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Abstract
Quantifying the uncertainties associated with pre-
dictive models can facilitate optimal decision-
making and accelerate workflows where time and
resource efficiency are essential. Computational
tools exist that estimate the predictive uncertainty,
which is useful for assessing the costs and risks
involved with deploying machine learning models.
In drug discovery, these tools can provide valuable
insights into the efficient allocation of resources
by identifying promising experiments, thereby
reducing the overall costs associated with the de-
velopment of therapeutic agents. We address
the pressing need for a comprehensive, large-
scale temporal evaluation of probability calibra-
tion methods, specifically focusing on drug-target
interactions. We investigate the performance of
several calibration-free uncertainty estimation and
post-hoc probability calibration methods. Further-
more, we systematically compare the effect of
different training set sizes and shifts in active ra-
tios on the capability of the uncertainty estimation
methods.

1. Introduction
Uncertainty quantification is a powerful tool to increase the
reliability of machine learning models and the confidence
in deploying them to real-world applications (Apostolakis,
1990). Various sources can lead to uncertainty in the predic-
tions obtained from machine learning models. A common
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classification found in literature is the distinction between
aleatoric uncertainty, which originates from uncertainty in
the data, and epistemic sources, which quantifies uncertainty
inherent in the choice of model (Hüllermeier & Waegeman,
2019; Gruber et al., 2023). Available uncertainty quantifica-
tion methods vary in their ability to capture all sources of
uncertainty correctly.

When modeling classification problems, models typically
give probability-like predictions that can be directly inter-
preted as an estimate of the confidence in the prediction.
This is considered a calibration-free approach to uncertainty
quantification. Similarly, ensemble-based approaches in-
spired by the Bayesian theorem to estimate the posterior
distribution of predictions from a set of models are also
calibration-free (Sheridan, 2012; Gal & Ghahramani, 2016;
Lakshminarayanan et al., 2017). Ensembles enable the es-
timation of model uncertainty, by accounting for model
variance, which increases when the model is overfitting or
the test instance lies outside the domain of the training data.
Previous work has identified that modern neural networks
often fail to give realistic estimates of the uncertainty asso-
ciated with a prediction in classification tasks, resulting in
poorly calibrated models (Guo et al., 2017; Mervin et al.,
2021a). Instead, various calibration methods have been de-
veloped for classification models which aim to obtain better
uncertainty estimates by fitting a calibrating model to a sepa-
rate dataset in a post-hoc manner (Platt, 1999; Vovk & Petej,
2014).

During early-stage drug discovery, a part of the vast chemi-
cal space is screened to identify promising molecular com-
pounds as potential drugs (Hertzberg & Pope, 2000). The
large scale and complexity of the screening, make it an ideal
application for machine learning models with their high
computational power and predictive abilities (Bleakley &
Yamanishi, 2009). However, the long and costly process
of the entire drug discovery pipeline, including years-long
clinical trials, etc., means that reliability and confidence in
the models are crucial for their deployment. Computational
tools that estimate predictive uncertainties facilitate the as-
sessment of costs and risk in the discovery and development
pipeline (Mervin et al., 2021a). So far, the available uncer-
tainty quantification methods have mostly been evaluated
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Figure 1. Overview of the temporal split and model generation. Five folds per assay were generated to create three temporal settings,
each with increasing amounts of training (Training) data. The subsequent two folds were used for validation (Valid.) and testing (Test).
The validation data also served as a calibration set used in post-hoc calibration approaches.

on public data that lack the information needed to draw
realistic conclusions about how the methods perform over
time in real-world pharmaceutical drug discovery projects
(Sheridan, 2013).

In this work, we evaluate the performance of uncertainty
quantification for single-task classification models trained
on industry-scale assay data in a temporal analysis. A tempo-
ral splitting strategy enables model training and calibration
on older data and evaluation of test predictions on data from
subsequent experiments. Similarly to a cluster-based split-
ting strategy, a temporal split is more challenging than a
standard random split. However, in contrast to a cluster-
based splitting strategy, another advantage of the temporal
split is that it more accurately simulates the realistic drug
discovery pipeline in pharmaceutical companies (Sheridan,
2013). Our analysis compares the predictive performance
and calibration of estimated uncertainties by four calibration-
free approaches, with and without two post-hoc calibration
methods.

2. Methods
We extracted internal data from a pharmaceutical company
belonging to ten assays, individually used as single-task
classification datasets. The assays were categorized as pro-
posed by Heyndrickx et al. (2023) into “Panel” and “Other”,
and labelled according to size. The “Panel” category com-
prises cross-project assays to detect undesired effects of
compounds that hit unintended targets. The “Other” cate-
gory includes project-specific assays from activity screens
to identify substances that are active on a target of inter-
est. The selected assays were chosen to be representative,
exhibiting various assay sizes and active ratios.

Apart from absolute observed measurements, the original
data included censored labels indicating if a measurement
was greater or smaller than a given value. However, all
measurements were transformed to binary labels active or
inactive. To do so, the negative logarithm of the compound’s

concentration needed for inhibiting half of a target’s activity
(pIC50) or for triggering half of the maximum response
(pEC50) was used. We applied a fixed threshold of 6 pIC50
or pEC50, corresponding to 1µM concentration. During
this processing step, censored labels indicating a measure-
ment that could not be classified according to the threshold
were removed. Duplicated measurements of a compound
were aggregated using the median, prioritizing observed
measurements over censored ones. Finally, all molecu-
lar compounds were encoded by first standardizing their
SMILES strings (Weininger, 1988) using the MELLODDY-
TUNER (Mel) package and then generating extended con-
nectivity fingerprints (ECFPs) of hashing length 1024 and
radius 2 with RDKit (Landrum, 2006).

Temporal split. For each assay, we split the data into
five, roughly equally sized, folds using the date of each
measurement. These folds were then used to set up three
experimental settings, using one, two, or three folds for
training the machine learning models. In each case, the first
subsequent fold was used for validation, including model se-
lection, and calibration where applicable. We only evaluated
each setting on the first fold following the validation set for
consistency between test sets. However, all remaining folds
could in principle be used. Fig. 1 illustrates the temporal
splitting strategy.

