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Abstract

Hierarchical relationships between labels can001
be used to control the information flow in text002
classification models. However, while these003
models are required to distinguish nuances be-004
tween closely related fine-grained labels, their005
weight updates are also influenced by unrelated006
branches of the hierarchy. In this paper, we007
show that systematically splitting the hierarchy008
into multiple sub-hierarchies, thus training mul-009
tiple localized hierarchy-aware classification010
layers on top of a shared text encoder, can im-011
prove classification scores on simple and com-012
plex hierarchies. HiMTL is not a new model013
but an architectural extension that can be ap-014
plied to different state-of-the-art hierarchical015
classification models.016

1 Introduction017

Hierarchical text classification is a special case018

of multi-label text classification where the labels019

underlie hierarchical relations. In this hierarchy,020

which can be either a tree or a directed acyclic021

graph (DAG), at least one path exists from the022

most coarse-grained true label to the most fine-023

grained true label. This structure can be used to024

control the global and local information flow in025

a classification model instead of treating all la-026

bels as independent as in a traditional flat classi-027

fication layer. Here, global information refers to028

information about the hierarchical structure as a029

whole, whereas local information refers to infor-030

mation restricted to, for example, a specific level031

of the hierarchy (Silla and Freitas, 2011). While032

some architectures have shown that the combining033

of local and global predictions can be beneficial034

(Wehrmann et al., 2018; Qi and Chelmis, 2023;035

Liu et al., 2024), several other architectures have036

achieved state-of-the-art performance based purely037

on global information. Global approaches can be038

as simple as post-processing the outputs of a flat039

classifier based on logical constraints (Giunchiglia040

Figure 1: Previous methods split the hierarchy hori-
zontally and train hierarchy-agnostic classifiers on each
level (dashed orange boxes). HiMTL splits the hierarchy
vertically at the root instead and trains hierarchy-aware
classifiers on each branch (blue boxes).

and Lukasiewicz, 2020), but more commonly solve 041

the problem by placing a structure encoder between 042

a text encoder and a classification layer (Zhou et al., 043

2020; Chen et al., 2021; Zhu et al., 2023). 044

What the aforementioned architectures combin- 045

ing local and global predictions have in common is 046

that they split the hierarchy horizontally and train 047

one predictor for each layer of the hierarchy. The 048

resulting classifiers are not hierarchy-aware and 049

need to distinguish between labels located on dif- 050

ferent branches of the hierarchy, but also between 051

labels sharing the same parent node, which are less 052

discriminative. We hypothesize that, instead of 053

splitting the hierarchy horizontally, it can be ben- 054

eficial to split it vertically and train one predictor 055

on each branch starting from the root node. In 056

other words, the hierarchy is split into multiple, 057

more local sub-hierarchies, where each classifier 058

only learns to discriminate between closely related 059

labels without its weights being influenced by dis- 060

joint branches. These parallel classifiers can still 061

make use of global information with respect to the 062

specific sub-hierarchies they are trained on, and the 063

losses of all classifiers eventually propagate back 064

to a shared text encoder. The two different ways of 065

splitting the hierarchy are compared in Figure 1. 066

In the following, we formulate this approach as a 067

multi-task learning problem and propose different 068
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ways to construct these parallel hierarchy-aware069

