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Abstract

Neighbour contrastive learning enhances the common
contrastive learning methods by introducing neighbour rep-
resentations to the training of pretext tasks. These algo-
rithms are highly dependent on the retrieved neighbours
and therefore require careful neighbour extraction in or-
der to avoid learning irrelevant representations. Potential
”Bad” Neighbours in contrastive tasks introduce represen-
tations that are less informative and, consequently, hold
back the capacity of the model making it less useful as a
good prior. In this work, we present a simple yet effec-
tive neighbour contrastive SSL framework, called ”Mend-
ing Neighbours” which identifies potential bad neighbours
and replaces them with a novel augmented representation
called ”Bridge Points”. The Bridge Points are generated in
the latent space by interpolating the neighbour and query
representations in a completely unsupervised way. We high-
light that by careful selection and replacement of neigh-
bours, the model learns better representations. Our pro-
posed method outperforms the most popular neighbour con-
trastive approach, NNCLR, on three different benchmark
datasets in the linear evaluation downstream task. Finally,
we perform an in-depth three-fold analysis (quantitative,
qualitative and ablation) to further support the importance
of proper neighbour selection in contrastive learning algo-
rithms.

1. Introduction
Deep Learning (DL) algorithms have made remarkable

strides across a wide range of applications [13]. The success
of DL can be attributed to larger architectures, powerful
computation capabilities and more importantly, the avail-
ability of large training data [2]. Collecting large volumes
of labelled data is often expensive, time-consuming, and
very scarce in many domains [40]. Self-supervised Learn-
ing (SSL) is an alternative learning paradigm that enables
models to learn meaningful representations by exploiting
massive raw data without annotated supervision [16]. SSL
models are label agnostic and learn representations that are

Query Good Neighbours Bad Neighbour

Figure 1. Sample images showing ”good” and ”bad” neighbours.

generic across several tasks [1]. They capture the underly-
ing relationships, structure or semantics of the data using a
pretext task [37]. Downstream tasks based on the pretext
trained models are therefore able to perform better on fine-
tuning using task-specific labels [25, 32, 41]. Well-designed
pretext tasks which learn proper representations rather than
free-style learning would be better priors in various down-
stream tasks.

Pretext tasks can be classified in general into genera-
tive, contrastive or generative contrastive [29]. Generative
models use an encoder-decoder architecture to reconstruct
the sample [22, 23, 36]. Contrastive Learning (CL) algo-
rithms, on the other hand, work on pulling together differ-
ent augmentations (views) of the sample closer (positives)
to each other while repelling those from other instances
(negatives) [21]. CL algorithms use several similarity mea-
surements such as NCE Loss [18], InfoNCE loss [33], and
Redundancy-reduction loss [44] to contrast different views.
SimCLR [8], a breakthrough SSL method used two views
of the same image to learn the visual representations. MoCo
[19] extended SimCLR by using a dynamic queue to store
representations of views. Self-distillation methods such as
BYOL [17], SimSiam [9], and DINO [6, 34] rely on differ-
ent encoders to map the different views to each other. Other
methods such as SWaV [5] and Barlow Twins [44] use cor-
relation to infer relationships between views.

One of the fundamental design criteria in the CL algo-
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rithms is the generation of positive views from a given sam-
ple [1]. Data augmentation serves as a common approach
to generate different diverse views from the sample image.
SSL methods learn by contrasting the different views to
learn representations that are invariant to these transforma-
tions [4]. However, there is a potential pitfall in solely using
data augmentation to create different views. The augmen-
tations alone would not be able to cover all variations of a
given class [14].

Neighbour Contrastive Learning (NCL) algorithms are
based on the notion that data augmentations (views) may
not provide sufficient diverse information in selecting posi-
tive samples [14]. NCL algorithms contrast different views
of the image with their nearest neighbours and learn to bring
them in close proximity. This allows for better-learned rep-
resentations as the contrasted pairs are often from different
source samples. Algorithms such as NNCLR [14], Mean-
Shift [24], All4One [15] are able to learn from new data
points that would be different from those generated using
views. SNCLR [10] used cross-attention to compute the im-
portance of neighbours and used them as soft neighbours. A
common entity in these methods is that they use a support
set (queue) to store the representations of samples and use
algorithms such as k-nearest neighbours [14] or mean shift
[24] to retrieve one or few nearest neighbours, which in turn
act as positive samples during CL.