Considering all assays and settings, 30 individual training
datasets were used throughout this work. They are labeled
Category-Assay Number [#Training Folds]. Naturally, the
size of the training sets varies among all experiments as
shown in the top panel of Fig. 2. Additionally, we quantify
the ratio of active compounds in each training dataset in the
middle plot and the shifts in label distribution in the lower
panel. The latter was evaluated by comparing the active
ratio in the combined training and validation set with the
active ratio in the test set.
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Figure 2. Overview of assay data. For all assays and temporal
settings. (Upper) shows the size of the training sets. (Middle) illus-
trates how the ratio of active compounds changes across training
sets. (Lower) shows the difference in active ratios between the
combined training and validation folds and the test fold, i.e. the
shift in label space.

2.1. Model Generation

All models used in this work stem from either a Random For-
est (RF) or a fully connected neural network (MLP). Both
approaches are commonly used in research addressing un-
certainty estimation in machine learning (Dutschmann et al.,
2023; Mervin et al., 2020; 2021b). Furthermore, uncertainty
estimation comes quite naturally with the ensemble-like
nature of RFs, and MLPs can be easily combined with
the ECFP fingerprint representation. Note, that more so-
phisticated options of molecular representations and model
architectures exist, like graph neural networks for molecu-
lar graph representations or language models for SMILES
representations. However, since our study aims to gain in-
sight into uncertainty estimation in bioactivity predicting
models rather than finding the best model, or comparing
molecular representations, we opted for the simple ECFP
representation. Because of these reasons and the fact that
we were required to restrict the methods included in this
paper due to computational limitations, we considered RF
and MLP models a good selection to understand uncertainty
quantification in a temporal setting.

The RF models were generated using scikit-learn (Pedregosa
et al., 2011), optimizing the maximum depth of the trees
and the required number of estimators of each assay and
temporal setting individually based on the validation loss.
Probability-like outputs were generated from the ratio of de-
cision trees in the RF that classified a test instance as active.
The MLP models were trained using PyTorch (Paszke et al.,
2019) with the binary cross-entropy (BCE) loss function.
Due to the low active ratio in 9 of the Panel assay datasets,
a weighted BCE loss was used for all datasets from the
Panel category. Similarly, the model selection including
early stopping was optimized using the validation loss for
every assay and temporal setting. The network architecture
was optimized for the number of hidden units, number of
hidden layers, and dropout rate. Additionally, the learning
rate and scaling factor of a ReduceOnPlateu learning rate
scheduler were also optimized. Probability-like scores were
obtained by applying a sigmoid function to the output of
the MLP. The model selection for the two base estimators
was performed using an exhaustive grid search. The exact
parameter space search is detailed in Appendix Table 2. 1

Calibration-free uncertainty quantification. We ex-
plored two calibration-free approaches to improve the un-
certainty estimate of the base MLP model. Both methods
utilize model variance by creating an ensemble of predic-
tions. First, we generated 25 individually trained MLPs
from randomly initialized weight distributions as proposed
by (Lakshminarayanan et al., 2017) as a Deep Ensemble
(MLPE). Second, we applied dropout during inference of a
single trained MLP and drew 400 instances of predictions
proposed by (Gal & Ghahramani, 2016) as MC-dropout
(MLPMC). In both cases, the individual probability-like
scores of each prediction were aggregated by taking the
average as the final prediction of the improved models.

Post-hoc probability calibration. Two post-hoc proba-
bility calibration techniques were fitted to each model using
the validation set, namely Platt scaling (Platt, 1999) and
Venn-ABERS (VA) predictors (Vovk & Petej, 2014). Platt
scaling fits a logistic regression to the classification scores
to counteract over- or underfitted uncertainty estimations
(Platt, 1999). For calibration with VA predictors, two iso-
tonic regression functions were trained on the validation
set and a given test instance (Vovk & Petej, 2014). The
two isotonic regression functions represent the hypothesis
that the test instance is active versus inactive. As such, the
probabilities obtained from the isotonic regression functions
correspond to a lower and an upper bound on the estimated
probability. Finally, these bounds were condensed to a point
estimate, as proposed by Toccaceli et al. (2016).

1A Python package containing our proposed method will be
made available open-source upon acceptance.
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3. Results
To thoroughly evaluate how the different approaches per-
form over time, we make ten repetitions of each experiment
and provide averaged results paired with their standard de-
viation. The standard deviations are also used to perform
unpaired two-sided t-tests, to check the statistical signifi-
cance of the top-performing models. We test the best perfor-
mance against all other scores, presenting all scores without
significant (p > 0.05) differences as the top-performing
methods.

First, the predictive accuracy of each method is evaluated
and compared in terms of the area under the receiver operat-
ing characteristic curve (AUC). As the post-hoc calibration
methods do not significantly impact the ordering of predic-
tions, these methods have been omitted from the first exper-
iment. Next, the calibration of the predicted probabilities is
evaluated using the BCE and the adaptive calibration error
(ACE) (Nixon et al., 2019). The ACE estimates the true
calibration error by discretizing the predicted probabilities
into equally sized bins based on the number of predictions
in each bin. It then takes the weighted average of the er-
rors over all bins. The equally sized bins distinguish the
ACE from the otherwise more commonly used expected
calibration error (ECE). Here, the ACE is preferred over
ECE as it is more robust towards skewed distributions of the
predictions. We independently compare the BCE and ACE
performances of the methods on all assays and temporal
settings in terms of training set size and distribution shift.

3.1. Comparison of Model Accuracy

Table 1 shows the AUC scores across all assay datasets
ordered by ascending size of the training set. Only the third
temporal setting is shown for readability, but the full results
for all settings can be seen in Appendix Table 3. We see
no clear pattern in AUC performance regarding increasing
training data size. For 5 out of the 10 assays (18 out of 30 all
datasets), the RF model is best at ranking the test instances
and significantly outperforms the more flexible and complex
MLP approaches. In the remaining cases, the MLPE model
is always among the best-performing methods in terms of
AUC.

However, a single significantly best method can often not be
identified due to the lack of significant differences between
the methods. In 10 out of all 30 datasets, at least 3 models
have comparable AUC. This means that despite substantial
differences in the calibrating properties of a model, as seen
in the following section, all models can have comparable
ranking abilities. Roth & Bajorath (2024) found similar re-
sults, reporting that various model architectures can produce
accurate predictions, despite showing large differences in
probability calibration.

