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Abstract

Hierarchical relationships between labels can
be used to control the information flow in text
classification models. However, while these
models are required to distinguish nuances be-
tween closely related fine-grained labels, their
weight updates are also influenced by unrelated
branches of the hierarchy. In this paper, we
show that systematically splitting the hierarchy
into multiple sub-hierarchies, thus training mul-
tiple localized hierarchy-aware classification
layers on top of a shared text encoder, can im-
prove classification scores on simple and com-
plex hierarchies. HIMTL is not a new model
but an architectural extension that can be ap-
plied to different state-of-the-art hierarchical
classification models.

1 Introduction

Hierarchical text classification is a special case
of multi-label text classification where the labels
underlie hierarchical relations. In this hierarchy,
which can be either a tree or a directed acyclic
graph (DAG), at least one path exists from the
most coarse-grained true label to the most fine-
grained true label. This structure can be used to
control the global and local information flow in
a classification model instead of treating all la-
bels as independent as in a traditional flat classi-
fication layer. Here, global information refers to
information about the hierarchical structure as a
whole, whereas local information refers to infor-
mation restricted to, for example, a specific level
of the hierarchy (Silla and Freitas, 2011). While
some architectures have shown that the combining
of local and global predictions can be beneficial
(Wehrmann et al., 2018; Qi and Chelmis, 2023;
Liu et al., 2024), several other architectures have
achieved state-of-the-art performance based purely
on global information. Global approaches can be
as simple as post-processing the outputs of a flat
classifier based on logical constraints (Giunchiglia
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Figure 1: Previous methods split the hierarchy hori-
zontally and train hierarchy-agnostic classifiers on each
level (dashed orange boxes). HIMTL splits the hierarchy
vertically at the root instead and trains hierarchy-aware
classifiers on each branch (blue boxes).

and Lukasiewicz, 2020), but more commonly solve
the problem by placing a structure encoder between
a text encoder and a classification layer (Zhou et al.,
2020; Chen et al., 2021; Zhu et al., 2023).

What the aforementioned architectures combin-
ing local and global predictions have in common is
that they split the hierarchy horizontally and train
one predictor for each layer of the hierarchy. The
resulting classifiers are not hierarchy-aware and
need to distinguish between labels located on dif-
ferent branches of the hierarchy, but also between
labels sharing the same parent node, which are less
discriminative. We hypothesize that, instead of
splitting the hierarchy horizontally, it can be ben-
eficial to split it vertically and train one predictor
on each branch starting from the root node. In
other words, the hierarchy is split into multiple,
more local sub-hierarchies, where each classifier
only learns to discriminate between closely related
labels without its weights being influenced by dis-
joint branches. These parallel classifiers can still
make use of global information with respect to the
specific sub-hierarchies they are trained on, and the
losses of all classifiers eventually propagate back
to a shared text encoder. The two different ways of
splitting the hierarchy are compared in Figure 1.

In the following, we formulate this approach as a
multi-task learning problem and propose different



ways to construct these parallel hierarchy-aware
classifiers and combine their outputs into a single
model prediction. Our implementation is available
on GitHub.!

2 Related Work

Early neural-network-based hierarchical classifi-
cation models extend feed-forward networks and
LSTMs (Hochreiter and Schmidhuber, 1997) with
per-level local predictions, using the hidden state
from the preceding level. The final layer makes
a global prediction for all labels in the hierarchy,
which is then weighed with the local predictions
(Wehrmann et al., 2018). A simplified architec-
ture trains disjoint classifiers for each level of the
hierarchy and produces a global prediction via a lin-
ear operation on the concatenated local predictions
(Liu et al., 2024). Local predictions can also be
made level by level as a sequence-to-sequence task
with the T5 encoder-decoder architecture (Raffel
et al., 2020) while constraining the decoder outputs
to valid sequences according to the global structure
of the hierarchy (Torba et al., 2024).

Several recent state-of-the-art models skip local
predictions and process aggregate global informa-
tion using a structure encoder. HHAGM (Zhou et al.,
2020) encodes the hierarchy in a graph convolu-
tional network (GCN) (Kipf and Welling, 2017)
which receives a text encoding produced by GloVe
(Pennington et al., 2014) or BERT (Devlin et al.,
2019) as its input. HiMatch (Chen et al., 2021)
employs two GCNs of the same structure, one for
input text encodings and one for label description
encodings, and minimizes the distances between
their outputs in a shared latent space. Few-shot set-
tings benefit from this approach. HiTIN (Zhu et al.,
2023) reduces the amount of trainable parameters
by replacing the GCN with a coding tree minimiz-
ing the structure entropy (Li and Pan, 2016) of the
hierarchy.

The previous three architectures use recursive
regularization (Gopal and Yang, 2013)

1
W)= > slup—wil @

pEY gechild(p)

to minimize the distance between node embeddings
of adjacent labels from a label set Y.

A hierarchical violation occurs if the probabil-
ity of a label is predicted to be greater than the
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probability of its parent. This can be used as a logi-
cal constraint to post-process model outputs using
a simple maximum criterion, and explicitly inte-
grating this post-processing into the binary cross-
entropy function lets model with flat classification
layers converge to better local optima if the hierar-
chy is large (Giunchiglia and Lukasiewicz, 2020).