One of the critical aspects for the proper functioning
of these algorithms lies in the careful selection of neigh-
bours [14]. Fig. 1 shows some examples of ”good” and
”bad” neighbours. ”Good” neighbours are essential to learn
proper representations of data distribution as they share sim-
ilar features. Good representations possess local smooth-
ness, sparse activation for specific inputs, temporal and spa-
tial coherence, hierarchically organized explanatory factors,
and simple dependencies [3]. ”Good” neighbours do not
need to be from the same semantic class, rather should
produce representative features. ”Bad” neighbours, on the
other hand, may introduce noise or confusion in the repre-
sentations that might lead to less effective representations.
It is therefore crucial to identify good neighbours that can
positively help SSL models to learn proper representations
of the data. With this aim, we explore the question of What
constitutes a good neighbour? We propose a neighbour
correction framework that identifies potential ”bad”, not so
helpful neighbours and uses the identified neighbour repre-
sentations to generate new synthetic representations that are
effective and also different from the representations created
using different views of the samples.

The main contributions of our work are characterized
as follows: (1) We present a neighbour correction frame-
work through which we identify potential ”bad” neighbours
that can harm the pretext training process. (2) We intro-
duce a mechanism to generate representation in the latent

space, called ”Bridge Points” from those identified neigh-
bours such that they move closer to the instances in the la-
tent space. (3) With a detailed analysis of the performance
of our method on different benchmarks, we show the im-
portance of neighbour selection in CL frameworks.

2. Related Works
In this section, we present an overview of the latest self-

supervised visual representation learning literature that is
relevant to our work.

Self-supervised Learning. SSL involves training a model
without using any kind of supervised signal in an attempt to
force it to learn intermediate representations that could be
later transferred to multiple downstream tasks [1]. Exist-
ing SSL methods can be grouped into generative and dis-
criminative algorithms [29]. While the former requires the
use of visual transformers and reconstruction tasks, the lat-
ter has been able to maintain good results with a low bud-
get thanks to their CL pretext tasks [46, 34]. CL works on
grouping similar samples closer and moving diverse sam-
ples farther from each other [21]. In the context of learning
image representations, the objective function relies on pos-
itive pairs, where both representations belong to the same
semantic class and negative pairs, consisting of representa-
tions from different semantic classes. The goal is to bring
the positive pairs closer together in the feature space, while
simultaneously pushing away the negative pairs to avoid the
collapse of the model. In recent years, this principle has
been leveraged into several alternatives that work on clus-
ters [5], using only positive samples [17] using neighbours
as positives [14, 24, 10, 15]. Neighbour-based algorithms
are characterized by their enhanced generalization capacity
inherited from the use of diverse neighbour representations
obtained by algorithms such as k-NN.

Neighbour Contrast Approaches. Nearest neighbour
(NN) is a simple and effective machine learning algorithm
applied in several computer vision tasks [6, 35, 39]. NN-
based SSL methods leverage the relationships between sam-
ples in the pretext training to enhance the quality of the
learned representations. By exploiting the proximity or
similarity between samples, these methods encourage the
model to capture meaningful patterns, structures, or seman-
tics from the data. NNCLR [14] was the first SSL method
that explicitly adopted the NN approach. NNCLR imple-
mented a memory queue, called a support set, to store the
representations of samples and contrasted representations
between views of samples and their first nearest neighbour
mined from this support set. Mean Shift [24] used a mean-
shift algorithm to group several neighbours together with-
out contrasting them directly. SNCLR [10] used a cross-
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attention module to measure the correlation between sam-
ples and used this score to identify positive samples in CL.
Recently, All4One [15] combined the neighbour contrast
with feature contrast and transformer-based centroid con-
trast to learn representations from different latent spaces.
The core idea in all the above-listed approaches is ex-
ploiting neighbours to learn relationships between samples.
However, they do not control or measure the neighbours ex-
tracted, which could lead to a performance decrease. Our
work differentiates from them by emphasizing the impor-
tance of a good neighbour selection and proposes useful re-
placements for the ones that should be discarded.