While the increase in training dataset size does not lead to
an evident trend in AUC, comparing the active ratio in the
training datasets and the AUC performance of the respective
models reveals a clear pattern. Fig. 2 shows that there is a
noticeable difference in terms of active ratio between the
training datasets. Models trained on datasets with small
active ratios exhibit lower AUC scores. Table 3 in the Ap-
pendix illustrates that in particular, the models trained on
Other-1 [3], Panel-1 [2], and all three training sets of the
Panel-2 assay fail to achieve accurate predictions, yielding
an AUC score lower than 0.65. Four of these training sets
are among the five datasets with the smallest positive ratio.
Thus, the poor model performance is likely due to an insuf-
ficient number of active compounds available in the training
sets, resulting in models that primarily predict compounds
as inactive. Because of the poor performance, we exclude
the models trained in these five mentioned settings, from
the model calibration analysis addressed in the following
sections.

3.2. Effect of Training Set Size on Model Calibration

Next, we compare the calibrating properties of the methods
by evaluating the BCE and ACE scores for all datasets. The
results are shown as heatmaps in Fig. 3 for BCE and Fig. 4
for ACE. All numerical results of this experiment can be
found in Section B.2 of the Appendix. The rows are sorted
by ascending training set size and white rectangles indicate
the best-performing methods per row.

The heatmaps show that both scores tend to decrease with
increasing training dataset size, indicated by the color gradi-
ent from lighter green in the first rows to dark blue for the
larger datasets. The pattern is much more apparent in the
BCE scores, but can also be detected in the ACE heatmap.
This general trend might stem from the model’s overfitting
on the smaller training sets, which manifests as probabilistic
error rather than impaired ranking which would have been
detectable in the AUC scores (Guo et al., 2017).

Some outliers exist, such as the Panel-3 [1] and Panel-1 [1]
datasets, for which all methods achieve better scores than
they do for other datasets of comparable sizes. The AUC
scores in Table 3 in the Appendix indicate that for both these
datasets the RF model performs much better than the MLP
methods. The same trend can be observed in terms of BCE
(Fig. 3) and ACE (Fig. 4), and only post-hoc calibration
of the MLP models yields results comparable to the RF
performance. In general, the ACE scores of the individual
methods reveal that RF models tend to be better calibrated
than MLP approaches for smaller training set sizes, and vice
versa for larger training sets 4.

Importantly, the post-hoc calibrated versions of the MLP,
MLPE, and MLPMC models exhibit better ACE perfor-
mance than their calibration-free counterparts for large
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Table 1. Overview of AUC scores across datasets and methods. Averages of 10 model repeats are shown. The best-performing method
as well as the methods that are statistically indistinguishable from the best one are marked in bold.

Dataset RF MLP MLPE MLPMC

Other-1 [3] 0.6443±0.0048 0.6371±0.0656 0.6457±0.0038 0.6487±0.0619
Other-2 [3] 0.8235±0.0078 0.7345±0.0373 0.7758±0.0062 0.7344±0.0415
Other-4 [3] 0.9584±0.0006 0.9562±0.0029 0.957±0.0005 0.9563±0.0029
Other-3 [3] 0.7451±0.0096 0.7835±0.0055 0.7872±0.0008 0.7841±0.0054
Panel-2 [3] 0.4725±0.0105 0.5706±0.0135 0.5688±0.0016 0.57±0.0137
Panel-3 [3] 0.7443±0.0051 0.6069±0.0134 0.6183±0.0051 0.607±0.0133
Other-6 [3] 0.8995±0.0022 0.8527±0.0167 0.8682±0.003 0.8527±0.0167
Other-5 [3] 0.6739±0.0057 0.7639±0.017 0.7657±0.0015 0.7619±0.0171
Other-7 [3] 0.8379±0.0027 0.7289±0.0313 0.7584±0.0067 0.729±0.029
Panel-1 [3] 0.6633±0.0098 0.6454±0.0175 0.661±0.0012 0.6454±0.0175

datasets. This observation is likely an effect of the calibrat-
ing properties of model ensembling, which tends to make
the models more underconfident. Hence, calibration-free
ensemble-based models have been reported to not always
lead to better-calibrated models (Rahaman & Thiery, 2021).
Considering the large amount of training data used for these
models, the baseline MLP model might not suffer from
overconfidence as much as, for example, models trained
on middle-sized datasets. Hence, the ensemble-based mod-
els MLPE and MLPMC might to a greater extent lead to
underconfident and poorly calibrated predictions that are
corrected in the post-hoc calibration step.

Note, that ACE decouples predictive performance from
probability calibration making it an improper scoring rule
(Gneiting & Raftery, 2007). This means that the best-
calibrated model according to the ACE might not corre-
spond to the most accurate predictive model. If a proper
scoring rule is preferred, one should focus on the BCE score
for the comparison given that both calibration and accuracy
of a model affect BCE. As a result, the model performance
in terms of BCE across the datasets lies somewhat between
the scores AUC and ACE.

3.3. Effects of Label Shifts on Model Calibration

In the final experiment, we analyze the effect of distribution
shifts in label space on model performance and probabil-
ity calibration within the framework of the temporal split.
Fig. 5 and Fig. 6 illustrate the same results as in Fig. 3 and
Fig. 4 but sorted differently. In these heatmaps, the rows
correspond to the datasets ordered by ascending label distri-
bution shift between the combined training and validation
folds versus the test fold.

What stands out in this version of the analysis is a steady
increase in BCE with increasing label shifts, indicated by
the color gradients of the heatmap. In more detail, the mod-
els for datasets with a distribution shift smaller than the one

observed in Other-2 [1] perform comparably well, as indi-
cated by the dark blue colored regions. There is a noticeable
change in color in the row of the Other-2 [1] dataset, which
might result from the combination of increasing label shift
and a small training set size of this specific dataset as shown
in Fig. 2. However, most of the rows below Other-2 [1]
show similarly high BCE, with some exceptions including
Other- [3], Other-3 [3], and Other-7 [3]. The low BCE for
these assays might be a result of their comparably large
training sets (Fig. 2). More training data help to counteract
model overfitting, resulting in the higher AUC score seen
for Other-4 [3] (Table 1) which in turn contributes positively
to the BCE.

