
Published as a conference paper at ICLR 2024

NEURAL-SYMBOLIC RECURSIVE MACHINE
FOR SYSTEMATIC GENERALIZATION

Qing Li1, Yixin Zhu3, Yitao Liang1,3, Ying Nian Wu2, Song-Chun Zhu1,3, Siyuan Huang1

1National Key Laboratory of General Artificial Intelligence, BIGAI
2UCLA 3Institute for Artificial Intelligence, Peking University

ABSTRACT

Current learning models often struggle with human-like systematic generalization;
learning compositional rules from limited data and extrapolating them to unseen
combinations. To address this, we introduce Neural-Symbolic Recursive Machine
(NSR), a model whose core representation is a Grounded Symbol System (GSS),
with its combinatorial syntax and semantics emerging entirely from the training data.
The NSR adopts a modular approach, incorporating neural perception, syntactic
parsing, and semantic reasoning, which are jointly learned through a deduction-
abduction algorithm. We establish that NSR possesses sufficient expressiveness
to handle a variety of sequence-to-sequence tasks and attains superior systematic
generalization, thanks to the inductive biases of equivariance and compositionality
inherent in each module. We assess NSR’s performance against four rigorous
benchmarks designed to test systematic generalization: SCAN for semantic parsing,
PCFG for string manipulation, HINT for arithmetic reasoning, and a task involving
compositional machine translation. Our results indicate that NSR outperforms
existing neural or hybrid models in terms of generalization and transferability.

1 INTRODUCTION

A defining characteristic of human intelligence is systematic compositionality, the algebraic abil-
ity to create infinite interpretations from finite known components (Chomsky, 1957; Montague,
1970; Marcus, 2018)—termed “infinite use of finite means”. This compositionality is crucial for
generalizing from limited data to unseen combinations (Lake et al., 2017). Several datasets like
SCAN (Lake and Baroni, 2018), PCFG (Hupkes et al., 2020), CFQ (Keysers et al., 2020), and HINT
(Li et al., 2023) have been introduced to assess the systematic generalization of machine learning
models. Conventional neural networks exhibit significant shortcomings on these datasets, prompting
exploration into inductive biases to enhance systematic generalization. Csordás et al. (2021) and On-
tanón et al. (2022) enhance Transformers’ generalization by employing relative positional encoding
and layer weight sharing. Chen et al. (2020) present a neural-symbolic stack machine, achieving
near-perfect accuracy on SCAN-like datasets. Drozdov et al. (2023) prompts large language models to
achieve compositional semantic parsing on CFQ. However, these approaches require domain-specific
knowledge for designing intricate symbolic components and pose challenges in domain transfer.

To achieve human-like systematic generalization across diverse domains, we introduce Neural-
Symbolic Recursive Machine (NSR), a principled framework that enables the joint learning of
perception, syntax, and semantics. The core representation of NSR is a Grounded Symbol System
(GSS), illustrated in Fig. 1. Importantly, NSR’s GSS emerges entirely from training data, negating the
need for domain-specific knowledge. NSR employs a modular design, incorporating neural perception,
syntactic parsing, and semantic reasoning. Initially, a neural network serves as the perception module,
grounding symbols in raw inputs. Subsequently, these symbols are structured into a syntax tree of the
GSS by a transition-based neural dependency parser (Chen and Manning, 2014). Lastly, functional
programs are utilized to interpret the semantic meaning of symbols (Ellis et al., 2021). Theoretically,
we demonstrate that NSR is versatile enough to represent various sequence-to-sequence tasks. The
embedded inductive biases of equivariance and compositionality allow NSR to decompose long
inputs, process components progressively, and compose results, fostering the learning of meaningful
symbols and compositional rules. These inductive biases are pivotal for NSR’s exceptional systematic
generalization.

1

Published as a conference paper at ICLR 2024

(1)SCAN (2)PCFG (3)HINT

jump left after walk twice append swap A B C,repeat B E

after 12 [WALK,WALK,LTURN,JUMP] append 53 [C,B,A,B,E,B,E] 10 29

left 5 [LTURN,JUMP] twice 9 [WALK,WALK]

jump 4 [JUMP] wak 1 [WALK] 3 3 9 9E 4 [E]B 1 [B]C 2 [C]B 1 [B]A 0 [A]

swap 51 [C,B,A] repeat 52 [B,E,B,E] 2 2 12 27

Figure 1: Illustrative examples of GSSs demonstrating a human-like reasoning process. (a) SCAN: each
node represents a triplet of (word, symbol, action sequence). (b) PCFG: each node is composed of a triplet (word,
symbol, letter list). (c) HINT: each node encapsulates a triplet (image, symbol, value). Symbols are denoted by
their respective indices.

Optimizing NSR end-to-end is formidable due to the unavailability of annotations for the internal
GSS and the model’s non-differentiable nature. To address this, we introduce a probabilistic learning
framework and formulate a novel deduction-abduction algorithm to coordinate the joint learning of
various modules. During learning, the model initially employs greedy deduction across modules to
propose an initial GSS, which may be incorrect. Subsequently, a search-based abduction is executed
top-down to explore the initial GSS’s neighborhood for potential solutions, refining the GSS until the
accurate result is obtained. The refined GSS serves as pseudo supervision, facilitating the independent
training of each NSR module.

We assess NSR against three benchmarks designed to test systematic generalization:

1. SCAN (Lake and Baroni, 2018), which maps natural language commands to action sequences;

2. PCFG (Hupkes et al., 2020), tasked with predicting the output sequences of string manipulation
commands;

3. HINT (Li et al., 2023), focused on predicting the results of handwritten arithmetic expressions.

Each dataset includes multiple splits to evaluate various facets of systematic generalization. NSR sets
a new standard on all benchmarks, achieving 100% generalization accuracy on SCAN and PCFG and
improving the state-of-the-art accuracy on HINT by approximately 23%. Analyses indicate that NSR’s
modular design and inherent inductive biases enable stronger generalization compared to conventional
neural networks and superior transferability compared to existing neural-symbolic models, requiring
less domain-specific knowledge. To probe NSR’s applicability to real-world scenarios, we test it on a
compositional machine translation task by Lake and Baroni (2018). NSR attains 100% generalization
accuracy, underscoring its viability in real-world applications with diverse and ambiguous rules.

2 RELATED WORK

The exploration of systematic generalization in deep neural networks has garnered considerable
attention in recent times within the machine learning community. Initiated by the introduction of the
SCAN dataset (Lake and Baroni, 2018), numerous benchmarks spanning diverse domains have been
established, encompassing semantic parsing (Keysers et al., 2020; Kim and Linzen, 2020), string
manipulation (Hupkes et al., 2020), visual question answering (Bahdanau et al., 2019; Xie et al.,
2021), grounded language understanding (Ruis et al., 2020), mathematical reasoning (Saxton et al.,
2018; Li et al., 2023). These datasets act as platforms for assessing various facets of generalization,
such as systematicity and productivity. Subsequent research on semantic parsing (Chen et al., 2020;
Herzig and Berant, 2021; Drozdov et al., 2023) has explored diverse techniques, infusing various
inductive biases into deep neural networks to optimize performance on these datasets. We organize
the preceding approaches into three categories, based on their method of incorporating inductive bias.

1. Architectural Prior: This approach refines neural network architectures to enhance compositional
generalization. Dessı̀ and Baroni (2019) demonstrate the superiority of convolutional networks over
RNNs in the “jump” split of SCAN. Russin et al. (2019) enhance standard RNNs by developing
distinct modules for syntax and semantics. Gordon et al. (2019) introduce an equivariant seq2seq
model, incorporating convolution operations into RNNs to attain local equivariance, provided
a priori. Csordás et al. (2021) and Ontanón et al. (2022) note improvements in Transformers’

2

Published as a conference paper at ICLR 2024

systematic generalization through relative position encoding and layer weight sharing. Gontier et al.
(2022) propose to incorporate entity type abstractions into pretrained Transformers to enhance the
logical reasoning capability.

2. Data Augmentation: This strategy devises schemes to create auxiliary training data to foster
compositional generalization. Andreas (2020) augment data by interchanging fragments of training
samples, and Akyürek et al. (2020) employ a generative model to recombine and resample training
data. The meta sequence-to-sequence model (Lake, 2019) and the rule synthesizer (Nye et al.,
2020) utilize samples from a meta-grammar resembling the SCAN grammar.