Feature Space Augmentations. Image data augmenta-
tions play a critical role in supervised learning [45, 42, 20,
38] and in most of CL-SSL approaches [8, 44, 17, 10, 15].
Creating two different samples from the exact same initial
sample allowed unsupervised CL, as no labels are required
for the correct selection of the contrasted samples [8]. Sev-
eral pipelines have been proposed in order to enhance the
augmented sample and their usefulness [17, 4]. All these
augmentations are directly applied to the images so when
augmentations are required for latent representations, it is
not really effective. On the contrary, latent space augmenta-
tions can be perfectly applied with negligible computational
efficiency loss. Adding random Gaussian noise, and extrap-
olating or interpolating feature space representations are the
most common approaches to create new augmented repre-
sentations [12, 7]. In recent years, these kinds of augmen-
tations have been used to address diverse problems such as
long-tailed instance segmentation [43], pose prediction [28]
and multimodality [30]. However, the lack of visual con-
trol has made latent augmentations less popular than their
counterpart. In our work, we propose a novel application of
these latent augmentations in an NCL task in order to cre-
ate interpolated representations. These interpolations, when
contrasted, improve the capabilities of the trained model
by enabling the model to capture more discriminative and
meaningful patterns. This way, they provide meaningful re-
placements for neighbours where the extracted ones do not
provide useful information for the CL task.

3. Rationale
NNCLR [14], which marked the inception of NCL al-

gorithms, proved that changing from augmented represen-
tations increased the diversity of contrasted samples and,
consequently, improved the performance of models on sev-
eral downstream tasks. However, NNCLR also showed that
a semi-supervised selection of neighbours achieved better
results compared to an unsupervised selection. This high-
lights the fact that not all neighbours are completely use-
ful. NCL algorithms often use a k-NN to extract the near-
est neighbours of samples by computing the distances in

latent space. These neighbours are later used in learning
meaningful representations of the data. High-quality neigh-
bour representations, therefore, directly impact the perfor-
mance of the trained models [14]. Improving the quality
of neighbour extractions in an unsupervised manner poses
several challenges. Identifying what constitutes a ”good
neighbour representation” is not straightforward. All NCL
models compute their neighbours in feature space, making
their analysis more difficult. Additionally, there are no di-
rect measures of quality between neighbour representations.
Moreover, it is very challenging to differentiate an augmen-
tation of a sample from its neighbour representation. Con-
sidering these complexities, we rise several important ques-
tions in this work: ”Can an image augmentation be a neigh-
bour?”, ”How do we measure the quality of a neighbour
in CL?”, ”How do we identify potential bad neighbours in
feature space?” and, most importantly, ”What does consti-
tute a good neighbour?”. In this work, we hypothesize that
good neighbours are those that are different from data aug-
mentations, but in close proximity to the samples, whereas
bad neighbours are those that are farthest from the augmen-
tations. Based on this hypothesis, we provide ”Mending
Neighbours”, a method based on neighbour selection and
replacement neighbour generation.

4. Mending Neighbours
The foundations of our proposed pipeline are established

with inspirations from the NNCLR [14] framework. The
proposed pipeline is shown in Fig. 2. It contains two
braches, each composed by an encoder followed by an MLP
projector, together defined as f . One of the branches has
an additional MLP predictor. Each f transforms the input
image into an SSL representation. For a given mini-batch
X , we augment the samples twice, one for each branch to
obtain the augmented batches X 1 and X 2. These batches
are passed through their respective branches to obtain their
respective representations Z1 and Z2. On every iteration,
zi is extracted from its respective representation batch and
is used as a query for the k-NN algorithm that extracts its
neighbour representation nni from a fixed-sized Support
Set, Q.

