
Can Transformers Reason Logically? A Study in SAT Solving

Leyan Pan 1 Vijay Ganesh 1 * Jacob Abernethy 1 2 * Chris Esposo 1 Wenke Lee 1

Abstract

We formally study the logical reasoning capa-
bilities of decoder-only Transformers in the con-
text of the boolean satisfiability (SAT) problem.
First, we prove by construction that decoder-only
Transformers can decide 3-SAT, in a non-uniform
model of computation, using backtracking and de-
duction via Chain-of-Thought (CoT). Second, we
implement our construction as a PyTorch model
with a tool (PARAT) that we designed to em-
pirically demonstrate its correctness and inves-
tigate its properties. Third, rather than program-
ming a transformer to reason, we evaluate em-
pirically whether it can be trained to do so by
learning directly from algorithmic traces (“rea-
soning paths”) from our theoretical construction.
The trained models demonstrate strong out-of-
distribution generalization on problem sizes seen
during training but have limited length generaliza-
tion, which is consistent with the implications of
our theoretical result.

1. Introduction
Transformer-based large language models (LLMs, Vaswani
et al. (2017)) have demonstrated strong performance on
tasks that seem to demand complex reasoning, especially
with Chain-of-Thought (CoT, Wei et al. (2022); OpenAI
(2024); DeepSeek-AI et al. (2025)). However, they of-
ten face challenges in reliable multi-step logical reasoning,
hallucinating logically flawed or factually incorrect con-
clusions. Consequently, many researchers reject the idea
that LLMs can reason (Kambhampati et al., 2024), and re-
searchers continue to disagree on the precise definition of
“reasoning” in the context of LLMs. Furthermore, there is
little understanding of the fundamental limitations of the
reasoning capabilities of Transformer models.

*Equal contribution 1College of Computing, Georgia Institute
of Technology, Atlanta, GA, USA 2Google Research, Atlanta,
USA. Correspondence to: Leyan Pan <leyanpan@gatech.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

This paper focuses on the deductive logical reasoning capa-
bility of the Transformer model in a restricted but simple
and mathematically precise setting, namely, the Boolean sat-
isfiability problem (SAT, Cook (1971)). We view deductive
reasoning as the process of systematically drawing valid in-
ferences from existing premises and assumptions. Boolean
SAT solving captures the essence of deductive logical rea-
soning because: 1) Boolean logic lies as the foundation
of all logical reasoning, and 2) many modern SAT solvers
are inherently formal deductive systems that implement the
resolution proof system. Its NP-Completeness also necessi-
tates multiple rounds of trial and error, which is critical for
solving complex problems.

We prove by construction that decoder-only Transformers
can decide 3-SAT instances with CoT (in a non-uniform
computational setting):

Theorem 1.1 (Informal version of Theorem 4.5). For any
p, c ∈ N+, there exists a decoder-only Transformer with
O(p2) parameters that can decide all 3-SAT instances of at
most p variables and c clauses using Chain-of-Thought.

The “non-uniform” nature of this result means that the Trans-
former’s parameters are dependent on the problem size (p),
in contrast to a single, universal model that handles arbi-
trary input lengths. An insight from our construction is that
this practical difficulty in achieving length generalization
stems from numerically approximating precise attention pat-
terns with softmax, where errors can compound on larger
instances and affect performance (Figure 5). This provides
a theoretical explanation for the length generalization limi-
tations observed when training LLMs on reasoning tasks.

We illustrate the CoT our construction uses to solve 3-SAT
instances in Figure 1. The Transformer model simulates log-
ical assumption, deduction, and backtracking by generating
new tokens and ultimately outputs a SAT/UNSAT label as
the result of the 3-SAT decision problem. Our theoretical
construction shows that, for any chosen instance size, a stan-
dard softmax-attention Transformer with size-dependent
parameters can decide 3-SAT, requiring only a single for-
ward pass to perform logical deduction over all clauses
under the current variable assignments (see Lemma 4.8).

To empirically verify and investigate our construction, we
design a tool (PARAT) that instantiates the weights of Trans-

1

Can Transformers Reason Logically? A Study in SAT Solving

(¬x2 ∨ ¬x4 ∨ ¬x1) ∧ (x3 ∨ x4 ∨ ¬x1) ∧ (¬x1 ∨ ¬x3 ∨ ¬x2) ∧

(x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x4 ∨ x2 ∨ x1) ∧ (x1 ∨ ¬x2 ∨ x4)

Model Input (3-SAT formula)

Transformer Chain-of-Thought from Theorem 4.5

Assume 2 Assume 1 -4 3 BackTrack

Assume 2 -1 -4 BackTrack

-2 Assume 3 Assume 4 1 SAT

Assume x2 = T Assume x1 = T Deduce x4 = F Deduce x3 = T Conflict

Keep x2 = T Learn x1 = F Deduce x4 = F Conflict Again

Learn x2 = F Assume x3 = T Assume x4 = T Deduce x1 = T Solved!

Model Output in typewriter font

Figure 1. Visualization of the Chain-of-Thought (CoT) process used by our model to solve an example 3-SAT formula described in
Theorem 4.5. The model autonomously performs trial-and-error reasoning, making multiple attempts and backtracking upon encountering
conflicts. Here, T represents True and F represents False. Tokens in typewriter font denote the CoT generated by the model.

former models based on NumPy code specifying the desired
behavior. With PARAT, we implemented the construction
as a PyTorch Transformer model and empirically validated
its correctness on random 3-SAT instances.

Additionally, we perform training experiments to demon-
strate that Transformers can effectively learn from the de-
ductive reasoning and backtracking process encoded as CoT.
We show that trained Transformer models can generalize be-
tween SAT instances generated from different distributions
within the same number of variables p. However, LLMs
trained on SAT instances with CoT still struggle to solve
instances with an unseen number of variables, demonstrat-
ing limitations in learning length-generalizable reasoning.
These experimental results support our theoretical predic-
tions.

Contributions First, we prove by construction that in a
non-uniform model of computation, decoder-only Trans-
formers can decide 3-SAT using backtracking and deduction
via Chain-of-Thought (CoT). We show that Transformers
can perform logical deduction on all conditions (clauses)
in parallel instead of checking each condition sequentially.
Nevertheless, the construction requires exponentially many
CoT steps in the worst case, as implied by the NP-hardness
of SAT, although it requires much fewer steps in most in-
stances.

We design PARAT, a tool to instantiate Transformer model
weights that implement specifications written in NumPy-

style code. We empirically demonstrate that the instantiated
Transformer corresponding to our theoretical construction
can perfectly solve 3-SAT instances.

Finally, our supporting training experiments suggest that
training on our theoretical CoT of 3-SAT reasoning traces
allows Transformer models to achieve out-of-distribution
generalization within the same input lengths, but fail to
generalize to larger instances.

2. Related Work
Transformers and P and P/poly Problems. This line of
research focuses on what types of computation can Trans-
former models simulated by providing theoretical construc-
tions of Transformer models that can solve well-defined
computational problems. The seminal work of Liu et al.
(2023a) showed that Transformers can simulate semiau-
tomata using a single pass over only a logarithmic number
of layers w.r.t. the number of states. Yao et al. (2021) demon-
strated that transformers can perform parentheses matching
of at most k types of parentheses and D appearance of each
(Dyckk,D) with D + 1 layers.

However, the computation power of one pass of the Trans-
former model is fundamentally limited (Merrill et al., 2021;
Merrill & Sabharwal, 2023), and the success of Chain-of-
Thought (CoT) reasoning has sparked research on how CoT
can improve upon the expressiveness of Transformer models.
Pérez et al. (2019) proved that Transformers can emulate

2

Can Transformers Reason Logically? A Study in SAT Solving

the execution of single-tape Turing machines. Giannou et al.
(2023) showed that Transformers can recurrently simulate
arbitrary programs written in a one-instruction-set language.
Li et al. (2024) proved that Transformers can simulate arbi-
trary boolean circuits using CoT by representing the circuit
in the positional encoding. In particular, transformers can
decide all problems in P/poly ⊇ P with polynomial steps
of CoT. Merrill & Sabharwal (2024) showed that Transform-
ers with saturated attention can decide all regular languages
with a linear number of CoT tokens and decide all prob-
lems in P with a polynomial number of CoT tokens. (Feng
et al., 2023) shows that Transformer CoT can perform inte-
ger arithmetic, solve linear equations, and perform dynamic
programming for the longest increasing subsequence and
edit distance problems.

How our work differs. We focus on 3-SAT, which is an
NP-complete problem. It is widely believed that P is a strict
subset of NP, and it is not known whether NP is a subset
of P/poly. In other words, our results are not comparable
to these earlier results.

Turing Completeness of Transformers. Meanwhile, Pérez
et al. (2019), Li et al. (2024), and Merrill & Sabharwal
(2024) also showed that Transformers can simulate single-
tape Turing Machines (TM) with CoT and can theoretically
be extended to arbitrary decidable languages. However,
these constructions require at least one CoT token for every
step of TM execution.

How our work differs. Our theoretical construction demon-
strates that, for certain classes of formal reasoning problems,
Transformers can simulate algorithmic reasoning traces at
an abstract level with drastically reduced number of CoT
tokens compared to step-wise emulation of a single-tape
TM. At each CoT step, our construction performs deductive
reasoning over the formula in parallel while any single-tape
TM must process each input token sequentially. Further-
more, the CoT produced by our theoretical construction
abstractly represents the human reasoning process of trial
and error, as demonstrated in Figure 1.

Formal Logical Reasoning with LLMs Several studies
also evaluate pretrained LLMs’ formal and algorithmic rea-
soning abilities, finding that they perform well on a few
reasoning steps but struggle as the required steps increase.
ProofWriter (Tafjord et al., 2021), ProntoQA (Saparov &
He, 2023; Saparov et al., 2023), FOLIO (Han et al., 2024),
SimpleLogic (Zhang et al., 2023b), and RuleTaker (Clark
et al., 2021) encodes formal logical reasoning as natural
language problems to test general purpose LLMs on multi-
step reasoning. NPHardEval (Fan et al., 2024) compiles a
benchmark of P and NP-Hard problems and tests a variety
of pre-trained LLMs. Liu et al. (2023b) evaluates code exe-
cution capabilities, Chen et al. (2024) measures capabilities
to solve propositional and first-order logic satisfiability, and

Hazra et al. (2024) investigates pretrained LLM’s capabil-
ity of solving SAT instances from the perspective of phase
transitions.

A related line of work uses formal symbolic logic to enhance
the capabilities of LLMs with CoT. LogicLM (Pan et al.,
2023) and SymbCoT (Xu et al., 2024) integrate symbolic
expressions of first-order logic with CoT prompting and
invoke solvers to provide feedback the LLM reasoner. Ryu
et al. (2025) uses divide and conquer to improve upon the
above works in terms of translation accuracy. Jha et al.
(2024) uses symbolic logic solvers to provide reinforcement
learning rewards to improve LLM reasoning. Beyond LLMs,
NeuroSAT (Selsam et al., 2019), MatSAT (Sato & Kojima,
2021), and SATformer (Shi et al., 2022) train different neu-
ral networks to learn SAT-solving.

How our work differs. Our work focuses on the theoretical
capabilities of Transformer models rather than practical
pretrained LLMs and can be viewed as building a theoretical
foundation for these results.

Compilation of Transformer Weights. Further, prior work
on the theoretical construction of Transformer models rarely
provides practical implementations. Notably, Giannou et al.
(2023) provides an implementation of their Transformer
construction and demonstrates its execution on several pro-
grams. However, the model is initialized “manually” us-
ing prolonged sequences of array assignments. Lindner
et al. (2023) released Tracr, which compiles RASP (Weiss
et al., 2021) programs into decoder-only Transformer mod-
els. RASP is a human-readable representation of a subset of
operations that Transformers can perform via self-attention
and MLP layers. While having related functionalities, our
tool has different goals than Tracr and bears multiple prac-
tical advantages for implementing complex constructions,
which we detail in Appendix D.2.

3. Preliminaries
This section reviews the Boolean Satisfiability (SAT) prob-
lem, 3-SAT, and the classical DPLL search procedure. We
provide a brief overview of the important notations used in
this work. For a more detailed introduction to SAT-solving,
we recommend to interested readers the first chapters of
(Biere et al., 2009). We assume familiarity with the high-
level components of Transformer models. For details on the
mathematical model for Transformers used in our theoretical
results, please refer to Appendix C.1.

3.1. Boolean Satisfiability (SAT) in Conjunctive Normal
Form (CNF)

Let Var = {x1, . . . , xp} be a set of Boolean variables. A
literal is either a variable xv or its negation ¬xv . The set of

3

Can Transformers Reason Logically? A Study in SAT Solving

all 2p literals is denoted

L = {x1,¬x1, . . . , xp,¬xp}.

A clause C ⊆ L is a finite disjunction (“OR”) of literals,
written C = (ℓ1 ∨ · · · ∨ ℓk). A formula in conjunctive
normal form (CNF) is a conjunction (“AND”) of clauses

F = C1 ∧ C2 ∧ · · · ∧ Cc.

An assignment A ⊆ L is any set of literals that does not
contain both xv and ¬xv. Intuitively xv ∈ A means xv =
True and ¬xv ∈ A means xv = False. A clause C is
satisfied by A (denoted A |= C) if C ∩ A ̸= ∅; a CNF
formula F is satisfied by assignment A if every clause is
satisfied by A. The SAT problem asks whether a satisfying
assignment exists for a given F .

3-SAT. In 3-SAT each clause contains at most three literals.
3-SAT is NP-complete; it is the canonical hard case for SAT
and is the focus of our work.

3.2. DIMACS Encoding

To represent 3-SAT formulas as a sequence of tokens to
Transformer models, we adopt the standard DIMACS format.
Each literal is encoded as an integer: v for xv and −v for
¬xv. Clauses are sequences of integers terminated by 0.
For example

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3)

is written
1 -2 0 -1 2 -3 0

with an initial [BOS] and a closing [SEP] token in our
model implementation.

3.3. Partial Assignments and Formula Reduction

SAT solving reason with partial assignments that leave
some variables unassigned. Given a CNF F and a partial
assignment A, the reduction of F by A—denoted F |A—is
obtained in two steps:

Delete satisfied clauses: remove any Ci with Ci ∩A ̸= ∅.

Delete falsified literals: from each remaining clause delete
any literal that is false under A (e.g. delete ¬xv if xv ∈ A).

If a clause becomes empty, the entire formula is unsatisfi-
able under A. A unit clause is a clause with exactly one
literal after reduction; its lone literal must be true in every
extension of A.

Example. Let
F = (x1 ∨ x2)∧ (¬x1 ∨ x3)∧ (x2 ∨¬x3), A = {x1}.

After Step 1 the first clause is deleted (already true). Step 2
removes ¬x1 from the second clause, giving the unit clause
(x3). Hence F |A = (x3)∧ (x2 ∨¬x3) and x3 is forced true
by unit propagation.

3.4. The DPLL Search Procedure

The Davis–Putnam–Logemann–Loveland (DPLL) algo-
rithm is a complete, backtracking SAT-solving procedure.
Starting from a CNF formula F and the empty assignment
∅, at any moment it maintains a partial assignment A and
the reduced formula F |A. The main operations are

Decision: Choose an unassigned variable xv and tentatively
set it to either True or False; record the choice so it can
be undone later.

Unit Propagation: Repeatedly adds forced literals from
unit clauses of F |A to A.

Conflict/Backtrack: If an empty clause appears, undo deci-
sions chronologically until a new value can be tried; if none
remain, the instance is unsatisfiable.

The procedure terminates when either all clauses are satis-
fied (SAT) or a conflict arises at the root level (UNSAT).

3.5. Notation Used in Later Sections

We summarise the symbols that re-appear in the theoretical
part of the paper:

[p] {1, . . . , p}, index set of variables.
Ci i-th clause in a CNF formula.
F =

∧c
i=1 Ci CNF formula with c clauses.