3. Symbolic Scaffolding: This method integrates symbolic elements into neural architectures to bol-
ster compositional generalization. Liu et al. (2020) link a memory-augmented model to analytical
expressions, emulating reasoning processes. Chen et al. (2020) embed a symbolic stack machine
within a seq2seq framework, learning a neural controller for operation. Kim (2021) derive latent
neural grammars for both encoder and decoder in a seq2seq framework. While these techniques
achieve notable generalization by incorporating symbolic scaffolding, the need for domain-specific
knowledge and intricate training procedures, like hierarchical reinforcement learning in Liu et al.
(2020) and exhaustive search processes in Chen et al. (2020), limit their practical applicability.

Beyond technical implementations, existing works suggest two fundamental inductive biases crucial
for compositional generalization: equivariance and compositionality, both pivotal for ensuring
models’ systematicity and productivity. The introduced NSR leverages a generalized Grounded
Symbol System as symbolic scaffolding and instills equivariance and compositionality within its
modules to attain robust compositional generalization. Unlike preceding neural-symbolic approaches,
NSR necessitates minimal domain-specific knowledge and eschews the need for a specialized learning
curriculum, resulting in improved transferability and streamlined optimization across diverse domains,
as validated by our experiments; we refer the readers to Sec. 4 for details.

Our work is also related to neural-symbolic methods for logical reasoning. Rocktäschel and Riedel
(2017) introduce Neural Theorem Provers (NTPs) for end-to-end differentiable proving of queries to
knowledge bases by operating on dense vector representations of symbols. Minervini et al. (2020)
propose Greedy NTPs to overcome the computational limitations of NTPs and extend them to
real-world datasets. Mao et al. (2018) propose a Neuro-Symbolic Concept Learner, relying on a
pre-established domain-specific language, to learn visual concepts from question-answering pairs.

3 NEURAL-SYMBOLIC RECURSIVE MACHINE

3.1 REPRESENTATION: GROUNDED SYMBOL SYSTEM (GSS)

The longstanding debate between connectionism and symbolism revolves around the optimal represen-
tation of the human mind (Fodor et al., 1988; Fodor and Lepore, 2002; Marcus, 2018). Connectionism
emphasizes distributed representations (Hinton, 1984), positing that concepts are represented by
activity patterns across numerous neurons. Conversely, symbolism advocates for a physical symbol
system (Newell, 1980), where each symbol represents an atomic concept, and complex concepts are
formed by syntactically combining symbols (Chomsky, 1965; Hauser et al., 2002; Evans and Levin-
son, 2009). Symbol systems, being more interpretable, offer superior abstraction and generalization
compared to distributed representations (Launchbury, 2017). However, creating a symbol system for
a domain is knowledge-intensive and can result in a brittle system plagued by the symbol grounding
problem (Harnad, 1990).

In this work, we propose a Grounded Symbol System (GSS) as the internal representation for sys-
tematic generalization, offering a principled amalgamation of perception, syntax, and semantics,
illustrated by Fig. 1. Formally, a GSS is a directed tree T “ă px, s, vq, e ą, where each node is a
triplet of the grounded input x, the abstract symbol s, and the semantic meaning v. Edges represent
semantic dependencies between parent and child nodes, with an edge i Ñ j indicating dependency
of node i’s meaning on node j’s.

Given the inherent fragility and labor-intensity of handcrafted symbol systems, grounding them on
raw inputs and learning their syntax and semantics from training examples become crucial, a topic
we delve into in the following sections.

3

Published as a conference paper at ICLR 2024

Grounded Symbol System

Inference

Abduction

T=<(x,s ,v) , e>

Learning

Neural
Perception

Dependency
Parsing

Program
Induction

X ys s,e v

Figure 2: Illustration of inference and learning pipeline in NSR.

3.2 MODEL: NEURAL-SYMBOLIC RECURSIVE MACHINE (NSR)

We delineate the structure of the proposed NSR, designed to induce a GSS from the training data. As
depicted in Fig. 2, NSR is composed of three trainable modules: a neural perception module to ground
symbols in raw input, a dependency parser to infer dependencies between symbols, and a program
synthesizer to deduce semantic meanings. Given the absence of ground-truth GSS during training,
these modules must be trained end-to-end without intermediate supervision. Subsequently, we detail
the three modules of NSR and discuss the end-to-end learning of NSR utilizing our introduced
deduction-abduction algorithm.

Neural Perception The perception module’s objective is to convert raw input x (e.g., a handwritten
expression) into a symbolic sequence s, represented by a list of indices. This module manages the
perceptual variance inherent in raw input signals, ensuring each predicted token wi P s corresponds
to a specific segment of the input xi P x. Formally, this relationship is expressed as:

pps|x; θpq “
ź

i

ppwi|xi; θpq “
ź

i

softmaxpϕpwi, xi; θpqq, (1)

where ϕpwi, xi; θpq denotes a scoring function, parameterized by a neural network with parameters
θp. The architecture of this neural network is contingent upon the nature of the raw input and can be
pre-trained; for instance, a pre-trained convolutional neural network is employed for image inputs.

Dependency Parsing To infer dependencies between symbols, a transition-based neural dependency
parser is utilized (Chen and Manning, 2014), a method prevalent in parsing natural language sentences.
This parser, operating through a state machine, delineates possible transitions to convert the input
sequence into a dependency tree, constructing it by iteratively applying predicted transitions until the
parsing concludes; refer to Fig. A1 for illustration. At each step, a transition is predicted based on
the state representation, derived from a local window encompassing the top elements in the stack
and buffer, and their immediate children. A two-layer feed-forward neural network, given the state
representation, predicts the transition. Formally, for an input sentence s, the relationship is:

ppe|s; θsq “ ppT |s; θsq “
ź

tiPT
ppti|ci; θsq, (2)

where θs represents the parser’s parameters, T “ tt1, t2, ..., tlu (e denotes the transition sequence
generating the dependencies e, and ci is the state representation at step i. A greedy decoding strategy
is employed in practice to predict the transition sequence for the input sentence.

Program Induction Drawing inspiration from advancements in program induction (Ellis et al.,
2021; Balog et al., 2017; Devlin et al., 2017), we employ functional programs to depict the semantics
of symbols, conceptualizing learning as program induction. Symbolic programs, compared to solely
statistical methods, offer improved generalizability and interpretability and are typically more sample-
efficient. Formally, given input symbols s and their dependencies e, the relationship is defined as:

ppv|e, s; θlq “
ź

i

ppvi|si, childrenpsiq; θlq (3)

where θl represents the set of programs induced for each symbol. Symbolic programs are utilized in
practice, ensuring a deterministic reasoning process.

Learning symbol semantics is tantamount to searching for a program consistent with provided
examples, with candidate programs composed of pre-defined primitives. Relying on Peano axioms
(Peano, 1889), a universal set of primitives is identified, including 0, inc, dec, ==, and if, proven
to be adequate for representing any symbolic function; refer to Sec. 3.4 for details. To expedite

4

Published as a conference paper at ICLR 2024

the search and enhance generalization, we incorporate a minimal subset of Lisp primitives and the
recursion primitive (Y-combinator (Peyton Jones, 1987)). We leverage DreamCoder (Ellis et al., 2021)
for program induction, modifying it to accommodate noise in examples during the search.

Model Inference As illustrated in Fig. 2, the neural perception module first maps the input x, e.g., a
handwritten expression in Fig. 1 (3) HINT, to a symbol sequence, 2 ` 3 ˆ 9. The dependency parsing
module then parses the symbol sequence into a tree in the form of dependencies, e.g., ` Ñ 2ˆ,
ˆ Ñ 3 9. Finally, the program induction module uses the learned programs for each symbol to
calculate the values of the nodes in the tree in a bottom-up manner, e.g., 3 ˆ 9 ñ 27, 2 ` 27 ñ 29.

3.3 LEARNING

Given the latent and non-differentiable nature of the intermediate GSS, backpropagation is impractical
for learning NSR. Prior methods often use policy gradient algorithms like REINFORCE (Williams,
1992), but these have been noted for their slow or non-convergence (Liang et al., 2018; Li et al.,
2020). Given the extensive space of GSS, an alternative, efficient learning algorithm is imperative.