classifiers and combine their outputs into a single070

model prediction. Our implementation is available071

on GitHub.1072

2 Related Work073

Early neural-network-based hierarchical classifi-074

cation models extend feed-forward networks and075

LSTMs (Hochreiter and Schmidhuber, 1997) with076

per-level local predictions, using the hidden state077

from the preceding level. The final layer makes078

a global prediction for all labels in the hierarchy,079

which is then weighed with the local predictions080

(Wehrmann et al., 2018). A simplified architec-081

ture trains disjoint classifiers for each level of the082

hierarchy and produces a global prediction via a lin-083

ear operation on the concatenated local predictions084

(Liu et al., 2024). Local predictions can also be085

made level by level as a sequence-to-sequence task086

with the T5 encoder-decoder architecture (Raffel087

et al., 2020) while constraining the decoder outputs088

to valid sequences according to the global structure089

of the hierarchy (Torba et al., 2024).090

Several recent state-of-the-art models skip local091

predictions and process aggregate global informa-092

tion using a structure encoder. HiAGM (Zhou et al.,093

2020) encodes the hierarchy in a graph convolu-094

tional network (GCN) (Kipf and Welling, 2017)095

which receives a text encoding produced by GloVe096

(Pennington et al., 2014) or BERT (Devlin et al.,097

2019) as its input. HiMatch (Chen et al., 2021)098

employs two GCNs of the same structure, one for099

input text encodings and one for label description100

encodings, and minimizes the distances between101

their outputs in a shared latent space. Few-shot set-102

tings benefit from this approach. HiTIN (Zhu et al.,103

2023) reduces the amount of trainable parameters104

by replacing the GCN with a coding tree minimiz-105

ing the structure entropy (Li and Pan, 2016) of the106

hierarchy.107

The previous three architectures use recursive108

regularization (Gopal and Yang, 2013)109

LR(W) =
∑
p∈Y

∑
q∈child(p)

1

2
∥w2

p − w2
q∥ (1)110

to minimize the distance between node embeddings111

of adjacent labels from a label set Y .112

A hierarchical violation occurs if the probabil-113

ity of a label is predicted to be greater than the114

1The repository will be added after the anonymity period.

probability of its parent. This can be used as a logi- 115

cal constraint to post-process model outputs using 116

a simple maximum criterion, and explicitly inte- 117

grating this post-processing into the binary cross- 118

entropy function lets model with flat classification 119

layers converge to better local optima if the hierar- 120

chy is large (Giunchiglia and Lukasiewicz, 2020). 121

Gradient Routing (Cloud et al., 2024) provides 122

an alternative take on multi-task learning. Each 123

training batch is task-specific and masks the gra- 124

dient such that only specific parts of the neural 125

network layers, i.e., interpretable routes through 126

the network, are updated. 127

3 Methodology 128

A label hierarchy is a directed acyclic graph (DAG) 129

G(V,E) where the vertices (nodes) V represent 130

the labels, and the edges E model the relationships 131

between parent and child labels. If each child can 132

only be reached by a single parent, G is a tree. In 133

practice, parent nodes are typically more general 134

and easier to classify than their children. 135

Given training samples (x,y) with texts x and 136

gold labels y ∈ {0, 1}|V |, we denote the output of 137

a text encoder as a vector x̂ ∈ Rd. The structure 138

encoder is a function fθG : Rd → [0, 1]|V | : x̂ 7→ ŷ 139

assigning probabilities P (yi = 1 | x = x; θG) to 140

all |V | labels, where θG are the trainable parame- 141

ters of the encoding of G. 142

For instance, if the structure encoder is a graph 143

convolutional network (GCN), then 144

fθG = σ
(←−
EVW1 +

−→
EVW2

)
(2) 145

where
←−
E and

−→
E are in- and out-edges of G, Wi 146

are weight matrices in θG, and σ is the sigmoid 147

activation function transforming logits into proba- 148

bilities. 149

3.1 Hierarchy-aware Multi-Task Learning 150

Given a hierarchy G(V,E) with n out-edges from 151

the root node, we split G into n subgraphs, or sub- 152

hierarchies, G(i)(V (i), E(i)) where V (i) ⊆ V and 153

E(i) ⊆ E. If G is a tree, then 154

n⋂
i=1

V (i) =

n⋂
i=1

E(i) = ∅ (3) 155

The adjacency matrix A ∈ R|V | of G is split into n 156

smaller adjacency matrices A(i) ∈ R|V (i)|. If G is 157

2



a perfectly balanced tree, the number of parameters158

in θG thus decreases linearly from O
(
|V |2

)
to159

O

(
n

(
|V |
n

)2
)