Gradient Routing (Cloud et al., 2024) provides
an alternative take on multi-task learning. Each
training batch is task-specific and masks the gra-
dient such that only specific parts of the neural
network layers, i.e., interpretable routes through
the network, are updated.

3 Methodology

A label hierarchy is a directed acyclic graph (DAG)
G(V, E) where the vertices (nodes) V' represent
the labels, and the edges £ model the relationships
between parent and child labels. If each child can
only be reached by a single parent, G is a tree. In
practice, parent nodes are typically more general
and easier to classify than their children.

Given training samples (x, y) with texts  and
gold labels y € {0,1}V], we denote the output of
a text encoder as a vector & € RY. The structure
encoder is a function fy : R? — [0, V&g
assigning probabilities P(y; = 1 | x = x;0¢) to
all |V| labels, where 6 are the trainable parame-
ters of the encoding of G.

For instance, if the structure encoder is a graph
convolutional network (GCN), then

foo =0 (EVWi+Evws) @)

where % and E are in- and out-edges of G, W;
are weight matrices in A, and o is the sigmoid
activation function transforming logits into proba-
bilities.

3.1 Hierarchy-aware Multi-Task Learning

Given a hierarchy G(V, E') with n out-edges from
the root node, we split G into n subgraphs, or sub-
hierarchies, G® (V@ E@)) where V) C V and
E® C E.If G is a tree, then

Ve = £ =0 3)
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The adjacency matrix A € RIVI of G is split into n
smaller adjacency matrices A® € RIVYL If G is



a perfectly balanced tree, the number of parameters
in 6 thus decreases linearly from O (|V|?) to
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However, if G is an unbalanced DAG with many

overlapping branches, the number of parameters
might in fact increase.

Instead of a single structure encoder fp,,, we now

train n distinct models fp_, - RY — [0, 1]“/(1)',
each with its own loss

1 — BCE (g("), y(“) ML+ LR (5)

where BCE is the binary cross-entropy function
commonly used for multi-label classification, L? is
L? regularization to minimize model weights, L
is recursive regularization (Gopal and Yang, 2013)
as defined in Section 2 to minimize the distance
between the weights of adjacent nodes, and \; are
regularization hyperparameters.

We interpret L") as n distinct tasks and mini-
mize the final objective function £ = > ", L,
The gradient of all n hierarchy-aware classification
layers propagates back to the shared text encoder,
such that global information shared by different
branches of the hierarchy is not lost. In a sense,
the text encoder can thus be interpreted as the root
node. The resulting model architecture is visual-
ized in Figure 2.
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Figure 2: The proposed architecture for a hierarchy
with two branches. A text encoder transforms a text
into a vector which is then transformed by two separate
structure encoders into label predictions. Two separate
losses propagate back to the text encoder.

3.2 Inference

During inference, the n» model outputs ¢; need to be
combined into a single prediction . Two possible
ways to do so are masking and projecting, which
are shown in Figure 3.

Figure 3: Undesired labels can be zeroed (left) or re-
moved from the layer outputs and projected back to the
original dimension during inference (right). The result-
ing vectors are combined into a single prediction using
an element-wise sum or maximum.

For masking, each classifier ng(i) produces

a vector §; € [0,1]V] instead of the desired di-
mension |V ()|, The gold labels y are multiplied
element-wise with a mask 1y, such that, during
training, the corresponding classifier never sees a
positive example of any label v € Vj it is not sup-
posed to predict. We also apply this mask to ¢ to
exclude these labels from the gradient computation
entirely. However, the large number of practically
unused parameters affects the regularization terms.

Projection is in line with the definitions in
Section 3.1. The model stores m mappings
pW NV - NIVl o keep track of the cor-
responding label indices in the model outputs
and in the ground truth. The model outputs
4; € 10,1] V! are then projected to a sparse vector
of dimension |V|.

In both methods, these sparse predictions can
be combined with an element-wise sum if the hi-
erarchy is a tree, or with an element-wise max-
imum to account for overlapping branches in a
DAG. Rather than the maximum, the arithmetic
mean like in ensemble learning appears more intu-
itive but less straightforward to implement, since
non-overlapping labels need to be ignored in the
computation.

4 Experiments

We extend two state-of-the-art models, HHAGM
(Zhou et al., 2020) and HiTIN (Zhu et al., 2023),
with our multi-task learning architecture. We use
the same framework that was originally developed
for HIAGM and extended independently for Hi-
Match (Chen et al., 2021) and HiTIN. Each ex-
periment uses BERT (Devlin et al., 2019) as the
text encoder and runs once on a single Nvidia A40
with 48 GB GDDR6 memory and 32 GB RAM.
We further use the same training parameters used
by the authors of HHAGM and HITIN: Models are