Formally, with x as the input, T “ă px, s, vq, e ą as the intermediate GSS, and y as the output, the
likelihood of observing px, yq, marginalized over T , is:

ppy|x; Θq “
ÿ

T

ppT, y|x; Θq “
ÿ

s,e,v

pps|x; θpqppe|s; θsqppv|s, e; θlqppy|vq, (4)

The learning objective from a maximum likelihood estimation perspective is to maximize the observed-
data log-likelihood Lpx, yq “ log ppy|xq. The derivatives of L w.r.t. θp, θs, θl are:

∇θpLpx, yq “ ET„ppT |x,yqr∇θp log pps|x; θpqs,

∇θsLpx, yq “ ET„ppT |x,yqr∇θs log ppe|s; θsqs,

∇θlLpx, yq “ ET„ppT |x,yqr∇θl log ppv|s, e; θlqs,

(5)

where ppT |x, yq is the posterior distribution of T given px, yq, and can be rewritten as:

ppT |x, yq “
ppT, y|x; Θq

ř

T 1 ppT 1, y|x; Θq
“

#

0, if T R Q
ppT |x;Θq

ř

T 1PQ ppT 1|x;Θq
, if T P Q (6)

with Q being the set of T that match y.

7 + 4 × 4 23
���������������������������
������������

+ 35

4 47 7

× 287 7

+ 23

4 44 4

× 167 7

������������
���	����������������
× 44

4 47 7

4 4+ 11

+ 23

4 44 4

× 167 7

+ 23

4 44 4

× 167 7

+ 15

4 44 4

× 87 7

��������������������������
�����������

Figure 3: Illustration of abduction in HINT over
perception, syntax, and semantics. Elements modi-
fied during abduction are emphasized in red.

Given the intractability of taking expectation w.r.t.
this posterior distribution, Monte Carlo sampling
is used for approximation. The optimization pro-
cedure involves sampling a solution from the pos-
terior distribution and updating each module using
supervised training, addressing the challenges of
sampling from a sparse distribution in large space.

Deduction-Abduction The crux of the learn-
ing procedure lies in efficient sampling from
the posterior distribution ppT |x, yq. To address
this, we introduce a deduction-abduction algo-
rithm, detailed in Alg. A1. Specifically, for a
given example px, yq, a greedy deduction is ini-
tially performed from x to obtain an initial GSS
T “ă px, ŝ, v̂q, ê ą. Subsequently, to align T˚

with the correct result y during training, a top-
down search is conducted around the neighbors
of T , executing abduction across perception, syn-
tax, and semantics; refer to Figs. 3 and A2. The
search stops when the found T˚ can generate the
given ground truth y, or the search steps exceed
the pre-defined maximum steps. Theoretically, this
deduction-abduction mechanism serves as a Metropolis-Hastings sampler for ppT |x, yq (Li et al.,
2020).

5

Published as a conference paper at ICLR 2024

3.4 EXPRESSIVENESS AND GENERALIZATION OF NSR

In this section, we delve into the properties of NSR, focusing on its expressiveness and its capability
for systematic generalization, attributed to the embedded inductive biases.

Expressiveness NSR is proven to possess the expressive power necessary to model a diverse range
of seq2seq tasks. Below are the theorem that support this assertion.
Theorem 3.1. Given any finite dataset D “ tpxi, yiq : i “ 0, ..., Nu, an NSR exists that can aptly
express D utilizing four primitives: t0,inc,==,ifu.

The proof of this theorem involves constructing a specialized NSR that effectively “memorizes” all
examples in D through a comprehensive program:

NSRpxq “ ifpfppxq==0, y0,ifpfppxq==1, y1, ...ifpfppxq==N, yN ,∅q...q (7)

This program serves as a sophisticated lookup table, constructed using the primitives tif,==u and
the index space created by t0,incu (proved by Lemmas C.1 and C.2). Given the universality of
these four primitives across domains, NSR’s ability to model a variety of seq2seq tasks is assured,
offering improved transferability compared to preceding neural-symbolic approaches.

Generalization While the degenerate program outlined in Eq. (7) ensures impeccable accuracy
on the training set, its generalization capabilities are limited. To foster robust generalization, it is
imperative to integrate certain inductive biases. These biases should be minimal and universally
applicable across domains. Drawing inspiration from compositional generalization studies (Gordon
et al., 2019; Chen et al., 2020; Xie et al., 2021; Zhang et al., 2022), we postulate two essential
inductive biases: equivariance and compositionality. Equivariance contributes to the model’s system-
aticity, allowing generalizations like ‘‘jump twice’’ from {‘‘run’’, ‘‘run twice’’,
‘‘jump’’}, while compositionality enhances the model’s productivity, enabling generalizations to
elongated sequences such as ‘‘run and jump twice’’. The formal definitions of equivariance
and compositionality are as follows:
Definition 3.1 (Equivariance). For sets X and Y , and a permutation group P with operations
Tp : X Ñ X and T 1

p : Y Ñ Y , a mapping Φ : X Ñ Y is equivariant iff @x P X , p P P : ΦpTpxq “

T 1
pΦpxq.

Definition 3.2 (Compositionality). For sets X and Y , with composition operations Tc : pX ,X q Ñ X
and T 1

c : pY,Yq Ñ Y , a mapping Φ : X Ñ Y is compositional iff DTc, T
1
c,@x1 P X , x2 P X :

ΦpTcpx1, x2qq “ T 1
cpΦpx1q,Φpx2qq.

The three modules of NSR—neural perception (Eq. (1)), dependency parsing (Eq. (2)), and program
induction (Eq. (3))—exhibit equivariance and compositionality, functioning as pointwise transforma-
tions based on their formulations. Models demonstrating exceptional compositional generalization,
such as NeSS (Chen et al., 2020), LANE (Liu et al., 2020), and NSR, inherently possess these
properties. This leads to our hypothesis regarding compositional generalization:
Hypothesis 3.1. A model achieving compositional generalization instantiates a mapping Φ : X Ñ Y
that is inherently equivariant and compositional.

4 EXPERIMENTS

We assess the NSR across three benchmarks to scrutinize its capability for systematic generalization:
(i) SCAN (Lake and Baroni, 2018), which translates natural language commands into sequences of
actions; (ii) PCFG (Hupkes et al., 2020), which predicts the output sequences of string manipulation
commands; and (iii) HINT (Li et al., 2023), which anticipates the results of handwritten arithmetic
expressions. Additionally, we extend our evaluation to a compositional machine translation task (Lake
and Baroni, 2018) to corroborate NSR’s efficacy in addressing real-world challenges.

4.1 SCAN

The SCAN dataset (Lake and Baroni, 2018) serves as a prevalent benchmark for examining the
systematic generalization of machine learning models. It is designed to translate natural language
commands into action sequences, mimicking the navigation of an agent in a grid world.

6

Published as a conference paper at ICLR 2024

Evaluation Protocols In alignment with preceding studies (Lake, 2019; Gordon et al., 2019; Chen
et al., 2020), we appraise NSR under the subsequent four splits: (i) SIMPLE: the dataset is randomly
partitioned into training and testing samples. (ii) LENGTH: the training set encompasses output
sequences with a maximum of 22 actions, while the test set includes sequences with lengths ranging
between 24 and 48. (iii) JUMP: the primitive “jump” is isolated in the training set, and the test
set amalgamates “jump” with other primitives. (iv) AROUND RIGHT: the phrase “around right” is
excluded from the training set, but the constituents “around” and “right” are present separately,
exemplified by “around left” and “opposite right.”

Baselines We juxtapose NSR against several models: (i) seq2seq (Lake and Baroni, 2018), (ii)
CNN (Dessı̀ and Baroni, 2019), (iii) Transformer (Csordás et al., 2021; Ontanón et al., 2022), (iv)
equivariant seq2seq (Gordon et al., 2019)—a model that amalgamates convolutional operations with
RNNs to attain local equivariance, and (v) NeSS (Chen et al., 2020)—a model that embeds a symbolic
stack machine within a seq2seq framework.

Results The summarized results are presented in Tab. 1. Remarkably, both NSR and NeSS realize
100% accuracy on the splits necessitating systematic generalization. In contrast, the peak performance
of other models on the LENGTH split barely reaches 20%. This stark discrepancy underscores the
pivotal role and efficacy of symbolic components—specifically, the symbolic stack machine in NeSS
and the GSS in NSR—in fostering systematic generalization.

