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ABSTRACT

Graph Neural Networks have emerged as the most popular architecture for graph-
level learning, including graph classification and regression tasks, which fre-
quently arise in areas such as biochemistry and drug discovery. Achieving good
performance in practice requires careful model design. Due to gaps in our un-
derstanding of the relationship between model and data characteristics, this often
requires manual architecture and hyperparameter tuning. This is particularly pro-
nounced in graph-level tasks, due to much higher variation in the input data than
in node-level tasks. To work towards closing these gaps, we begin with a system-
atic analysis of individual performance in graph-level tasks. Our results establish
significant performance heterogeneity in both message-passing and transformer-
based architectures. We then investigate the interplay of model and data charac-
teristics as drivers of the observed heterogeneity. Our results suggest that graph
topology alone cannot explain heterogeneity. Using the Tree Mover’s Distance,
which jointly evaluates topological and feature information, we establish a link be-
tween class-distance ratios and performance heterogeneity in graph classification.
These insights motivate model and data preprocessing choices that account for
heterogeneity between graphs. We propose a selective rewiring approach, which
only targets graphs whose individual performance benefits from rewiring. We fur-
ther show that the optimal network depth depends on the graph’s spectrum, which
motivates a heuristic for choosing the number of GNN layers. Our experiments
demonstrate the utility of both design choices in practice.

1 INTRODUCTION

Graph Neural Networks (GNNs) have found widespread applications in the social, natural and engi-
neering sciences (Zitnik et al., 2018; Wu et al., 2022; Shlomi et al., 2020). Notable examples include
graph classification and regression tasks, which arise in drug discovery (Zitnik et al., 2018), protein
function prediction (Gligorijević et al., 2021), and the study of chemical reactions (Jin et al., 2017;
Coley et al., 2019), among others.

Most state of the art GNNs are based on message-passing or transformer-type architectures. In both
cases, careful model design and parameter choices are crucial for competitive performance in down-
stream tasks. A growing body of literature studies the relationship of model and data characteristics
in graph learning. This includes the study of challenges in encoding long-range dependencies, which
arise in shallow architectures due to under-reaching (Barceló et al., 2020) and in deep architectures
due to over-smoothing and over-squashing effects (Alon & Yahav, 2021; Li et al., 2018). A second
perspective evaluates a model’s (in)ability to encode certain structural functions due to limitations in
representational power (Xu et al., 2018). Some recent works have studied model and data character-
istics through classical complexity lenses, such as generalization (Garg et al., 2020; Le & Jegelka,
2024; Franks et al., 2024) and trainability (Kiani et al., 2024). While these results offer valuable
theoretical insights, their ability to directly guide design choices for specific datasets and tasks is
often limited. As a result, model design usually relies on manual hyperparameter tuning in practise.

In this work, we study the interplay of model and data characteristics from a different perspective.
We analyze the performance of a model on individual graphs with the goal of understanding varia-
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tions in optimal model design within data sets. We introduce heterogeneity profiles as a tool for sys-
tematically evaluating individual performance across graphs in a dataset. The analysis of the profiles
of several classification and regression benchmarks for both message-passing and transformer-based
architectures reveals significant performance heterogeneity in graph-level learning. We then investi-
gate how data and model characteristics drive this heterogeneity. A natural idea in this context is that
the topological properties of the graphs, along with their variation across the dataset, might explain
the observed heterogeneity. However, our results indicate that graph topology alone cannot explain
heterogeneity. We then analyze the datasets with the Tree Mover’s Distance (Chuang & Jegelka,
2022), a similarity measure that compares graphs using both topological and feature information.
Using this lens, we show that common graph-level classification benchmarks contain examples that
are more “similar” to graphs of a different label than to graphs with the same label. The prediction
stability of typical GNN architectures therefore makes it hard to classify these examples correctly.

Using these insights, we study data pre-processing and model design choices with an eye towards
heterogeneous graph-level effects. We first revisit graph rewiring, a pre-processing technique that
perturbs the edges of input graphs with the goal of mitigating over-smoothing and over-squashing.
We find that while some graphs benefit, the individual performance of others drops significantly
as a result of rewiring. Although we observe notable differences between rewiring techniques, the
general observation is consistent across approaches and data sets. Motivated by this observation, we
introduce a new “selective” rewiring approach that rewires only graphs that based on their topology
are likely to benefit. We further show that the optimal GNN depth varies between the graphs in a
dataset and depends on the spectrum of the input graph; hence, aligning spectra across graphs allows
for choosing a GNN depth that is close to optimal across the data set. We illustrate the utility of both
intervention techniques in experiments on several common graph benchmarks.

1.1 RELATED WORK

Performance heterogeneity The interplay of model and data characteristics in graph learning was
previously studied by Li et al. (2023); Liang et al. (2023), albeit only for node-level tasks. Li et al.
(2023) establish a link between a graph’s topological characteristics and performance heterogeneity.
To the best of our knowledge, no such study has been conducted for graph-level tasks. As we discuss
below, performance heterogeneity is linked to model generalization. Size generalization in GNNs
has been studied in (Yehudai et al., 2021; Maskey et al., 2022; Le & Jegelka, 2024). For a more
comprehensive overview of generalization results for GNNs, see also (Jegelka, 2022). Beyond graph
learning, performance heterogeneity has been studied through the lens of example difficulty (Kaplun
et al.) by analyzing a model’s performance on individual instances in the test data.

Graph Rewiring Several rewiring approaches have been studied in the context of mitigating over-
smoothing and over-squashing effects, most of which are motivated by topological graph character-
istics that can be used to characterize both effects. Notable examples include rewiring based on the
spectrum of the Graph Laplacian (Karhadkar et al., 2023; Arnaiz-Rodrı́guez et al., 2022), discrete
Ricci curvature (Topping et al., 2022; Nguyen et al., 2023; Fesser & Weber, 2024a), effective resis-
tance (Black et al., 2023), and random sparsification (Rong et al., 2019). When applied in graph-level
tasks, these preprocessing routines are applied to all input graphs. In contrast, Barbero et al. (2023)
propose a rewiring approach that balances mitigating over-smoothing and over-squashing and pre-
serving the structure of the input graph. A more nuanced analysis of the effectiveness of standard
rewiring approaches has been given in (Tortorella & Micheli, 2022; Tori et al., 2024).