= O

(
|V |2

n

)
(4)160

However, if G is an unbalanced DAG with many161

overlapping branches, the number of parameters162

might in fact increase.163

Instead of a single structure encoder fθG , we now164

train n distinct models fθ
G(i)

: Rd → [0, 1]|V
(i)|,165

each with its own loss166

L(i) = BCE
(
ŷ(i),y(i)

)
+ λ1L

2 + λ2L
R (5)167

where BCE is the binary cross-entropy function168

commonly used for multi-label classification, L2 is169

L2 regularization to minimize model weights, LR170

is recursive regularization (Gopal and Yang, 2013)171

as defined in Section 2 to minimize the distance172

between the weights of adjacent nodes, and λi are173

regularization hyperparameters.174

We interpret L(i) as n distinct tasks and mini-175

mize the final objective function L =
∑n

i=1 L
(i).176

The gradient of all n hierarchy-aware classification177

layers propagates back to the shared text encoder,178

such that global information shared by different179

branches of the hierarchy is not lost. In a sense,180

the text encoder can thus be interpreted as the root181

node. The resulting model architecture is visual-182

ized in Figure 2.183

Text
Encoder

Structure Encoders

L(1)

L(2)

Input Text

Figure 2: The proposed architecture for a hierarchy
with two branches. A text encoder transforms a text
into a vector which is then transformed by two separate
structure encoders into label predictions. Two separate
losses propagate back to the text encoder.

3.2 Inference184

During inference, the n model outputs ŷi need to be185

combined into a single prediction ŷ. Two possible186

ways to do so are masking and projecting, which187

are shown in Figure 3.188

⊕

Figure 3: Undesired labels can be zeroed (left) or re-
moved from the layer outputs and projected back to the
original dimension during inference (right). The result-
ing vectors are combined into a single prediction using
an element-wise sum or maximum.

For masking, each classifier fθ
G(i)

produces 189

a vector ŷi ∈ [0, 1]|V | instead of the desired di- 190

mension |V (i)|. The gold labels y are multiplied 191

element-wise with a mask 1V (i) such that, during 192

training, the corresponding classifier never sees a 193

positive example of any label v ∈ Vi it is not sup- 194

posed to predict. We also apply this mask to ŷ to 195

exclude these labels from the gradient computation 196

entirely. However, the large number of practically 197

unused parameters affects the regularization terms. 198

Projection is in line with the definitions in 199

Section 3.1. The model stores n mappings 200

ϕ(i) : N|V (i)| → N|V | to keep track of the cor- 201

responding label indices in the model outputs 202

and in the ground truth. The model outputs 203

ŷi ∈ [0, 1]|V
(i)| are then projected to a sparse vector 204

of dimension |V |. 205

In both methods, these sparse predictions can 206

be combined with an element-wise sum if the hi- 207

erarchy is a tree, or with an element-wise max- 208

imum to account for overlapping branches in a 209

DAG. Rather than the maximum, the arithmetic 210

mean like in ensemble learning appears more intu- 211

itive but less straightforward to implement, since 212

non-overlapping labels need to be ignored in the 213

computation. 214

4 Experiments 215

We extend two state-of-the-art models, HiAGM 216

(Zhou et al., 2020) and HiTIN (Zhu et al., 2023), 217

with our multi-task learning architecture. We use 218

the same framework that was originally developed 219

for HiAGM and extended independently for Hi- 220

Match (Chen et al., 2021) and HiTIN. Each ex- 221

periment uses BERT (Devlin et al., 2019) as the 222

text encoder and runs once on a single Nvidia A40 223

with 48 GB GDDR6 memory and 32 GB RAM. 224

We further use the same training parameters used 225

by the authors of HiAGM and HITIN: Models are 226
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Model WOS RCV1-v2 NYT Average
Micro-FH Macro-FH Micro-FH Macro-FH Micro-FH Macro-FH Micro-FH Macro-FH