Table 1: Test accuracy across various splits of SCAN and PCFG. The results of NeSS on PCFG are reported
by modifying the source code from Chen et al. (2020) for PCFG.

models SCAN PCFG

SIMPLE JUMP AROUND RIGHT LENGTH i.i.d. systematicity productivity

Seq2Seq (Lake and Baroni, 2018) 99.7 1.2 2.5 13.8 79 53 30
CNN (Dessı̀ and Baroni, 2019) 100.0 69.2 56.7 0.0 85 56 31

Transformer (Csordás et al., 2021) - - - 20.0 - 96 85
Transformer (Ontanón et al., 2022) - 0.0 - 19.6 - 83 63

equivariant Seq2seq (Gordon et al., 2019) 100.0 99.1 92.0 15.9 - - -
NeSS (Chen et al., 2020) 100.0 100.0 100.0 100.0 «0 «0 «0

NSR (ours) 100.0 100.0 100.0 100.0 100 100 100

While NeSS and NSR both manifest impeccable generalization on SCAN, their foundational princi-
ples are distinctly divergent.

1. NeSS necessitates an extensive reservoir of domain-specific knowledge to meticulously craft
the components of the stack machine, encompassing stack operations and category predictors.
Without the incorporation of category predictors, the efficacy of NeSS plummets to approximately
20% in 3 out of 5 runs. Contrarily, NSR adopts a modular architecture, minimizing reliance on
domain-specific knowledge.

2. The training regimen for NeSS is contingent on a manually curated curriculum, coupled with
specialized training protocols for latent category predictors. Conversely, NSR is devoid of any
prerequisite for a specialized training paradigm.

Fig. 4 elucidates the syntax and semantics assimilated by NSR from the LENGTH split in SCAN.
The dependency parser of NSR, exhibiting equivariance as elucidated in Sec. 3.4, delineates
distinct permutation equivalent groups syntactically among the input words: {turn, walk,
look, run, jump}, {left, right, opposite, around, twice, thrice}, and
{and, after}. It is pivotal to note that no prior information regarding these groups is im-
parted—they are entirely a manifestation of the learning from the training data. This is in stark
contrast to the provision of pre-defined equivariant groups (Gordon et al., 2019) or the explicit
integration of a category induction procedure from execution traces (Chen et al., 2020). Within the
realm of the learned programs, the program synthesizer of NSR formulates an index space for the
target language and discerns the accurate programs to encapsulate the semantics of each source word.

4.2 PCFG

We further assess NSR on the PCFG dataset (Hupkes et al., 2020), a task where the model is trained to
predict the output of a string manipulation command. The input sequences in PCFG are synthesized
using a probabilistic context-free grammar, and the corresponding output sequences are formed by

7

Published as a conference paper at ICLR 2024

(a) Syntactic similarity amongst input words in NSR.

turn : ∅ → []
walk : ∅ → [inc	0]
look : ∅ → [inc	inc	0]
run : ∅ → [inc	inc	inc	0]
jump : ∅ → [inc	inc	inc	inc	0]
left : 𝑥 → cons	(inc	inc	inc	inc	inc		0, 𝑥)
right : 𝑥 → cons	(inc	inc	inc	inc	inc	inc		0, 𝑥)
opposite : 𝑥 → cons car 𝑥 , 𝑥
around : 𝑥 → + + + 𝑥, 𝑥 , 𝑥 , 𝑥
twice : 𝑥 → + 𝑥, 𝑥
thrice : 𝑥 → + + 𝑥, 𝑥 , 𝑥
and : 𝑥, 𝑦 → + 𝑥, 𝑦
after : 𝑥, 𝑦 → + 𝑦, 𝑥

1 →WALK
2 → LOOK
3 → RUN
4 → JUMP
5 → LTRUN
6 → RTURN

(b) Programs induced using NSR.
Figure 4: (a) Syntactic similarity amongst input words in NSR trained on the LENGTH split in SCAN. The
similarity between word i and word j is quantified by the percentage of test samples where substituting i with j,
or vice versa, retains the dependencies as predicted by the dependency parser. (b) Induced programs for input
words using NSR. Here, x and y represent the inputs, ∅ signifies empty inputs, cons appends an item to the
beginning of a list, car retrieves the first item of a list, and + amalgamates two lists.

recursively executing the string edit operations delineated in the input sequences. The selection of
input samples is designed to mirror the statistical attributes of a natural language corpus, including
sentence lengths and parse tree depths.

Evaluation Protocols and Baselines The evaluation is conducted across the following splits: (i)
i.i.d: where samples are randomly allocated for training and testing, (ii) systematicity: this split is
designed to specifically assess the model’s capability to interpret combinations of functions unseen
during training, and (iii) productivity: this split tests the model’s generalization to longer sequences,
with training samples containing up to 8 functions and test samples having at least 9 functions. NSR
is compared against (i) seq2seq (Lake and Baroni, 2018), (ii) CNN (Dessı̀ and Baroni, 2019), (iii)
Transformer (Csordás et al., 2021; Ontanón et al., 2022), and (iv) NeSS (Chen et al., 2020).

Results The results are consolidated in Tab. 1. NSR demonstrates exemplary performance, achieving
100% accuracy across all PCFG splits and surpassing the prior best-performing model (Transformer)
by 4% on the “systematicity” split and by 15% on the “productivity” split. Notably, while NeSS
exhibits flawless accuracy on SCAN, it encounters total failure on PCFG. A closer examination of
NeSS’s training on PCFG reveals that its stack operations cannot represent PCFG’s binary functions,
and the trace search process is hindered by PCFG’s extensive vocabulary and elongated sequences.
Adapting NeSS to this context would necessitate substantial domain-specific modifications and
extensive refinements to both the stack machine and the training methodology.

4.3 HINT
Table 2: Test accuracy on HINT. Results for GRU, LSTM, and Trans-
former are directly cited from Li et al. (2023). NeSS results are obtained
by adapting its source code to HINT.

Model Symbol Input Image Input

I SS LS SL LL Avg. I SS LS SL LL Avg.

GRU 76.2 69.5 42.8 10.5 15.1 42.5 66.7 58.7 33.1 9.4 12.8 35.9
LSTM 92.9 90.9 74.9 12.1 24.3 58.9 83.9 79.7 62.0 11.2 21.0 51.5

Transformer 98.0 96.8 78.2 11.7 22.4 61.5 88.4 86.0 62.5 10.9 19.0 53.1
NeSS «0 «0 «0 «0 «0 «0 - - - - - -

NSR (ours) 98.0 97.3 83.7 95.9 77.6 90.1 88.5 86.2 67.1 83.2 58.2 76.0

We also evaluate NSR on HINT
(Li et al., 2023), a task where the
model predicts the integer result
of a handwritten arithmetic ex-
pression, such as
Ñ 40, without any intermediate
supervision. HINT is challenging
due to the high variance and am-
biguity in real handwritten images, the complexity of syntax due to parentheses, and the involvement
of recursive functions in semantics. The dataset includes one training set and five test subsets, each
assessing different aspects of generalization across perception, syntax, and semantics.

Evaluation Protocols and Baselines Adhering to the protocols of Li et al. (2023), we train models
on a single training set and evaluate them on five test subsets: (i) “I”: expressions seen in training but
composed of unseen handwritten images. (ii) “SS”: unseen expressions, but their lengths and values
are within the training range. (iii) “LS”: expressions are longer than those in training, but their values

8

Published as a conference paper at ICLR 2024

are within the same range. (iv) “SL”: expressions have larger values, and their lengths are the same
as training. (v) “LL”: expressions are longer, and their values are bigger than those in training. A
prediction is deemed correct only if it exactly matches the ground truth. We compare NSR against
several baselines including seq2seq models like GRU, LSTM, and Transformer as reported by Li et al.
(2023), and NeSS (Chen et al., 2020), with each model utilizing a ResNet-18 as the image encoder.

Results The results are summarized in Tab. 2. NSR surpasses the state-of-the-art model, Trans-
former, by approximately 23%. The detailed results reveal that this improvement is primarily due to
better extrapolation in syntax and semantics, with NSR elevating the accuracy on the “LL” subset
from 19.0% to 58.2%. The gains on the “I” and “SS” subsets are more modest, around 2%. For a
more detailed insight into NSR’s predictions on HINT, refer to Fig. A3. Similar to its performance on
PCFG, NeSS fails on HINT, underscoring the challenges discussed in Sec. 4.2.

4.4 COMPOSITIONAL MACHINE TRANSLATION

In order to assess the applicability of NSR to real-world scenarios, we conduct a proof-of-concept
experiment on a compositional machine translation task, specifically the English-French translation
task, as described by Lake and Baroni (2018). This task has been a benchmark for several studies (Li
et al., 2019; Chen et al., 2020; Kim, 2021) to validate the efficacy of their proposed methods in more
realistic and complex domains compared to synthetic tasks like SCAN and PCFG. The complexity
and ambiguity of the rules in this translation task are notably higher.