A ⊆ L partial assignment (no complementary literals).
F |A reduction of F by A (definition above).
A |= F A satisfies F .
F |= ¬A F contradicts A (empty clause in F |A).
F ∧A |=1 ℓ ℓ is forced by unit propagation.

These notations are used verbatim in Section 4.

4. Transformers and SAT: Logical Deduction
and Backtracking

This section presents and explains our main results on Trans-
formers’ capability in deductive reasoning and backtracking
with CoT. To rigorously state our results, we first formally
define decision problems, decision procedures, and what it
means for a model to “solve” a decision problem using CoT:

Definition 4.1 (Decision Problem). Let V be a vocabulary,
Σ ⊆ V be an alphabet, L ⊆ Σ∗ be a set of valid input
strings. We say that a mapping f : L→ {0, 1} is a decision
problem defined on L.

Definition 4.2 (Decision Procedure). We say that an algo-
rithm A is a decision procedure for the decision problem f ,
if given any input string x from L, A halts and outputs 1 if
f(x) = 1, and halts and outputs 0 if f(x) = 0.

Definition 4.3 (Autoregressive Decision Procedure). For

4

Can Transformers Reason Logically? A Study in SAT Solving

any map M : V∗ → V , which we refer to as an auto-
regressive next-token prediction model, and E = {E0, E1} ⊂
V , define procedure AM,E as follows: For any input s1:n,
run Algorithm 1 with M and stop tokens E . AM,E outputs
0 if s1:t ends with E0 and AM,E output 1 otherwise. We say
M autoregressively decides decision problem f if there is
some E ⊂ V for which AM,E decides f .

Definition 4.4 (3-SATp,c). Let DIMACS(p, c) denote the
set of valid DIMACS encodings of 3-SAT instances with at
most p variables and c clauses with a prepended [BOS] to-
ken and an appended [SEP] token. Define 3-SATp,c :
DIMACS(p, c) → {0, 1} as the problem of deciding
whether the 3-SAT formula, encoded via DIMACS(p, c), is
satisfiable.

With the above definition, we present the formal statement
of our main result:

Theorem 4.5 (Decoder-only Transformers can solve SAT).
For any p, c ∈ N+, there exists a Transformer model M :
V∗ → V that autoregressively decides 3-SATp,c in no more
than p · 2p+1 CoT iterations. M requires L = 7 layers,
H = 5 heads, demb = O(p), and O(p2) parameters.

Remarks on Theorem 4.5

• Despite the high upper bound on CoT length, it’s rarely
reached in practice. In Figure 4 we show that the CoT
length is no greater than 8p · 20.08p for most formulas

• The worst-case CoT length is independent of the num-
ber of clauses c, which is due to the parallel deduction
over all clauses within the Transformer construction.

• Positional encodings are not included in the number
of parameters. The positional encoding at position i is
the numerical value i at a particular dimension.

• Each param. can be represented with O(p+ log c) bits

Proof Sketch We show our full construction and proof via
simulation of the abstract DPLL (Nieuwenhuis et al., 2005)
in Appendix C. The construction uses adapted versions of
lemmas from Feng et al. (2023) as basic building blocks.
Here we provide a proof sketch of the core steps and opera-
tions in our theoretical construction.

Step 1: Summarize clauses and assignments as binary
vectors The Transformer first converts every clause Ci and
the evolving partial assignment A into the binary encodings
of Definition 4.6 (see Fig.2). These vectors are obtained
inside the model by summing the one-hot literal embed-
dings between two separator tokens; no wording inside the
definition is changed.

Definition 4.6 (Encoding of clauses and partial assign-
ments, extending Sato & Kojima (2021)). The mappings

E,Enot-false, Eassigned : B → R2p encodes B ∈ B as

E(B)v := 1xv∈B E(B)v+p := 1(¬xv)∈B .

Enot-false(B)v := 1(¬xv)/∈B Enot-false(B)v+p := 1xv /∈B .

Eassigned(B)v := Eassigned(B)v+p := 1xv∈B∨(¬xv)∈B .

Of the above encodings, E(B) is calculated by using self-
attention layers to sum up one-hot token representations
within a clause/partial assignment, while both Enot-false(B)
and Eassigned(B) can be computed via an affine transforma-
tion on E(B).

Step 2: Parallel logical operations over all clauses.

We now show that the core logical operations of DPLL SAT
solving can be computed using vector operations on the en-
coding of the clauses {C1, . . . , Cc} and a partial assignment
A over all clauses in parallel, a capability of Transformers
that allows efficient logical reasoning over long contexts:

Lemma 4.7. Let F =
∧

i∈[c] Ci be a 3-SAT formula
over p variables {x1, . . . , xp} and c clauses {C1, . . . , Cc}.
Let A ⊂ L be a partial assignment defined on variables
{x1, . . . , xp}, then the following properties hold:

1. Satisfiability Checking:

A |= F ⇐⇒ min
i∈[c]

E(Ci) · E(A) ≥ 1.

2. Conflict Detection:

F |= ¬A ⇐⇒ min
i∈[c]

E(Ci) · Enot-false(A) = 0.

3. Deduction: Let D := {l ∈ L | F ∧ A |=1 l} be the
literals deducible from F given A via unit propagation.
Then we can write E(D) as

max
[
min

(∑
i∈[c]

E(Ci)1{E(Ci)·Enot-false(A)=1}, 1
)

− Eassigned(A), 0
]
.

where max and min are applied element-wise.

Each of the above operations can be approximated by an
attention head when given the clause and partial assignment
encodings. We capture this idea in the following lemma:

Lemma 4.8 (Parallel Processing of Clauses, Informal). Let
F be a 3-SAT formula over variables {x1, . . . , xp} with c
clauses {C1, . . . , Cc} and A a partial assignment defined
on variables {x1, . . . , xp}. Let

Xencoding =


0 1 1

E(C1) 0 1
...

...
...

E(Cc) 0 1
E(A) 0 1

 ∈ R(c+2)×(2p+2)

Then for any 1 > ϵ > 0, given X as input, there exists:

5

Can Transformers Reason Logically? A Study in SAT Solving

Figure 2. Illustration of E(C) and E(A) with p = 4.

• An attention head that outputs 1A|=F with approxima-
tion error bounded by ϵ

• An attention head that outputs 1F |=¬A with approxi-
mation error bounded by ϵ

• An attention head followed by an MLP layer that out-
puts E(D) as defined Lemma 4.7 with ∥ · ∥∞ error
bounded by ϵ, unless F |= ¬A

All weight values are independent of F and A and are
bounded by O(poly(p, c, log(1/ϵ)))

Step 3: Predicting the Next Token Each of the above
results is stored in the hidden state vectors (i.e., residual
stream (Elhage et al., 2021)) of the Transformer model. In
the final layer, the prediction of the next token is deter-
mined by a series of conditionals based on a priority: If
A |= F , then the next token is SAT. Otherwise, if F |= ¬A,
output UNSAT if A contains decision literals and output
[BackTrack] otherwise, etc. Collectively, the token pre-
dictions ensure that, when running Algorithm 1, the result-
ing transition from s1:t to s1:t+1 at every timestep t emulates
the abstract DPLL state transition system (Nieuwenhuis
et al., 2005) and thus ensures that the procedure correctly
decides 3-SAT. (See Appendix C.8.1 for details)

5. Implementing the Construction with PARAT
In the previous section, we presented a theoretical construc-
tion of a Transformer capable of solving SAT instances.
However, it can be difficult to gain insights and fully verify
its correctness without experimental interactions with the
construction. To help address this, we introduce PARAT
(short for ParametricTransformer), which instantiates Trans-
former weights based on high-level specifications written as
NumPy code performing array operations.

Both PARAT and the specification it accepts are based on
Python, and the syntax of the PARAT is a restricted subset of
Python with the NumPy library. Every variable v in PARAT
is a 2-D NumPy array of shape n × d v, where n denotes
the input number of tokens and d v is the dimension of the
PARAT variable v, which can be different for every variable.

A specification “program” in PARAT is composed of a linear
sequence of statements (i.e., no control flow such as loops
or branching based on PARAT variable values is allowed),
where each statement assigns the value of an expression
to a variable. Let v 1, v 2, . . . denote PARAT variable
names. Each statement involving PARAT variables must
be one of the following: (1) Binary operations such as
v 1 + v 2, v 1 * v 2, v 1 - v 2; (2) Index opera-
tions such as v 1[v 2, :] or v 1[:, start:end],
where start,end ∈ [dv 1]; or (3) Function calls from a
predefined library of functions that take PARAT variables
as input.

PARAT takes in a specification program as well as variable
out of dimension V (size of vocabulary) and outputs a
PyTorch Module object that implements a Transformer
model as defined in Section 2. The following condition
is satisfied: For any possible input sequence of tokens s
in the vocabulary of length n, the token predicted by the
Transformer model is the same as the token corresponding
to out[-1, :].argmax() (i.e., the token prediction at
the last position) when interpreting the specification using
the Python interpreter with the NumPy library. We provide
more details on our tool and the supported operations in
section Appendix D.

5.1. Analysis of the Transformer Construction

With our tool, we successfully implemented our theoretical
construction in Theorem 4.5 using the code in Appendix D.4
as a PyTorch model. We will refer to this model as the
“compiled” model for the rest of the section. With a concrete
implementation of our theoretical construction in PyTorch,
we empirically investigate 3 questions (1) Does the compiled
model correctly decide SAT instances? (2) How many steps
does the model take to solve actual 3-SAT instances? (3)
How does error induced by soft attention affect reasoning
accuracy?

Evaluation Datasets We evaluate our models on randomly
sampled DIMACS encoding of 3-SAT formulas. We focus
on SAT formulas with exactly 3 literals in each clause, with
the number of clauses c between 4.1p and 4.4p, where p is

6

Can Transformers Reason Logically? A Study in SAT Solving

the number of variables.

It is well-known that the satisfiability of such random 3-
SAT formulas highly depends on the clause/variable ratio,
where a formula is very likely satisfiable if c/p ≪ 4.26
and unsatisfiable if c/p≫ 4.26 (Crawford & Auton, 1996).
This potentially allows a model to obtain high accuracy just
by observing the statistical properties such as the c/p ratio.
To address this, we constrain this ratio for all formulas to
be near the critical ratio 4.26. Furthermore, our “marginal”
datasets contain pairs of SAT vs UNSAT formulas that differ
from each other by only a single literal. This means that
the SAT and UNSAT formulas in the dataset have almost
no statistical difference in terms of c/p ratio, variable dis-
tribution, etc., ruling out the possibility of obtaining SAT
vs UNSAT information solely via statistical properties. We
also use 3 different sampling methods to generate formulas
of different solving difficulties to evaluate our model:

Marginal: Composed of pairs of formulas that differ by
only one token.

Random: Formulas are not paired by differing tokens and
each clause is randomly generated.

Skewed: Formulas where polarity and variable sampling
are not uniform; for each literal, one polarity is preferred
over the other. Some literals are also preferred over others.

We generate the above 3 datasets for each variable number
4 ≤ p ≤ 20, resulting in 51 total datasets of 2000 samples
each. Each sample with p variables contains 16.4p to 17.6p
input tokens, which is at least 320 for p = 20.

Model Unless otherwise stated, the model we experiment
with is compiled from the code in D.4 using PARAT with
max number of variables p = 20, max number of clauses
c = 88, and exactness parameter β = 20. The model uses
greedy decoding during generation.

Accuracy Our compiled model achieves perfect accuracy
on all evaluation datasets described above. This provides
empirical justification for our theoretical construction for
Theorem 4.5 as well as PARAT. This result is included in
Figure 3 to compare with trained models.

How many steps? For all formulas we evaluated, the max-
imum CoT length is bounded by 8p · 20.08p, which is sig-
nificantly less than the theoretical bound of p · 2(p+1). This
indicates that the model can use deduction to reduce the
search space significantly. See appendix Figure 4.

Effect of Softmax Attention In our previous evaluations,
we used a sufficiently large scaling factor β to ensure that
the approximation error from the softmax is bounded and
does not affect the final token output. In Figure 5 we show
that, with an insufficient scaling factor, the compiled model
would achieve perfect accuracy on smaller instances but

degrade significantly on larger ones. This matches the com-
monly observed limitation in length generalization when
training on smaller problem instances.

6. Can Transformer Learn SAT Solving?
Our previous sections showed that Transformer and weights
exist for solving SAT instances using CoT with backtrack-
ing and deduction. However, it is unclear to what extent
Transformers can learn such formal reasoning procedures by
training on SAT formulas. Previously, Zhang et al. (2023a)
showed that when using a single pass of a Transformer
model (without CoT), Transformers fail to generalize to
logical puzzles sampled from different distributions even
when they have the same number of propositions.

This section provides proof-of-concept evidence that train-
ing on the CoT procedure with deduction and backtracking
described in Figure 1 can facilitate out-of-distribution gen-
eralization within the same number of variables.

Datasets In Section 5.1 we introduced 3 different distribu-
tions over random 3-SAT formulas of varying difficulties.
For training data, we use the same sampling methods, but in-
stead of having a separate dataset for each variable number
p, we pick 2 ranges p ∈ [6, 10] and p ∈ [11, 15], where for
each sample a random p value is picked uniformly random
from the range. Each formula with p variables contains
16.4p to 17.6p tokens. This results in 2×3 training datasets,
each containing 5× 105 training samples1, with balanced
SAT vs UNSAT samples. For each formula, we generate the
corresponding CoT in the same format as Figure 1 using a
custom SAT Solver. The evaluation data is exactly the same
as Section 5.1.

Model and Training We use the LLaMa (Touvron et al.,
2023) architecture with 70M and 160M parameters for the
training experiments. We compute cross-entropy loss on
every token in the CoT but not the DIMACS encoding in
the prompt tokens. We provide further training details in
Appendix A. We also permute the variable IDs for training
samples to ensure that the model sees all possible input
tokens for up to 20 variables.

Evaluation Criteria We evaluate our model using two
criteria: SAT/UNSAT accuracy and full trace correctness.
SAT/UNSAT accuracy evaluates the model’s binary predic-
tion based on the first token in {SAT,UNSAT} generated by
the model, compared against the ground truth satisfiability
of the formula. If the model fails to generate {SAT,UNSAT}
within the context length, the prediction is considered incor-
rect, which can cause accuracy to drop significantly below
50%. Full trace correctness checks if every token gener-

1The number of training samples is negligible compared to
the total number of possible formulas. There are more than p12p

3-SAT formulas with p variables, which is > 1056 for p = 6

7

Can Transformers Reason Logically? A Study in SAT Solving

p ∈ [6, 10] p ∈ [11, 15]

Marginal Random Skewed Marginal Random Skewed

Marginal 99.88% 99.99% 99.99% 99.82% 99.89% 99.81%
SAT vs UNSAT Random 99.96% 100.00% 100.00% 99.11% 99.75% 99.55%

Skewed 99.96% 100.00% 99.99% 99.41% 99.74% 99.48%

Marginal 98.50% 97.33% 88.72% 98.66% 97.57% 86.06%
Full Trace Correct Random 99.40% 99.04% 93.12% 98.56% 97.99% 91.70%

Skewed 99.38% 99.16% 97.72% 97.02% 95.98% 91.51%

Table 1. Average accuracies (%) of SAT/UNSAT prediction and full trace accuracy for models trained and tested on different datasets in
the training regime for number of variables p ∈ [6, 10] and p ∈ [11, 15]. Columns denote train datasets, and rows denote test datasets.
Each accuracy is computed over 10000 total samples.