1.2 SUMMARY OF CONTRIBUTIONS

Our main contributions are as follows:

1. We introduce graph-level heterogeneity profiles for analyzing performance variations of
GNNs on individual graphs in graph-level tasks. Our analysis suggests that both message-
passing and transformer-based GNNs display performance heterogeneity in classification
and regression tasks.

2. We provide evidence that topological properties alone cannot explain graph-level hetero-
geneity. Instead, we use the notion of the Tree Mover’s Distance to establish a link between
class-distance ratios and performance heterogeneity.
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3. We use these insights to derive lessons for architecture choices and data preprocessing.
Specifically, we show that the optimal GNN depth for individual graphs depends on their
spectrum and can vary across the data set. We propose a selective rewiring approach that
aligns the graphs’ spectra. In addition, we propose a heuristic for the optimal network depth
based on the graphs’ Fiedler value.

2 BACKGROUND AND NOTATION

Following standard convention, we denote GNN input graphs as G = (X,E) with node attributes
X ∈ R|V |×m and edges E ⊆ V × V , where V is the set of vertices of G.

2.1 GRAPH NEURAL NETWORKS

Message-Passing Graph Neural Networks Message-Passing (MP) (Gori et al., 2005; Hamilton
et al., 2017) has become one of the most popular learning paradigms in graph learning. Many state
of the art GNN architectures, such as GCN (Kipf & Welling, 2017), GIN (Xu et al., 2018) and
GAT (Veličković et al., 2018), implement MP by iteratively updating their nodes’ representation
based on the representations of their neighbors. Formally, let xl

v denote the representation of node
v at layer l. Then the updated representation in layer l + 1 (i.e., after one MP iteration) is given by

xl+1
v = ϕl

( ⊕
p∈Nv∪{v}

ψl

(
xl
p

) )
.

Here, ψl denotes an aggregation function (e.g., averaging) defined on the neighborhood of the anchor
node v, and ϕl an update function (usually an MLP with trainable parameters) that computes the
updated node representation. We refer to the number of MP iterations as the depth of the GNN.
Node representations are initialized by the node attributes in the input graph.

Transformer-based Graph Neural Networks Several transformer-based GNN (GT) architec-
tures have been proposed as an alternative to MPGNNs (Müller et al., 2023). They consist of stacked
blocks of multi-head attention layers followed by fully-connected feed-forward networks. Formally,
a single attention head in layer l computes node feature as

Attn(Xl) := softmax
(QKT

√
dk

)
V .

Here, the matrices the matrices Q := XlWQ, K := XlWK, V := XlWV are linear projections
of the node features; the softmax is applied row-wise. Multi-head attention concatenates several
such single-attention heads and projects their output into the feature space of Xl. Notable instances
of GTs include Graphormer (Ying et al., 2021) and GraphGPS (Rampášek et al., 2022).

A more detailed description of the GNN architectures used in this study can be found in Ap-
pendix A.1.

Graph Rewiring The topology of the input graph(s) has significant influence on the training dy-
namics of GNNs. Two notable phenomena in this context are over-smoothing and over-squashing.
Over-smoothing (Li et al., 2018) arises when the representations of dissimilar nodes become indis-
tinguishable as the number of layers increases. In contrast, over-squashing (Alon & Yahav, 2021)
is induced by “bottlenecks” in the information flow between distant nodes as the number of layers
increases. Both effects can limit the GNN’s ability to accurately encode long-range dependen-
cies in the learned node representations, which can negatively impact downstream performance.
Graph rewiring was introduced as a pre-processing routine for mitigating over-smoothing and over-
squashing by perturbing the edges of the input graph(s). A plethora of rewiring approaches, which
leverage a variety of topological graph characteristics, have been introduced. In this paper we con-
sider two rewiring approaches: FOSR (Karhadkar et al., 2023), which leverages the spectrum of the
Graph Laplacian, and BORF (Nguyen et al., 2023; Fesser & Weber, 2024a), which utilizes discrete
Ricci curvature. We defer a more detailed description of both approaches to Appendix A.2.
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2.2 TREE MOVER’S DISTANCE

The Tree Mover’s Distance (short: TMD) is a similarity measure on graphs that jointly evaluates
feature and topological information Chuang & Jegelka (2022). Like an MPGNN, it views a graph as
a set of computation trees. A node’s computation tree is constructed by adding the node’s neighbors
to the tree level by level. TMD compares graphs by characterizing the similarity of their computation
trees via hierarchical optimal transport: The similarity of two trees Tv , Tu is computed by comparing
their roots fv , fu and then recursively comparing their subtrees. We provide a formal definition of
the TMD in Appendix A.4.

3 ESTABLISHING GRAPH-LEVEL HETEROGENEITY

In this section, we establish the existence of performance heterogeneity in common graph classifica-
tion and regression tasks in both message-passing and transformer-based GNNs. We further provide
empirical evidence that topological features alone are not sufficient to explain these observations.

3.1 HETEROGENEITY PROFILES

To analyze performance heterogeneity, we compute heterogeneity profiles that show the average
individual test accuracy over 100 trials for each graph in the dataset. For each dataset considered,
we apply a random train/val/test split of 50/25/25 percent. We train the model for 300 epochs on the
training dataset and keep the model checkpoint with the highest validation accuracy (see Appendix
D for additional training details and hyperparameter choices). We then record this model’s error on
each of the graphs in the test dataset in an external file. We repeat this procedure until each graph has
been in the test dataset at least 100 times. For the graph classification tasks, we compute the average
graph-level accuracy (higher is better, denoted as ↑), and for each regression task the graph-level
MAE (lower is better, denoted as ↓).