We utilize the publicly available data splits provided by Li et al. (2019). The training set comprises
10,000 English-French sentence pairs, with English sentences primarily initiating with phrases like “I
am”, “you are”, and their respective contractions. Uniquely, the training set includes 1,000 repetitions
of the sentence pair (“I am daxy”, “je suis daxiste”), introducing the pseudoword “daxy”. The test set,
however, explores 8 different combinations of “daxy” with other phrases, such as “you are not daxy,”
which are absent from the training set.

Table 3: Accuracy on composi-
tional machine translation.

Model Accuracy

Seq2Seq 12.5
Transformer 14.4

NeSS 100.0
NSR (ours) 100.0

Results Tab. 3 presents the results of the compositional machine
translation task. We compare NSR with Seq2Seq (Lake and Baroni,
2018) and NeSS (Chen et al., 2020). It is noteworthy that two distinct
French translations for “you are” are prevalent in the training set;
hence, both are deemed correct in the test set. NSR, akin to NeSS,
attains 100% generalization accuracy on this task, demonstrating its
potential applicability to real-world tasks characterized by diverse and
ambiguous rules.

5 CONCLUSION AND DISCUSSION

We introduced NSR, a model capable of learning Grounded Symbol System from data to facilitate
systematic generalization. The Grounded Symbol System offers a generalizable and interpretable rep-
resentation, allowing a principled amalgamation of perception, syntax, and semantics. NSR employs
a modular design, incorporating the essential inductive biases of equivariance and compositional-
ity in each module to realize compositional generalization. We developed a probabilistic learning
framework and introduced a novel deduction-abduction algorithm to enable the efficient training of
NSR without GSS supervision. NSR has demonstrated superior performance across diverse domains,
including semantic parsing, string manipulation, arithmetic reasoning, and compositional machine
translation.

Limitations While NSR has shown impeccable accuracy on a conceptual machine translation task,
we foresee challenges in its deployment for real-world tasks due to (i) the presence of noisy and
abundant concepts, which may enlarge the space of the grounded symbol system and potentially
decelerate the training of NSR, and (ii) the deterministic nature of the functional programs in NSR,
limiting its ability to represent probabilistic semantics inherent in real-world tasks, such as the
existence of multiple translations for a single sentence. Addressing these challenges remains a subject
for future research.

9

Published as a conference paper at ICLR 2024

Acknowledgment The authors would like to thank NVIDIA for their generous support of GPUs
and hardware. This work is supported in part by the National Science and Technology Major Project
(2022ZD0114900) and the Beijing Nova Program.

REFERENCES

Akyürek, E., Akyürek, A. F., and Andreas, J. (2020). Learning to recombine and resample data for compositional
generalization. In International Conference on Learning Representations (ICLR). 3

Andreas, J. (2020). Good-enough compositional data augmentation. In Annual Meeting of the Association for
Computational Linguistics (ACL). 3

Bahdanau, D., de Vries, H., O’Donnell, T. J., Murty, S., Beaudoin, P., Bengio, Y., and Courville, A. (2019).
Closure: Assessing systematic generalization of clevr models. arXiv preprint arXiv:1912.05783. 2

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., and Tarlow, D. (2017). Deepcoder: Learning to write
programs. In International Conference on Learning Representations (ICLR). 4, A1

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., and Empson, S. B. (1999). Children’s mathematics.
Cognitively Guided. A3

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using neural networks. In Annual
Conference on Empirical Methods in Natural Language Processing (EMNLP). 1, 4

Chen, X., Liang, C., Yu, A. W., Song, D., and Zhou, D. (2020). Compositional generalization via neural-symbolic
stack machines. In Advances in Neural Information Processing Systems (NeurIPS). 1, 2, 3, 6, 7, 8, 9, A7

Chomsky, N. (1957). Syntactic structures. In Syntactic Structures. De Gruyter Mouton. 1

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT press. 3

Csordás, R., Irie, K., and Schmidhuber, J. (2021). The devil is in the detail: Simple tricks improve systematic
generalization of transformers. In Annual Conference on Empirical Methods in Natural Language Processing
(EMNLP). 1, 2, 7, 8, A7

Dessı̀, R. and Baroni, M. (2019). Cnns found to jump around more skillfully than rnns: Compositional
generalization in seq2seq convolutional networks. In Annual Meeting of the Association for Computational
Linguistics (ACL). 2, 7, 8, A7

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A.-r., and Kohli, P. (2017). Robustfill: Neural
program learning under noisy i/o. In International Conference on Machine Learning (ICML). 4, A1

Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., and Zhou, D. (2023).
Compositional semantic parsing with large language models. ICLR. 1, 2

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum, J. B. (2018a). Learning to infer graphics programs
from hand-drawn images. In Advances in Neural Information Processing Systems (NeurIPS). A1

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L., Hewitt, L., Cary, L., Solar-Lezama, A., and
Tenenbaum, J. B. (2021). Dreamcoder: Bootstrapping inductive program synthesis with wake-sleep library
learning. In Programming Language Design and Implementation. 1, 4, 5, A1, A3

Ellis, K. M., Morales, L. E., Sablé-Meyer, M., Solar Lezama, A., and Tenenbaum, J. B. (2018b). Library learning
for neurally-guided bayesian program induction. In Advances in Neural Information Processing Systems
(NeurIPS). A1

Evans, N. and Levinson, S. C. (2009). With diversity in mind: Freeing the language sciences from universal
grammar. Behavioral and Brain Sciences, 32(5):472–492. 3

Fodor, J. A. and Lepore, E. (2002). The Compositionality Papers. Oxford University Press. 3

Fodor, J. A., Pylyshyn, Z. W., et al. (1988). Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71. 3

Gontier, N., Reddy, S., and Pal, C. (2022). Does entity abstraction help generative transformers reason? TMLR.
3

10

Published as a conference paper at ICLR 2024

Gordon, J., Lopez-Paz, D., Baroni, M., and Bouchacourt, D. (2019). Permutation equivariant models for
compositional generalization in language. In International Conference on Learning Representations (ICLR).
2, 6, 7, A2, A7

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3):335–346. 3

Hauser, M. D., Chomsky, N., and Fitch, W. T. (2002). The faculty of language: what is it, who has it, and how
did it evolve? Science, 298(5598):1569–1579. 3

Herzig, J. and Berant, J. (2021). Span-based semantic parsing for compositional generalization. ACL. 2

Hinton, G. E. (1984). Distributed representations. Technical Report CMU-CS-84-157, Carnegie Mellon
University. 3

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approxima-
tors. Neural networks, 2(5):359–366. A2

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. (2020). Compositionality decomposed: how do neural networks
generalise? Journal of Artificial Intelligence Research, 67:757–795. 1, 2, 6, 7

Keysers, D., Schärli, N., Scales, N., Buisman, H., Furrer, D., Kashubin, S., Momchev, N., Sinopalnikov, D.,
Stafiniak, L., Tihon, T., et al. (2020). Measuring compositional generalization: A comprehensive method on
realistic data. In International Conference on Learning Representations (ICLR). 1, 2

Kim, N. and Linzen, T. (2020). Cogs: A compositional generalization challenge based on semantic interpretation.
In Annual Conference on Empirical Methods in Natural Language Processing (EMNLP). 2

Kim, Y. (2021). Sequence-to-sequence learning with latent neural grammars. In Advances in Neural Information
Processing Systems (NeurIPS). 3, 9

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR). A3

Kulkarni, T. D., Kohli, P., Tenenbaum, J. B., and Mansinghka, V. (2015). Picture: A probabilistic programming
language for scene perception. In Conference on Computer Vision and Pattern Recognition (CVPR). A1

Lake, B. M. (2019). Compositional generalization through meta sequence-to-sequence learning. In Advances in
Neural Information Processing Systems (NeurIPS). 3, 7

Lake, B. M. and Baroni, M. (2018). Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In International Conference on Machine Learning (ICML). 1, 2, 6,
7, 8, 9, A7

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338. A1

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building machines that learn and
think like people. Behavioral and Brain Sciences, 40. 1

Launchbury, J. (2017). A darpa perspective on artificial intelligence. Retrieved November, 11:2019. 3

Li, Q., Huang, S., Hong, Y., Chen, Y., Wu, Y. N., and Zhu, S.-C. (2020). Closed loop neural-symbolic learning
via integrating neural perception, grammar parsing, and symbolic reasoning. In International Conference on
Machine Learning (ICML). 5