Figure 3. Result of the Length generalization experiments, showing SAT/UNSAT prediction accuracy (solid) and full trace accuracy
(opaque, dashed) of Transformer models trained on the marginal, random, and skewed dataset with CoT on the marginal dataset over
4-20 variables. Left: model trained on 6-10 variables. Right: model trained on 11-15 variables. Compiled refers to the compiled model
corresponding to our theoretical construction described in Section 5.1.

ated by the model adheres to the abstract DPLL procedure
(Definition C.13) under our CoT definition. While strict,
the “correct” CoT is not unique since the model may freely
choose variable assignment and deduction orders.

6.1. Intra-length OOD Generalization

Our first set of experiments evaluates the model’s perfor-
mance on SAT formulas sampled from different distribu-
tions from training, but the number of variables in formulas
remains the same (p ∈ [6, 10] and p ∈ [11, 15] for both train
and test datasets).

As shown in Section 5.1, our trained models achieve near-
perfect SAT vs UNSAT prediction accuracy when tested
on the same number of variables as the training data, even
when on formulas sampled from different distributions. The
model also strictly follows a correct reasoning procedure for
most samples. Recall that the “marginal” dataset has SAT vs
UNSAT samples differing by a single token (out of at least
16p tokens in the input formula), which minimizes statistical
evidence that can be used for SAT/UNSAT prediction. Our

experiments suggest that the LLM have very likely learned
logical reasoning procedures using CoT that can be applied
to all formulas with the same number of variables as the
data they are trained on.

6.2. Limitations in Length Generalization

The second experiment evaluates the model’s ability to gen-
eralize to formulas with a different number of variables than
seen during training. We use the model trained on 3 data dis-
tributions described in section 6.1 and evaluate the marginal
dataset with 4-20 variables, with 2,000 samples each. For
this experiment, we evaluate the accuracy of the binary SAT
vs UNSAT prediction.

Results In Figure 3, our results indicate that performance
degrades drastically beyond the training regime when the
number of variables increases. This shows that the model is
unable to learn a general SAT-solving algorithm that works
for all inputs of arbitrary lengths, which corroborates our
theoretical result where the size of the Transformer for SAT-
solving depends on the number of variables.

8

Can Transformers Reason Logically? A Study in SAT Solving

Acknowledgements
This material is based upon work supported by the National
Science Foundation under grant no. 2229876 and is sup-
ported in part by funds provided by the National Science
Foundation, by the Department of Homeland Security, and
by IBM. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation or its federal agency and in-
dustry partners. This work is supported by NSF award
CCF-2403391. The authors thank Hassan Naveed for his
exploratory work on using RASP for SAT-solver implemen-
tation, William Armstrong for suggesting the abstract DPLL
paper and contributing code, and Jintong Jiang for providing
suggestions on the paper’s presentation and writing.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here

References
Biere, A., Heule, M., van Maaren, H., and Walsh,

T. (eds.). Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2009. ISBN 978-1-58603-
929-5. URL http://dblp.uni-trier.de/db/
series/faia/faia185.html.

Chen, M., Li, G., Wu, L.-I., Liu, R., Su, Y., Chang, X., and
Xue, J. Can language models pretend solvers? logic code
simulation with llms. In International Symposium on
Dependable Software Engineering: Theories, Tools, and
Applications, pp. 102–121. Springer, 2024.

Clark, P., Tafjord, O., and Richardson, K. Transformers
as soft reasoners over language. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI’20, 2021. ISBN 9780999241165.

Cook, S. A. The complexity of theorem-proving proce-
dures. In Harrison, M. A., Banerji, R. B., and Ullman,
J. D. (eds.), Proceedings of the 3rd Annual ACM Sympo-
sium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, pp. 151–158. ACM, 1971. doi:
10.1145/800157.805047. URL https://doi.org/
10.1145/800157.805047.

Crawford, J. M. and Auton, L. D. Experimental results
on the crossover point in random 3-sat. Artificial
Intelligence, 81(1):31–57, 1996. ISSN 0004-3702.
doi: https://doi.org/10.1016/0004-3702(95)00046-1.

URL https://www.sciencedirect.com/
science/article/pii/0004370295000461.
Frontiers in Problem Solving: Phase Transitions and
Complexity.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia,
L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M.,
Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen,
Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen,
R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye,
S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou,
S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T.,
Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen,
X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang,
X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X.,
Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang,
Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y.,
Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y.,
Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong,
Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y.,
Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Fan, L., Hua, W., Li, L., Ling, H., and Zhang, Y. NPHardE-
val: Dynamic benchmark on reasoning ability of large lan-
guage models via complexity classes. In Ku, L.-W., Mar-

9

http://dblp.uni-trier.de/db/series/faia/faia185.html
http://dblp.uni-trier.de/db/series/faia/faia185.html
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://www.sciencedirect.com/science/article/pii/0004370295000461
https://www.sciencedirect.com/science/article/pii/0004370295000461
https://arxiv.org/abs/2501.12948

Can Transformers Reason Logically? A Study in SAT Solving

tins, A., and Srikumar, V. (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 4092–4114,
Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics. doi: 10.18653/v1/2024.acl-long.
225. URL https://aclanthology.org/2024.
acl-long.225/.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought: A
theoretical perspective. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023.

Giannou, A., Rajput, S., Sohn, J.-Y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 11398–11442. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/giannou23a.html.

Han, S., Schoelkopf, H., Zhao, Y., Qi, Z., Riddell, M.,
Zhou, W., Coady, J., Peng, D., Qiao, Y., Benson, L., Sun,
L., Wardle-Solano, A., Szabó, H., Zubova, E., Burtell,
M., Fan, J., Liu, Y., Wong, B., Sailor, M., Ni, A., Nan,
L., Kasai, J., Yu, T., Zhang, R., Fabbri, A., Kryscinski,
W. M., Yavuz, S., Liu, Y., Lin, X. V., Joty, S., Zhou,
Y., Xiong, C., Ying, R., Cohan, A., and Radev, D. FO-
LIO: Natural language reasoning with first-order logic.
In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.),
Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, Miami, Florida,
USA, November 2024. Association for Computational
Linguistics. URL https://aclanthology.org/
2024.emnlp-main.1229/.

Hazra, R., Venturato, G., Martires, P. Z. D., and Raedt, L. D.
Can large language models reason? a characterization
via 3-sat, 2024. URL https://arxiv.org/abs/
2408.07215.

Jha, P., Jana, P., Suresh, P., Arora, A., and Ganesh, V. Rlsf:
Reinforcement learning via symbolic feedback, 2024.
URL https://arxiv.org/abs/2405.16661.

Kambhampati, S., Valmeekam, K., Guan, L., Verma, M.,
Stechly, K., Bhambri, S., Saldyt, L. P., and Murthy, A. B.
Position: LLMs can’t plan, but can help planning in
LLM-modulo frameworks. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=Th8JPEmH4z.

Li, Z., Liu, H., Zhou, D., and Ma, T. Chain of thought em-
powers transformers to solve inherently serial problems.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=3EWTEy9MTM.

Lindner, D., Kramar, J., Farquhar, S., Rahtz, M., McGrath,
T., and Mikulik, V. Tracr: Compiled transformers as a
laboratory for interpretability. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 37876–37899. Curran Associates,
Inc., 2023.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. In The
Eleventh International Conference on Learning Represen-
tations, 2023a. URL https://openreview.net/
forum?id=De4FYqjFueZ.

Liu, C., Lu, S., Chen, W., Jiang, D., Svyatkovskiy, A., Fu,
S., Sundaresan, N., and Duan, N. Code execution with
pre-trained language models. In Rogers, A., Boyd-Graber,
J., and Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 4984–4999,
Toronto, Canada, July 2023b. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.
308. URL https://aclanthology.org/2023.
findings-acl.308/.

Merrill, W. and Sabharwal, A. The parallelism tradeoff:
Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11:531–
545, 2023. doi: 10.1162/tacl a 00562. URL https:
//aclanthology.org/2023.tacl-1.31.

Merrill, W. and Sabharwal, A. The expressive power of
transformers with chain of thought. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=NjNGlPh8Wh.

Merrill, W., Sabharwal, A., and Smith, N. A. Sat-
urated transformers are constant-depth threshold
circuits. Transactions of the Association for Computa-
tional Linguistics, 10:843–856, 2021. URL https:
//api.semanticscholar.org/CorpusID:
248085924.

Merrill, W., Sabharwal, A., and Smith, N. A. Sat-
urated transformers are constant-depth threshold cir-
cuits. Transactions of the Association for Computa-
tional Linguistics, 10:843–856, 2022. doi: 10.1162/tacl
a 00493. URL https://aclanthology.org/
2022.tacl-1.49.

10

https://aclanthology.org/2024.acl-long.225/
https://aclanthology.org/2024.acl-long.225/
https://proceedings.mlr.press/v202/giannou23a.html
https://proceedings.mlr.press/v202/giannou23a.html
https://aclanthology.org/2024.emnlp-main.1229/
https://aclanthology.org/2024.emnlp-main.1229/
https://arxiv.org/abs/2408.07215
https://arxiv.org/abs/2408.07215
https://arxiv.org/abs/2405.16661
https://openreview.net/forum?id=Th8JPEmH4z
https://openreview.net/forum?id=Th8JPEmH4z
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://aclanthology.org/2023.findings-acl.308/
https://aclanthology.org/2023.findings-acl.308/
https://aclanthology.org/2023.tacl-1.31
https://aclanthology.org/2023.tacl-1.31
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://api.semanticscholar.org/CorpusID:248085924
https://api.semanticscholar.org/CorpusID:248085924
https://api.semanticscholar.org/CorpusID:248085924
https://aclanthology.org/2022.tacl-1.49
https://aclanthology.org/2022.tacl-1.49

Can Transformers Reason Logically? A Study in SAT Solving

Nieuwenhuis, R., Oliveras, A., and Tinelli, C. Abstract
dpll and abstract dpll modulo theories. In Baader, F.
and Voronkov, A. (eds.), Logic for Programming, Ar-
tificial Intelligence, and Reasoning, pp. 36–50, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN
978-3-540-32275-7.

OpenAI. Openai o1 system card, 2024. URL https:
//cdn.openai.com/o1-system-card.pdf.

Pan, L., Albalak, A., Wang, X., and Wang, W. Logic-
LM: Empowering large language models with symbolic
solvers for faithful logical reasoning. In Bouamor, H.,
Pino, J., and Bali, K. (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, Singa-
pore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
248. URL https://aclanthology.org/2023.
findings-emnlp.248/.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pérez, J., Marinković, J., and Barceló, P. On the turing
completeness of modern neural network architectures. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HyGBdo0qFm.

Ryu, H., Kim, G., Lee, H. S., and Yang, E. Divide and trans-
late: Compositional first-order logic translation and veri-
fication for complex logical reasoning. In Proceedings of
the 13th International Conference on Learning Represen-
tations (ICLR 2025). OpenReview, 2025. URL https:
//openreview.net/forum?id=09FiNmvNMw.

Saparov, A. and He, H. Language models are greedy rea-
soners: A systematic formal analysis of chain-of-thought.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=qFVVBzXxR2V.

Saparov, A., Pang, R. Y., Padmakumar, V., Joshi, N.,
Kazemi, S. M., Kim, N., and He, H. Testing the general
deductive reasoning capacity of large language models
using ood examples. In Proceedings of the 37th Inter-
national Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran
Associates Inc.

Sato, T. and Kojima, R. Matsat: a matrix-based differen-
tiable sat solver. arXiv preprint arXiv:2108.06481, 2021.

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura,
L., and Dill, D. L. Learning a sat solver from single-
bit supervision. In Proceedings of the 7th International

Conference on Learning Representations (ICLR 2019),
2019. URL https://openreview.net/forum?
id=HJMC_iA5tm.

Shi, Z., Li, M., Khan, S., Zhen, H.-L., Yuan, M., and Xu,
Q. Satformer: Transformer-based unsat core learning. in
2023 ieee. In ACM International Conference on Com-
puter Aided Design (ICCAD), pp. 1–4, 2022.

Tafjord, O., Dalvi, B., and Clark, P. ProofWriter: Gen-
erating implications, proofs, and abductive statements
over natural language. In Zong, C., Xia, F., Li, W., and
Navigli, R. (eds.), Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pp. 3621–
3634, Online, August 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.findings-acl.
317. URL https://aclanthology.org/2021.
findings-acl.317/.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b.,
Xia, F., Chi, E., Le, Q. V., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 24824–24837.
Curran Associates, Inc., 2022.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like
transformers. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 11080–11090. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/weiss21a.html.

Xu, J., Fei, H., Pan, L., Liu, Q., Lee, M.-L., and Hsu,
W. Faithful logical reasoning via symbolic chain-of-
thought. In Ku, L.-W., Martins, A., and Srikumar, V.
(eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:

11

https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf
https://aclanthology.org/2023.findings-emnlp.248/
https://aclanthology.org/2023.findings-emnlp.248/
https://openreview.net/forum?id=HyGBdo0qFm
https://openreview.net/forum?id=HyGBdo0qFm
https://openreview.net/forum?id=09FiNmvNMw
https://openreview.net/forum?id=09FiNmvNMw
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=HJMC_iA5tm
https://openreview.net/forum?id=HJMC_iA5tm
https://aclanthology.org/2021.findings-acl.317/
https://aclanthology.org/2021.findings-acl.317/
https://proceedings.mlr.press/v139/weiss21a.html
https://proceedings.mlr.press/v139/weiss21a.html

Can Transformers Reason Logically? A Study in SAT Solving

Long Papers), Bangkok, Thailand, August 2024. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.720/.

Yao, S., Peng, B., Papadimitriou, C., and Narasimhan, K.
Self-attention networks can process bounded hierarchical
languages. In Association for Computational Linguistics
(ACL), 2021.

Zhang, H., Li, L. H., Meng, T., Chang, K.-W., and Van
Den Broeck, G. On the paradox of learning to rea-
son from data. In Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelligence,
IJCAI ’23, 2023a. ISBN 978-1-956792-03-4. doi:
10.24963/ijcai.2023/375. URL https://doi.org/
10.24963/ijcai.2023/375.

Zhang, H., Li, L. H., Meng, T., Chang, K.-W., and Van
Den Broeck, G. On the paradox of learning to rea-
son from data. In Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelligence,
IJCAI ’23, 2023b. ISBN 978-1-956792-03-4. doi:
10.24963/ijcai.2023/375. URL https://doi.org/
10.24963/ijcai.2023/375.

12

https://aclanthology.org/2024.acl-long.720/
https://aclanthology.org/2024.acl-long.720/
https://doi.org/10.24963/ijcai.2023/375
https://doi.org/10.24963/ijcai.2023/375
https://doi.org/10.24963/ijcai.2023/375
https://doi.org/10.24963/ijcai.2023/375

Can Transformers Reason Logically? A Study in SAT Solving

Figure 4. CoT Lengths generated by the compiled SAT-Solver Model vs the number of boolean variables in sampled SAT formulas, y-axis
in log scale. Solid lines denote the maximum CoT length for each dataset while opaque, dashed lines denote the average CoT length. The
empirical maximum CoT length in our datasets is bounded by 8p · 20.08p

.

A. Training Details
We use Llama (Touvron et al., 2023) models in the HuggingFace library. For the 70M model, we use models with 6 layers,
512 embedding dimensions, 8 heads, 512 attention hidden dimensions, and 2048 MLP hidden dimensions. For the 140M
model, we use 12 layers, 768 embedding dimensions, 12 heads, 768 attention hidden dimensions, and 3072 MLP hidden
dimensions. Both models have 850 context size. We trained for 5 epochs on both datasets using the Adam optimizer with a
scheduled cosine learning rate decaying from 6× 10−4 to 6× 10−5 with β1 = 0.9 and β2 = 0.95.