3.2 HETEROGENEITY IN MPNNS AND GTS

Figure 1 shows heterogeneity profiles for two graph classification benchmarks (Enzymes and Pro-
teins) and one graph regression task (Peptides-struct). Profiles are shown for GCN (blue), a message-
passing architecture, and GraphGPS (orange), a transformer-based architecture.

(a) Enzymes (↑) (b) Proteins (↑) (c) Peptides Struct (↓)

Figure 1: Comparison of heterogeneity profiles for message-passing (GCN) and transformer-based
(GraphGPS) architectures.

For the classification tasks we observe a large number of graphs with an average GCN accuracy
of 1, and a large number of graphs with an average accuracy of 0, especially in Proteins. This
indicates that within the same dataset there exist some graphs, which GCN and GraphGPS always
classify correctly, and others which they never classify correctly. Enzymes shows a similar overall
trend: Some graphs have high average accuracies (> 0.6), while some are at or around zero. A
comparable trend can be observed for GraphGPS, although the average accuracy here is visibly
higher. Additional experiments on other graph classification benchmarks and using other MPGNN
architectures confirm this observation (see Appendix B.1.2 and B.1.3). We refer to this phenomenon
of large differences in graph-level accuracy within the same dataset as performance heterogeneity.
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Furthermore, our results for Peptides Struct, a regression benchmark, indicate that heterogeneity is
not limited to classification. The graph-level MAE of both GCN and GraphGPS varies widely be-
tween individual graphs in the Peptides-struct dataset. Appendix B.1.1 presents further experiments
using Zinc, a regression dataset, with similar findings.

3.3 EXPLAINING PERFORMANCE HETEROGENEITY

As mentioned earlier, performance heterogeneity can also be found between individual nodes in
node classification tasks (Li et al., 2023; Liang et al., 2023). They find that node-level heterogeneity
can be explained well based on topological features alone: Nodes with higher degrees are provably
easier to classify correctly than nodes with lower degrees Li et al. (2023). A natural question is
whether this extends to graph-level tasks.

We test this with the following experiment, which is inspired by the analysis presented in Li et al.
(2023) for node-level heterogeneity. For each dataset considered, we record the graph-level GCN
accuracy averaged over 100 runs as above and compute several classical topological graph char-
acteristics, such as assortativity, the clustering coefficient, and the spectral gap (see Appendix B.2
for details). We then train an MLP to predict the accuracy of a GCN on a given graph based on
its topological features. While the MLP is able to fit the training data, it does not generalize well
with test MSEs ranging from 0.1 to 0.27. Figure 11 in the Appendix visualizes this for the Enzymes
dataset. Additional experiments in Appendix B.4 support the same message: Unlike in the node-
level setting, topological features alone are insufficient to explain performance heterogeneity in the
graph-level setting.

Figure 2: Class-distance ra-
tios for graphs in Mutag and
Enzymes.

Next we evaluate potential drivers of heterogeneity using the Tree
Mover’s Distance (TMD) (Chuang & Jegelka, 2022), introduced
above. Importantly, the TMD jointly evaluates topological and fea-
ture information, i.e., provides a richer data characterization.

Definition 1 (Class-distance ratio) Let D = {G1, ..., Gn} denote
a graph dataset and Yi the correct label of the graph Gi. Using the
TMD, we define the class-distance ratio of a graph Gi as

ρ(Gi) =
minGj∈D\Gi

{TMD(Gi, Gj) : Yi = Yj}
minGj∈D{TMD(Gi, Gj) : Yi ̸= Yj}

.

In other words, we compute the TMD to the closest graph with
the same label and divide it by the distance to the closest graph
with a different label. If this ratio is less than one, we are closer
to a graph of the correct label than to a graph of a wrong label.
Figure 2 plots the class-distance ratios for all graphs in the Mutag
and Enzymes datasets. (Due to the computational complexity of the TMD, we are unfortunately
limited to analyzing rather small datasets). For both datasets, we can see that there exist graphs
whose class-distance ratio is far larger than one, i.e., graphs which are several times closer to graphs
of a wrong label than to graphs of their own label. Computing the Pearson correlation coefficient
between a graph’s class-distance ratio and its average GNN performance, we find a highly significant
negative correlation for both datasets (−0.441 for Mutag and −0.124 for Enzymes). Graphs with
a higher class-distance ratio have much lower average accuracies, i.e. are much harder to classify
correctly. The following result on the TMD provides a possible explanation for this observation:

Theorem 1 (Chuang & Jegelka (2022), Theorem 8) Given an L-layer GNN h : X → R and two
graphs G,G′ ∈ D, we have

∥h(G)− h(G′)∥ ≤
L+1∏
l=1

K
(l)
ϕ · TMDL+1

w (G,G′),

where w(l) = ϵ · P l−1
L+1

P l
L+1

for all l ≤ L and P l
L is the l-th number at level L of Pascal’s triangle.

This result indicates that a GNN’s prediction on a graph G cannot diverge too far from its prediction
on a similar graph G′, where similarity is defined via the TMD. A value of ρ(G) > 1 therefore
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(a) Mutag GIN Training (b) Mutag GraphGPS Training

Figure 3: Training performance comparison on the Mutag dataset using GIN (a MPGNN) and
GraphGPS (a GT).

indicates that the GNN prediction cannot be too far from a prediction made on a graph with a
different label, so graphs with ρ(G) > 1 are hard to classify correctly.

3.4 HETEROGENEITY APPEARS DURING GNN TRAINING

To better understand how performance heterogeneity arises during training, we analyze the predic-
tions on individual graphs in the test dataset after each epoch. Figure 3 shows the mean accuracy and
variance for GIN (message-passing) and GraphGPS (transformer-based) on Mutag. As we can see,
both models have an initial increase in heterogeneity, followed by a steady decline over the rest of
the training duration. Both models learn to correctly classify some graphs almost immediately, while
others are only classified correctly much later. We should point out that these “difficult” graphs, i.e.
graphs that are either learned during later epochs or never learned at all, are nearly identical for GIN
and GraphGPS. GraphGPS, being a much more powerful model, learns to correctly classify more of
these “difficult” graphs during later epochs. The (few) graphs which it cannot learn are also graphs
on which GIN fails. Additional experiments on other datasets can be found in Appendix C.2. Across
datasets and models, we witness this “learning in stages”, where learning easy examples leads to an
initial increase in heterogeneity, followed by a steady decrease.

