0.4580 0.9143 0.9115 0.9232 0.9173
Basic+AP+HI+EP+Ste 0.2811 0.3099 0.5814 0.7640 0.8500 0.6212 0.9192 0.8899 0.4853 0.9193 0.9218 0.9215 0.9216
Basic+AP+HI+EP+Ste+Str 0.2801 0.2916 0.5829 0.7659 0.8538 0.6278 0.9217 0.8905 0.4794 0.9220 0.9180 0.9319 0.9248

GraphCPI

Basic 0.3291 0.3388 0.5100 0.7265 0.8294 0.5885 0.9060 0.8706 0.4385 0.9064 0.9029 0.9169 0.9098
Basic+AP 0.3331 0.3389 0.5040 0.7198 0.8223 0.5761 0.9038 0.8657 0.4103 0.9043 0.8955 0.9218 0.9084
Basic+HI 0.3402 0.3457 0.4934 0.7157 0.8228 0.5769 0.9051 0.8713 0.4495 0.9052 0.9058 0.9094 0.9080
Basic+EP 0.3408 0.3505 0.4926 0.7123 0.8211 0.5749 0.9053 0.8713 0.4442 0.9055 0.9060 0.9111 0.9085
Basic+Ste 0.3398 0.3634 0.4940 0.7119 0.8274 0.5855 0.9061 0.8692 0.4261 0.9065 0.8992 0.9221 0.9104
Basic+Str 0.3419 0.3562 0.4909 0.7113 0.8226 0.5766 0.9066 0.8683 0.4079 0.9073 0.8957 0.9281 0.9115
Basic+AP+HI 0.3326 0.3471 0.5048 0.7212 0.8210 0.5734 0.9010 0.8659 0.4288 0.9012 0.9018 0.9071 0.9043
Basic+AP+HI+EP 0.3404 0.3476 0.4931 0.7150 0.8212 0.5748 0.9015 0.8612 0.3821 0.9022 0.8890 0.9258 0.9070
Basic+AP+HI+EP+Ste 0.3403 0.3445 0.4932 0.7111 0.8169 0.5671 0.9109 0.8763 0.4511 0.9113 0.9065 0.9229 0.9146
Basic+AP+HI+EP+Ste+Str 0.3469 0.3550 0.4834 0.7073 0.8228 0.5775 0.9134 0.8772 0.4440 0.9140 0.9033 0.9328 0.9178
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H Memory and Parameter Comparison

Table 10: Training time per epoch (s) and the max allocated memory (MB) for representative datasets on
both regression (Davis) and classification (Human) tasks when BS is 32.

Categories Models Regression Classification
Model parameter Memory Usage (MB) Time(s) Model parameter Memory Usage (MB) Run Time (s)

Graph

GraphDTA-GCN 7.87 86.45 8.92 7.87 86.33 2.43
GraphDTA-GAT 6.58 104.71 9.62 6.58 99.40 2.43

GraphDTA-GATGCN 18.12 148.25 8.37 18.12 145.13 2.35
GraphDTA-GIN 5.97 78.00 12.33 5.95 77.47 3.13
GraphCPI-GCN 10.46 98.13 7.02 10.48 63.37 1.92
GraphCPI-GAT 9.16 116.19 9.38 9.18 112.34 2.48

GraphCPI-GATGCN 20.70 158.21 9.47 20.73 156.22 2.20
GraphCPI-GIN 8.55 88.55 12.54 8.56 88.02 2.92
MGraphDTA 11.75 235.97 69.84 11.43 217.15 17.59

SAGDTA 7.45 88.31 20.87 7.44 87.54 4.34
EmbedDTI 16.97 152.55 17.80 16.97 - -

DeepGLSTM 131.92 1287.92 20.69 131.93 1287.16 11.22
CPI 0.37 14.00 11.29 0.6 14.82 2.69

BACPI 4.05 1051.91 43.27 6.13 1058.95 12.38
DeepNC-HGC 16.61 123.70 9.85 16.60 123.65 3.46
DeepNC-GEN 18.84 174.00 11.35 18.84 166.55 3.46

DrugBAN 4.10 940.22 30.06 4.10 940.23 7.84
GANDTI 1.48 35.89 6.01 2.43 39.95 1.54

PGraphDTA-CNN 9.03 102.85 13.71 9.03 - -
BridgeDPI 39.32 232.53 16.27 39.32 232.53 4.36
ColdDTA 13.14 282.74 72.98 13.14 262.91 18.56
SubMDTA 169.37 992.61 35.12 195.50 1095.73 8.49

IMAEN 10.43 174.34 35.77 10.43 172.86 4.41

Transformer

CSDTI 9.67 281.23 17.66 9.66 281.02 4.35
TDGraphDTA 8.62 247.23 116.38 8.62 236.02 28.43

AMMVF 6.68 17847.62 216.20 7.49 17850.79 57.99
IIFDTI 10.75 7946.92 141.12 10.75 11890.79 56.95
ICAN 63.89 649.55 12.44 63.89 648.67 2.84

MolTrans 239.73 10624.55 70.19 239.74 10624.55 25.06
TransformerCPI 4.44 1219.58 28.98 4.45 1219.60 7.17

MRBDTA 17.83 3893.76 66.47 17.84 3893.78 16.13
FOTFCPI 189.15 6780.35 58.75 189.15 6780.35 14.80

Our 19.02 1081.99 94.71 19.02 1082.68 13.68
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