HiAGM (Zhou et al., 2020) 87.52 81.56 86.81 68.74 79.64 69.24 84.66 73.18
HiAGM+MTL (masking) 87.61 81.87 87.13 69.82 79.40 69.06 84.71 73.58
HiAGM+MTL (projection) 86.89 80.90 86.93 70.22 79.42 69.59 84.41 73.57
HiTIN (Zhu et al., 2023) 87.39 81.73 88.68 73.00 79.75 69.21 85.27 74.65
HiTIN+MTL (masking) 87.83 81.99 88.38 72.35 79.59 69.02 85.27 74.45
HiTIN+MTL (projection) 87.39 81.49 88.71 72.78 79.66 69.67 85.25 74.65

Table 1: Micro- and macro-averaged hierarchical F-scores on three different datasets achieved by two baseline
models and their HiMTL extensions. In each column, the best score in each category is marked in bold.

optimized with AdamW with a linearly decreas-227

ing initial learning rate of 2e-5 for 100 epochs,228

with early stopping after no improvement for 50229

epochs. L2 and recursive regularization are used230

with λ1 = 0.01 and λ2 = 1e-6, respectively. Hi-231

AGM uses a node dimension d = 300 for its GCNs,232

whereas HiTIN uses coding trees of depth 2 and233

node dimension d = 768. The model outputs are234

combined using an element-wise maximum during235

inference.236

These models are evaluated on three English hi-237

erarchical text classification datasets with label hi-238

erarchies of increasing complexity: Web of Science239

(Kowsari et al., 2017), Reuters Corpus Volume I-240

v2 (Lewis et al., 2004), and the New York Times241

Annotated Corpus (Sandhaus, 2008). Note that all242

three hierarchies are split into 4 branches at the243

root note, and since the WOS hierarchy has a depth244

of 2, each of its four predictors is essentially a flat245

classifier with an additional root label.246

Micro and macro F-scores are reported for each247

experiment. In these metric computations, not only248

the most granular label is considered, but all prede-249

cessors. This variation of the metric is sometimes250

referred to as the hierarchical F1-measure FH (Kos-251

mopoulos et al., 2015) and it is less punishing if the252

model fails to predict the correct granular labels253

but correctly predicts the coarse labels. For clarity,254

we use the notation FH . The results are reported in255

Table 1. Note that we are not able to reproduce the256

HiAGM and HiTIN results reported by Zhu et al.257

(2023) but usually achieve better scores with their258

provided codes and configurations.259

HiMTL leads to small improvements especially260

when applying it to HiAGM. Here, both HiMTL261

implementations achieve better average Macro-FH262

scores while the masking approach achieves the263

best average Micro-FH score and works best on the264

WOS dataset with a simple hierarchy. The latter265

also applies to HiTIN, although the average scores266

do not indicate that it benefits from HiMTL overall.267

On NYT, the dataset with the most complex hier-268

archy, HiMTL always decreases the Micro-FH but 269

the projection implementation increases the Macro- 270

FH . The training time increases by approximately 271

30% on all datasets. 272

5 Conclusion 273

We proposed an architectural extension for hier- 274

archical text classification models by splitting la- 275

bel hierarchies into smaller, more localized sub- 276

hierarchies, and training parallel hierarchy-aware 277

classifiers in a multi-task learning setting. We fur- 278

ther compared two different implementations to 279

merge the model outputs into a single prediction: 280

masking or projecting the output vectors. While 281

this approach leads to improvements on a dataset 282

with a simple label hierarchy and to a better macro 283

average on a dataset with a complex hierarchy, its 284

overall impact is small. 285

There are several other architectures and meth- 286

ods that could be evaluated in a multi-task learning 287

setting, such as HiMatch (Chen et al., 2021), the 288

post-processing of model outputs to remove hier- 289

archical violations (Giunchiglia and Lukasiewicz, 290

2020), or structure encoders such as Gated Atten- 291

tion Networks (Veličković et al., 2018). Further- 292

more, there are several recent datasets for large- 293