B. Additional Experiment Results
Number of CoT Tokens for Theoretical Construction In Figure 4 we provide results on the number of CoT tokens
required to solve randomly generated SAT instances. The number of CoT tokens required to decide 3-SAT instances are
below our theoretical bound for all instances

Effect of Soft Attention In Figure 5 we provide results on how the SAT/UNSAT prediction accuracy is affected by
numerical errors introduced by softmax. In particular, when the β value that controls the “hardness” of attention is below
the necessary threshold, the resulting models can only achieve perfect accuracy for formulas with smaller sizes.

Length Generalization Results on Additional Datasets In Figure 6 we present results for length generalization (described
in Section 6.2) on the marginal and skewed datasets.

C. Proofs
C.1. Preliminaries on Transformers Models

The Transformer architecture (Vaswani et al., 2017) is a foundational model in deep learning for sequence modeling tasks.
In our work, we focus on the autoregressive decoder-only Transformer, which generates sequences by predicting the next
token based on previously generated tokens. It is a relatively complex architecture, and here we only give a precise but quite
concise description, and we refer the reader to (Vaswani et al., 2017), among many others, for additional details. Given an

13

Can Transformers Reason Logically? A Study in SAT Solving

Figure 5. The impact of soft attention in Transformer layers on the SAT/UNSAT prediction accuracy. β is a scaling factor that allows
the soft attention operation to better simulate hard attention at the cost of larger model parameter values in attention layers. The model
achieves perfect accuracy on all “marginal” datasets starting at β = 15, and for lower β values, the resulting models can achieve perfect
accuracy for formulas with variables of smaller sizes.

Figure 6. Result of the Length generalization experiments on the random and skewed evaluation dataset. The meaning of different lines
are the same as Figure 3

input sequence of tokens s = (s1, s2, . . . , sn) ∈ Vn, where V is a vocabulary, a Transformer model M : V∗ → V maps s to
an output token sn+1 ∈ V by composing a sequence of parameterized intermediate operations. These begin with a token

14

Can Transformers Reason Logically? A Study in SAT Solving

embedding layer, following by L transformer blocks (layers), each block consisting of H attention heads, with embedding
dimension demb, head dimension dh, and MLP hidden dimension dmlp. Let us now describe each of these maps in detail.

Token Embedding and Positional Encoding. Each input token si is converted into a continuous vector representation
Embed(si) ∈ Rd using a fixed embedding map Emb(·). To incorporate positional information, a positional encoding vector
pi ∈ Rd is added to each token embedding. The initial input to the first Transformer block is

X(0) ← (Emb(s1) + p1, . . . , Emb(sn) + pn) ∈ Rn×d.

Transformer Blocks. For l = 1, . . . , L, each block l of the transformer processes an embedded sequence X(l−1) ∈ Rn×d

to produce another embedded sequence X(l) ∈ Rn×d. Each block consists of a multi-head self-attention (MHA) mechanism
and a position-wise feed-forward network (MLP). We have a set of parameter tensors that includes MLP parameters W (l)

1 ∈
Rdemb×d∗

mlp , b(l)1 ∈ Rd∗
mlp , W (l)

2 ∈ Rdmlp×d, and b
(l)
2 ∈ Rd, self-attention parameters W

(l,h)
Q , W

(l,h)
K , W

(l,h)
V ∈ Rd×dh

for every h = 1, . . . ,H , and multi-head projection matrix W
(l)
O ∈ R(Hdh)×demb . We will collectively refer to all such

parameters at layer l as Γ(l), whereas the self-attention parameters for attention head h at layer l will be referred to as Γ(l,h).
We can now process the embedded sequence X(l−1) to obtain X(l) in two stages:

H(l) ←X(l−1) +MHA
(
X(l−1); Γ(l)

)
X(l) ←H(l) +MLP

(
H(l); Γ(l)

)
,

where

MHA
(
X; Γ(l)

)
:=
[
Att(X; Γ(l,1)); . . . ; Att(X; Γ(l,H))

]
W

(l)
O

Att(X; Γ(l,h)) := σ

(
XW

(l,h)
Q (W

(l,h)
K X)⊤

√
dh

+M

)
XW

(l,h)
V

MLP
(
H; Γ(l)

)
:= act

(
HW

(l)
1 + b

(l)
1

)
W

(l)
2 + b

(l)
2 .

The n× n matrix M is used as a “mask” to ensure self-attention is only backward-looking, so we set M [i, j] = −∞ for
i ≥ j and M [i, j] = 0 otherwise. σ represents the softmax operation. We use the ReGLU(·) : R2dmlp → Rdmlp activation
function act(·) at each position. Given input u ∈ Rn×2dmlp , for each position i we split ui into two halves ui,1, ui,2 ∈ Rd

and, using ⊗ denotes element-wise multiplication, we define

σReGLU (ui) = ui,1 ⊗ ReLU (ui,2) . (1)

Output Layer. After the final Transformer block, the output representations are projected onto the vocabulary space to
obtain a score for each token. We assume that we’re using the greedy decoding strategy, where the token with the highest
score at the last input position is the model output.

o = X(L)Wout + bout ∈ Rn×V , sn+1 = argmax
v

on,v ∈ V

where Wout ∈ Rd×V , bout ∈ RV , V is the size of the vocabulary, on,v is the score for token v at the last input position n.

Autoregressive Decoding and Chain-of-Thought. During generation, the Transformer model is repeatedly invoked to
generate the next token and appended to the input tokens, described in Algorithm 1. In this paper, we refer to the full
generated sequence of tokens as the Chain-of-Thought (CoT), and the number of chain-of-thought tokens in Algorithm 1 is
t− n.

Algorithm 1 Greedy Decoding

Require: Model M : V∗ → V , stop tokens E ⊆ V , prompt s1:n = (s1, s2, . . . , sn), t← n
1: while t← t+ 1 do
2: st ←M(s1:t−1)
3: if st ∈ E return s1:t
4: end while

15

Can Transformers Reason Logically? A Study in SAT Solving

C.2. 3-SAT

SAT The Boolean satisfiability problem (SAT) is the problem of determining whether there exists an assignment A of the
variables in a Boolean formula F such that F is true under A.

3-SAT In this paper, we only consider 3-SAT instances in conjunctive normal form (CNF), where groups of at most 3
variables and their negations (literals) can be joined by OR operators into clauses, and these clauses can then be joined by
AND operators. We use the well-known DIMACS encoding for CNF formulas where each literal is converted to a positive
or negative integer corresponding to its index, and clauses are separated by a 0 (which represents an ∧ operation). SAT
problems where the Boolean formula is expressed in conjunctive normal form (CNF) with three literals per clause will be
referred to as 3-SAT. A formula in CNF is a conjunction (i.e. “AND”) of clauses, a clause is a disjunction (i.e. “OR”) of
several literals, and each literal is either a variable or its negation. In the case of 3-SAT, each clause contains at most three
literals. An example 3-SAT formula with 4 variables and 6 clauses is:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ ¬x1)∧
(x1 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x4 ∨ ¬x1)

In the above formula, (x1 ∨ ¬x2) is a clause, which contains the literals x1 and ¬x2.

The 3-SAT problem refers to determining if any assignment of truth values to the variables allows the formula ϕ to evaluate
as true. It is well-known that 3-SAT is NP-hard and is widely believed to be unsolvable in polynomial time.

DIMACS Encoding The DIMACS format is a standardized encoding scheme for representing Boolean formulas in
conjunctive normal form (CNF) for SAT problems. Each clause in the formula is represented as a sequence of integers
followed by a terminating “0” (i.e. “0” represents ∧ symbols and parentheses). Positive integers correspond to variables,
while negative integers represent the negations of variables. For instance, if a clause includes the literals x1, ¬x2, and x3, it
would be represented as ”1 -2 3 0” in the DIMACS format.

For the 3-SAT example in the previous paragraph, the corresponding DIMACS representation would be:

1 -2 0 -1 2 -3 0 2 4 -1 0 1 -3 4 0 -2 -3 -4 0 -4 -1 0

Reducing a Formula. Let

F =

c∧
i=1

Ci

be a 3-SAT formula, where each Ci is a clause (i.e. a disjunction of up to three literals). The reduction of F by A, denoted
F |A, is defined by:

1. Remove (drop) any clause satisfied by A.
A clause Ci is satisfied by A if there is a literal ℓ ∈ Ci such that ℓ ∈ A. In that case, Ci is automatically True and can
be omitted from the conjunction.

2. Delete (false) literals contradicting A.
For each remaining clause Ci, if it contains a literal ℓ that is false under A, remove that literal from Ci. Specifically:

• If xj ∈ A (so xj is True), then any literal ¬xj in Ci becomes false and is removed.
• If ¬xj ∈ A (so xj is False), then any literal xj in Ci is removed.

If a clause loses all its literals through this process, it becomes an empty clause and the formula is immediately False.

Formally, for each clause Ci ⊆ L, define

Ci|A :=
(
Ci \ {ℓ ∈ Ci : ℓ is forced false by A}

)
and keep Ci|A only if it is not already satisfied by A. Then

F |A =

c∧
i=1

Ci not satisfied

(
Ci|A

)
.

16

Can Transformers Reason Logically? A Study in SAT Solving

As an example, suppose
F = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3).

Let A = {x1}. Then:

1. The first clause (x1 ∨ ¬x2) is satisfied by x1 ∈ A. Hence we remove it from the formula.

2. In the second clause (¬x1 ∨ x3), the literal ¬x1 is false (since x1 is set True). We remove ¬x1 and are left with (x3).

3. The third clause (x2 ∨ ¬x3) is untouched: x1 does not appear, so no literal is removed. However, it is not satisfied by
x1, so we keep it.

Thus,
F |A = (x3) ∧ (x2 ∨ ¬x3).

If a partial assignment forces a clause to become empty, the whole formula becomes unsatisfiable under that assignment.
For instance, with

F = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2),

and a partial assignment A = {x1, x2}, we see:

• The first clause (x1 ∨ x2) is satisfied by x1 ∈ A and gets removed.

• In the second clause (¬x1 ∨ ¬x2), both ¬x1 and ¬x2 contradict A, so both are removed. This leaves the second clause
empty, which means F |A is an empty conjunction (i.e. False).

Hence no full extension of A can satisfy F .

Unit Propagation. An additional reduction step performed in SAT solving is unit propagation. After applying a partial
assignment A to a formula F (obtaining F |A), some clauses may reduce to a single literal (called a unit clause). Formally, a
clause C = { ℓ1, . . . , ℓk} is unit if k = 1. If C is unit, its lone literal ℓ must be assigned True in any extension of A that
satisfies F . Concretely:

1. Identify unit clauses. Scan the reduced formula F |A. If there is a clause Cu with exactly one remaining literal ℓ, then
ℓ is forced True.

2. Extend the partial assignment. Insert the forced literal ℓ into A.

3. Re-reduce the formula. Remove any clauses satisfied by ℓ, and remove ¬ℓ from all remaining clauses.

This process may uncover additional unit clauses in subsequent steps, so unit propagation continues iteratively until there
are no more clauses of size 1. If at any point a clause becomes empty, we conclude that the current assignment A cannot be
extended to a satisfying assignment.

Example. Consider F = (x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ ¬x3) and a partial assignment A = {¬x1}.

• First, F |A removes x1 (now falsified) from (x1 ∨ x3), leaving the unit clause (x3). Thus x3 is forced True.

• We add x3 to A, giving A← A ∪ {x3}. Re-reducing the formula removes any literal ¬x3. If that step causes another
clause to become unit, we repeat.

This iterative assignment of forced literals often simplifies the problem significantly before any broader search is required.

C.3. Proof of Lemma 4.7

We prove each of the three statements in the lemma, showing that the vector-based definitions correspond to the logical
operations described.

17

Can Transformers Reason Logically? A Study in SAT Solving

1. Satisfiability Checking

A |= F ⇐⇒ min
i∈[c]

(
E(Ci) · E(A)

)
≥ 1.

Logical Interpretation. The left-hand side, A |= F , means that every clause Ci in F is satisfied by A. This is equivalent
to saying that, for every clause Ci, there exists at least one literal l ∈ Ci such that l ∈ A.

Vector Translation. For a clause Ci and a partial assignment A, the dot product E(Ci) ·E(A) computes the number of
literals in Ci that are also in A:

E(Ci) · E(A) =

p∑
v=1

1{xv∈Ci} · 1{xv∈A} +

p∑
v=1

1{¬xv∈Ci} · 1{¬xv∈A} = |Ci ∩A|.

If E(Ci) ·E(A) ≥ 1, this means there is at least one literal in Ci ∩A, and hence Ci is satisfied. Taking the minimum over
all clauses ensures that every clause Ci is satisfied, which is precisely the condition for A |= F .

2. Conflict Detection

F |= ¬A ⇐⇒ min
i∈[c]

(
E(Ci) · Enot-false(A)

)
= 0.

Logical Interpretation. The left-hand side, F |= ¬A, means that F contradicts A, i.e., there exists a clause Ci in F such
that all literals in Ci are forced false by A. This happens if and only if no literal in Ci is “not-false” under A.

Vector Translation. For a clause Ci, the dot product E(Ci) ·Enot-false(A) computes the number of literals in Ci that are
not forced false by A:

E(Ci) · Enot-false(A) =

p∑
v=1

1{xv∈Ci} · 1{¬xv /∈A} +

p∑
v=1

1{¬xv∈Ci} · 1{xv /∈A}.

If E(Ci) ·Enot-false(A) = 0, this means all literals in Ci are forced false by A, and Ci is a contradiction. Taking the minimum
over all clauses ensures that this happens for at least one clause, which corresponds to F |= ¬A.

3. Deduction (Unit Propagation)

E(D) = max
(
min

(∑
i∈[c]

1{E(Ci)·Enot-false(A)=1} · E(Ci), 1
)
− Eassigned(A), 0

)
.

Logical Interpretation. A clause Ci becomes a unit clause under A if all but one of its literals are forced false by A. In
this case, the remaining literal must be set to True in any extension of A. The set D consists of all such literals deduced via
unit propagation.

Vector Translation. For each clause Ci, the condition E(Ci) · Enot-false(A) = 1 identifies unit clauses after reduction, i.e.,
those with exactly one literal not forced false by A. For such clauses, E(Ci) encodes the remaining literal.

The summation ∑
i∈[c]

1{E(Ci)·Enot-false(A)=1} · E(Ci)

computes a vector where each coordinate accumulates contributions from unit clauses identifying the corresponding
literal. Taking min(·, 1) elementwise ensures that each coordinate is at most 1, avoiding overcounting. Finally, subtracting
Eassigned(A) removes literals that are already assigned by A, leaving only the newly deduced literals.

This matches the conditions for unit propagation as defined in Appendix C.2

18

Can Transformers Reason Logically? A Study in SAT Solving

C.4. Useful Lemmas for Transformers

In this section, several useful results on Transformer operations on their approximation capavilities. Specifically, an MLP
with ReGLU can exactly simulate ReLU, linear operations, and multiplication without error. For Self-attention lemmas, we
directly adapt from (Feng et al., 2023).

Lemmas for MLP with ReGLU activation This section shows several lemmas showing the capabilities of the self-
attention operation and MLP layers to approximate high-level vector operations. These high-level operations are later used
as building blocks for the Transformer SAT-solver. Specifically, with appropriate weight configurations, a 2-layer MLP with
ReGLU activation f(x) = W2[(W1x+ b)⊗ relu(V x+ c)] can approximate the following vector operations for arbitrary
input x:

• Simulate a 2-layer MLP with ReLU activation: W2 ReLU(W ′
1x+ b′1) + b′2

• Simulate any linear operation Wx

• Simulate element-wise multiplication: x1 ⊗ x2

Lemma C.1 (Simulating a 2-Layer ReLU MLP with ReGLU Activation). A 2-layer MLP with ReGLU activation function
can simulate any 2-layer MLP with ReLU activation function.

Proof. Let the ReLU MLP be defined as:

g(x) = W ′
2 ReLU(W ′

1x+ b′1) + b′2.