4 HETEROGENEITY-INFORMED PRE-PROCESSING TECHNIQUES

In this section, we use heterogeneity profiles to show that preprocessing techniques can reinforce
heterogeneity in graph-level learning. We focus primarily on rewiring techniques, but we also pro-
vide some experimental results with encodings in Appendix C.3. We find that while preprocessing
methods such as rewiring are usually beneficial when averaged over all graphs, GNN performance
on individual graphs can in fact drop by as much as 90 percent after rewiring. Deciding which graphs
to preprocess is therefore crucial. We take a first step in this direction and propose a topology-aware
selective rewiring method. As for encodings, our results indicate that investigating a similar, se-
lective approach is a potentially fruitful direction (though unfortunately beyond the scope of this
paper). We further note that existing theoretical results on improved expressivity when using encod-
ings cannot explain the oftentimes detrimental effects observed in the heterogeneity analysis.

4.1 REWIRING HURTS (ALMOST) AS MUCH AS IT HELPS

For each dataset we compute heterogeneity profiles (based on graph-level accuracy over 100 runs)
with and without rewiring, with a focus on two common rewiring techniques: BORF (Nguyen et al.,
2023), a curvature-based rewiring method, and FoSR (Karhadkar et al., 2023), a spectral rewiring
method. Figure 4 shows the results on the Enzymes and Proteins datasets with GCN. We find
that while both rewiring approaches improve the average accuracy in each data set, the accuracy
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for individual graphs can drop by as much as 95 percent. The graph-level changes in accuracy are
particularly heterogeneous when using FoSR on both Enzymes and Proteins. BORF, while being less
beneficial overall, also has less heterogeneity when considering individual graphs. This observation
may indicate that not all graphs suffer from over-squashing or that over-squashing is not always
harmful, providing additional evidence for arguments previously made by Tori et al. (2024).

Figure 4: Comparison of BORF and FoSR methods applied to GCN on the Enzymes and Proteins
datasets, sorted by FoSR changes from best to worst.

4.2 TOPOLOGY-AWARE SELECTIVE REWIRING

The large differences in performance benefits from FoSR on individual graphs reveal a fundamental
shortcoming of almost all existing (spectral) rewiring methods: They rewire all graphs in a dataset,
irrespective of whether individual graphs actually benefit. To overcome this limitation, we propose
to rewire selectively, where a topological criterion is used to decide whether an individual graph’s
performance will benefit from rewiring. The resulting topology-aware selective rewiring chooses a
threshold spectral gap λ∗ from the initial distribution of Fiedler values in a given dataset. Empiri-
cally, we find the median to work well. Using standard FoSR, we then add edges to all graphs whose
spectral gap is below this threshold. The resulting approach, which we term Selective-FOSR, leaves
graphs with an already large spectral gap unchanged. This “alignment” results in a larger degree of
(spectral) similarity between the graphs in a dataset.

The effect on the spectral gaps of graphs in Enzymes and Proteins is plotted in Figure 5. Both
datasets originally have a large number of graphs whose spectral gap is close to zero, i.e. which
are almost disconnected and hence likely to suffer from over-squashing. Standard FoSR mitigates
this, but simultaneously creates graphs with much larger spectral gaps than in the original dataset
while more than doubling the spread of the distribution. Our selective rewiring approach avoids both
of these undesirable effects. This also shows in significantly increased performance on all datasets
considered when compared to standard FoSR, as can be seen in Table 1.

5 HETEROGENEITY-INFORMED MODEL SELECTION

So far, we have compared the heterogeneity profiles of different architectures, such as GCN and
GraphGPS, on the same datasets, or compared profiles of datasets with and without rewiring. In this
section, we now fix the preprocessing technique and base layer and focus on heterogeneity profiles
at different GNN depths. This allows us to define a graph-level optimal depth. We show that the
optimal depth varies widely within datasets, an observation that, we argue, is related to the graphs’
spectral gap. We show that decreasing the variation in spectral gaps within a dataset via selective
rewiring makes it easier to find a depth that works well on all graphs. At the same time, those
insights motivate a heuristic for choosing the GNN depth in practise, which reduces the need for
(potentially expensive) tuning of this crucial hyperparameter.

7
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Figure 5: Spectral gap distributions in Enzymes and Proteins without any rewiring (left), with FoSR
(center), and with Selective-FoSR (right).

Model Dataset None FoSR S-FoSR

GCN

Peptides-struct (↓) 0.28 ± 0.02 0.27 ± 0.01 0.25 ± 0.01
Peptides-func 0.50 ± 0.02 0.47 ± 0.03 0.48 ± 0.02

Enzymes 23.8 ± 1.3 27.2 ± 1.1 30.1 ± 1.0
Imdb 49.7 ± 1.0 50.6 ± 0.8 51.2 ± 1.1
Mutag 72.4 ± 2.1 79.7 ± 1.7 81.5 ± 1.4

Proteins 69.9 ± 1.0 71.1 ± 0.9 72.6 ± 1.1

GIN

Peptides-struct (↓) 0.34 ± 0.02 0.27 ± 0.02 0.24 ± 0.01
Peptides-func 0.49 ± 0.01 0.46 ± 0.02 0.49 ± 0.02

Enzymes 27.1 ± 1.6 26.3 ± 1.2 28.6 ± 1.3
Imdb 68.1 ± 0.9 68.5 ± 1.1 69.0 ± 0.9
Mutag 81.9 ± 1.4 81.3 ± 1.5 84.9 ± 1.0

Proteins 71.3 ± 0.7 72.3 ± 0.9 72.6 ± 0.8

GAT

Peptides-struct (↓) 0.28 ± 1.2 0.29 ± 0.01 0.27 ± 0.01
Peptides-func 0.51 ± 0.01 0.49 ± 0.01 0.52 ± 0.02

Enzymes 23.8 ± 1.2 26.0 ± 2.0 31.5 ± 1.8
Mutag 70.2 ± 1.3 73.5 ± 2.0 78.5 ± 1.7

Proteins 71.3 ± 0.9 70.9 ± 1.5 72.5 ± 0.8

Table 1: Classification accuracies of GCN with no rewiring, FoSR, and Selective FoSR using best
hyperparameters. Highest accuracies on any given dataset and model are highlighted in bold. Unless
specified otherwise, higher values are better.