Li, Q., Huang, S., Hong, Y., Zhu, Y., Wu, Y. N., and Zhu, S.-C. (2023). A minimalist dataset for systematic
generalization of perception, syntax, and semantics. In ICLR. 1, 2, 6, 8, 9, A7

Li, Y., Zhao, L., Wang, J., and Hestness, J. (2019). Compositional generalization for primitive substitutions. In
Annual Conference on Empirical Methods in Natural Language Processing (EMNLP). 9

Liang, C., Norouzi, M., Berant, J., Le, Q. V., and Lao, N. (2018). Memory augmented policy optimization for
program synthesis and semantic parsing. In Advances in Neural Information Processing Systems (NeurIPS). 5

Liu, Q., An, S., Lou, J.-G., Chen, B., Lin, Z., Gao, Y., Zhou, B., Zheng, N., and Zhang, D. (2020). Compositional
generalization by learning analytical expressions. In Advances in Neural Information Processing Systems
(NeurIPS). 3, 6

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks: A view from
the width. Advances in neural information processing systems, 30. A2

11

Published as a conference paper at ICLR 2024

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J. (2018). The neuro-symbolic concept learner:
Interpreting scenes, words, and sentences from natural supervision. In International Conference on Learning
Representations (ICLR). 3

Marcus, G. F. (2018). The algebraic mind: Integrating connectionism and cognitive science. MIT press. 1, 3

Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., and Grefenstette, E. (2020). Differentiable reasoning on
large knowledge bases and natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 5182–5190. 3

Montague, R. (1970). Universal grammar. Theoria, 36(3):373–398. 1

Newell, A. (1980). Physical symbol systems. Cognitive science, 4(2):135–183. 3

Nye, M., Solar-Lezama, A., Tenenbaum, J., and Lake, B. M. (2020). Learning compositional rules via neural
program synthesis. In Advances in Neural Information Processing Systems (NeurIPS). 3

Ontanón, S., Ainslie, J., Cvicek, V., and Fisher, Z. (2022). Making transformers solve compositional tasks. In
Annual Meeting of the Association for Computational Linguistics (ACL). 1, 2, 7, 8, A7

Peano, G. (1889). Arithmetices principia: Nova methodo exposita. Fratres Bocca. 4

Peyton Jones, S. L. (1987). The implementation of functional programming languages. Prentice-Hall, Inc. 5

Rocktäschel, T. and Riedel, S. (2017). End-to-end differentiable proving. Advances in neural information
processing systems, 30. 3

Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D., and Lake, B. M. (2020). A benchmark for systematic
generalization in grounded language understanding. Advances in Neural Information Processing Systems
(NeurIPS). 2

Russin, J., Jo, J., O’Reilly, R. C., and Bengio, Y. (2019). Compositional generalization in a deep seq2seq model
by separating syntax and semantics. arXiv preprint arXiv:1904.09708. 2

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. (2018). Analysing mathematical reasoning abilities of neural
models. In International Conference on Learning Representations (ICLR). 2

Solomonoff, R. J. (1964). A formal theory of inductive inference. part i. Information and control, 7(1):1–22. A1

Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., and Van Gool, L. (2020). Scan: Learning
to classify images without labels. In European Conference on Computer Vision (ECCV). A2

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3-4):229–256. 5

Xie, S., Ma, X., Yu, P., Zhu, Y., Wu, Y. N., and Zhu, S.-C. (2021). Halma: Humanlike abstraction learning meets
affordance in rapid problem solving. arXiv preprint arXiv:2102.11344. 2, 6

Zhang, C., Xie, S., Jia, B., Wu, Y. N., Zhu, S.-C., and Zhu, Y. (2022). Learning algebraic representation for
systematic generalization in abstract reasoning. In European Conference on Computer Vision (ECCV). 6, A2

12

Published as a conference paper at ICLR 2024

A MODEL DETAILS

Dependency Parsing Fig. A1 illustrate the process of parsing an arithmetic expression via the
dependency parser. Formally, a state c “ pα, β,Aq in the dependency parser consists of a stack
α, a buffer β, and a set of dependency arcs A. The initial state for a sequence s “ w0w1...wn is
α “ rRoots, β “ rw0w1...wns, A “ H. A state is regarded as terminal if the buffer is empty and
the stack only contains the node Root. The parse tree can be derived from the dependency arcs A.
Let αi denote the i-th top element on the stack, and βi the i-th element on the buffer. The parser
defines three types of transitions between states:

• LEFT-ARC: add an arc α1 Ñ α2 to A and remove α2 from the stack α. Precondition: |α| ě 2.
• RIGHT-ARC: add an arc α2 Ñ α1 to A and remove α1 from the stack α. Precondition: |α| ě 2.
• SHIFT: move β1 from the buffer β to the stack α. Precondition: |β| ě 1.

The goal of the parser is to predict a transition sequence from an initial state to a terminal state.
The parser predicts one transition from T “ tLEFT-ARC, RIGHT-ARC, SHIFTu at a time, based
on the current state c “ pα, β,Aq. The state representation is constructed from a local window
and contains following three elements: (i) The top three words on the stack and buffer: αi, βi, i “

1, 2, 3; (ii) The first and second leftmost/rightmost children of the top two words on the stack:
lc1pαiq, rc1pαiq, lc2pαiq, rc2pαiq, i “ 1, 2; (iii) The leftmost of leftmost/rightmost of rightmost
children of the top two words on the stack: lc1plc1pαiqq, rc1prc1pαiqq, i “ 1, 2. We use a special
Null token for non-existent elements. Each element in the state representation is embedded to
a d-dimensional vector e P Rd, and the full embedding matrix is denoted as E P R|Σ|ˆd, where
Σ is the concept space. The embedding vectors for all elements in the state are concatenated as
its representation: c “ re1 e2...ens P Rnd. Given the state representation, we adopt a two-layer
feed-forward neural network to predict the transition.

Program Induction Program induction, i.e., synthesizing programs from input-output examples,
was one of the oldest theoretical frameworks for concept learning within artificial intelligence
(Solomonoff, 1964). Recent advances in program induction focus on training neural networks to
guide the program search (Kulkarni et al., 2015; Lake et al., 2015; Balog et al., 2017; Devlin et al.,
2017; Ellis et al., 2018a;b). For example, Balog et al. (2017) train a neural network to predict
properties of the program that generated the outputs from the given inputs and then use the neural
network’s predictions to augment search techniques from the programming languages community.
Ellis et al. (2021) released a neural-guided program induction system, DreamCoder, which can
efficiently discover interpretable, reusable, and generalizable programs across a wide range of
domains, including both classic inductive programming tasks and creative tasks such as drawing
pictures and building scenes. DreamCoder adopts a “wake-sleep” Bayesian learning algorithm to
extend program space with new symbolic abstractions and train the neural network on imagined and
replayed problems.

To learn the semantics of a symbol c from a set of examples Dc is to find a program ρc composed
from a set of primitives L, which maximizes the following objective:

max
ρ

ppρ|Dc, Lq 9 ppDc|ρq ppρ|Lq, (A1)

where ppDc|ρq is the likelihood of the program ρ matching Dc, and ppρ|Lq is the prior of ρ under
the program space defined by the primitives L. Since finding a globally optimal program is usually
intractable, the maximization in Eq. (A1) is approximated by a stochastic search process guided by a
neural network, which is trained to approximate the posterior distribution ppρ|Dc, Lq. We refer the
readers to DreamCoder (Ellis et al., 2021)1 for more technical details.

1https://github.com/ellisk42/ec

A1

https://github.com/ellisk42/ec

Published as a conference paper at ICLR 2024

B LEARNING

Derivation of Eq. (5) Take the derivative of L w.r.t. θp,

∇θpLpx, yq “ ∇θp log ppy|xq “
1

ppy|xq
∇θpppy|xq

“
ÿ

T

ppT, y|x; Θq
ř

T 1 ppT 1, y|x; Θq
∇θp log pps|x; θpq

“ET„ppT |x,yqr∇θp log pps|x; θpqs.

(A2)

Similarly, for θs, θl, we have

∇θsLpx, yq “ ET„ppT |x,yqr∇θs log ppe|s; θsqs,

∇θlLpx, yq “ ET„ppT |x,yqr∇θl log ppv|s, e; θlqs,
(A3)

Deduction-Abduction Alg. A1 describes the procedure for learning NSR by the proposed
deduction-abduction algorithm. Fig. 3 illustrates the one-step abduction over perception, syntax, and
semantics in HINT and Fig. A2 visualizes a concrete example to illustrate the deduction-abduction
process. It is similar for SCAN and PCFG.