A similar trend as the one found in the BCE analysis can be
observed in the ACE scores, albeit less prominent. A poten-
tial explanation for the decline in model performance with
increasing label shift could be overconfidence due to model
overfitting manifesting in poorly calibrated predictions with
higher BCE and ACE scores. Interestingly, similar observa-
tions were reported for shifts in the descriptor space (Ovadia
et al., 2019). The authors showed that with an increasing
distribution shift, neural networks fail to produce reliable
uncertainty estimates due to increasing model overconfi-
dence.

Importantly, the tendency described above can be found
across all methods indicating that a shift in label space gen-
erally impairs model performance. Recall, that the white
rectangles in Fig. 5 and Fig. 6 indicate the best-performing
models on each dataset. The heatmaps show a slight trend
that RF models outperform MLP approaches on datasets
with smaller label shifts, while the post-hoc calibrated MLPs
seem to perform better on datasets with large shifts. How-
ever, this tendency does not apply to all datasets.
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Figure 3. BCE across methods and datasets. The datasets are
sorted by ascending size of training data. Averages of 10 model
repeats are shown. The white rectangles mark the significantly
best score and those results that are statistically indifferent from
the best one.

4. Conclusion and Outlook
In this study, we assessed the effect of training set sizes and
shifts in label distribution on the probability calibration of
uncertainty quantification methods using a temporal split.
We found that model calibration improves with increasing
training data, a potential result from decreased model over-
fitting when training on larger datasets. Interestingly, RF
models could often match or even outperform the more com-
plex MLP models, especially for smaller datasets. For larger
datasets post-hoc calibrated versions of the MLP, MLPE,
and MLPMC models exhibited lower calibration errors.

In addition, we examined the impact of distribution shifts in
label space on model calibration. Note, that a large distri-
bution shift was observed for some assays as a result of the
temporal split, indicating a violation of the i.i.d. assumption.
Overall, increasingly large distribution shifts in label space

Figure 4. ACE across methods and datasets. The datasets are
sorted by ascending size of training data. Averages of 10 model
repeats are shown. The white rectangles mark the significantly
best score and those results that are statistically indifferent from
the best one.

impaired model calibration, but a counteracted effect could
be seen by larger training set sizes.

Based on these preliminary results we aim to further explore
the changes in model calibration throughout time in the pro-
posed temporal setting. We will extend our study to other as-
say categories, to investigate how label shifts affect the prob-
ability calibration of models trained on even larger amounts
of data. These categories will include ADME assays, which
measure the absorption, distribution, metabolism, and excre-
tion of a substance. ADME assays typically comprise large
amounts of bioactivity data as they evaluate particularly
important properties of a drug candidate.

Furthermore, we will explore if incorporating aleatoric un-
certainties in the form of probabilistic labels (Reis et al.,
2018; Mervin et al., 2021b) can enhance the quality of un-
certainty estimates. In summary, our work provides impor-
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Figure 5. BCE across methods and datasets. The datasets are
sorted according to ascending label distribution shifts. Averages of
10 model repeats are shown. The white rectangles mark the signifi-
cantly best score and those results that are statistically indifferent
from the best one.

tant insight into the calibrating abilities of machine learning
models on real pharmaceutical data, which is essential to
achieving reliable uncertainty estimates for an efficient drug
discovery process.
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A. Hyperparameter Search
In Table 2 the hyperparameters explored in the model selection for the RF model and the base MLP are presented. The
architecture of the MLP comprises a given number of hidden layers with either a fixed number of units or a steadily
decreasing number of units determined by the decreasing parameter. Furthermore, dropout and the ReLU activation function
are applied to each hidden layer. An exhaustive grid search was used to find the optimal hyperparameters for every assay
and temporal setting based on the validation BCE loss.

Table 2. Model selection. Considered hyperparameter space in the model selection of the RF and MLP models.

Base Model Hyperparameter Explored space

RF n estimators {50, 100, 250, 500, 1000, 1500}
max deapth {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 1000000}

MLP

Optimizer {Adam}
Learning rate {0.00005, 0.0001, 0.0005, 0.001}
Weight decay {0.0005}
Scheduler {ReduceOnPlateu}
Scheduler Factor {0.1, 0.5}
Scheduler Patience {50}
Batch size {64}
Number of hidden layers {2, 3, 4}
Hidden dimension {64, 128, 256, 512}
Decreasing dimension {False, True}
Dropout {0, 0.25, 0.5, 0.75}
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B. Numerical Results
The following section gives the full numerical results for all experiments, complementary to the ones provided in Section 3.

B.1. Additional Model Accuracy Results

Table 3 presents the model accuracy in terms of AUC for all available datasets and temporal settings.

Table 3. Overview of AUC scores across datasets and methods. Averages of 10 model repeats are shown. The best-performing method
as well as the methods that are statistically indistinguishable from the best one are marked in bold.