5.1 OPTIMAL GNN DEPTH VARIES BETWEEN GRAPHS

Using the experimental setup for the heterogeneity profiles (see Section 3), we record the graph-
level accuracy of GCNs with 2, 4, 6, and 8 layers respectively. We then record for each graph in the
dataset the number of layers that resulted in the best performance on that graph and refer to this as
the optimal depth.

Optimal depth varies Results on Enzymes and Peptides-struct are shown in Figure 6; additional
results on other datasets and for other MPGNNs can be found in Appendix C.1. We observe a
large degree of heterogeneity in the optimal depth of individual graphs. This is most striking in
Peptides-Struct, where more than a quarter of all graphs attain their lowest MAE at only 2 layers,
although there is also a substantial number of graphs that benefit from a much deeper network. The
differences in average accuracy on a given graph between a 2-layer and an 8-layer GCN can be large:
On Enzymes, we found differences of as much as 0.3. We provide the heterogeneity profiles for the
2, 4, 8 and 16-layer GCN trained on Enzymes in Appendix C.1. We observe that heterogeneity
decreases with depth at the cost of accuracy. In particular, the 16-layer GCN trained on Enzymes
does not classify any graphs correctly all the time, but it also consistently misclassifies only a small
number of graphs. We believe that this is due to the model being much harder to train than the
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shallower GCNs, possibly due to exploding/ vanishing gradients. Overall, our results indicate that
choosing an optimal number of layers for a given dataset - usually done via grid-search - involves a
trade-off between performance increases and decreases on individual graphs.

Figure 6: Distribution of graphs that attain their best GCN performance at 2, 4, 6, and 8 layers on
Enzymes (left) and Peptides-struct (right).

Analysis via Consensus Dynamics We believe that the heterogeneity in optimal depth can be
explained using insights from average consensus dynamics, a classical tool from network science
that has been used to study epidemics and opinion dynamics in social networks.

To define average consensus dynamics, we consider a connected graph G with |V | =: n nodes
and adjacency matrix A. For simplicity, we assume that each node has a scalar-valued feature
xi ∈ R, which is a function of time t. We denote these time-dependent node features as x(t) =
(x1(t), ..., xn(t))

T . The average consensus dynamics on such a graph are characterized by the
autonomous differential equation

ẋ = −Lx,
which in coordinate form simply amounts to

ẋi =
∑
j

Aij(xj − xi) .

In other words, at each time step a node’s features adapt to become more similar to those of its
neighbours. For any given initialization x0 = x(0), the differential equation will push the nodes’
features towards a global “consensus” in which the features of all nodes are equal. Let 1̂ denote the
vector of all ones. Since 1̂T · L = 0, 1̂ is an eigenvector of L with zero eigenvalue, i.e.,

1̂T · ẋ = 0 ⇒ 1̂T · x = constant.

Mathematically, this means that xi → x∗ for all i, as t → ∞, where x∗ = 1̂T ·x0

n is the arithmetic
average of the initial node features. Intuitively, these dynamics may be interpreted as an opinion
formation process on a network of agents, who will in the absence of further inputs eventually agree
on the same value, namely, the average opinion of their initial states. The rate of convergence is
limited by the second smallest eigenvalue of L, the Fiedler value λ2, with

x(t) = x∗1̂ +O(e−λ2t).

We can think of the number of layers in a GNN as discrete time steps. Since graphs with a smaller
Fiedler value take longer to converge to a global consensus, we would expect these networks to
benefit from more GNN layers.

5.2 SPECTRAL ALIGNMENT ALLOWS FOR PRINCIPLED DEPTH CHOICES

Our discussion on average consensus dynamics suggests that individual graphs might require dif-
ferent GNN depths because approaching a global consensus takes about 1/λ2 time steps – in our
case layers – where λ2 is the graph’s spectral gap. We also saw in the previous section that selective

9
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(spectral) rewiring lifts the spectral gaps of (almost) all graphs in a dataset above a predetermined
threshold λ∗2 without creating graphs with very large spectral gaps. Motivated by these insights, we
propose to use 1/λ∗2 as a heuristic for the GNN depth.

As Figure 7 shows, we empirically find that this approach works very well. On all three datasets
depicted here (Mutag, Enzymes and Peptides-Struct), the ideal GCN depth turned out to be the
integer closest to 1/λ∗2: 7 layers for both Mutag and Enzymes, and 12 layers for Peptides-struct.
Using grid-search, we previously determined 4 layers to be optimal on both datasets after applying
standard FoSR or no rewiring at all.

We now find that the accuracy obtained with a 7-layer GCN after applying selective FoSR is 3
percent higher than the accuracy obtained with selective FoSR and 4 layers on Mutag (5 percent
on Enzymes). We also note that using 7 layers after applying FoSR or no rewiring is far from
optimal on both datasets, highlighting the fact that the optimal depth changes with rewiring. Our
observations on Peptides-struct are similar: Computing 1/λ∗2 suggests that we should use 12 layers
on the selectively rewired dataset, which indeed turns out to be the ideal depth. This is far deeper
than the 8 layers that are optimal with standard FoSR or no rewiring at all. Overall, we find that
deeper networks generally perform better than shallow ones after selective rewiring. This might be
surprising given that spectral rewiring methods are meant to improve the connectivity of the graph
and hence allow for shallower models. We note that there is no such clear trend on the original
datasets. For example, 8 layers perform almost as well on Mutag as 4. This further supports the
notion that selective rewiring results in a spectral alignment between the graphs in a dataset.