Set the weights and biases of the ReGLU MLP as follows:

W1 = 0, b1 = 1,

V = W ′
1, b2 = b′1,

W2 = W ′
2, b = b′2.

Then, the ReGLU MLP computes:

f(x) = W ′
2 [(0 · x+ 1)⊗ ReLU(W ′

1x+ b′1)] + b′2.

Simplifying:
f(x) = W ′

2 [1⊗ ReLU(W ′
1x+ b′1)] + b′2 = W ′

2 ReLU(W ′
1x+ b′1) + b′2 = g(x).

Thus, the ReGLU MLP computes the same function as the ReLU MLP.

Lemma C.2 (Simulating Linear Operations with ReGLU MLP). A 2-layer MLP with ReGLU activation can simulate any
linear operation f(x) = Wx+ b.

Proof. To compute a linear function using the ReGLU MLP, we can set the activation to act as a scalar multiplier of one.
Set the weights and biases as:

W1 = W , b1 = b,

V = 0, b2 = 1,

W2 = I, b = 0.

Here, I is the identity matrix.

Since V x+ b2 = b2 = 1, we have:
ReLU(V x+ b2) = ReLU(1) = 1.

Then, the ReGLU MLP computes:
f(x) = I [(Wx+ b)⊗ 1] = Wx+ b.

Thus, any linear operation can be represented by appropriately setting W1, b1, and W2.

19

Can Transformers Reason Logically? A Study in SAT Solving

Lemma C.3 (Element-wise Multiplication via ReGLU MLP). A 2-layer MLP with ReGLU activation can compute the
element-wise multiplication of two input vectors x1 and x2, that is,

f(x) = x1 ⊗ x2,

where x = [x1;x2] denotes the concatenation of x1 and x2.

Proof. Let x = [x1;x2] ∈ R2n, where x1,x2 ∈ Rn.

Set the weights and biases:

W1 =

[
In
In

]
, b1 = 02n,

V =

[
In
−In

]
, b2 = 02n,

W2 =
[
In −In

]
, b = 0n.

Compute:

W1x+ b1 =

[
x1

x1

]
,

V x+ b2 =

[
x2

−x2

]
,

ReLU(V x+ b2) =

[
ReLU(x2)
ReLU(−x2)

]
.

The element-wise product:

(W1x+ b1)⊗ ReLU(V x+ b2) =

[
x1 ⊗ ReLU(x2)
x1 ⊗ ReLU(−x2)

]
.

Compute the output:

f(x) = W2 [(W1x+ b1)⊗ ReLU(V x+ b2)] + b

= x1 ⊗ ReLU(x2)− x1 ⊗ ReLU(−x2)

= x1 ⊗ (ReLU(x2)− ReLU(−x2))

= x1 ⊗ x2.

Thus, the ReGLU MLP computes f(x) = x1 ⊗ x2 without restrictions on x2.

Capabilities of the Self-Attention Layer In this subsection, we provide 2 core lemmas on the capabilities of the
self-attention layer from (Feng et al., 2023).

Let n ∈ N be an integer and let x1,x2, · · · ,xn be a sequence of vectors where xi = (x̃i, ri, 1) ∈ [−M,M]d+2, x̃i ∈ Rd,
ri ∈ R, and M is a large constant. Let K,Q,V ∈ Rd′×(d+2) be any matrices with ∥V ∥∞ ≤ 1, and let 0 < ρ, δ < M be
any real numbers. Denote qi = Qxi, kj = Kxj , vj = V xj , and define the matching set Si = {j ≤ i : |qi · kj | ≤ ρ}.
Equipped with these notations, we define two basic operations as follows:

• COPY: The output is a sequence of vectors u1, · · · ,un with ui = vpos(i), where pos(i) = argmaxj∈Si
rj .

• MEAN: The output is a sequence of vectors u1, · · · ,un with ui = meanj∈Si
vj .

Assumption C.4. [Assumption C.6 from (Feng et al., 2023)] The matrices Q,K,V and scalars ρ, δ satisfy that for all
considered sequences x1,x2, · · · ,xn, the following hold:

• For any i, j ∈ [n], either |qi · kj | ≤ ρ or qi · kj ≤ −δ.

20

Can Transformers Reason Logically? A Study in SAT Solving

• For any i, j ∈ [n], either i = j or |ri − rj | ≥ δ.

Assumption C.4 says that there are sufficient gaps between the attended position (e.g., pos(i)) and other positions. The two
lemmas below show that the attention layer with casual mask can implement both COPY operation and MEAN operation
efficiently.

Lemma C.5 (Lemma C.7 from (Feng et al., 2023)). Assume Assumption C.4 holds with ρ ≤ δ2

8M . For any ϵ > 0, there
exists an attention layer with embedding size O(d) and one causal attention head that can approximate the COPY operation
defined above. Formally, for any considered sequence of vectors x1,x2, . . . ,xn, denote the corresponding attention output
as o1,o2, . . . ,on. Then, we have ∥oi − ui∥∞ ≤ ϵ for all i ∈ [n] with Si ̸= ∅. Moreover, the ℓ∞ norm of attention
parameters is bounded by O(poly(M, 1/δ, log(n), log(1/ϵ))).

Lemma C.6 (Lemma C.8 from (Feng et al., 2023)). Assume Assumption C.4 holds with ρ ≤ δϵ
16M ln(4Mn

ϵ)
. For any

0 < ϵ ≤M , there exists an attention layer with embedding size O(d) and one causal attention head that can approximate
the MEAN operation defined above. Formally, for any considered sequence of vectors x1,x2, . . . ,xn, denote the attention
output as o1,o2, . . . ,on. Then, we have ∥oi − ui∥∞ ≤ ϵ for all i ∈ [n] with Si ̸= ∅. Moreover, the ℓ∞ norm of attention
parameters is bounded by O(poly(M, 1/δ, log(n), log(1/ϵ))).

C.5. Saturated Attention

To introduce our construction of Transformer layers and attention head, we first introduce saturated self-attention, which is
an idealization of the usual softmax attention head that allows for sparse and uniform attention (i.e. ”hard” attention):

Definition C.7 (Saturated Masked Attention, Merrill et al. (2022)). A saturated attention head with hidden dimension dh,
embedding dimension demb and weight Γs = (WQ,WK ,WV) is a function SaturatedAttn(X; Γs) : Rn×demb → Rn×dh

that satisfy the following:

A := XWQ(WKX)⊤ ∈ Rn×n

Mi := {j ∈ [i]|Aij = max
k

Aik}

SaturatedAttn(X; Γs)i :=

∑
j∈Mi

XjWV

|Mi|

Intuitively, while softmax attention computes a distribution of attention over all previous positions and computes a weighted
average, saturated attention only attends to the previous positions with the highest attention value and computes a uniform
average over these positions.

We now show that Saturated Attention can be approximated by normal softmax attention:

Corollary C.8 (Softmax Attention Can Approximate Saturated Attention, implied by Lemma C.6). Let n ∈ N. Consider
any input sequence X ∈ Rn×demb , and let SaturatedAttn(X; Γs) be a saturated attention head with a causal mask and
parameter norm bounded by O(1) that produces outputs o1, . . . ,on ∈ Rdh .

Suppose further that, for each row i, the maximum attention score maxj≤i

(
Aij

)
of the saturated head exceeds all other

scores by a margin of at least δ > 0, i.e. if j ∈Mi (the set of maximizing indices) and k /∈Mi, then Aij −Aik ≥ δ.

Then for any ε > 0, there exists a standard single-head softmax attention function Attn(X; Γ) with parameter norms
bounded by poly

(
M, 1/δ, log(n), log(1/ε)

)
such that its outputs õ1, . . . , õn ∈ Rdh satisfy∥∥õi − oi

∥∥
∞ ≤ ε for all 1 ≤ i ≤ n.

In other words, if a saturated attention head has a strict dot-product margin among the top positions, it can be approximated
arbitrarily closely by an ordinary causal softmax attention mechanism, using parameter magnitudes that grow at most
polynomially in 1/δ, M , log(n), and log(1/ε).

C.6. Proof of Lemma 4.8

We proof a version of Lemma 4.8 that uses saturated attention. Lemma 4.8 is immediately implied by the following lemma
and Corollary C.8

21

Can Transformers Reason Logically? A Study in SAT Solving

Lemma C.9 (Saturated Masked Attention version of Lemma 4.8). Let F be a 3-SAT formula over variables {x1, . . . , xp}
with c clauses {C1, . . . , Cc} and A a partial assignment defined on variables {x1, . . . , xp}. Let

Xencoding =


0 1 1

E(C1) 0 1
...

...
...

E(Cc) 0 1
E(A) 0 1

 ∈ R(c+2)×(2p+2)

Then given X as input, there exists:

• An saturated attention head with parameters ΓA|=F
s and hidden dimension 1 that satisfies

SaturatedAttn(X; ΓA|=F
s)c+2 = 1A|=F

• An saturated attention head with parameters ΓF |=¬A
s and hidden dimension 1 that satisfies

SaturatedAttn(X; ΓF |=¬A
s)c+2 = 1F |=¬A

• An saturated attention head with parameters ΓD
s with hidden dimension 2p and MLP layer with parameters ΓD

MLP

satisfy:

MLP ([SaturatedAttn(X; ΓD
s);X]; ΓD

MLP)c+2 = E(D)

unless F |= ¬A, where E(D) is as defined in 4.7

Proof. We prove each of the three constructions in turn, using the definition of saturated attention (Definition C.7) and
standard reductions from the logical semantics to dot-product comparisons.

We explain how to construct parameter matrices (WQ,WK ,WV) such that the resulting saturated attention head imple-
ments:

1. a check for 1A|=F (i.e. whether A satisfies F),

2. a check for 1F |=¬A (i.e. whether A contradicts F),

3. a step of unit propagation that yields E(D), provided F ̸|= ¬A.

Within the following proof of Lemma C.9, we shorten Xencoding as X .

1. Checking Satisfiability (A |= F)

We construct the matrices

W
A|=F
Q ∈ R(2p+2)×(2p+1), W

A|=F
K ∈ R(2p+2)×(2p+1), W

A|=F
V ∈ R(2p+2)×1

as follows (with block-wise or coordinate-wise 0 and 02p denoting matrices/vectors of all zeros of dimension 2p where the
dimension subscript is omitted if they can be inferred from other entries, and I2p the 2p× 2p identity matrix).

W
A|=F
Q =


I2p 0

0⊤ 0

0⊤ 1

 W
A|=F
K =


−I2p 0

0⊤ −0.5

0⊤ 0

 W
A|=F
V =


02p

1

0

 .

Then

22

Can Transformers Reason Logically? A Study in SAT Solving

XW
A|=F
Q =



02p 1

E(C1) 1
...

...
E(Cc) 1

E(A) 1


XW

A|=F
K =



02p −0.5

−E(C1) 0
...

...
−E(Cc) 0

−E(A) 0


XW

A|=F
V =


1

0
...
0



A := XW
A|=F
Q (W

A|=F
K X)⊤ =


−0.5 0 0 . . . 0

−0.5 −E(C1) · E(C1) −E(C1) · E(C2) . . . −E(C1) · E(A)
−0.5 −E(C2) · E(C1) −E(C2) · E(C2) . . . −E(C2) · E(A)

...
...

...
...

−0.5 −E(A) · E(C1) −E(A) · E(C2) . . . −E(A) · E(A)


Since we want to output 1A|=F at the last position c+ 2 corresponding to E(A) in Xencoding , we focus on the last row of
A:

Ac+2 = [−0.5 − E(A) · E(C1) − E(A) · E(C2) . . . − E(A) · E(Cc) − E(A) · E(A)]

Now consider Mc+2 = {j ∈ [c + 2]|A(c+2),j = maxk A(c+2),k}. Note that ∀i ∈ [c], E(A) · E(Ci) ∈ N and since
A(c+2),1 = −0.5 there is:

Mc+2 = {1} ⇐⇒ min
i∈[c]

E(Ci) · E(A) ≥ 1.

Mc+2 ⊂ [2, c+ 2] ⇐⇒ min
i∈[c]

E(Ci) · E(A) = 0.

which are the only 2 possibilities for nonnegative integers E(Ci) · E(A). Also, since (XW
A|=F
V)⊤ = [1 0 0 . . . 0] we

have that

XjW
A|=F
V =

{
1 if j = 1

0 otherwise

SaturatedAttn(X; Γs)c+2 :=

∑
j∈Mc+2

XjW
A|=F
V

|Mc+2|

=

{
1
1 ifMc+2 = {1}
0 ifMc+2 ⊂ [2, c+ 2]

= 1Mc+2={1}

= 1mini∈[c] E(Ci)·E(A)≥1

= 1A|=F

where the last step is by Lemma 4.7. This concludes our proof for satisfiability checking.

2. Detecting Conflict (F |= ¬A)

Note that for B ∈ B we have

Enot-false(B) =

[
0p×p −Ip
−Ip 0p×p

]
E(B) + 1p

Define

Pnot-false :=


0p×p −Ip 0p 0p

−Ip 0p×p 0p 0p

0⊤
p 0⊤

p 1 0
1⊤
p 1⊤

p 0 1

 ∈ R(2p+2)×(2p+2)

23

Can Transformers Reason Logically? A Study in SAT Solving

Then

XPnot-false =


0 1 1

Enot-false(C1) 0 1
...

...
...

Enot-false(Cc) 0 1
Enot-false(A) 0 1

 ∈ R(c+2)×(2p+2)

We now construct the matrices

W
F |=¬A
Q ∈ R(2p+2)×(2p+1), W

F |=¬A
K ∈ R(2p+2)×(2p+1), W

F |=¬A
V ∈ R(2p+2)×1

as follows:

W
F |=¬A
Q = Pnot-falseW

A|=F
Q W

F |=¬A
K = W

A|=F
K W

F |=¬A
V =


02p

−1

1

 .

Then

XW
F |=¬A
Q =



02p 1

Enot-false(C1) 1
...

...
Enot-false(Cc) 1

Enot-false(A) 1


XW

F |=¬A
K =



02p −0.5

−E(C1) 0
...

...
−E(Cc) 0

−E(A) 0


XW

F |=¬A
V =


0

1
...
1



Recall from Lemma 4.7 that:
F |= ¬A ⇐⇒ min

i∈[c]

(
E(Ci) · Enot-false(A)

)
= 0.

The remaining argument is very similar to satisfiability checking and we omit the full proof.

3. Unit Propagation (D)

Recall that D := {l ∈ L | F ∧A |=1 l} and

E(D) = max
[
min

(∑
i∈[c]

E(Ci)1{E(Ci)·Enot-false(A)=1}, 1
)
− Eassigned(A), 0

]
. (2)

To address unit propagation with saturated attention, we use a slightly different formulation than the formula in Lemma 4.7:

Proposition C.10. Let m > 1 be an arbitrary constant, then

z :=
∑
i∈[c]

1{E(Ci)·Enot-false(A)=1} · E(Ci)

E(D) = ReLU(mz − Eassigned(A))− ReLU(mz − 1)

Proof. We start from the expression in equation 2,

E(D) = max
[
min

(
z, 1

)
− Eassigned(A), 0

]
, where z :=

∑
i∈[c]

1{E(Ci)·Enot-false(A)=1} · E(Ci).

Because Eassigned(A) ∈ {0, 1}2p, each coordinate of Eassigned(A) is either 0 or 1. A straightforward elementwise check
shows the identity

max
(
min(a, 1) − b, 0

)
= ReLU

(
ma− b

)
− ReLU(ma− 1),

whenever b ∈ {0, 1}. Indeed:

24

Can Transformers Reason Logically? A Study in SAT Solving

• If b = 0, then the left side is max(min(a, 1), 0); on the right side,

ReLU(ma)− ReLU(ma− 1)

exactly matches max(min(ma, 1), 0) = max(min(a, 1), 0) for any a ≥ 1 (this is a standard piecewise identity).