We extract the neighbours following NNCLR [14],
which is defined as follows:

NN (zi,Q) = argmin (Sim(zi,Q)) (1)

where Sim(zi,Q) is defined as ||zi − Q||2. Next, we
use a simple neighbour evaluation approach to identify the
”good” and the potential ”bad” neighbours. We evaluate
the goodness, gdi of each neighbour by storing the simi-
larity between the query sample and its nearest neighbour
representation in the feature space. This is defined as:

G(zi,Q) = min (Sim(zi,Q)) (2)

3
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Figure 2. Overview of our proposed method.

We use the mean gdi of the whole batch as a threshold to
split the neighbours into ”good” and potential ”bad” ones.

For the identified as ”bad” neighbours, we present an
unsupervised feature space interpolation between the ”bad”
neighbour nni and the query sample zi. This interpolation
allows us to create representations in the feature space that
has the characteristics of both the query and the neighbours.
We augment the potential ”bad” neighbour directly in the
feature space by creating an interpolation or Bridge Point
(BP) bpi between neighbour representation and its query.
Though the identified neighbour can deteriorate the learn-
ing of the model, they still would contain representative in-
formation as they are the most similar in the Support Set.
Formally, the interpolation is defined as:

bpi = (zi − nni) ∗ λ+ nni (3)

λ is used to control the strength of the interpolation.
The final neighbour replacement function R is defined

as follows:

R(zi, nni, bpi) =

{
nni, if gdi > 1

n

∑n
k=1 gdk

bpi, otherwise

}
(4)

This approach aims to detect the ”bad” neighbours while
also replacing them with representations created in the fea-
ture space between the query and the ”bad” neighbours. The
final loss is determined as:

Li = −log

(
exp(rn1

i · z2i /τ)∑N
k=1 exp(rn

1
i · z2k/τ)

)
(5)

where rn1
i represents the output of the defined replacement

function R and τ is the temperature constant. The loss is
computed symmetrically.

5. Validation

In this section, we first show the experimental settings of
our proposed framework and then present our results high-
lighting the need to use ”good” neighbours in NCL. We use
three popular image classification benchmarks: CIFAR-10
[26], CIFAR-100 [26], and ImageNet-100, a reduced Ima-
geNet of 100 classes [27] to validate our method. We com-
pare our proposed method to the NCL SoA, specially to the
benchmark NCL algorithm NNCLR [14].

5.1. Implementation Details

For all datasets, we use a ResNet-18 encoder in a self-
supervised manner. We use solo-learn [11], a Pytorch-
based SSL framework for all our implementations. Re-
garding the architecture, we follow the implementations
of NNCLR [14] and use a common shared-weights dual
encoder-projector architecture with a predictor at the end of
the second branch. We create the projectors using 3 fully-
connected layers of size [2048, 2048, 256] and the predic-
tor using 2 fully-connected layers of size [4096, 256]. All
fully-connected layers are followed by batch normalization.
For all experiments, we initialize the backbones with solo-
learn initialization parameters [11]. We follow the hyper-
parameter settings as defined by solo-learn for all datasets
except for the queue size of CIFAR experiments, where we
increase it to 98304 following NNCLR [14]. We empiri-
cally set the interpolation hyperparameter λ to 0.2 for CI-
FAR10 and ImageNet100 datasets and 0.5 for CIFAR100.
We train all the models using a single NVIDIA RTX 3090
GPU.
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5.2. Results

We analyse the benefits of our proposed approach using
linear evaluation on the three benchmark datasets, following
common SSL evaluation schemes. We further present quan-
titative results based on neighbour retrieval and similarity
metrics. We also show visual qualitative results highlight-
ing the advantages of having ”good” neighbours in NCL.