Dataset RF MLP MLPE MLPMC

Other-1 [1] 0.6869±0.018 0.614±0.1249 0.7266±0.0053 0.614±0.1249
Other-2 [1] 0.7262±0.0084 0.6821±0.0208 0.6894±0.002 0.6616±0.0617
Other-1 [2] 0.8411±0.0015 0.7886±0.0116 0.7962±0.0007 0.7902±0.0111
Other-3 [1] 0.6253±0.0208 0.6576±0.0198 0.6634±0.0054 0.6576±0.0198
Panel-1 [1] 0.7407±0.0121 0.6141±0.0702 0.6583±0.0013 0.6086±0.0775
Other-2 [2] 0.8147±0.0068 0.7266±0.1034 0.7906±0.0012 0.7291±0.0959
Other-1 [3] 0.6443±0.0048 0.6371±0.0656 0.6457±0.0038 0.6487±0.0619
Other-4 [1] 0.9505±0.002 0.8971±0.0118 0.8979±0.0006 0.9001±0.0089
Panel-2 [1] 0.6083±0.0084 0.4781±0.0086 0.4811±0.0047 0.4781±0.0086
Other-5 [1] 0.6839±0.0101 0.6831±0.0192 0.6935±0.0025 0.6859±0.0175
Other-6 [1] 0.7237±0.0106 0.6679±0.0104 0.6813±0.0058 0.6685±0.0104
Other-7 [1] 0.8129±0.0041 0.779±0.0109 0.7922±0.0023 0.779±0.0109
Panel-3 [1] 0.7807±0.0198 0.4622±0.033 0.46±0.0049 0.475±0.0422
Other-2 [3] 0.8235±0.0078 0.7345±0.0373 0.7758±0.0062 0.7344±0.0415
Other-3 [2] 0.7503±0.0049 0.7682±0.0084 0.7739±0.0033 0.7673±0.0084
Other-4 [2] 0.9029±0.0012 0.8763±0.0096 0.8812±0.0018 0.8773±0.0094
Panel-2 [2] 0.5646±0.0177 0.5775±0.0315 0.6006±0.0128 0.5775±0.0315
Panel-3 [2] 0.6504±0.008 0.4752±0.0669 0.4981±0.0067 0.4801±0.0327
Other-6 [2] 0.7466±0.0128 0.6123±0.044 0.6508±0.0066 0.6123±0.044
Other-5 [2] 0.6924±0.0149 0.6977±0.0134 0.705±0.003 0.6977±0.0134
Other-7 [2] 0.7271±0.0079 0.7458±0.0155 0.7686±0.001 0.7458±0.0155
Panel-1 [2] 0.6317±0.0171 0.5637±0.0134 0.5663±0.001 0.5619±0.0148
Other-4 [3] 0.9584±0.0006 0.9562±0.0029 0.957±0.0005 0.9563±0.0029
Other-3 [3] 0.7451±0.0096 0.7835±0.0055 0.7872±0.0008 0.7841±0.0054
Panel-2 [3] 0.4725±0.0105 0.5706±0.0135 0.5688±0.0016 0.57±0.0137
Panel-3 [3] 0.7443±0.0051 0.6069±0.0134 0.6183±0.0051 0.607±0.0133
Other-6 [3] 0.8995±0.0022 0.8527±0.0167 0.8682±0.003 0.8527±0.0167
Other-5 [3] 0.6739±0.0057 0.7639±0.017 0.7657±0.0015 0.7619±0.0171
Other-7 [3] 0.8379±0.0027 0.7289±0.0313 0.7584±0.0067 0.729±0.029
Panel-1 [3] 0.6633±0.0098 0.6454±0.0175 0.661±0.0012 0.6454±0.0175
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B.2. Additional Model Calibration Results

In the following tables, the full numerical results are provided, as a complement to the heatmaps in Fig. 3,4,5,6. Table B.2
presents the results in terms of BCE for the RF and MLP models with and without post-hoc calibration, while Table B.2
presents the BCE results for the MLPE and MLPMC models. The best-performing models from both Tables B.2 and B.2 are
marked in bold for each dataset and temporal setting.

Table 4. Overview of BCE scores across datasets and RF and MLP methods. Averages of 10 model repeats are shown. The best-
performing method as well as the methods that are statistically indistinguishable from the best one are marked in bold, including also the
models in Table B.2.

Dataset RF RF-P RF-VA MLP MLP-P MLP-VA

Other-1 [1] 0.8722±0.0077 0.6654±0.0069 0.6607±0.0066 0.6868±0.0174 0.6925±0.0189 0.6807±0.024
Other-2 [1] 0.6645±0.0156 0.6056±0.0084 0.5968±0.0066 0.6842±0.028 0.636±0.0266 0.6324±0.011
Other-1 [2] 0.4586±0.0009 0.3945±0.0014 0.4116±0.0028 0.46±0.0306 0.4446±0.0098 0.4533±0.0125
Other-3 [1] 0.561±0.0149 0.6225±0.0297 0.6591±0.0325 0.5105±0.0128 0.5728±0.0097 0.5676±0.0125
Panel-1 [1] 0.1556±0.0011 0.1439±0.0013 0.1445±0.0021 0.4228±0.1345 0.1586±0.0008 0.1565±0.0021
Other-2 [2] 0.4939±0.0051 0.495±0.0041 0.4924±0.006 0.6003±0.06 0.5483±0.0435 0.5459±0.0395
Other-1 [3] 0.62±0.0031 0.7706±0.0063 0.7515±0.0092 0.8591±0.0716 0.7799±0.0251 0.7584±0.0245
Other-4 [1] 0.2964±0.0039 0.2798±0.0072 0.2561±0.0056 0.3665±0.0391 0.3394±0.018 0.3486±0.0216
Panel-2 [1] 0.1328±0.0049 0.1269±0.0025 0.1261±0.0011 0.5514±0.0932 0.1293±0.0006 0.1335±0.0011
Other-5 [1] 0.5611±0.024 0.656±0.0278 0.7051±0.0233 0.5991±0.0624 0.6719±0.0217 0.6717±0.02
Other-6 [1] 0.3315±0.0028 0.3246±0.0038 0.3459±0.0036 0.6119±0.0616 0.4684±0.0118 0.3781±0.0035
Other-7 [1] 0.7094±0.0083 0.5428±0.0056 0.5529±0.0071 1.1537±0.253 0.5804±0.0176 0.5851±0.0154
Panel-3 [1] 0.1654±0.0117 0.1665±0.0057 0.162±0.0021 0.6274±0.086 0.1779±0.0011 0.1808±0.0041
Other-2 [3] 0.6548±0.0098 0.7023±0.0116 0.6817±0.0181 0.6346±0.0347 0.7355±0.0558 0.7309±0.071
Other-3 [2] 0.5389±0.0036 0.3875±0.0025 0.3895±0.003 0.4401±0.0213 0.3692±0.0052 0.3475±0.0065
Other-4 [2] 0.3492±0.0014 0.343±0.0018 0.3416±0.0017 0.423±0.0186 0.4077±0.0239 0.4325±0.0262
Panel-2 [2] 0.1155±0.0018 0.1173±0.0021 0.1188±0.0033 0.6587±0.0653 0.1108±0.0005 0.1111±0.0009
Panel-3 [2] 0.1643±0.0012 0.1781±0.0022 0.1863±0.0045 0.7883±0.0578 0.1703±0.0 0.1735±0.0035
Other-6 [2] 0.4967±0.0056 0.4551±0.0074 0.4623±0.0062 0.7114±0.0437 0.5646±0.0135 0.5306±0.0196
Other-5 [2] 0.587±0.011 0.4361±0.0077 0.4412±0.0102 0.4674±0.0086 0.4008±0.006 0.3989±0.0084
Other-7 [2] 0.4486±0.0044 0.4404±0.0036 0.4417±0.0063 0.5484±0.0894 0.4281±0.0135 0.4266±0.0156
Panel-1 [2] 0.2195±0.0112 0.213±0.0077 0.2161±0.0037 0.5173±0.0783 0.2228±0.005 0.2155±0.0022
Other-4 [3] 0.2136±0.001 0.1966±0.0013 0.2003±0.0018 0.2065±0.0116 0.2122±0.0065 0.2166±0.0061
Other-3 [3] 0.3116±0.0082 0.2331±0.0057 0.2065±0.007 0.2084±0.0099 0.2024±0.0045 0.2035±0.0043
Panel-2 [3] 0.0955±0.0012 0.0946±0.0015 0.0985±0.003 0.4718±0.1242 0.0842±0.0006 0.0844±0.0009
Panel-3 [3] 0.1543±0.0008 0.1531±0.0007 0.158±0.0024 0.5478±0.0285 0.1659±0.0013 0.1652±0.0013
Other-6 [3] 0.3199±0.0033 0.2996±0.0024 0.2887±0.0024 0.3686±0.0373 0.3218±0.0129 0.331±0.0106
Other-5 [3] 0.4381±0.003 0.3213±0.0015 0.3086±0.0026 0.3171±0.0232 0.2948±0.0127 0.293±0.0124
Other-7 [3] 0.242±0.0012 0.2514±0.0011 0.257±0.0018 0.2848±0.0203 0.2668±0.0095 0.2687±0.0133
Panel-1 [3] 0.1852±0.0039 0.1812±0.003 0.1842±0.0017 0.5353±0.173 0.1747±0.0022 0.1765±0.0024
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Table 5. Overview of BCE scores across datasets and MLPE and MLPMC models. Averages of 10 model repeats are shown. The
best-performing method as well as the methods that are statistically indistinguishable from the best one are marked in bold, including also
the models in Table B.2.