• If b = 1, then min(a, 1)− 1 ≤ 0, hence the left side is always 0. On the right side,

ReLU(ma− 1) − ReLU(ma− 1) = 0.

Applying this identity coordinatewise, we obtain

max
[
min(mz, 1) − Eassigned(A), 0

]
= ReLU(mz − Eassigned(A)) − ReLU(mz − 1),

which matches the stated expression for E(D).

We now construct the matrices

WD
Q ∈ R(2p+2)×(2p+1), WD

K ∈ R(2p+2)×(2p+1), WD
V ∈ R(2p+2)×(2p)

as follows:

WD
Q = W

F |=¬A
Q WD

K =


−I2p 0

0⊤ −1.5

0⊤ 0

 WD
V = c

Ip
0⊤
p

0⊤
p

 .

Then

XWD
Q =



02p 1

Enot-false(C1) 1
...

...
Enot-false(Cc) 1

Enot-false(A) 1


XWD

K =



02p −1.5

−E(C1) 0
...

...
−E(Cc) 0

−E(A) 0


XWD

V = c


0p

E(C1)
...

E(A)



We focus on the last row of A := XWD
Q (WD

K X)⊤:

Ac+2 = [−1.5 −E(A) ·Enot-false(C1) −E(A) ·Enot-false(C2) . . . −E(A) ·Enot-false(Cc) −E(A) ·Enot-false(A)]

Also, recall that we assume here F ̸|= ¬A, so ∀i, E(A) · Enot-false(Ci) ≥ 1 and therefore E(A) · Enot-false(Ci) are positive
integers. :

Mc+2 = {1} ⇐⇒ min
i∈[c]

E(Ci) · E(A) ≥ 2.

Mc+2 ⊂ [2, c+ 2] ⇐⇒ min
i∈[c]

E(Ci) · E(A) = 1.

In particular:

Mc+2 =

{
{1} if mini∈[c] E(Ci) · Eassigned(A) ≥ 2

{j ∈ [c]|E(Ci) · Eassigned(A) = 1} otherwise

25

Can Transformers Reason Logically? A Study in SAT Solving

As a result:

SaturatedAttn(X; Γs)c+2 :=

∑
j∈Mc+2

XjW
D
V

|Mc+2|

=

{
02p ifMc+2 = {1}

c
|Mc+2|

∑
i∈[c] 1{E(Ci)·Enot-false(A)=1} · E(Ci) ifMc+2 ⊂ [2, c+ 2]

= m
∑
i∈[c]

1{E(Ci)·Enot-false(A)=1} · E(Ci)

= mz

for m = c
|Mc+2| > 1.

We now construct the weights for the ReGLU MLP layer. By Lemma C.1 we know that ReGLU MLP can simulate ReLU
MLPs. Therefore, we only need to construct WD

1 ,WD
2 , bD1 , bD2 such that

WD
2 ReLU(WD

1 [mz;Xc+2] + bD1) + bD2 = ReLU(mz − Eassigned(A)) − ReLU(mz − 1).

Note that Xc+2 = [E(A) 0 1], therefore [mz;Xc+2] ∈ R4p+2 Also,

Eassigned(A) =

[
Ip Ip
Ip Ip

]
E(A)

Therefore, define

WD
1 =

I2p 02p×2p −
[
Ip Ip
Ip Ip

]
02p×2

I2p 02p×2p 02p×2p 02p×2



bD1 =

[
02p

−12p

]

WD
2 =

[
I2p −I2p

]

bD2 = 02p

It can be easily verified that this satisfies the desired equality.

C.7. Theoretical Construction (Theorem 4.5)

Notations

• p denotes the number of variables

• ti denotes the token at position i

• Tvars denotes the set of tokens that denote variables and their negations. i.e. ‘1’, ‘2’, . . . , ‘n’, ‘-1’, ‘-2’, . . . , ‘-n’

• b denotes boolean variables

Proof. We first describe the encoding format of the formulas and the solution trace format before going into the details of
model construction.

26

Can Transformers Reason Logically? A Study in SAT Solving

Input Format. We consider 3-CNF-SAT formulas in the DIMACS representation, with an initial [BOS] token and an
ending [SEP] token. Each variable xi for i ∈ [n] has 2 associated tokens: i and -i (e.g., 1 and -1), where the positive
token indicates that the i-th variable appears in the clause while the negative token indicates that the negation of the i-th
variable appears in the clause. Clauses are separated using the 0 token. For example, the formula

(¬x2 ∨ ¬x4 ∨ ¬x1) ∧ (x3 ∨ x4 ∨ ¬x1) ∧ (¬x1 ∨ ¬x3 ∨ ¬x2)

∧(x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x4 ∨ x2 ∨ x1) ∧ (x1 ∨ ¬x2 ∨ x4)

would be represented as:

[BOS] -2 -4 -1 0 3 4 -1 0 -1 -3 -2 0 1 -2 -4 0 -4 2 1 0 1 -2 4 0 [SEP]

Solution Trace Format. The trace keeps track of the order of the assignments made and whether each assignment is
a decision (assumption) or a unit propagation (deduction). Literals with a preceding D token are decision literals while
other literals are from unit propagation. When the model encounters a conflict between the current assignment and the
formula, it performs a backtrack operation denoted by [BT] and performs another attempt with the last decision lit-
eral negated. In particular, compared to Figure 1, we used D to abbreviate Assume and use [BT] to abbreviate Backtrack

As an example, the solution trace for the above SAT formula would be:
[SEP] D 2 D 1 -4 3 [BT] D 2 -1 -4 [BT] -2 D 3 D 4 1 SATWe use simplified versions of the tokens
compared to Figure 1. In particular, we use [BT] as a shorthand for BackTrack and D for Deduce.

Implementation of Integer Arithmetic, Comparison, and Logical Operations In this paragraph, we show how basic
arithmetic and comparison operations can be implemented as MLP layers. For simplicity, when describing the construction,
we directly specify the arithmetic and comparison operations performed at each layer when applicable. In all descriptions
below, we assume that we are given a vector of input parameters

X =


a1 b1
a2 b2
...

...
an bn

 ∈ Zn×2

and describe the required MLP parameters to implement element-wise integer arithmetic between ai and bi at each position
i ∈ [n]. For simplicity of expression, since the operations are element-wise, we assume wlog that the input is simply
[a; b] ∈ Z1×2.

• Addition a+ b: Let

W+
1 =

[
1 1
0 0

]
b+1 =

[
0
1

]
W+

2 = [1] b+2 = [0]

Then W+
1 [a; b] + b+1 = [a+ b; 1], ReGLU([a+ b; 1]) = a+ b, W+

2 ReGLU([a+ b; 1]) + b+2 = a+ b

• Subtraction a− b: Implemented as a+ (−b):

W+
1 =

[
1 −1
0 0

]
b+1 =

[
0
1

]
W+

2 = [1] b+2 = [0]

• Multiplication a× b: Apply Lemma C.3 with x1 = a and x2 = b

• Comparison 1a≤b: Let

W comp
1 =


0 0
0 0
−1 1
−1 1

 bcomp
1 =


1
1
0
−1

 W comp
2 =

[
1 −1

]
bcomp
2 = [0]

27

Can Transformers Reason Logically? A Study in SAT Solving

Then for input [a, b], we have

W comp
1 [a; b] + bcomp

1 =


1
1

b− a
b− a− 1

 ,

which is split into value part
[
1
1

]
and gate part

[
b− a

b− a− 1

]
. Applying the ReGLU activation

ReGLU




1
1

b− a
b− a− 1


 =

[
1 · ReLU(b− a)

1 · ReLU(b− a− 1)

]
=

[
ReLU(b− a)

ReLU(b− a− 1)

]
,

and finally
W comp

2 ReGLU(·) + bcomp
2 = ReLU(b− a)− ReLU(b− a− 1) = 1a≤b .

• Logical AND a ∧ b where a, b ∈ {0, 1}: This is equal to a× b

• Equivalence a = b: This takes 2 MLP layers to compute (a ≤ b) ∧ (b ≤ a)

Embedding Layer. Our token set consists of one token for each variable and its negation, the separator token 0, and a
special token D to denote where decisions are made. The positional encoding occupies a single dimension and contains the
numerical value of the position of the token in the string. (i.e. there exists a dimension pos such that the position embedding
of position i is i · epos)

Layer 1. The first layer prepares for finding the nearest separator token and D token. Let i denote the position index of
tokens. Only MLP layers are used

1. Compute isep where isep = i if the corresponding token ti ∈ {‘0’, ‘[SEP]’, ‘[BT]’} and isep = 0 otherwise. This is
computed as isep = i× (eid(0) + eid([SEP]) + eid([BT]))

2. Similarly, compute iD where iD = i if the corresponding token ti = D and isep = 0 otherwise. This is computed as
iD = i× eid(D)

3. Compute (i− 1)2, i2 for index equality comparison

Layer 2. This layer uses 2 heads to perform the following tasks:

1. Copy the index and type of the last separator token and stores

psepi
′ = max{j : j ≤ i, tj ∈ {‘0’, ‘[SEP]’, ‘[BT]’}}

b0 = (tj = ‘0’)
b[SEP] = (tj = ‘[SEP]’)
b[BT] = (tj = ‘[BT]’)

for j = psepi
′

2. (Backtrack) Compute the position of the nearest D token pDi = max{j : j ≤ i, tj = ‘D’}

3. Compute (psepi
′)2 for index operation

Task 1 can be achieved via the COPY operation from Lemma C.5 with qi = 1, ki = isep, vj = (j, I[tj = ‘0’], I[tj =
‘[SEP]’], I[tj = ‘[UP]’], I[tj = ‘[BackTrack]’]).

Task 2 is highly similar to task 1 and can be achieved using COPY with qi = 1, ki = iD, vj = (j)

28

Can Transformers Reason Logically? A Study in SAT Solving

Layer 3 This layer uses 1 head to copy the several values from the previous token to the current token. Specifically, this
layer computes:

1. The position of the previous separator token, not including the current position:

psepi = max{j : j < i, tj ∈ {‘0’, ‘[SEP]’,‘[UP]’, ‘[BackTrack]’}}

2. Dermine if the previous token is D: bdecision = (ti−1 = ‘D’) i.e., whether the current token is a decision variable

3. (Induction) Compute the offset of the current token to the previous separator token dsepi = i− psepi
′

4. Compute (psepi)2, for equality comparison at the next layer.

Task 1 and 2 is done by copying psepi
′ and I[ti = ‘D’] from the previous token. Specifially, we use the COPY operation from

Lemma C.5 with qi = ((i− 1)2, i− 1, 1) and kj = (−1, 2j,−j2) which determines i− 1 = j via −((i− 1)− j)2 = 0
and vj = (psepi

′, I[ti = ‘D’]).

Layer 4. This layer uses 2 heads to perform the following tasks:

1. Compute
E(Bi) =

∑
j>psep

i ,tj∈Tvars

eid(tj) =
∑

psep
j =psep

i ,tj∈Tvars

eid(tj)

Recall that E(Bi) is a binary encoding of the literals in a clause or partial assignment. Since each literal is represented
in the DIMACS encoding as a single token, summing up the one-hot token embedding of each literal in a clause/partial
assignment is equivalent to computing its encoding E(B) value. The above operator finds the previous separator and
sums up all the embedding dimensions corresponding to literal one-hot embeddings. Therefore, the above computation
satisfied:

• For input DIMACS encoding: Suppose that the separator 0 token following clause k is at position i in the
DIMACS encoding tokens, then E(Bi) = E(Ck), where tj = ‘0’

• For the current position: For the final position l, for which we’re predicting the next token, E(Bl) = E(A),
where A is the current partial assignment.

2. (Induction) Compute the position of the second-to-last separator psep−i = max{j : j < psepi , tj ∈
{‘0’, ‘[SEP]’, ‘[BackTrack]′}} = psep

psep
i

′ and the corresponding current position in the previous state p−i =

psep−i +dsepi . As a special case for the first state, we also add 4 to p−i if b[SEP] is true, i.e. p−i = psep−i +dsepi +4·b[SEP].
The additional 4 is the number of variables per clause + 1 to ensure that we don’t consider the last clause as an assign-
ment.

3. (Backtrack) Compute the position of the nearest D token to the last separator token pD−i = pD
psep
i

′

4. Compute bexceed = (p−i > pD−i + 1), this denotes whether we’re beyond the last decision of the previous state.

5. Compare (pD-i ≤ p−i) for bBT finished at the next layer.

6. Compare if pD-i = p−i for the bbacktrack operator.

7. Compute b′copy = (p−i < psepi
′ − 1)

Task 1 is achieved using a MEAN operation with qi = ((psepi)2, psepi , 1), kj = ((−1, 2psepj ,−(psepj)2), vj = eid(tj) for
tj ∈ Tvars. This attention operations results in ri

i−psep
i

The MLP layer then uses Lemma C.3 to multiply the mean result by
i− psepi to obtain the ri.

Task 2 is achieved using the COPY operation with qi = ((psepi)2, psepi , 1), kj = (−1, 2j,−j2) and vj = psepi
′. The MLP

layer then performs the addition operation the computes p−i by Lemma C.2

Similarly, Task 3 is achieved using the COPY operation with qi = ((psepi)2, psepi , 1), kj = (−1, 2j,−j2) and vj = pDi .

29

Can Transformers Reason Logically? A Study in SAT Solving

Layer 5. The third layer uses 5 heads to perform the following tasks:

1. Compute 1A|=F , 1F |=¬A, E(D) where D := {l ∈ L | F ∧A |=1 l} according to Lemma 4.7 with the E(Bi) values
from the previous layer.

2. Compute bfinal = bexceed ∧ bdecision

3. Compare bno decision = (pDi ≤ psepi), which denotes whether the current state contains no decision variables

4. Compute bBT finished = (pD-i ≤ p−i) ∧ b[BackTrack]

5. Compare p−i with pD−i − 1 by storing p−i ≤ pD−i − 1 and p−i ≥ pD−i − 1 (to check for equality at the next layer)

6. Compare bbacktrack = (p−i = pD−i − 1)

Layer 6 This layer does the remaining boolean operators required for the output. In particular,

• bunsat = bno decision ∧ bcont

• b[BT] = bcont ∧ ¬(ti = [BT])

• Compute a vector that is equal to bbacktrack · eBT , which is equal to eBT if bbacktrack is True and 0 otherwise. This is
to allow the operation at the output layer for backtracking

Note that ∧ can be implemented as a single ReLU operation for tasks 1 and 2 that can be implemented with Lemma C.1,
and task 3 is a multiplication operation implemented with Lemma C.3

Layer 7 This layer performs a single operation with the MLP layer: Compute bcopy · ecopy, which gates whether ecopy
should be predicted based on bcopy . This enables condition 5 at the output layer.

Output Projection The final layer is responsible for producing the output of the model based on the computed output of
the pervious layers. We constructed prioritized conditional outputs, where the model outputs the token according to the first
satisfied condition in the order below:

1. If bsat output SAT

2. If bcont ∧ bno decision output UNSAT

3. If bcont ∧ ¬(ti = [BackTrack]) output ‘[BackTrack]’

4. (BackTrack) If bbacktrack, output the negation of the token from position pD−i + 1

5. (Induction) If bcopy , copy token from position p−i + 1 as output (ecopy)

6. output a unit propagation variable, if any.