5.2.1 Linear Evaluation

For linear evaluation, we freeze the SSL-trained models and
use them as backbones or feature extractors for a common
linear classification task. Following the solo-learn pipeline
[11], we perform the linear evaluation across all training
epochs and report the best Top-1 accuracy. We present
the linear evaluation results in Table 1. Our ”Mending
neighbour” approach outperforms NNCLR [14] on the three
benchmarks showing the advantages of having a smarter se-
lection and replacement of neighbours. Selection of good
neighbours leads to better-learned models that act as a better
prior in the linear classification task. One interesting point
to note is that the datasets with a high number of classes
show a bigger improvement in terms of performance. This
could be due to the fact that the higher the number of
classes, the easier for the k-NN to fail in retrieving a ”good”
neighbour as more confusing classes could be present in the
support set. However, this is not the case for CIFAR-10,
which has a total of 10 well-differentiated classes.

5.2.2 Quantitative Results

In addition to the linear evaluation, we also analyse the ac-
curacy of the neighbours extracted for both NNCLR and the
proposed approach using the k-NN accuracy. We show the
k-NN accuracy for both CIFAR datasets in Table 2. This
measures the number of times the extracted neighbour be-
longs to the same class as that of the query. As can be
seen in Table 2, our approach increases the retrieval accu-
racy of the neighbours in both cases, implying that the gen-
erated bridge point representations of the encoder contain
higher representative information than those obtained using
the NNCLR neighbours.

We also measure the similarity or goodness of the ex-
tracted neighbours for both methods on CIFAR-100. The
goodness is computed using the equation 2. Our approach
is able to preserve the good neighbours while also provid-
ing good alternatives to the replaced ones. Consequently,
our approach shows higher goodness than NNCLR on the
non-replaced neighbours, while having a lower score on the
replaced ones.

Data aug. Neighbour Bridge

Figure 3. UMAP visualization of the best epoch (100 samples).

5.2.3 Qualitative Results

Bridge Point Analysis. We visualize 100 random sam-
ples of the best training epoch using UMAP [31] along with
their respective neighbours and BP. In Fig. 3, one can see
that in several Aug-BP-NN trios, the created BPs are located
in the middle of the augmentation and nearest neighbours.
This proves the effectiveness of our proposed approach to
obtain representations that mostly are representative of both
the query augmentation and the extracted neighbour. For
the neighbours that are being replaced, new representations
are created close to where good neighbours are supposed to
be located.

In order to visualize our BPs, we implement a U-Net++
[47] based encoder-decoder architecture for an image re-
construction task. We initialize the encoder part of the U-
Net with the weights of our pre-trained encoder and freeze
it. Then, we train the decoder for a single epoch. We sim-
ulate a previously stored epoch of our pre-trained model
by passing the same query and neighbour images through
the encoder to obtain their representations and compute the
BPs using Equation 4. Once the BPs are computed, we
can simply pass them through the decoder to obtain their
image visualization. We show the reconstructed queries,
neighbours and BPs in Fig. 4. Most of the BPs resemble
the original NN, but are enhanced with the characteristics
of the query, making them contain information from both
NN and queries. The created BPs combine properties such
as colours from the query and the neighbour (first row),
make mixed samples (second row), or remove portions of
the query that are not necessary for the final learning pro-
cess. Ultimately, we find the resemblance of the examples
to the ones that could be obtained by common image aug-
mentation techniques such as MixUp [45]. However, while
those techniques augment the images by applying modifi-
cations to the pixels, our approach acts directly in the learnt
feature space, which is more efficient and completely unsu-
pervised.

5
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Method CIFAR-10 CIFAR-100 ImageNet-100

NNCLR [14] 92.13 69.19 79.80*
Ours 92.25 70.77 80.10

Table 1. Linear evaluation results showing Top-1 Test Accuracy. *- Results extracted from solo-learn [11].

CIFAR10 CIFAR100

NNCLR 93.11 78.11
Ours 94.76 87.2

Table 2. k-NN accuracy showing neighbour retrieval accuracy.

Replaced NN Non-replaced NN

NNCLR - 93.14
Ours 84.66 96.37

Table 3. Goodness between queries and extracted neighbours.