Dataset MLPE MLPE-P MLPE-VA MLPMC MLPMC-P MLPMC-VA

Other-1 [1] 0.6847±0.0021 0.6882±0.0048 0.6505±0.0059 0.6868±0.0174 0.6925±0.0189 0.6807±0.024
Other-2 [1] 0.6661±0.0074 0.6282±0.0051 0.6294±0.0016 0.6692±0.0322 0.6385±0.0219 0.6383±0.0183
Other-1 [2] 0.4523±0.0018 0.4335±0.0009 0.4472±0.0017 0.4808±0.0339 0.4456±0.0095 0.4548±0.0131
Other-3 [1] 0.5038±0.0037 0.5707±0.002 0.5632±0.0037 0.5105±0.0128 0.5728±0.0097 0.5676±0.0125
Panel-1 [1] 0.3927±0.0132 0.1553±0.0002 0.1537±0.0003 0.4592±0.1107 0.157±0.0009 0.1565±0.0022
Other-2 [2] 0.5861±0.0032 0.5052±0.0008 0.5187±0.0024 0.6092±0.053 0.5416±0.0456 0.5476±0.0417
Other-1 [3] 0.7993±0.009 0.8024±0.005 0.7783±0.005 0.7119±0.0294 0.7926±0.032 0.7688±0.0253
Other-4 [1] 0.3587±0.0014 0.34±0.0004 0.3479±0.0017 0.3529±0.0312 0.328±0.0131 0.3319±0.0137
Panel-2 [1] 0.5639±0.012 0.1293±0.0001 0.1332±0.0003 0.5514±0.0932 0.1293±0.0006 0.1335±0.0011
Other-5 [1] 0.5743±0.0078 0.6779±0.0021 0.6895±0.0029 0.588±0.0565 0.6724±0.0227 0.6705±0.0205
Other-6 [1] 0.5337±0.0195 0.4663±0.005 0.3777±0.0016 0.5995±0.0589 0.4706±0.0112 0.3782±0.0038
Other-7 [1] 0.9157±0.0338 0.5564±0.0037 0.5669±0.0035 1.1537±0.253 0.5804±0.0176 0.5851±0.0154
Panel-3 [1] 0.6922±0.0064 0.1776±0.0003 0.1763±0.0013 0.6259±0.0881 0.1779±0.0012 0.1826±0.005
Other-2 [3] 0.5744±0.0059 0.6669±0.0099 0.664±0.008 0.6242±0.029 0.7289±0.0612 0.731±0.07
Other-3 [2] 0.441±0.0046 0.3769±0.0063 0.3579±0.0083 0.4445±0.019 0.3674±0.0053 0.3478±0.0064
Other-4 [2] 0.4019±0.004 0.3988±0.0039 0.4254±0.0054 0.3891±0.019 0.4066±0.0252 0.4282±0.0282
Panel-2 [2] 0.642±0.0089 0.1106±0.0002 0.1102±0.0004 0.6587±0.0653 0.1108±0.0005 0.1111±0.0009
Panel-3 [2] 0.7069±0.0177 0.1703±0.0 0.1686±0.0008 0.7868±0.0578 0.1703±0.0 0.1717±0.0015
Other-6 [2] 0.673±0.0103 0.5515±0.0018 0.527±0.0056 0.7114±0.0437 0.5646±0.0135 0.5306±0.0196
Other-5 [2] 0.4682±0.0022 0.3986±0.0016 0.3994±0.0018 0.4674±0.0086 0.4008±0.006 0.3989±0.0084
Other-7 [2] 0.4944±0.0111 0.4086±0.0008 0.411±0.0009 0.5484±0.0894 0.4281±0.0135 0.4266±0.0156
Panel-1 [2] 0.4724±0.0041 0.2249±0.0002 0.215±0.0003 0.499±0.0952 0.2223±0.0048 0.2161±0.0026
Other-4 [3] 0.2035±0.0023 0.208±0.0013 0.2147±0.0018 0.2063±0.0116 0.2118±0.0066 0.2167±0.0061
Other-3 [3] 0.2043±0.0025 0.199±0.0009 0.2001±0.0015 0.2147±0.0093 0.2006±0.0046 0.2036±0.0047
Panel-2 [3] 0.4866±0.0147 0.084±0.0001 0.0846±0.0002 0.4758±0.1226 0.0843±0.0006 0.0843±0.0008
Panel-3 [3] 0.5445±0.0035 0.1648±0.0004 0.1629±0.0003 0.5566±0.0281 0.1656±0.0013 0.1652±0.0011
Other-6 [3] 0.3477±0.0074 0.3077±0.0025 0.3172±0.0023 0.3686±0.0373 0.3218±0.0129 0.331±0.0106
Other-5 [3] 0.3094±0.0035 0.295±0.0011 0.2919±0.0009 0.3064±0.0174 0.2934±0.0124 0.295±0.0121
Other-7 [3] 0.2624±0.0041 0.2549±0.0017 0.2543±0.002 0.2904±0.0233 0.2632±0.0102 0.2675±0.0144
Panel-1 [3] 0.4881±0.0093 0.1728±0.0003 0.1746±0.0005 0.5353±0.173 0.1747±0.0022 0.1765±0.0024