7. output D if the current token is not D

8. output a unassigned variable

For the output layer, we use l[TOKEN] to denote the output logit of [TOKEN]. Since the final output of the model is the token
with the highest logit, we can implement output priority by assigning outputs of higher priority rules with higher logits than
lower priority rules. Specifically, we compute the output logits vector using the output layer linear transformation as:

27 · bsat · eSAT + 26 · bcont · e[BackTrack] + 25 · bunsat · eUNSAT
+24 · bbacktrack · eBT + 23 · bcopy · ecopy + 22 · eUnitPropVar + 21 · (1− 1[ti = ‘D′]) · eD + 20 · T [(0, 0), (0, 0), (1, 1)]ri

30

Can Transformers Reason Logically? A Study in SAT Solving

Composing the Transformer In the above construction, we demonstrate how each operation can be approximated by
a Self-attention or MLP layer. We can set the embedding dimension to the sum of dimensions of all the intermediate
values and allocate for every intermediate values a range of dimensions that’s equal to the dimension of the variables. All
dimensions are initialized to 0 in the positional encoding of the transformer except for the dimensions assigned to the
positional index i. Similarly, only the dimensions assigned to the one-hot token representation are initialized in the token
embeddings. At each layer, the self-attention heads and MLP layers extract the variable values from the residual stream and
perform the operations assigned to them at each layer.

Proposition C.11. There exists a transformer with 7 layers, 5 heads, O(p) embedding dimension, and O(p2) weights
that, on all inputs s ∈ DIMACS(p, c), predicts the same token as the output as the above operations. Furthermore, let
lctx = 4c+ p · 2p be the worst-case maximum context length required to complete SAT-solving, then all weights are within
poly(lctx) and can be represented within O(p+ log c) bits.

We only argue from a high level why this is true due to the complexity of the construction.

The only intermediate values whose dimensions are dependent on p are the vectors for one-hot encodings and storing binary
encodings of clauses and assignments. They all have size 2p. Therefore, the number of total allocated embedding sizes is
also O(p).

Furthermore, Appendix C.4 shows that all parameter values are polynomial with respect to the context length and the inverse
of approximation errors. Note that we need only guarantee the final error is less than 1 to prevent affecting the output
token. Furthermore, we can choose all parameter values so that they are multiples of 0.5. As such, all parameters are within
poly(lctx) and can be represented by O(log(lctx)) = O(p+ log c)

C.8. Correctness of Construction (Theorem 4.5)

Note: This section assumes prior knowledge in propositional logic and SAT solving, including an understanding of the
DPLL algorithm. For a brief explanation of the notations in this section, please refer to ((Nieuwenhuis et al., 2005)). For
more general knowledge, please refer to ((Biere et al., 2009)).

We prove that the above model autoregressive solves 3-SATp,c by showing that it uses the CoT to simulate the “Abstract
DPLL Procedure”.

C.8.1. ABSTRACT DPLL

In this section, we provide a description of abstract DPLL. Since the focus of this paper is not to show the correctness of the
DPLL algorithm but rather how our model’s CoT is equivalent to it, we only present the main results from (Nieuwenhuis
et al., 2005) and refer readers to the original work for proof of the theorems.

Let M be an ordered trace of variable assignments with information on whether each assignment is an decision literal (i.e.
assumption) or an unit propagation (i.e., deduction).

For example, the ordered trace 3d 1 2 4d 5 denotes the following sequence of operations:

Assume x3 = T → Deduce x1 = T → Deduce x2 = F → Assume x4 = T → Deduce x5 = T .

Let F denote a SAT formula in CNF format (which includes 3-SAT), C denote a clause (e.g., x1 ∨ ¬x2 ∨ x3), l denote a
single literal (e.g., ¬x2), and ld denote a decision literal. Let M |= F denote that the assignment in M satisfies the formula
F .

Definition C.12 (State in the DPLL Transition System). A state S ∈ S in the DPLL transition system is either:

• The special states SAT,UNSAT, indicating that the formula satisfiable or unsatisfiable

• A pair M ∥ F , where:

– F is a finite set of clauses C1 ∧ C2 · · · ∧ Cc (a conjunctive normal form (CNF) formula), and
– M is a sequence of annotated literals l1 ◦ l2 · · · ◦ li for some i ∈ [n] representing variable assignments, where
◦ denotes concatenation. Annotations indicate whether a literal is a decision literal (denoted by ld) or derived

31

Can Transformers Reason Logically? A Study in SAT Solving

through unit propagation.

We denote the empty sequence of literals by ∅, unit sequences by their only literal, and the concatenation of two sequences by
simple juxtaposition. While M is a sequence, it can also be viewed as a set of variable assignments by ignoring annotations
and order.

Definition C.13 (Adapted from Definition 1 of (Nieuwenhuis et al., 2005)). The Basic DPLL system consists of the
following transition rules S =⇒ S:

UnitPropagate :

M ∥F ∧ (C ∨ l) =⇒ M ◦ l ∥F ∧ (C ∨ l) if

{
M |= ¬C,
l is undefined in M.

Decide :

M ∥F =⇒ M ◦ ld ∥F if

{
l or ¬l occurs in a clause of F,
l is undefined in M.

Backjump :

M ◦ ld ◦N ∥F =⇒ M ◦ l′ ∥F if


There is some clause C ∨ l′ s.t.
F |= C ∨ l′, M |= ¬C,
l′ is undefined in M,

l′ or ¬l′ occurs in a clause of F.

Fail :

M ∥F ∧ C =⇒ UNSAT if

{
M |= ¬C,
M contains no decision literals.

Success :

M ∥F =⇒ SAT if M |= F

We also use S =⇒∗ S′ to denote that there exist S1, S2, . . . , Si such that S =⇒ S1 =⇒ · · · =⇒ Si =⇒ S′. Also S =⇒! S′

denote that S =⇒∗ S′ and S′ is a final state (SAT or UNSAT).

Explanation of the Backjump Operation:

The Backjump operation allows the DPLL algorithm to backtrack to a previous decision and learn a new literal. In particular,
F |= C ∨ l′ means that, for some clause C, every assignment that satisfies F must either satisfy C (i.e., contain the negation
of each literal in C) or contain l′ as an assignment. However, if M |= ¬C, which means that M conflicts with C and
thus contains the negation of each literal in C, then if we want some assignment containing M to still satisfy F , then the
assignment must also include the literal l′ as an assignment to ensure that it satisfies C ∨ l′, a requirement for satisfying F .

In our construction, we only consider the narrower set of BackTrack operations that find the last decision and negate it:

Lemma C.14. [Corrollary of Lemma 6 from (Nieuwenhuis et al., 2005)] Assume that ∅ ∥ F =⇒∗ M ◦ ld ◦N ∥F , the
BackTrack operation:

M ◦ ld ◦N ∥F =⇒ M ◦ ¬l ∥F if


There exists clause C in F such that
M ◦ ld ◦N |= ¬C
Ncontains no decision literals

is always a valid Backjump operation in Definition C.13.

Definition C.15 (Run of the DPLL Algorithm). A run of the DPLL algorithm on formula F is a sequence of states
S0 =⇒ S1 =⇒ · · · =⇒ ST such that:

• S0 is the initial state ∅ ∥ F

32

Can Transformers Reason Logically? A Study in SAT Solving

• For each i = 0, 1, . . . , n− 1, the transition Si =⇒ Si+1 is valid according to the transition rules of the DPLL system
in Definition C.13 (e.g., UnitPropagate, Decide, Backjump, or Fail);

• Sn is a final state that is either SAT or UNSAT

Note that the above definition is simply the expansion of ∅ ∥ F =⇒! ST .

The following theorem states that the DPLL procedure always decides the satisfiability of CNF formulas:
Lemma C.16. [Theorem 5 and Theorem 9 Combined from (Nieuwenhuis et al., 2005)] The Basic DPLL system provides a
decision procedure for the satisfiability of CNF formulas F . Specifically:

1. ∅ ∥ F =⇒! UNSAT if and only if F is unsatisfiable.

2. ∅ ∥ F =⇒! SAT if and only if F is satisfiable.

3. There exist no infinite sequences of the form ∅ ∥ F =⇒ S1 =⇒ · · ·

C.8.2. TRACE EQUIVALENCE AND INDUCTIVE PROOF

To prove that our Transformer indeed simulates abstract DPLL algorithm, we use an argument of refinement: we view our
Transformer construction with CoT as a state transition system and show that that transitions of this system ”refines” that of
the abstract DPLL state transition system:
Definition C.17. A transition system is a tuple (S, T, s0) where S is the set of states, T ⊆ S × S is the transition relation,
and s0 is the start state. If (s1, s2) ∈ T , we say that there is a transition from s1 to s2 and denote s1 ⇒ s2.
Definition C.18. A run r of transition system (S, T, s0) is a (potentially infinite) sequence (s0, s1, . . .) such that:

• The sequence starts with s0

• At each step t ≥ 0, (st, st+1) ∈ T

The run r halts if it’s a finite sequence such that (s0, s1, . . . , s∗t) such that s∗t does not have any next transitions, i.e., There’s
no state s such that (s∗t , s) ∈ T

Definition C.19 (Refinement). Given two transition systems A = (SA, TA, sA0) and B = (SB , TB , sB0). Transition
system A refines B if there is a refinement mapping R ⊆ SA × SB such that:

1. R maps the initial state of A to the initial state of B:

(sA0, sB0) ∈ R.

2. For every (sA, sB) ∈ R, and every run r that contains sA, let r′ = (sA, . . .) be the suffix of r starting from sA. There
exists s′A ∈ SA, s′B ∈ SB such that s′A ∈ r′ and (sB , s

′
B) ∈ TB .

Here,⇒∗
A denotes the reflexive transitive closure of⇒A.

Proposition C.20. Given two transition systems A = (SA, TA, sA0) and B = (SB , TB , sB0). If transition system A refines
B, and every run of B halts and ends in state s∗B , then every run of A contains on s∗A such that R(s∗A) = s∗B .

To proceed with this argument, we first need to define the refinement mapping between our model’s CoT and the states of
abstract DPLL. Consider the following model input and CoT trace:

[BOS] -2 -4 -1 0 3 4 -1 0 -1 -3 -2 0 1 -2 -4 0 -4 2 1 0 1 -2 4 0 [SEP] D 2 D 1 -4
3 [BT] D 2 D -1 -4

Recall that [BT] denotes backtracking and D denotes that the next token is a decision literal.

Note that the prompt input ends at [SEP] and the rest is the CoT produced by the model.

We want to convert this trace to a state S = M∥F such that F is the CNF formula in the DIAMCS encoding in the prompt
input and M is the ”assignment trace” at the last attempt (i.e., after the last [BT] token.). As such, M correspond to the
D 2 D -1 -4 portion of the trace and thus M = 2d 1̄d 4̄ as described in Appendix C.8.1. We formalize this process as
follows:

33

Can Transformers Reason Logically? A Study in SAT Solving

Definition C.21 (Translating CoT to Abstract DPLL State). For any number of variables p ∈ N+, let V be the set of tokens:

V = {-i, i | i ∈ [p] } ∪ {D, [SEP], [BOS], [BT], 0, SAT, UNSAT }.

Define a mapping fS : V∗ → S ∪{error} that converts a sequence of tokens R ∈ V∗ into an abstract DPLL state as follows:

1. If R ends with SAT or UNSAT, then set MS(R) to SAT or UNSAT accordingly.

2. Else if R contains exactly one [SEP] token, split R at [SEP] into RDIMACS and RTrace.

3. Parse RDIMACS as a DIMACS representation of CNF formula F , assuming it starts with [BOS] and ends with 0. If
parsing fails, set MS(R) = fail.

4. Find the last [BT] in RTrace, and let Rcurrent be the part of RTrace after the last [BT]. If there’s none, set Rcurrent to
RTrace.

5. Initialize an empty sequence M to represent variable assignments and set a flag isDecision← False.

6. Process each token t in Rcurrent sequentially:

• If t = D, set isDecision← True.
• Else if l is a literal, append l to M , annotated as a decision literal if isDecision = True, or as a unit propagation

otherwise.
• Reset isDecision← False.
• Else, set MS(R) = error.

7. Return the state M ∥ F .

With the above mapping, we can specify the following properties of our Transformer construction based on logical relations
between A and F :

Proposition C.22. Given input sequence s1:n ∈ V∗ such that fS(s1:n) = M ∥ F for which F is a valid 3-SAT formula and
M is a sequence of annotated literals. Let A be the partial assignment corresponding to M (i.e., removing annotation and
order). Let D := {l ∈ L | F ∧A |=1 l} be the set of literals that can be deduced through unit propagation. Let U be the
set of literals corresponding to variables not assigned in A. Let sn+1 be the output of the Transformer model defined in
Appendix C.7 when given s1:n as input, then sn+1 satisfy the following:

A |= F =⇒ sn+1 = SAT

(M contains no decision literals) ∧ (F |= ¬A) =⇒ sn+1 = UNSAT

(M contains decision literals) ∧ (F |= ¬A) =⇒ sn+1 = [BackTrack]

(A ̸|= F) ∧ (F ̸|= ¬A) ∧ (D ̸= ∅) =⇒ sn+1 ∈ D

(A ̸|= F) ∧ (F ̸|= ¬A) ∧ (D = ∅) ∧ (sn ̸= D) =⇒ sn+1 = D

(A ̸|= F) ∧ (F ̸|= ¬A) ∧ (D = ∅) ∧ (sn = D) =⇒ sn+1 ∈ U

We now present the inductive lemma:

Lemma C.23 (Inductive Lemma). For any p, c ∈ N+, for any input FDIMACS ∈ DIMACS(p, c) of length n, let F be the
boolean formula in CNF form encoded in FDIMACS. Let A be the model described in section C.7 with parameters p, c.
Let (s1:n, s1:n+1, . . .) be the trace of s when running the Greedy Decoding Algorithm 1 with model A and input prompt
s1:n = FDIMACS. For every i ∈ N+, if fS(s1:n+i) = S and S /∈ {SAT,UNSAT, error}, then there exist j ∈ N+ and
S′ ∈ S such that S =⇒ S′ and fS(s1:n+i+j) = S′.

We now show trace equivalence between the model A and some instantiating of the abstract DPLL with a specific heuristic:

Definition C.24. For any heuristic h : S → L where L is the set of literals, let DPLLh denote an instantiation of the
abstract DPLL algorithm that selects h(S) as the decision literal when performing Decide and only performs the BackTrack
operation for Backjump. h(S) is a valid heuristic if DPLLh always abides by the Decide transition.

Lemma C.25. (Trace Simulation) There exists a valid heuristic h : S → L for which the Transformer model A is trace
equivalent to DPLLh on all inputs in DIMACS(p, c)

34

Can Transformers Reason Logically? A Study in SAT Solving

D. PARAT and Compiled Theoretical Construction
D.1. Supported Features and Operations

Our tool is designed to provide an intuitive syntax resembling standard numerical array manipulation, akin to NumPy, while
supporting a diverse and extensible set of abstract operations. PARAT is capable of implementing

• NumPy-like Array Syntax for indexing, arithmetic, and comparison.

• Multi-Level Abstraction to enable low-level customization.

• Multi-stage Evaluation Mechanisms to facilitate debugging and error localization

• High Extensibility through structured class inheritance, promoting the addition of new features and operations.

Each intermediate “variable” is an instance of the SOp base class (name adapted from (Lindner et al., 2023)), and each
instance sop of SOp is assigned a dimension dsop ∈ N+ and can be viewed as an abstract representation of an Rn×dsop

array where n is the number of tokens in the input to the Transformer model. A PARAT “program” is basically a sequence
of array operations over SOps.

Throughout this section, we refer to the indices along the first dimension of an SOp as “position” and refer to indices along
the second dimension as “dimension”.

The “inputs” to a program are arbitrary positional encoding and token embedding variables, represented by the base
class names PosEncSOp and TokEmbSOp respectively. For example, the OneHotTokEmb class represents the one-hot
embedding of tokens and Indices represents the numerical value of the index of each position.

The rest of the program performs various operations that compute new SOps based on existing ones. We provide
implementations of basic building block operations including (but not limited to) the following:

• Mean(q, k, v) Represents the “Averaging Hard Attention” operation. At each position i, this operation identifies
all target positions j with the maximal value of q⊤i kj for j ≤ i and computes the average of the corresponding vj
values.