scale hierarchical text classification with complex 294

label hierarchies such as the legal corpus EU- 295

RLEX57K (Chalkidis et al., 2019) or its larger, mul- 296

tilingual variant MultiEURLEX (Chalkidis et al., 297

2021). However, the implementation was restricted 298

by the framework we re-used, which was developed 299

in the pre-Transformers era without easy extensi- 300

bility in mind. 301

For the near future, we thus plan to re-implement 302

this framework and some of the state-of-the-art 303

architectures based on standardized libraries such 304

as PyTorch Geometric (Fey and Lenssen, 2019) 305

and NetworkX (Hagberg et al., 2008) to provide 306

modern tools for easier modification, research, and 307

deployment of hierarchical classification models. 308
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Limitations309

For comparability with previous state-of-the-art310

methods, we used a framework that was originally311

published in 2020 without considering the latest312

developments such as Transformers. As a con-313

sequence, the extensibility of the code base was314

limited without making changes to the implemen-315

tations of these SOTA models, whose reported re-316

sults we were not able to reproduce. The same317

framework provides pre-processing codes for the318

three used datasets. We did not evaluate our im-319

plementation on other datasets used by previous320

SOTA methods, as it is not clear how these were321

pre-processed. We aim to solve this issue in fu-322

ture work with a more customizable framework323

and re-implementations of these methods based on324

standardized libraries.325

Due to time constraints and limited computa-326

tional resources, we were not yet able to run all327

experiments multiple times and thus do not report328

means, standard deviations, or the statistical signif-329

icance of the results.330

Acknowledgments331

Acknowledgments will be added after the332

anonymity period.333

References334

Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos335
Malakasiotis, and Ion Androutsopoulos. 2019. Large-336
scale multi-label text classification on EU legislation.337
In Proceedings of the 57th Annual Meeting of the As-338
sociation for Computational Linguistics, pages 6314–339
6322, Florence, Italy. Association for Computational340
Linguistics.341

Ilias Chalkidis, Manos Fergadiotis, and Ion Androut-342
sopoulos. 2021. MultiEURLEX - a multi-lingual and343
multi-label legal document classification dataset for344
zero-shot cross-lingual transfer. In Proceedings of345
the 2021 Conference on Empirical Methods in Natu-346
ral Language Processing, pages 6974–6996, Online347
and Punta Cana, Dominican Republic. Association348
for Computational Linguistics.349

Haibin Chen, Qianli Ma, Zhenxi Lin, and Jiangyue Yan.350
2021. Hierarchy-aware label semantics matching net-351
work for hierarchical text classification. In Proceed-352
ings of the 59th Annual Meeting of the Association for353
Computational Linguistics and the 11th International354
Joint Conference on Natural Language Processing355
(Volume 1: Long Papers), pages 4370–4379, Online.356
Association for Computational Linguistics.357

Alex Cloud, Jacob Goldman-Wetzler, Evžen Wybitul,358
Joseph Miller, and Alexander Matt Turner. 2024. Gra-359

dient routing: Masking gradients to localize computa- 360
tion in neural networks. Preprint, arXiv:2410.04332. 361

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 362
Kristina Toutanova. 2019. BERT: Pre-training of 363
deep bidirectional transformers for language under- 364
standing. In Proceedings of the 2019 Conference of 365
the North American Chapter of the Association for 366
Computational Linguistics: Human Language Tech- 367
nologies, Volume 1 (Long and Short Papers), pages 368
4171–4186, Minneapolis, Minnesota. Association for 369
Computational Linguistics. 370

Matthias Fey and Jan E. Lenssen. 2019. Fast graph 371
representation learning with PyTorch Geometric. 372
In ICLR Workshop on Representation Learning on 373
Graphs and Manifolds. 374