Model . WOS ‘ RCV1-v2 . NYT . Average
Micro-Fyg Macro-Fg Micro-Fg Macro-Fy Micro-Fg Macro-Fg | Micro-Fg  Macro-Fy
HiAGM (Zhou et al., 2020)  87.52 81.56 86.81 68.74 79.64 69.24 84.66 73.18
HiAGM+MTL (masking) 87.61 81.87 87.13 69.82 79.40 69.06 84.71 73.58
HiAGM+MTL (projection) 86.89 80.90 86.93 70.22 79.42 69.59 84.41 73.57
HiTIN (Zhu et al., 2023) 87.39 81.73 88.68 73.00 79.75 69.21 85.27 74.65
HiTIN+MTL (masking) 87.83 81.99 88.38 72.35 79.59 69.02 85.27 74.45
HiTIN+MTL (projection) 87.39 81.49 88.71 72.78 79.66 69.67 85.25 74.65

Table 1: Micro- and macro-averaged hierarchical F-scores on three different datasets achieved by two baseline
models and their HIMTL extensions. In each column, the best score in each category is marked in bold.

optimized with AdamW with a linearly decreas-
ing initial learning rate of 2e-5 for 100 epochs,
with early stopping after no improvement for 50
epochs. L? and recursive regularization are used
with A\; = 0.01 and Ay = le-6, respectively. Hi-
AGM uses a node dimension d = 300 for its GCNs,
whereas HiTIN uses coding trees of depth 2 and
node dimension d = 768. The model outputs are
combined using an element-wise maximum during
inference.

These models are evaluated on three English hi-
erarchical text classification datasets with label hi-
erarchies of increasing complexity: Web of Science
(Kowsari et al., 2017), Reuters Corpus Volume I-
v2 (Lewis et al., 2004), and the New York Times
Annotated Corpus (Sandhaus, 2008). Note that all
three hierarchies are split into 4 branches at the
root note, and since the WOS hierarchy has a depth
of 2, each of its four predictors is essentially a flat
classifier with an additional root label.

Micro and macro F-scores are reported for each
experiment. In these metric computations, not only
the most granular label is considered, but all prede-
cessors. This variation of the metric is sometimes
referred to as the hierarchical F;-measure 'y (Kos-
mopoulos et al., 2015) and it is less punishing if the
model fails to predict the correct granular labels
but correctly predicts the coarse labels. For clarity,
we use the notation Fzy. The results are reported in
Table 1. Note that we are not able to reproduce the
HiAGM and HiTIN results reported by Zhu et al.
(2023) but usually achieve better scores with their
provided codes and configurations.

HiMTL leads to small improvements especially
when applying it to HHAGM. Here, both HIMTL
implementations achieve better average Macro-Fg
scores while the masking approach achieves the
best average Micro-F score and works best on the
WOS dataset with a simple hierarchy. The latter
also applies to HiTIN, although the average scores
do not indicate that it benefits from HiMTL overall.
On NYT, the dataset with the most complex hier-

archy, HIMTL always decreases the Micro-F but
the projection implementation increases the Macro-
Fy. The training time increases by approximately
30% on all datasets.

5 Conclusion

We proposed an architectural extension for hier-
archical text classification models by splitting la-
bel hierarchies into smaller, more localized sub-
hierarchies, and training parallel hierarchy-aware
classifiers in a multi-task learning setting. We fur-
ther compared two different implementations to
merge the model outputs into a single prediction:
masking or projecting the output vectors. While
this approach leads to improvements on a dataset
with a simple label hierarchy and to a better macro
average on a dataset with a complex hierarchy, its
overall impact is small.

There are several other architectures and meth-
ods that could be evaluated in a multi-task learning
setting, such as HiMatch (Chen et al., 2021), the
post-processing of model outputs to remove hier-
archical violations (Giunchiglia and Lukasiewicz,
2020), or structure encoders such as Gated Atten-
tion Networks (Velickovi¢ et al., 2018). Further-
more, there are several recent datasets for large-
scale hierarchical text classification with complex
label hierarchies such as the legal corpus EU-
RLEXS57K (Chalkidis et al., 2019) or its larger, mul-
tilingual variant MultiEURLEX (Chalkidis et al.,
2021). However, the implementation was restricted
by the framework we re-used, which was developed
in the pre-Transformers era without easy extensi-
bility in mind.

For the near future, we thus plan to re-implement
this framework and some of the state-of-the-art
architectures based on standardized libraries such
as PyTorch Geometric (Fey and Lenssen, 2019)
and NetworkX (Hagberg et al., 2008) to provide
modern tools for easier modification, research, and
deployment of hierarchical classification models.



Limitations

For comparability with previous state-of-the-art
methods, we used a framework that was originally
published in 2020 without considering the latest
developments such as Transformers. As a con-
sequence, the extensibility of the code base was
limited without making changes to the implemen-
tations of these SOTA models, whose reported re-
sults we were not able to reproduce. The same
framework provides pre-processing codes for the
three used datasets. We did not evaluate our im-
plementation on other datasets used by previous
SOTA methods, as it is not clear how these were
pre-processed. We aim to solve this issue in fu-
ture work with a more customizable framework
and re-implementations of these methods based on
standardized libraries.

Due to time constraints and limited computa-
tional resources, we were not yet able to run all
experiments multiple times and thus do not report
means, standard deviations, or the statistical signif-
icance of the results.
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