C EXPRESSIVENESS AND GENERALIZATION OF NSR

Expressiveness
Lemma C.1. Given a finite unique set of txi : i “ 0, ..., Nu, there exists a sufficiently capable
neural network fp such that: @xi, fppxiq “ i.

This lemma asserts the existence of a neural network capable of mapping every element in a finite set
to a unique index, i.e., xi Ñ i, as supported by (Hornik et al., 1989; Lu et al., 2017). The parsing
process in this scenario is straightforward, given that every input is mapped to a singular token.
Lemma C.2. Any index space can be constructed from the primitives t0,incu.

This lemma is grounded in the fact that all indices are natural numbers, which can be recursively
defined by t0,incu, allowing the creation of indices for both inputs and outputs.

Generalization Equivariance and compositionality are formalized utilizing group theory, following
the approaches of Gordon et al. (2019) and Zhang et al. (2022). A discrete group G comprises elements
tg1, ..., g|G|u and a binary group operation “¨”, adhering to group axioms (closure, associativity,
identity, and invertibility). Equivariance is associated with a permutation group P , representing
permutations of a set X . For compositionality, a composition operation C is considered, defining
Tc : pX ,X q Ñ X .

The three modules of NSR—neural perception (Eq. (1)), dependency parsing (Eq. (2)), and program
induction (Eq. (3))—exhibit equivariance and compositionality, functioning as pointwise transforma-
tions based on their formulations. Eqs. (1) to (3) demonstrate that in all three modules of the NSR
system, the joint distribution is factorized into a product of several independent terms. This factoriza-
tion process makes the modules naturally adhere to the principles of equivariance and recursiveness,
as outlined in Definitions 3.1 and 3.2.

D EXPERIMENTS

D.1 EXPERIMENTAL SETUP

For tasks taking symbols as input (i.e., SCAN and PCFG), the perception module is not required in
NSR; For the task taking images as input, we adopt ResNet-18 as the perception module, which is
pre-trained unsupervisedly (Van Gansbeke et al., 2020) on handwritten images from the training set.
In the dependency parser, the token embeddings have a dimension of 50, the hidden dimension of
the transition classifier is 200, and we use a dropout of 0.5. For the program induction, we adopt the

A2

Published as a conference paper at ICLR 2024

default setting in DreamCoder (Ellis et al., 2021). For learning NSR, both the ResNet-18 and the
dependency parser are trained by the Adam optimizer (Kingma and Ba, 2015) with a learning rate of
10´4. NSR are trained for 100 epochs for all datasets.

Compute All training can be done using a single NVIDIA GeForce RTX 3090Ti under 24 hours.

D.2 ABLATION STUDY

To explore how well the individual modules of NSR are learned, we perform an ablation study on
HINT to analyze the performance of each module of NSR. Specifically, along with the final results,
the HINT dataset also provides the symbolic sequences and parse trees for evaluation. For Neural
Perception, we report the accuracy of classifying each symbol. For Dependency parsing, we report
the accuracy of attaching each symbol to its correct parent, given the ground-truth symbol sequence
as the input. For Program Induction, we report the accuracy of the final results, given the ground-truth
symbol sequence and parse tree.

Overall, each module achieves high accuracy, as shown in Tab. A1. For Neural Perception, most
errors come from the two parentheses, ”(” and ”)”, because they are visually similar. For Dependency
Parsing, we analyze the parsing accuracies for different concept groups: digits (100%), operators
(95.85%), and parentheses (64.28%). The parsing accuracy of parentheses is much lower than those of
digits and operators. We think this is because, as long as digits and operators are correctly parsed in the
parsing tree, where to attach the parentheses does not influence the final results because parentheses
have no semantic meaning. For Program Induction, we can manually verify that the induced programs
(Fig. 4) have correct semantics. The errors are caused by exceeding the recursion limit when calling
the program for multiplication. The above analysis is also verified by the qualitative examples in
Fig. A3.

D.3 QUALITATIVE EXAMPLES

Figs. A3 and A4 show several examples of the NSR predictions on SCAN and HINT.

Fig. A5 illustrates the evolution of semantics along the training of NSR in HINT. This pattern is
highly in accordance with how children learn arithmetic in developmental psychology (Carpenter
et al., 1999): The model first masters the semantics of digits as counting, then learns ` and ´ as
recursive counting, and finally figures out how to define ˆ and ˜ based on ` and ´. Crucially, ˆ

and ˜ are impossible to be correctly learned before mastering ` and ´. The model is endowed with
such an incremental learning capability since the program induction module allows the semantics of
concepts to be built compositionally from those learned earlier (Ellis et al., 2021).

A3

Published as a conference paper at ICLR 2024

ID Stack Buffer Transition Dependency
0 3 + 4 × 2 Shift
1 3 + 4 × 2 Shift
2 3 + 4 × 2 Left-Arc 3 ← +
3 + 4 × 2 Shift
4 + 4 × 2 Shift
5 + 4 × 2 Left-Arc 4 ←×
6 + × 2 Shift
7 + × 2 Right-Arc ×→ 2
8 + × Right-Arc +→×

3 + 4×2
+

3 ×

4 2

Figure A1: Applying the transition-based dependency parser to an example of HINT. It is similar for SCAN
and PCFG.

1

Priority Queue

+ 11 𝑎$, 𝑎& , 21, 1.0

Pop

Push

21+ 11

3 3 × 8
𝑎$ 𝑎&

Abduce perception: None
Abduce syntax: None
Abduce semantics:

+ 21 𝑎$, 𝑎& , 21, 𝑝$.
Top-down search:

3 3 ∅ , 13, 𝑝&
× 8 𝑎0, 𝑎1 , 18, 𝑝0

+ 11

3 3 × 8

4 4 2 2

𝑎$ 𝑎&
21

𝑝&

𝑝$

𝑝0

𝑝1 𝑝3

𝑎0 𝑎1

Priority Queue

(× 8 𝑎0, 𝑎1), 18, 𝑝0
(+ 21 𝑎$, 𝑎&), 21, 𝑝$.

(3 3 ∅), 13, 𝑝&

Pop
𝑝$

𝑝& 𝑝0

× 8

4 4 2 2

𝑝0

𝑝1 𝑝3

𝑎0 𝑎1

Abduce perception: None
Abduce syntax: None
Abduce semantics:

× 18 𝑎0, 𝑎1 , 18, 𝑝0.
Top-down search:

4 4 ∅ , 9, 𝑝1

18

Priority Queue

(4 4 ∅), 9, 𝑝1
(× 18 𝑎0, 𝑎1), 18, 𝑝0
(+ 21 𝑎$, 𝑎&), 21, 𝑝$.

(3 3 ∅), 13, 𝑝&

Pop

4 4
𝑝1

Abduce perception:
9 9 ∅ , 9, 𝑝1.

Abduce syntax: None
Abduce semantics:

4 9 ∅ , 9, 𝑝1..
Top-down search: None

Push 9

Priority Queue

(9 9 ∅), 9, 𝑝1.

(4 9 ∅), 9, 𝑝1..

(× 18 𝑎0, 𝑎1), 18, 𝑝0
(+ 21 𝑎$, 𝑎&), 21, 𝑝$.

(3 3 ∅), 13, 𝑝&

Pop

(9 9 ∅), 9, 𝑝1.

D
ed
uc
tio
n

A
bd
uc
tio
n

Push

Figure A2: An illustration of the deduction-abduction process for an example of HINT. Given a handwritten
expression, the system performs a greedy deduction to propose an initial solution, generating a wrong result. In
abduction, the root node, paired with the ground-truth result, is first pushed to the priority queue. The abduction
over perception, syntax, and semantics is performed on the popped node to generate possible revisions. A
top-down search is also applied to propagate the expected value to its children. All possible revisions are then
pushed into the priority queue. This process is repeated until we find the most likely revision for the initial
solution.