Eleonora Giunchiglia and Thomas Lukasiewicz. 2020. 375
Coherent hierarchical multi-label classification net- 376
works. In Advances in Neural Information Process- 377
ing Systems, volume 33, pages 9662–9673. Curran 378
Associates, Inc. 379

Siddharth Gopal and Yiming Yang. 2013. Recursive 380
regularization for large-scale classification with hier- 381
archical and graphical dependencies. In Proceedings 382
of the 19th ACM SIGKDD International Conference 383
on Knowledge Discovery and Data Mining, KDD ’13, 384
page 257–265, New York, NY, USA. Association for 385
Computing Machinery. 386

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 387
2008. Exploring network structure, dynamics, and 388
function using networkx. In Proceedings of the 389
7th Python in Science Conference, pages 11 – 15, 390
Pasadena, CA USA. 391

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long 392
short-term memory. Neural Computation, 9(8):1735– 393
1780. 394

Thomas N. Kipf and Max Welling. 2017. Semi- 395
supervised classification with graph convolutional 396
networks. In International Conference on Learning 397
Representations. 398

Aris Kosmopoulos, Ioannis Partalas, Eric Gaussier, 399
Georgios Paliouras, and Ion Androutsopoulos. 2015. 400
Evaluation Measures for Hierarchical Classification: 401
a unified view and novel approaches. Data Mining 402
and Knowledge Discovery, 29(3):820–865. 403

Kamran Kowsari, Donald E. Brown, Mojtaba Hei- 404
darysafa, Kiana Jafari Meimandi, Matthew S. Gerber, 405
and Laura E. Barnes. 2017. Hdltex: Hierarchical 406
deep learning for text classification. In 2017 16th 407
IEEE International Conference on Machine Learn- 408
ing and Applications (ICMLA), pages 364–371. 409

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan 410
Li. 2004. Rcv1: A new benchmark collection for 411
text categorization research. J. Mach. Learn. Res., 412
5:361–397. 413

5

https://doi.org/10.18653/v1/P19-1636
https://doi.org/10.18653/v1/P19-1636
https://doi.org/10.18653/v1/P19-1636
https://doi.org/10.18653/v1/2021.emnlp-main.559
https://doi.org/10.18653/v1/2021.emnlp-main.559
https://doi.org/10.18653/v1/2021.emnlp-main.559
https://doi.org/10.18653/v1/2021.emnlp-main.559
https://doi.org/10.18653/v1/2021.emnlp-main.559
https://doi.org/10.18653/v1/2021.acl-long.337
https://doi.org/10.18653/v1/2021.acl-long.337
https://doi.org/10.18653/v1/2021.acl-long.337
https://arxiv.org/abs/2410.04332
https://arxiv.org/abs/2410.04332
https://arxiv.org/abs/2410.04332
https://arxiv.org/abs/2410.04332
https://arxiv.org/abs/2410.04332
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.neurips.cc/paper_files/paper/2020/file/6dd4e10e3296fa63738371ec0d5df818-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6dd4e10e3296fa63738371ec0d5df818-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6dd4e10e3296fa63738371ec0d5df818-Paper.pdf
https://doi.org/10.1145/2487575.2487644
https://doi.org/10.1145/2487575.2487644
https://doi.org/10.1145/2487575.2487644
https://doi.org/10.1145/2487575.2487644
https://doi.org/10.1145/2487575.2487644
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/s10618-014-0382-x
https://doi.org/10.1007/s10618-014-0382-x
https://doi.org/10.1007/s10618-014-0382-x
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.1109/ICMLA.2017.0-134


Angsheng Li and Yicheng Pan. 2016. Structural infor-414
mation and dynamical complexity of networks. IEEE415
Transactions on Information Theory, 62(6):3290–416
3339.417

Haoyang Liu, Xuegang Hu, Shengxing Bai, and Yaojin418
Lin. 2024. Hierarchical Multi-Granular Decision419
Networks for Hierarchical Classification.420