Figure 7: Depth vs accuracy/ MAE comparison for Mutag, Enzymes, and Peptides-Struct.

6 DISCUSSION

In this paper we analyzed performance heterogeneity in graph-level learning in both message-
passing and transformer-based GNN architectures. Our results showed that unlike in the node-level
setting, topological properties alone cannot explain graph-level heterogeneity. Instead, we identify
large class-distance ratios as the main driver of heterogeneity within data sets. Our analysis suggests
several lessons for architecture choice and data preprocessing, including a selective rewiring ap-
proach that optimizes the benefits of rewiring and a heuristic for choosing the optimal GNN depths.
We corroborate our findings with computational experiments.

Our study of data preprocessing routines has focused on rewiring. However, recent literature has
shown that encodings too can lead to significant performance gains in downstream tasks. While we
include a preliminary study of heterogeneity in the context of encodings in Appendix C.3, a more
detailed analysis is left for future work. We believe that a principled approach for selective encod-
ings is a promising direction for extending the present work. Similarly, our theoretical understanding
of common encodings such as LAPE and RWPE needs to be reassessed: Recent results argue that
adding encodings makes GNNs more expressive, which does not explain the substantial detrimental
effects on some graphs observed in our preliminary experiments. While our results suggest con-
nections between performance heterogeneity and generalization, a detailed theoretical analysis of
this link is beyond the scope of the present paper. We believe that in particular a detailed study of
similarity measures in the style of the Tree Mover’s Distance could provide valuable insights into
transformer-based architectures. Lastly, this study aimed to work towards automating model choices
in GNNs. We believe that the heterogeneity perspective could provide insights beyond GNN depth
and preprocessing routines.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
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A EXTENDED BACKGROUND

A.1 MORE DETAILS ON GNN ARCHITECTURES

We provide a more detailed description of the GNN architectures considered in this paper.

GCN is a generalization of convolutional neural networks to graph-structured data. It learns a joint
representation of information encoded in the features and the connectivity of the graph via message-
passing. Formally, a GCN layer is defined as

H(l+1) = σ
(
ÃH(l)W(l)

)
,

where H(l) denotes the node feature matrix at layer l, W(l) the learnable weight matrix at layer
l, Ã = D−1/2AD−1/2 the normalized adjacency matrix, D denoting the degree matrix and A
the adjacency matrix. Common choices for the activation function σ include ReLU or sigmoid
functions.

GIN is an MPGNN designed to be as expressive as possible, in the sense that it can learn a
larger class of structural functions compared to other MPGNNs such as GCN. GIN is based on the
Weisfeiler-Lehman (WL) test for graph isomorphism, which is a heuristic for graph isomorphism
testing, i.e., the task of determining if two graphs are topological identical. Formally, the GIN layer
is defined as

h(l+1)
v = MLP(l)

(1 + ϵ)h(l)
v +

∑
u∈N (v)

h(l)
u

 ,

where h
(l)
v is the feature of a node v at layer l, N (v) is the set of neighbors of the node v, and ϵ is a

learnable parameter. Here, the update function is implemented as a multi-layer perceptron MLP(·),
i.e., a fully-connected neural network.

GINE is a variant of GIN that can take edge features ei,j into account. It is defined as

x′
i = hΘ

(1 + ϵ) · xi +
∑

j∈N (i)

ReLU(xj + ej,i)

 ,

where hΘ is a neural network, usually an MLP.

GAT implements an attention mechanism in the graph learning setting, which allows the network
to assign different importance (or weights) to different neighbors when aggregating information.
This is inspired by attention mechanisms in transformer models and can enhance the representational
power of GNNs by learning to focus on more important neighbors. The GAT layer is formally
defined as

h(l+1)
v = σ

 ∑
u∈N (v)

αvuW
(l)h(l)

u

 .

Here, αvu denotes the attention coefficient between node v and neighbor u, given by

αvu =
exp

(
LeakyReLU

(
aT

[
Wh

(l)
v ||Wh

(l)
u

]))
∑

k∈N (v) exp
(

LeakyReLU
(
aT

[
Wh

(l)
v ||Wh

(l)
k

])) ,

where a is a learnable attention vector and || denotes vector concatenation.

GraphGPS is a hybrid GT architecture that combines MPGNNs with transformer layers to capture
both local and global information in graph learning. It enhances traditional GNNs by incorporat-
ing positional encodings (to provide a notion of node position) and structural encodings (to capture
node-specific graph-theoretic properties). By alternating between GNN layers (for local neighbor-
hood aggregation) and transformer layers (for global attention), GraphGPS can effectively learn
both short-range and long-range dependencies within a graph. It uses multi-head attention, residual
connections, and layer normalization to ensure stable and effective learning.
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A.2 GRAPH REWIRING

In this study we focus on two approaches that are representatives of the two most frequently consid-
ered classes of rewiring techniques.

FOSR Introduced by Karhadkar et al. (2023), this rewiring approach leverages a characterization
of over-squashing effects using the spectrum of the Graph Laplacian. It adds synthetic edges to a
given graph to expand its spectral gap which can mitigate over-squashing.

BORF Introduced by (Nguyen et al., 2023), BORF leverages a connection between discrete Ricci
curvature and over-smoothing and over-squashing effects. Regions in the graph that suffer from
over-smoothing have high curvature, where as edges that induce over-squashing have low curvature.
BORF adds and removes edges to mitigate extremal curvature values. Fesser & Weber (2024a)
show that the optimal number of edges relates to the curvature gap, a global curvature-based graph
characteristic, providing a heuristic for choosing this hyperparameter.