• sop[idx, :] Performs indexing using a one-dimensional index array idx, producing an SOp out such that
out[i, j] = sop[idx[i], j] for i ∈ [n] and j ∈ [dsop]. This mirrors NumPy’s array indexing semantics.

• sop[:, start:end] Extracts a slice of dimensions from sop, where start, end ∈ [dsop], resulting in a new
SOp of dimension end− start. This operation is analogous to NumPy slicing.

• Element-wise operations such as sop1 + sop2, sop1 - sop2, sop1 * sop2, logical operations (& for AND,
| for OR), and comparison operations (≥, ≤, >, <), following standard broadcasting rules.

As an illustrative example, the following function returns a one-dimensional SOp representing the position index of the
closest token within a set of target tokens:

1 def nearest_token_id(tok_emb: OneHotTokEmb, vocab: List[str],
2 targets: List[str], indices: Indices=indices):
3 # Get the token ids of the target tokens
4 target_tok_ids = [vocab.index(target) for target in targets]
5 # Get whether the current token is one of the target tokens
6 # by summing the one-hot embedding
7 target_token_embs = Concat([tok_emb[:, target_tok_id]
8 for target_tok_id in target_tok_ids])
9 in_targets = target_token_embs.sum(axis=1)

10 # Filter the indices to only include the target tokens
11 filtered_index = indices * in_targets
12 return filtered_index.max()

We present our full code implementing our construction for Theorem 4.5 using PARAT in Appendix D.4.

35

Can Transformers Reason Logically? A Study in SAT Solving

D.2. Comparison with Tracr (Lindner et al., 2023)

While Tracr also compiles RASP programs into Transformer weights, the RASP language is designed to provide a concise
description of the class of functions that Transformers can easily learn. As such, RASP has minimal syntax and is designed
to represent relatively simple sequence operations such as counting, sorting, etc. In contrast, our tool is designed to help
construct theoretical constructions that implement relatively more complex algorithms.

In our preliminary attempt to implement our SAT solver model with Tracr, we identified several implementation inconve-
niences and limitations of Tracr when scaling to more complex algorithms, which motivated the development of our tool. In
particular:

• Every “variable” (termed sop in (Lindner et al., 2023)) in Tracr must be either a one-hot categorical encoding or
a single numerical value. This constraint makes representing more complex vector structures highly inconvenient.
Furthermore, each select operation (i.e., self-attention) accepts only a single sop as the query and key vectors,
whereas our theoretical construction often requires incorporating multiple variables as queries and keys.

In contrast, each variable in PARAT represents a 2-D array, which facilitates the implementation of vector-based
operations such as performing logical deductions as described in Lemma 4.7

• In terms of parameter complexity, Tracr represents position indices and many other discrete sops with a one-hot
encoding, allocating a residual stream dimension for each possible value of the sop. In particular, compiling models
with a context length of n requires O(n) additional embedding dimensions for each SOp that represents a position
index. For each binary operation between one-hot encoded sops (such as position indices), Tracr creates an MLP layer
that first creates a lookup table of all possible value combinations of the input sops. This results in an MLP layer of
O(n3) parameters.

In contrast, our tool directly represents numerical values rather than working with token representations. For example,
positional encodings only take up 1 dimension of the residual stream, which drastically reduces the number of
parameters for longer context lengths.

We would like to emphasize that our goal is not to replace Tracr or RASP, which have unparalleled simplicity and
interpretability in describing well-studied sequence operations. The goal of our tool is to assist with creating implementations
of theoretical constructions to help verify its behaviors and investigate internal properties.

D.3. The Compilation Process

PARAT takes in an out variable that contains the computational graph of the algorithm and outputs a PyTorch ((Paszke
et al., 2017)) model. The compilation process follows stages similar to those of Tracr:

1. Computational Graph Construction: When a user writes sop operations, each operation automatically creates a
dependency tree of all operations required for computing the resulting sop value.

2. Reduction to Base Operations: Each sop operation is reduced to one of 5 base classes: SelfAttention for
operation that requires information from other token positions, GLUMLP for non-linear local operations, Linear for
linear local operations, PosEncSOp for positional encodings, or TokEmbSOp for token embeddings. Sequential
Linear operations are reduced to a single operation through matrix multiplication and dependency merging.

3. Allocation of Layers and Residual Stream: The computational graph is topologically sorted such that each sop
appears later than its dependencies. This sorting is then used to assign SelfAttention and GLUMLP sops to
Transformer layer numbers that comply with dependency constraints. Furthermore, each non-Linear sop is also
allocated a portion of the residual stream equal to their dsop size.

4. Model Construction and Weight Assignment: A PyTorch model is initialized based on the number of required layers,
hidden size, and embedding size inferred from the previous steps. The computed weights for each sop are assigned to
different model components based on their types. Notably, each SelfAttention sop corresponds to an attention
head, and each GLUMLP sops corresponds to part of a MLP layer with ReGLU activation.

36

Can Transformers Reason Logically? A Study in SAT Solving

Soft vs Hard Attention The reduction of Mean to SelfAttention induces inevitable numerical errors due to Mean
representing averaging a strict subset of previous positions while SelfAttention computes a weighted average over
all previous positions via softmax. This error also affects other operations based on Mean such as position indexing. We
control this error via an “exactness” parameter β that scales the attention logits, and Lemma C.6 shows that the error
decreases exponentially w.r.t. β.

Multi-Stage Evaluation To facilitate debugging, PARAT allows 3 types of evaluations for every sop at different stages of
compilation.

• sop.abstract eval(tokens) evaluates sop on a sequence of input tokens without any numerical errors. This
can be used to validate the correctness of the algorithm implementation as sop operations.

• sop.concrete eval(tokens) evaluates sop on an input sequence after reducing to the base classes at step 2 of
the compilation process. This helps localize errors stemming from incorrect reduction of high-level operations to base
classes.

• Model evaluation This corresponds to evaluating the Pytorch model after the full compilation process.

D.4. Code for Theoretical Construction

The following code is used to construct the Transformer specification passed as input to PARAT. To facilitate easier
implementation, we interleave PARAT statements with Python and Numpy operations when appropriate. PARAT takes the
return variable out as input and produces the theoretical construction discussed in Section 5.1

1

2 def nearest_token(tok_emb: OneHotTokEmb, vocab: List[str],
3 targets: List[str], v: SOp | List[SOp],
4 indices: PosEncSOp = indices):
5 if not isinstance(v, list):
6 v = [v]
7

8 target_tok_ids = [vocab.index(target) for target in targets]
9 target_tokens = Concat([tok_emb[:, target_tok_id]

10 for target_tok_id in target_tok_ids])
11 in_targets = Linear(target_tokens, np.ones((1, len(targets))))
12 filtered_index = (indices * in_targets)
13

14 new_v = []
15 for v_i in v:
16 if isinstance(v_i, SOp):
17 new_v.append(v_i)
18 elif v_i == 'target' or v_i == 'targets':
19 new_v.append(target_tokens)
20 else:
21 raise ValueError('Unsupported value type')
22

23 return Mean(ones, filtered_index, new_v, bos_weight=1)
24

25

26 def t(encodings: SOp, num_vars,
27 true_vec=(1, 0),
28 false_vec=(0, 1),
29 none_vec=(0, 0),
30 ones: Ones = ones):
31 mat = np.zeros((2 * num_vars, 2 * num_vars))
32 true_vec_off = (true_vec[0] - none_vec[0], true_vec[1] - none_vec[1])
33 false_vec_off = (false_vec[0] - none_vec[0], false_vec[1] - none_vec[1])
34 for i in range(num_vars):
35 true_id = i
36 false_id = num_vars + i
37 mat[true_id, true_id] = true_vec_off[0]

37

Can Transformers Reason Logically? A Study in SAT Solving

38 mat[true_id, false_id] = false_vec_off[0]
39 mat[false_id, true_id] = true_vec_off[1]
40 mat[false_id, false_id] = false_vec_off[1]
41

42 bias = np.zeros(2 * num_vars)
43 bias[:num_vars] += none_vec[0]
44 bias[num_vars:] = none_vec[1]
45

46 return Linear([encodings, ones],
47 np.hstack([mat.T, bias.reshape((-1, 1))]))
48

49

50 def dpll(num_vars, num_clauses, context_len,
51 mean_exactness=20, nonsep_penalty=20,
52 return_logs=False) -> Tuple[
53 SOp, List, Dict[str, SOp]]:
54 vocab: List = ([str(i) for i in range(1, num_vars + 1)]
55 + [str(-i) for i in range(1, num_vars + 1)]
56 + ['0', '[SEP]', '[BT]', '[BOS]', 'D', 'SAT', 'UNSAT'])
57 idx: Dict[str, int] = {token: idx for idx, token in enumerate(vocab)}
58 sop_logs: Dict[str, SOp] = {}
59 sops.config["mean_exactness"] = mean_exactness
60 # Initialize Base SOps
61 tok_emb = OneHotTokEmb(idx).named("tok_emb")
62

63 nearest_sep = nearest_token(tok_emb=tok_emb,
64 vocab=vocab,
65 targets=['0', '[SEP]', '[BT]'],
66 v=[indices, 'target']).named(
67 "nearest_sep")
68

69 # The nearest (including self) separator token and whether
70 # the previous separator token is '0', '[SEP]', '[UP]', '[BT]'
71 p_i_sep_p, b_0, b_SEP, b_BackTrack = (
72 nearest_sep[:, 0].named("p_i_sep_p"),
73 nearest_sep[:, 1].named("b_0"),
74 nearest_sep[:, 2].named("b_SEP"),
75 nearest_sep[:, 3].named("b_BackTrack"))
76

77 # The nearest 'D' token, which denotes the next token is a decision
78 p_i_D = nearest_token(tok_emb=tok_emb, vocab=vocab, targets=['D'],
79 v=indices).named("p_i_D")
80

81 prev_pos = Id([p_i_sep_p, tok_emb[:, idx['D']]])[indices - 1]
82 # p_i_sep: The previous (excluding self) separator token
83 p_i_sep = (prev_pos[:, 0] - is_bos).named("p_i_sep")
84

85 # b_decision: whether the current position is a decision literal
86 b_decision = prev_pos[:, 1].named("b_decision")
87

88 # The distance to the nearest separator,
89 # i.e., the length of the current state
90 d_i_sep = (indices - p_i_sep_p).named("d_i_sep")
91

92 # Attention operation for representing the current
93 # clause/assignment as a bitvector of dimension 2d
94 p_i_sep_2 = (p_i_sep * p_i_sep).named("p_i_sep_2")
95 e_vars = tok_emb[:, : 2 * num_vars].named("e_vars")
96 r_i_pre = Mean(q_sops=[p_i_sep_2, p_i_sep, ones],
97 k_sops=[-ones, 2 * p_i_sep, -p_i_sep_2],
98 v_sops=e_vars).named("r_i_pre")
99 r_i = (r_i_pre * (indices - p_i_sep)).named("r_i")

100

101 # The position of the previous (excluding self) separator token

38

Can Transformers Reason Logically? A Study in SAT Solving

102 p_i_sep_min = p_i_sep[p_i_sep_p].named("p_i_sep_min")
103

104 # The same position in the previous state.
105 # This is used for copying from the previous state
106 p_i_min = (p_i_sep_min + d_i_sep + num_vars * b_SEP).named("p_i_min")
107

108 # The position of the last decision in the previous state
109 p_i_D_min = p_i_D[p_i_sep_p].named("p_i_D_min")
110

111 # Is the next token the literal resulting from backtracking?
112 b_D_min = (p_i_D_min == p_i_min + 1).named("b_D_min")
113

114 # Check if the current assignment satisfies the formula
115 # (See Theorem Proof for justification)
116 sat_q = [r_i, ones]
117 sat_k = [-r_i, (-nonsep_penalty) * (1 - tok_emb[:, idx['0']])]
118 sat_v = is_bos
119 b_sat = (Mean(sat_q, sat_k, sat_v,
120 bos_weight=nonsep_penalty - 0.5) > 0).named("b_sat")
121

122 # Check if the current assignment contracdicts the formula
123 # (See Theorem Proof for justification)
124 unsat_q = [t(r_i, num_vars, true_vec=(1, 0),
125 false_vec=(0, 1), none_vec=(1, 1)), ones]
126 unsat_k = sat_k
127 unsat_v = 1 - is_bos
128 b_cont = (Mean(unsat_q, unsat_k, unsat_v,
129 bos_weight=nonsep_penalty - 0.5) > 0).named("b_cont")
130 b_copy_p = (p_i_min < (p_i_sep_p - 1)).named("b_copy_p")
131

132

133

134 # Unit Propagation
135 up_q = unsat_q
136 up_k = unsat_k
137 up_v = num_clauses * r_i
138 o_up = Mean(up_q, up_k, up_v, bos_weight=nonsep_penalty - 1.5)
139

140

141 e_up = (
142 GLUMLP(act_sops=(o_up - t(r_i, num_vars,
143 true_vec=(1, 1),
144 false_vec=(1, 1),
145 none_vec=(0, 0))))
146 - GLUMLP(act_sops=(o_up - 1))
147).named("e_up_new")
148

149

150 # Heuristic for decision literal selection:
151 # Find the most common literal in remaining clauses
152 heuristic_q = [t(r_i, num_vars, true_vec=(-10, 1),
153 false_vec=(1, -10), none_vec=(0, 0)), ones]
154 heuristic_k = [r_i, (-nonsep_penalty) * (1 - tok_emb[:, idx['0']])]
155 heuristic_v = r_i
156 heuristic_o = SelfAttention(heuristic_q, heuristic_k, heuristic_v)
157

158 # Whether the current assignment contains no decision literal
159 b_no_decision = (p_i_D <= p_i_sep).named("b_no_decision")
160

161 # Whether Backtracking is finished
162 b_BT_finish = ((p_i_D_min <= p_i_min) & b_BackTrack)
163

164 # The negation of the last decision literal in the previous state
165 e_BT = t(e_vars[p_i_D_min + 1], num_vars=num_vars,

39

Can Transformers Reason Logically? A Study in SAT Solving

166 true_vec=(0, 1), false_vec=(1, 0), none_vec=(0, 0))
167

168 # The next index in the previous state for copying
169 p_i_min_index = (p_i_min + 1).named("p_i_min_index")
170

171 # The next token in the previous state for copying
172 e_copy = tok_emb[p_i_min_index].named("e_copy")
173

174 # Whether we've decided that the formula is UNSAT
175 b_unsat = (b_no_decision & b_cont).named("b_unsat")
176

177 # Whether we're negativing the last decision literal for backtracking
178 b_backtrack = (b_D_min & b_BackTrack).named("b_backtrack")
179

180 # Whether we're copying tokens from the previous state
181 b_copy = (b_copy_p & (1 - b_BT_finish)).named("b_copy")
182

183 b_BT_token = (b_cont & (1 - tok_emb[:, idx['[BT]']]))
184 b_not_D = (1 - tok_emb[:, idx['D']]).named("b_not_D")
185 e_unassigned = t(r_i, num_vars, true_vec=(0, 0),
186 false_vec=(0, 0), none_vec=(1, 1)).named("e_unassigned")
187

188 out = CPOutput(len(vocab),
189 [(b_sat, idx['SAT'], 16),
190 (b_unsat, idx['UNSAT'], 15),
191 (b_BT_token, idx['[BT]'], 14),
192 (b_backtrack, Pad(e_BT, len(vocab), idx['1']), 12),
193 (b_copy, e_copy, 6),
194 (None, Pad(e_up, len(vocab), idx['1']), 4),
195 (b_not_D, idx['D'], 3),
196 (None, Pad(e_unassigned + heuristic_o,
197 out_dim=len(vocab), start_dim=idx['1']), 1)])
198

199 return out

40