Similarly, Tables B.2 present the model calibration results in terms of ACE for the RF and MLP models and B.2 presents the
results for the MLPE and MLPMC models. Also in this case, the best-performing models across all options from both tables
are marked in bold for each dataset and temporal setting.
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Table 6. Overview of ACE scores across datasets and RF and MLP methods. Averages of 10 model repeats are shown. The best-
performing method as well as the methods that are statistically indistinguishable from the best one are marked in bold, including also the
models in Table B.2.

Dataset RF RF-P RF-VA MLP MLP-P MLP-VA

Other-1 [1] 0.3179±0.0048 0.1384±0.0121 0.1306±0.0101 0.1482±0.0507 0.1644±0.0353 0.1599±0.019
Other-2 [1] 0.1196±0.0094 0.0496±0.0132 0.0591±0.0119 0.1696±0.0302 0.0728±0.0302 0.0722±0.0112
Other-1 [2] 0.1532±0.0014 0.0627±0.0024 0.0793±0.004 0.1192±0.0345 0.0965±0.008 0.1103±0.0122
Other-3 [1] 0.1656±0.0166 0.2225±0.0218 0.2404±0.021 0.0817±0.0166 0.1767±0.0044 0.167±0.0065
Panel-1 [1] 0.0345±0.0014 0.012±0.002 0.0117±0.0022 0.2772±0.0978 0.0155±0.005 0.016±0.0017
Other-2 [2] 0.057±0.0097 0.0594±0.0067 0.0624±0.0096 0.1646±0.0436 0.0841±0.0202 0.0894±0.0213
Other-1 [3] 0.0845±0.0031 0.1995±0.0013 0.1944±0.0023 0.2232±0.0279 0.2027±0.006 0.1943±0.0076
Other-4 [1] 0.1241±0.0046 0.1021±0.0085 0.0717±0.0102 0.0762±0.0319 0.0543±0.0111 0.0581±0.0098
Panel-2 [1] 0.0135±0.0006 0.0117±0.0012 0.0105±0.0023 0.3868±0.0611 0.0129±0.0011 0.0167±0.0016
Other-5 [1] 0.0935±0.0115 0.2177±0.0195 0.2487±0.0202 0.1482±0.0574 0.2416±0.0138 0.243±0.0121
Other-6 [1] 0.0581±0.0009 0.0475±0.0016 0.0612±0.0017 0.0869±0.004 0.0823±0.004 0.0692±0.0035
Other-7 [1] 0.2388±0.0032 0.0657±0.0065 0.0789±0.0075 0.2723±0.0419 0.0739±0.0287 0.0705±0.0234
Panel-3 [1] 0.021±0.0008 0.0311±0.0059 0.0265±0.0043 0.4174±0.0467 0.0223±0.0022 0.026±0.0066
Other-2 [3] 0.2412±0.0063 0.2665±0.0075 0.242±0.0078 0.0939±0.0135 0.2054±0.0238 0.2128±0.039
Other-3 [2] 0.276±0.0026 0.1339±0.0044 0.1328±0.0027 0.2051±0.0171 0.1285±0.0039 0.0993±0.0057
Other-4 [2] 0.0754±0.0025 0.0632±0.0033 0.0441±0.0023 0.0721±0.0162 0.0657±0.0145 0.0868±0.0138
Panel-2 [2] 0.0168±0.0013 0.0216±0.0023 0.0235±0.0033 0.457±0.035 0.0094±0.0017 0.0107±0.0012
Panel-3 [2] 0.0193±0.0016 0.0394±0.0022 0.0482±0.0032 0.5073±0.0283 0.0126±0.0016 0.0166±0.0065
Other-6 [2] 0.1242±0.0009 0.1049±0.0017 0.1058±0.0019 0.1496±0.0046 0.1181±0.0048 0.1156±0.0055
Other-5 [2] 0.3011±0.0081 0.1565±0.0075 0.1627±0.0096 0.2029±0.0091 0.1293±0.0034 0.1134±0.0065
Other-7 [2] 0.0627±0.0072 0.0588±0.013 0.0594±0.0153 0.0996±0.0198 0.0434±0.0132 0.0424±0.0185
Panel-1 [2] 0.0206±0.0032 0.0152±0.0035 0.0296±0.0028 0.323±0.0531 0.0231±0.0021 0.0208±0.0033
Other-4 [3] 0.0684±0.0013 0.0467±0.001 0.0571±0.0018 0.0344±0.011 0.0439±0.0044 0.0482±0.0073
Other-3 [3] 0.1909±0.0071 0.1146±0.0054 0.0853±0.0059 0.0856±0.0108 0.0835±0.0043 0.083±0.0049
Panel-2 [3] 0.0217±0.0009 0.02±0.0012 0.0248±0.0022 0.3282±0.0856 0.0105±0.0016 0.0087±0.0016
Panel-3 [3] 0.0162±0.0015 0.0142±0.0023 0.0202±0.0043 0.3733±0.0185 0.013±0.002 0.0126±0.0033
Other-6 [3] 0.0675±0.0016 0.0423±0.0022 0.0429±0.0029 0.0666±0.0185 0.0209±0.006 0.0307±0.0073
Other-5 [3] 0.2149±0.002 0.0803±0.0021 0.0571±0.0024 0.0652±0.0142 0.0527±0.0086 0.0525±0.0093
Other-7 [3] 0.0571±0.0015 0.071±0.0015 0.062±0.0062 0.067±0.0193 0.058±0.0065 0.056±0.0131
Panel-1 [3] 0.0319±0.0016 0.0286±0.0017 0.0366±0.0014 0.2918±0.1007 0.0185±0.0021 0.0223±0.0018
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Table 7. Overview of ACE scores across datasets and MLPE and MLPMC models. Averages of 10 model repeats are shown. The
best-performing method as well as the methods that are statistically indistinguishable from the best one are marked in bold, including also
the models in Table B.2.