A.3 POSITIONAL AND STRUCTURAL ENCODINGS

Structural (SE) and Positional (PE) encodings endow GNNs with structural information that they
cannot learn on their own, but which is crucial for downstream performance. Encodings are often
based on classical topological graph characteristics. Typical examples of positional encodings in-
clude spectral information, such as the eigenvectors of the Graph Laplacian (Dwivedi et al., 2023) or
random-walk based node similarities (Dwivedi et al., 2022). Structural encodings include substruc-
ture counts (Bouritsas et al., 2022; Zhao et al., 2022), as well as graph characteristics or summary
statistics that GNNs cannot learn on their own, e.g., its diameter, girth, the number of connected
components (Loukas, 2019), or summary statistics of node degrees (Cai & Wang, 2018) or the
Ricci curvature of its edges (Fesser & Weber, 2024b). The effectiveness of encodings has been
demonstrated on numerous graph benchmarks and across message-passing and transformer-based
architectures.

A.4 MORE DETAILS ON THE TREE MOVER’S DISTANCE

For completeness, we recall the formal definition of the Tree Mover’s Distance (TMD). We first
define the previously mentioned notion of computation trees:

Definition 2 (Computation Trees ((Chuang & Jegelka, 2022), Def. 1)) For a graph G we recur-
sively define trees T l

v (T 1
v = v) as the depth-l computation tree of node v. The depth-(l + 1) tree is

constructed by adding the neighbors of the depth-l leaf nodes to the tree.

We further need the following definition:

Definition 3 (Blank Tree ((Chuang & Jegelka, 2022), Def. 2)) A blank tree T0 is a tree with only
one node whose features are given by the zero vector and with an empty edge set.

Let Tu, Tv denote two multisets of trees. If the multisets are not of the same size, it can be challeng-
ing to define optimal transport based similarity measures. To avoid this, we balance the data sets via
augmentation with blank trees:

Definition 4 (Blank Tree Augmentation ((Chuang & Jegelka, 2022), Def. 3)) The function

ρ : (Tv, Tu) 7→
(
Tv

⋃
T

max(|Tu|−|Tv|,0)
0 , Tu

⋃
T

max(|Tv|−|Tu|,0)
0

)
.

augments a pair of trees with blank trees.

We can now define a principled similarity measure on computation trees:

Definition 5 (Tree Distance ((Chuang & Jegelka, 2022), Def. 4)) Let Tr, Tr′ denote two trees
with roots r, r′. We set

TDw(Tr, Tr′) :=

{
∥xr − xr′∥+ w(L) ·OTTDw(ρ(Tr, Tr′)) if L > 1

∥xr − xr′∥ otherwise,
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where L = max(Depth(Tr),Depth(Tr′)) and w : N → R+ is a depth-dependent weighting func-
tion.

Finally, we define a distance on graphs based on the hierarchical optimal transport encoded in the
above defined tree distance:

Definition 6 (TMD ((Chuang & Jegelka, 2022), Def. 5)) Let G,G′ denote two graphs and w,L
as above. We set

TMDL
w(G,G

′) = OTTDw
(ρ(T L

G , T L
G′)),

where T L
G and T L

G′ are multisets of the graph’s depth-L computation trees.

B HETEROGENEITY AND DATA CHARACTERISTICS

B.1 ADDITIONAL HETEROGENEITY PROFILES

B.1.1 GCN

Figure 8: Heterogeneity profiles of a 4-layer GCN on the Zinc validation (left) and test datasets
(right).

B.1.2 GIN

(a) Enzymes (b) Imdb (c) Mutag (d) Proteins

Figure 9: Heterogeneity profiles obtained with GIN on Enzymes, Imdb, Mutag, and Proteins.
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B.1.3 GAT

(a) Enzymes (b) Imdb (c) Mutag (d) Proteins

Figure 10: Heterogeneity profiles obtained with GAT on Enzymes, Imdb, Mutag, and Proteins.

B.2 TOPOLOGICAL PROPERTIES

Our MLP experiments in section 3.3 and sparse multivariate regression experiments in the appendix
use the following topological properties of a graph G = (V,E) with |V | = n, |E| = m to predict
average GNN accuracy on that graph.

• Edge Density. The edge density for an undirected graph is calculated as 2m
n(n−1) , while for

a directed graph, it is computed as m
n(n−1) .

• Average Degree. The average degree for an undirected graph is defined as 2m
n , while for a

directed graph, it is defined as m
n .

• Degree Assortativity. The degree assortativity is the average Pearson correlation coeffi-
cient of all pairs of connected nodes. It quantifies the tendency of nodes in a network to be
connected to nodes with similar or dissimilar degrees and ranges between −1 and 1.

• Diameter. In an undirected or directed graph, the diameter is the length of the longest
shortest path between any two vertices.

• Average Clustering Coefficient. First define T (u) as the number of triangles including
node u, then the local clustering coefficient for node u is calculated as 2

deg(u)(deg(u)−1)T (u)

for an undirected graph, where deg(u) is the degree of node u. The average clustering
coefficient is then defined as the average local clustering coefficient of all the nodes in the
graph.

• Transitivity. The transitivity is defined as the fraction of all possible triangles present in
the graph. Formally, it can be written as 3Num. triangles

Num. triads , where a triad is a pair of two edges
with a shared vertex.

• Spectral Gap/ Algebraic Connectivity. The Laplacian matrix L of the graph is defined
as: L = D − A where D is the degree matrix and A is the adjacency matrix of the graph.
The eigenvalues of the Laplacian matrix are real and non-negative, and can be ordered as
follows:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn

The spectral gap of the graph is defined as the second-smallest eigenvalue of the Laplacian
matrix, i.e. λ2. This value is also known as the algebraic connectivity of the graph, and it
reflects the overall connectivity of the graph.