Query Decoded Bridge Point NN

Figure 4. Decoded BP visualizations of Query, BP and NN using
encoder-decoder image reconstruction.

Neighbour Selection and Replacement. The hypothesis
of the existence of bad neighbours consequently implies the
existence of neighbours that are good for the CL task and
should not be replaced by BPs. We use the histogram of
goodness values as in Fig. 5 of all extracted neighbours to
analyze the goodness of neighbours. In Fig. 5, we show

the histogram for the best epoch of pre-training, which rep-
resents the whole training set. As can be seen, while most
of the extracted neighbours achieve a very high goodness
value, there is still a considerable number of neighbours
that possibly do not manage to be good enough for the task.
However, deciding an exact threshold that divides good and
bad neighbours, is a hard task when we take into account
that these values vary during the whole training. At first,
when the encoder is not well-trained, the generated rep-
resentations do not provide the same richness as the ones
generated on the final part of the training, making the good-
ness value fluctuate. For this reason, the selected thresh-
old should be dynamic. In fact, this fluctuation also applies
to the different batches that are computed during the train-
ing. As can be seen in Figure 6, the mean goodness value
(marked in red) deviates depending on the batch. Given
these observations, we find that the batch mean threshold is
an effective alternative that is dynamic, and adaptative with
respect to the training batches.

Finally, we show the effectiveness of the batch-mean
threshold using Figure 7. Overall, it can be observed that
the replacements align with the notion of a bad neighbour.
Most of the bad neighbours belong to a different class while
still sharing some features with the original query. How-
ever, due to the vast variation of the augmentations used
in the pretraining phase, our approach manage to also re-
place neighbours that could be considered good ones. By
looking at their goodness score, we observe that these sam-
ples could possibly be very near to the threshold used for
that batch. Positively, bridge points tend to share informa-
tion from both augmentation and the neighbours, therefore
the impact of not using the original good neighbour is de-
creased.

5.3. Ablation Study

We empirically analyze the four components of our ap-
proach by a careful ablation study: the representation used
as a replacement, the origin of the bridge point used, the re-
placement strategy type and, finally, the used threshold. For
each ablation experiment, we exclusively modify the com-
ponent to analyse from our best experimental setup. All
ablations are done on the CIFAR-100 dataset for a linear
classification downstream task.

Replacement Representation Type. In this experiment,
we analyse the effect of using different alternatives to the

6
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Figure 5. Histogram of Goodness for the complete best epoch.
The threshold is shown using a red vertical line.

bridge point as a replacement representation. As a first al-
ternative, we replace the bad neighbours with the original
query augmentation. As shown in Table 4, this approach
manages to outperform the baseline, proving once again
the effect of bad neighbours on the model. However, this
replacement does not provide any kind of diversity to the
contrastive task, and therefore the effect would be the same
as switching between NNCLR [14] and SimCLR [8] loss
functions depending on the quality of the neighbour. As a
second option, we add random Gaussian noise to the query
augmentations before contrasting them. This increases the
diversity, but it does not produce good evaluation results.
The main idea of our proposed bridge points resides in the
hypothesis of generating points that could have the poten-
tial to be good neighbours i. e. points with proper diversity
that would be useful and not confusing to the model. This
might not be obtained by the use of simple image augmen-
tations or uncontrolled latent augmentations such as using
Gaussian noise.

Bridge Point Type. In this analysis, we explore the effect
of using augmentation as the second term in Eq. 4. This
way, the bridge point would be based on the query augmen-
tation instead of the neighbour (extrapolation). The bridge
point based on the query augmentation does not provide
good diversity and, in fact, performs worse than just using
the augmentation. This is because the first term is meant to
be added to the neighbour for a correct interpolation. Ad-
ditionally, if we completely interpolate the augmentations
instead of just changing the second term, we can observe
an improvement. However, it is still less diverse than our
proposed bridge point.