Dataset MLPE MLPE-P MLPE-VA MLPMC MLPMC-P MLPMC-VA

Other-1 [1] 0.2059±0.0067 0.2171±0.0046 0.1809±0.0152 0.1482±0.0507 0.1644±0.0353 0.1599±0.019
Other-2 [1] 0.1551±0.0109 0.0749±0.0112 0.0823±0.0045 0.1427±0.0263 0.0714±0.0228 0.0729±0.0077
Other-1 [2] 0.1166±0.0025 0.0874±0.0012 0.1098±0.0037 0.1476±0.0344 0.0965±0.0074 0.11±0.0127
Other-3 [1] 0.0775±0.0043 0.1788±0.0009 0.1646±0.0009 0.0817±0.0166 0.1767±0.0044 0.167±0.0065
Panel-1 [1] 0.2651±0.0109 0.0181±0.0005 0.0154±0.0009 0.3105±0.0762 0.0156±0.0046 0.0165±0.0024
Other-2 [2] 0.1804±0.0032 0.0579±0.0023 0.0732±0.0059 0.1771±0.0316 0.0695±0.0122 0.0805±0.0249
Other-1 [3] 0.2098±0.0039 0.2134±0.0018 0.2001±0.0028 0.1686±0.0219 0.2082±0.0081 0.2063±0.0067
Other-4 [1] 0.0814±0.0023 0.0584±0.0016 0.0615±0.0011 0.0806±0.0392 0.0417±0.011 0.0473±0.0082
Panel-2 [1] 0.398±0.0076 0.0127±0.0005 0.0155±0.0006 0.3868±0.0611 0.0129±0.0011 0.0167±0.0016
Other-5 [1] 0.1347±0.0105 0.2527±0.0011 0.2567±0.0028 0.1422±0.0545 0.2422±0.0146 0.2428±0.0122
Other-6 [1] 0.0811±0.0012 0.0839±0.0002 0.0682±0.0014 0.0866±0.0039 0.0826±0.0042 0.0693±0.003
Other-7 [1] 0.2418±0.008 0.0463±0.0093 0.0517±0.0092 0.2723±0.0419 0.0739±0.0287 0.0705±0.0234
Panel-3 [1] 0.4569±0.0035 0.0273±0.0006 0.022±0.0017 0.4164±0.0481 0.0184±0.0044 0.0223±0.0059
Other-2 [3] 0.0553±0.0062 0.1864±0.0023 0.1839±0.0027 0.0876±0.021 0.2101±0.0294 0.2139±0.0359
Other-3 [2] 0.2036±0.0033 0.1347±0.0064 0.1113±0.0068 0.2096±0.0155 0.1266±0.004 0.0992±0.0058
Other-4 [2] 0.0614±0.0031 0.0632±0.0022 0.0866±0.002 0.0464±0.013 0.068±0.0178 0.0829±0.0188
Panel-2 [2] 0.4491±0.0049 0.0102±0.0019 0.0102±0.001 0.457±0.035 0.0094±0.0017 0.0107±0.0012
Panel-3 [2] 0.4666±0.0095 0.0178±0.0018 0.0128±0.0013 0.5066±0.0283 0.009±0.0022 0.0133±0.0024
Other-6 [2] 0.1488±0.001 0.1181±0.0015 0.1163±0.002 0.1496±0.0046 0.1181±0.0048 0.1156±0.0055
Other-5 [2] 0.2031±0.0038 0.1265±0.0032 0.115±0.0018 0.2029±0.0091 0.1293±0.0034 0.1134±0.0065
Other-7 [2] 0.095±0.0036 0.0238±0.0038 0.0326±0.0024 0.0996±0.0198 0.0434±0.0132 0.0424±0.0185
Panel-1 [2] 0.2913±0.0036 0.0222±0.0004 0.0228±0.0011 0.3101±0.0656 0.0225±0.0016 0.0231±0.003
Other-4 [3] 0.0352±0.0022 0.042±0.0015 0.0528±0.0021 0.0349±0.0113 0.0436±0.0041 0.0481±0.0059
Other-3 [3] 0.0848±0.0024 0.0808±0.001 0.0806±0.0014 0.0972±0.0099 0.0813±0.0047 0.083±0.0051
Panel-2 [3] 0.3521±0.0102 0.0113±0.0005 0.0096±0.001 0.3326±0.0835 0.0102±0.0016 0.0089±0.0013
Panel-3 [3] 0.3717±0.0023 0.0121±0.0011 0.0103±0.0009 0.3791±0.0181 0.0128±0.0022 0.0129±0.0032
Other-6 [3] 0.0667±0.0053 0.0165±0.0026 0.0254±0.0022 0.0666±0.0185 0.0209±0.006 0.0307±0.0073
Other-5 [3] 0.0683±0.0036 0.0581±0.0027 0.0529±0.0021 0.0785±0.0167 0.0494±0.0075 0.0527±0.0088
Other-7 [3] 0.0614±0.0048 0.0518±0.0025 0.048±0.004 0.0916±0.0228 0.0503±0.0073 0.052±0.0123
Panel-1 [3] 0.2852±0.0057 0.0146±0.0015 0.0214±0.0009 0.2918±0.1007 0.0185±0.0021 0.0223±0.0018
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