Jeffrey Pennington, Richard Socher, and Christopher D.421
Manning. 2014. Glove: Global vectors for word422
representation. In Empirical Methods in Natural423
Language Processing (EMNLP), pages 1532–1543.424

Wenting Qi and Charalampos Chelmis. 2023. Hybrid425
Loss for Hierarchical Multi–label Classification Net-426
work. In 2023 IEEE International Conference on Big427
Data (BigData), pages 819–828.428

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-429
ine Lee, Sharan Narang, Michael Matena, Yanqi430
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the431
limits of transfer learning with a unified text-to-text432
transformer. Journal of Machine Learning Research,433
21(140):1–67.434

Evan Sandhaus. 2008. The new york times annotated435
corpus. Linguistic Data Consortium, Philadelphia,436
6(12):e26752.437

Carlos N Silla and Alex A Freitas. 2011. A survey of438
hierarchical classification across different application439
domains. Data mining and knowledge discovery,440
22:31–72.441

Fatos Torba, Christophe Gravier, Charlotte Laclau,442
Abderrhammen Kammoun, and Julien Subercaze.443
2024. A study on hierarchical text classification444
as a seq2seq task. In Advances in Information445
Retrieval, pages 287–296, Cham. Springer Nature446
Switzerland.447

Petar Veličković, Guillem Cucurull, Arantxa Casanova,448
Adriana Romero, Pietro Liò, and Yoshua Bengio.449
2018. Graph Attention Networks. International Con-450
ference on Learning Representations.451

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Bar-452
ros. 2018. Hierarchical multi-label classification453
networks. In Proceedings of the 35th International454
Conference on Machine Learning, volume 80 of Pro-455
ceedings of Machine Learning Research, pages 5075–456
5084. PMLR.457

Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu,458
Ning Ding, Haoyu Zhang, Pengjun Xie, and Gong-459
shen Liu. 2020. Hierarchy-aware global model for460
hierarchical text classification. In Proceedings of the461
58th Annual Meeting of the Association for Compu-462
tational Linguistics, pages 1106–1117, Online. Asso-463
ciation for Computational Linguistics.464

He Zhu, Chong Zhang, Junjie Huang, Junran Wu, and465
Ke Xu. 2023. HiTIN: Hierarchy-aware tree isomor-466
phism network for hierarchical text classification. In467

Proceedings of the 61st Annual Meeting of the As- 468
sociation for Computational Linguistics (Volume 1: 469
Long Papers), pages 7809–7821, Toronto, Canada. 470
Association for Computational Linguistics. 471

6

https://doi.org/10.1109/TIT.2016.2555904
https://doi.org/10.1109/TIT.2016.2555904
https://doi.org/10.1109/TIT.2016.2555904
https://doi.org/10.2139/ssrn.4758919
https://doi.org/10.2139/ssrn.4758919
https://doi.org/10.2139/ssrn.4758919
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1109/BigData59044.2023.10386341
https://doi.org/10.1109/BigData59044.2023.10386341
https://doi.org/10.1109/BigData59044.2023.10386341
https://doi.org/10.1109/BigData59044.2023.10386341
https://doi.org/10.1109/BigData59044.2023.10386341
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.mlr.press/v80/wehrmann18a.html
https://proceedings.mlr.press/v80/wehrmann18a.html
https://proceedings.mlr.press/v80/wehrmann18a.html
https://doi.org/10.18653/v1/2020.acl-main.104
https://doi.org/10.18653/v1/2020.acl-main.104
https://doi.org/10.18653/v1/2020.acl-main.104
https://doi.org/10.18653/v1/2023.acl-long.432
https://doi.org/10.18653/v1/2023.acl-long.432
https://doi.org/10.18653/v1/2023.acl-long.432

	Introduction
	Related Work
	Methodology
	Hierarchy-aware Multi-Task Learning
	Inference

	Experiments
	Conclusion