Replacement Strategy Type. To prove the effectiveness
of our batch mean replacement, we ablate the replacement
strategy by experimenting with two different alternatives.
First, we show the effects of replacing all neighbours with
bridge points. This improves the baseline, however, is held

Method Top-1

NNCLR 69.19

Replacement Representation Type
Data Augmentation 69.38
Noisy Data Augmentation 69.10

Bridge Point Type
Data Augmentation Extrap. 68.85
Data Augmentation Interp. 70.03

Replacement Type
Replace All Neighbours 69.51
Replace Random Neighbours 70.10

Threshold Type
Epoch Mean Threshold 69.99
Static Threshold 0.8 69.62

Ours 70.77
Table 4. Ablation study.

back by the fact that some neighbours do not require a re-
placement. Good neighbours provide useful information
that is even better and more diverse than the bridge point
generated. In fact, just randomly replacing half of the neigh-
bours with bridge points is enough to outperform the all-
replace alternative. However, a random replacement is less
stable compared to the proposed approach.

Threshold Type. We compare our batch mean threshold
with a static threshold and a threshold based on the epoch
mean. The batch mean threshold provides more dynamism
than the epoch mean threshold or the static threshold. For
the cases we explored, the additional dynamism of our se-
lected threshold strategy keeps a better balance of the bor-
derline samples than the epoch mean strategy. Depending
on the batch, some higher goodness samples are replaced
and some lower goodness samples are maintained, which
proves to be beneficial for the model. On the contrary, the
epoch mean threshold is more restrictive, which leads the
model to lower performance. In the case of the static thresh-
old, we do not find it suitable for this task, as it introduces an
extra hyperparameter that is very hard to tune in a way that
makes the strategy useful for the whole pretraining phase.
Overall, our strategy empirically outperforms the other two
strategies both in performance and simplicity, as it does not
require any further tuning.

5.4. Limitations

While the current study provides valuable insights for
NCL, there are still some limitations in the current pro-
posed scheme. We carefully elucidate the limitations that
can serve as potential research directions.

Better Threshold Strategy. In the proposed Mending
Neighbours approach, we use batch mean threshold due to
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Figure 6. Histogram of Goodness for three different batches of the best epoch. The threshold is shown using a red vertical line.

Augmented QueryOriginal Query Original NNAugmented NN

Squirrel Bear 0.79

Snake Flatfish 0.69

Palm Tree Telephone 0.72

Snake Snail 0.86

Query Label NN Label Query-NN Similarity

Lamp Lamp 0.92

Tulip Tulip 0.92

Figure 7. Replaced NN Visualization.

its effectiveness and simplicity. However, it is difficult to

address borderline neighbours where some good neighbours
are also replaced. A better threshold strategy could avoid
replacing these neighbours.

Measure of Goodness. Based on our initial hypothesis,
we use cosine similarity as a Goodness metric. However,
it is simple in terms of providing distance information. A
more advanced metric could provide a better measure of
goodness and help in better selecting bad neighbours.

Entanglement of Features. We hypothesize that the
common entanglement of the features generated by the en-
coder holds back the whole neighbour selection pipeline.
The introduction of a disentanglement process similar to
the ones applied in generative algorithms could increase the
independence of the features, making them more differen-
tiable and easy to create improved bridge points.

6. Conclusions

In our work, we analyze the current NCL SoTA ap-
proaches and identify critical aspects that can affect the
performance of NCL algorithms. We propose a novel
neighbour correction framework, called ”Mending Neigh-
bours” that correctly identifies potential ”bad neighbours”
and replaces them with a bridge point, a novel represen-
tation created directly in the latent space using neighbours
and queries. The generated bridge points are more useful
than a ”bad neighbour” in NCL algorithms and this pro-
vides important informative prior information for down-
stream tasks. We validated our method using different
SSL benchmarks and metrics and highlighted our improve-
ments over NNCLR, a popular benchmark NCL algorithm.
With in-depth quantitative, qualitative and ablation analysis
we showed a measure of neighbour quality and obtained a
scheme to identify what constitutes a good neighbour. In fu-
ture, we plan to generate good neighbours through advanced
generative processes that could provide representations of
higher quality.
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