• Curvature Gap. Using Ollivier-Ricci curvature κ(u, v) of an edge (u, v) ∈ E, we con-
sider an edge to be intra-community if κ(u, v) > 0 and inter-community if κ(u, v) < 0.
Following Gosztolai & Arnaudon (2021), we define the curvature gap as

∆κ :=
1

σ
|κinter − κintra|

where σ =
√

1
2 (σ

2
inter + σ2

intra). The curvature gap can be interpreted as a geometric mea-
sure of how much community structure is present in a graph (Fesser & Weber, 2024a).

• Relative Size of the Largest Clique. The relative size of the largest clique is determined
by calculating the ratio between the size of the largest clique in G and n.
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B.3 MLP

Figure 11: Accuracy of MLP predictions based on topological characteristics on Enzymes.

B.4 SPARSE MULTIVARIATE REGRESSION RESULTS

Features Enzymes Imdb Mutag Proteins
Edge Density 4.151617e − 02 2.898623e − 01 −3.969576e + 00 −2.560137e − 01
Average Degree 6.882024e − 02 2.217939e − 03 1.999772e + 00 3.252736e − 02
Degree Assortativity −3.918472e − 02 −3.185174e − 01 −8.107750e − 01 4.863875e − 03
Diameter 2.235096e − 03 −6.465376e − 01 9.388648e − 05 3.698471e − 04
Average Clustering Coefficient −2.483046e − 01 −4.472245e − 03 4.440892e − 16 −2.026657e − 01
Transitivity 2.299293e − 01 −7.803414e − 01 0 2.238747e − 01
Algebraic Connectivity −2.117908e − 02 −2.505663e − 02 4.693080e + 00 1.093306e − 01
Curvature Gap −3.988714e − 07 −5.182994e − 07 −5.617996e − 04 2.957293e − 08
Rel. Size largest Clique 2.773373e − 02 4.727640e − 03 0 9.840849e − 03

R2 0.01670 0.04559 0.39944 0.01626

Table 2: Multivariate Sparse Regression coefficients for topological properties of graphs in the TU
dataset. The target variable is the (normalized) graph-level GCN accuracy.

C HETEROGENEITY AND MODEL CHARACTERISTICS

C.1 ADDITIONAL RESULTS ON MODEL DEPTH

Figure 12: Distribution of graphs that attain their best GIN performance at 2, 4, 6, and 8 layers on
Zinc (left) and Mutag (right).

C.2 ADDITIONAL TRAINING DYNAMICS

C.3 HETEROGENEITY PROFILES WITH ENCODINGS

For each dataset, we repeat the experimental setup described in section 4 without any encodings
and with one common structural or positional encoding. Here, we consider the Local Degree
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(a) L = 2 (Acc. 24.2) (b) L = 4 (Acc. 23.7) (c) L = 8 (Acc. 20.4) (d) L = 16 (Acc. 16.8)

Figure 13: Comparison of GCN performance with different layer depths on the Enzymes dataset.

(a) Enzymes GIN Training (b) Enzymes GPS Training

Figure 14: Training performance comparison on the Enzymes dataset using GIN and GPS.

Profile (LDP) (Cai & Wang, 2018), the Local Curvature Profile (LCP) (Fesser & Weber, 2024b),
Laplacian-eigenvector positional encodings (LAPE) (Dwivedi et al., 2023), and Random-Walk
positional encodings (RWPE) (Dwivedi et al., 2022). For each graph in a dataset, we compare the
average graph-level accuracy over 100 runs with and without a given encoding. The results on the
Proteins dataset with GCN are presented in Figure C.3. Note that values larger than one indicate
that graph benefiting from a particular encoding, while values smaller than one indicate a drop in
accuracy due to the encoding.

We can see that the structural encodings considered here, i.e., LDP and LCP, have especially large
graph-level effects for GCN. Positional encodings such as LAPE or RWPE have much smaller ef-
fects on individual graphs. However, even for positional encodings, we find that there are always
graphs on which GCN accuracy decreases once we add encodings. We note that 1) these detri-
mental effects have, to the best of our knowledge, not been reported in the literature, and that 2)
they cannot be explained by existing theory. Encodings such as LCP, LAPE, and RWPE can be
shown to increase the expressivity of MPNNs such as GCN and make them more powerful than the
1-Weisfeiler Lehman test. Drastic decreases in accuracy on individual graphs are therefore perhaps
surprising.

(a) LDP Encoding (b) LCP Encoding (c) LAPE Encoding (d) RWPE Encoding

Figure 15: Different encodings applied to the GCN model on the Proteins dataset.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D HYPERPARAMETER CONFIGURATIONS

Features Enzymes Imdb Mutag Proteins Peptides-f Peptides-s Zinc
Layer Type GCN GCN GCN GCN GCN GCN GINE
Num. Layers 7 7 7 7 12 12 4
Hidden Dim. 64 64 64 64 235 235 64
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Batch Size 50 50 50 50 50 50 50
Epochs 300 300 300 300 300 300 300
Edges Added 40 5 10 30 10 10 10

Table 3: Hyperparameter configurations used for experiments with selective-FoSR in the main text
unless mentioned otherwise.

Features Enzymes Imdb Mutag Proteins Peptides-f Peptides-s Zinc
Layer Type GCN GCN GCN GCN GCN GCN GINE
Num. Layers 4 4 4 4 8 8 4
Hidden Dim. 64 64 64 64 235 235 64
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Batch Size 50 50 50 50 50 50 50
Epochs 300 300 300 300 300 300 300
Edges Added 40 5 10 30 10 10 10

Table 4: Hyperparameter configurations used for experiments with FoSR in the main text unless
mentioned otherwise.

Features Enzymes Imdb Mutag Proteins Peptides-f Peptides-s Zinc
Layer Type GCN GCN GCN GCN GCN GCN GINE
Num. Layers 4 4 4 4 8 8 4
Hidden Dim. 64 64 64 64 235 235 64
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Batch Size 50 50 50 50 50 50 50
Epochs 300 300 300 300 300 300 300

Table 5: Hyperparameter configurations used for experiments without rewiring in the main text.
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