A4

Published as a conference paper at ICLR 2024

Test subset I

Test subset SS

Test subset SL

Test subset LS

Test subset LL

GT: (7+9/2)/3/8 = 1 PD: (7+9/2)/3/8 = 1 GT: 2/5-(0-1/6)/(8+2) = 1 PD: 2/5-(0-1/6(/(8+2) = 1

GT: (3-1-(3-2))/(0+5) = 1 PD: (3-1-(3-2()/(0+5(= 1 GT: 3*(4-0+(6+(0*6-9))-6) = 12 PD: 3*(4-0+(6+(0*6-9))-6) = 24

GT: 9*(9+8)*3-9/8 = 457 PD: 9*(9+8)*3-9/8 = 457 GT: (8*7*6+(3-0)/2*8)*7 = 2464 PD: (8*7*6+(3-0)/2*8)*7 = 448

GT: (8*7-5/5)*(3-(2-1)+1)/(9*1*(8+1)+(9+3)-0) = 2 PD: (8*7-5/5)*(3-(2-1)+1)/(9*1*(8+1)/(9+3)-0) = 24

GT: (8/5+(1+5))*(4+5*0)-(7/(9*8)+1-3/(7+0)) = 31 PD: (8/5+(1+5)(*(4+5*0)-(7/(9*8)+1-3/(7+0() = 31

Figure A3: Examples of NSR predictions on the test set of HINT. “GT” and “PD” denote “ground-truth” and
“prediction,” respectively. Each node in the tree is a tuple of (symbol, value).

A5

Published as a conference paper at ICLR 2024

run around left twice and run around right

run 3 [RUN]

left 5 [LTURN, RUN]

and 11 [LTURN, RUN] * 8 + [RTURN, RUN] * 4

around 8 [LTURN,RUN] * 4

twice 9 [LTURN, RUN] * 8

run 3 [RUN]

right 6 [RTURN, RUN]

around 8 [RTURN, RUN] * 4

walk opposite right thrice after look around left twice

walk 1 [WALK]

right 6 [RTURN, WALK]

after 12 [LTURN, LOOK] * 8 + [RTURN, RTURN, WALK] * 3

opposite 7 [RTURN, RTURN, WALK]

thrice 10 [RTURN, RTURN, WALK] * 3

look 2 [LOOK]

left 5 [LTURN, LOOK]

around 8 [LTURN, LOOK] * 4

twice 9 [LTURN, LOOK] * 8

Figure A4: Examples of NSR predictions on the test set of the SCAN LENGTH split. We use * (repeating the
list) and + (concatenating two lists) to shorten the outputs for easier interpretation.

Training epochsmaster counting master + and − master × and ÷
0: Null
1: Null
2: Null
…
9: Null
+: Null
−: Null
×: Null
÷: Null

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: Null
−: Null
×: Null
÷: Null

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: if (𝑦 == 0, 𝑥, +(inc 𝑥, dec 𝑦))
−: if (𝑦 == 0, 𝑥, +(dec 𝑥, dec 𝑦))
×: if (𝑦 == 0, 𝑦, 𝑥)
÷: if (𝑦 == inc 0, 𝑥, if (𝑥 == 0, 𝑥, inc inc 0))

0: 0
1: inc 0
2: inc inc 0
…
9: inc inc … inc 0
+: if (𝑦 == 0, 𝑥, (inc 𝑥) + (dec 𝑦))
−: if (𝑦 == 0, 𝑥, (dec 𝑥) + (dec 𝑦))
×: if (𝑥 == 0, 0, 𝑦 × (dec 𝑥) + 𝑦)
÷: if (𝑥 == 0, 0, inc (𝑥 − 𝑦 ÷ 𝑦))

Figure A5: The evolution of learned programs in NSR for HINT. The recursive programs in DreamCoder are
represented by lambda calculus (a.k.a. λ-calculus) with Y-combinator. Here, we translate the induced programs
into pseudo code for easier interpretation. Note that there might be different yet functionally-equivalent programs
to represent the semantics of a symbol; we only visualize a plausible one here.

A6

Published as a conference paper at ICLR 2024

Table A1: Accuracy of the individual modules of NSR on the HINT dataset.

Module Neural Perception Dependency Parsing Program Induction

Accuracy 93.51 88.10 98.47

Table A2: The test accuracy on different splits of SCAN and PCFG. The results of NeSS on PCFG are
reported by adapting the source code from Chen et al. (2020) on PCFG. Reported accuracy (%) is the average of
5 runs with standard deviation if available.

models SCAN PCFG

SIMPLE JUMP AROUND RIGHT LENGTH i.i.d. systematicity productivity

Seq2Seq (Lake and Baroni, 2018) 99.7 1.2 2.5 13.8 79 53 30
CNN (Dessı̀ and Baroni, 2019) 100.0˘0.0 69.2˘8.2 56.7˘10.2 0.0˘0.0 85 56 31

Transformer (Csordás et al., 2021) - - - 20.0 - 96˘1 85˘1
Transformer (Ontanón et al., 2022) - 0.0 - 19.6 - 83 63

equivariant Seq2seq (Gordon et al., 2019) 100.0 99.1˘0.04 92.0˘0.24 15.9˘3.2 - - -
NeSS (Chen et al., 2020) 100.0 100.0 100.0 100.0 «0 «0 «0

NSR (ours) 100.0˘0.0 100.0˘0.0 100.0˘0.0 100.0˘0.0 100˘0 100˘0 100˘0

Table A3: The test accuracy on HINT. We directly cite the results of GRU, LSTM, and Transformer from Li
et al. (2023). The results of NeSS are reported by adapting its source code on HINT. Reported accuracy (%) is
the median and standard deviation of 5 runs.

Model Symbol Input Image Input

I SS LS SL LL Avg. I SS LS SL LL Avg.

GRU 76.2˘0.6 69.5˘0.6 42.8˘1.5 10.5˘0.2 15.1˘1.2 42.5˘0.7 66.7˘2.0 58.7˘2.2 33.1˘2.7 9.4˘0.3 12.8˘1.0 35.9˘1.6
LSTM 92.9˘1.4 90.9˘1.1 74.9˘1.5 12.1˘0.2 24.3˘0.3 58.9˘0.7 83.9˘0.9 79.7˘0.8 62.0˘2.5 11.2˘0.1 21.0˘0.8 51.5˘1.0

Transformer 98.0˘0.3 96.8˘0.6 78.2˘2.9 11.7˘0.3 22.4˘1.1 61.5˘0.9 88.4˘1.3 86.0˘1.3 62.5˘4.1 10.9˘0.2 19.0˘1.0 53.1˘1.6
NeSS «0 «0 «0 «0 «0 «0 - - - - - -

NSR (ours) 98.0˘0.2 97.3˘0.5 83.7˘1.2 95.9˘4.6 77.6˘3.1 90.1˘2.7 88.5˘1.0 86.2˘0.9 67.1˘2.4 83.2˘3.9 58.2˘3.3 76.0˘2.6

A7

Published as a conference paper at ICLR 2024

Algorithm A1: Learning by Deduction-Abduction
Input :Training set D “ pxi, yiq : i “ 1, 2, ..., N

Output :θpT q
p , θ

pT q
s , θ

pT q

l

1 Initial Module: perception θ
p0q
p , syntax θ

p0q
s , semantics θp0q

l
2 for t Ð 0 to T do
3 Buffer B Ð ∅
4 foreach px, yq P D do
5 T Ð DEDUCEpx, θ

ptq
p , θ

ptq
s , θ

ptq

l q

6 T˚
Ð ABDUCEpT, yq

7 B Ð B Y T˚

8 θ
pt`1q
p , θ

pt`1q
s , θ

pt`1q

l Ð learnpB, θptq
p , θ

ptq
s , θ

ptq

l q

9 return θ
pT q
p , θ

pT q
s , θ

pT q

l
10

11 Function DEDUCE(x, θp, θs, θl):
12 Sample ŝ „ pps|x; θpq, ê „ ppe|ŝ; θsq, v̂ “ fpŝ, ê; θlq
13 return T “ă px, ŝ, v̂q, ê ą

14

15 Function ABDUCE(T , y):
16 Q Ð PriorityQueue()
17 Q.pushprootpT q, y, 1.0q

18 while Q is not empty do
19 A, yA, p Ð Q.poppq

20 A Ð px,w, v, arcsq

21 if A.v ““ yA then
22 return T pAq

// Abduce perception
23 foreach w1

P Σ do
24 A1

Ð Apw Ñ w1
q

25 if A1.v ““ yA then
26 Q.pushpA1, yA, ppA1

qq

// Abduce syntax
27 foreach arc P arcs do
28 A1

Ð rotatepA, arcq

29 if A1.v ““ yA then
30 Q.pushpA1, yA, ppA1

qq

// Abduce semantics
31 A1

Ð Apv Ñ yAq

32 Q.pushpA1, yA, ppA1
qq

// Top-down search
33 foreach B P childrenpAq do
34 yB Ð SolvepB,A, yA|θlpA.wqq

35 Q.pushpB, yB , ppBqq

36

A8

