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Abstract. The challenge of Out-Of-Distribution (OOD) robustness re-
mains a critical hurdle towards deploying deep vision models. Vision-
Language Models (VLMs) have recently achieved groundbreaking results.
VLM-based open-vocabulary object detection extends the capabilities
of traditional object detection frameworks, enabling the recognition and
classification of objects beyond predefined categories. Investigating OOD
robustness in recent open-vocabulary object detection is essential to in-
crease the trustworthiness of these models. This study presents a compre-
hensive robustness evaluation of the zero-shot capabilities of three recent
open-vocabulary (OV) foundation object detection models: OWL-ViT,
YOLO World, and Grounding DINO. Experiments carried out on the ro-
bustness benchmarks COCO-O, COCO-DC, and COCO-C encompass-
ing distribution shifts due to information loss, corruption, adversarial
attacks, and geometrical deformation, highlighting the challenges of the
model’s robustness to foster the research in this field. Project webpage:
https://prakashchhipa.github.io/projects/ovod_robustness

Keywords: open-vocabulary object detection · foundation model · ro-
bustness · distribution shift · zero-shot.

1 Introduction

Recent studies [7] on self-supervised learning have highlighted significant per-
formance impacts under distribution shifts and corruptions, urging enhanced
robustness strategies. Similarly, the robustness of foundation models must be
examined to understand their resilience against various distribution shifts, cor-
ruptions, and adversarial attacks. Foundation AI models, pre-trained on exten-
sive datasets spanning multiple domains, are designed with the primary objec-
tive of acquiring a comprehensive understanding of the world and applying their
knowledge effectively across a wide range of downstream tasks and applications,
thereby facilitating advancements in AI capabilities across multiple fields.
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Fig. 1: Zero-shot performance comparison for open vocabulary object detection mod-
els, OWL-ViT [36](ECCV’22), YOLO World [6] (CVPR’24), and Grounding DINO [30]
(ECCV’24). COCO-O [33] (ICCV’23) represents average results on six subsets, and
COCO-C [34] represents average results on fifteen corruptions.

Fig. 2: Zero-shot performance on COCO-DC: (left): comparison for OWL-ViT, YOLO
World, and Grounding DINO on COCO-DC robustness performance on original subset
and adversarial subset. (right): comparison for these foundation models on COCO-DC
robustness performance on original subset and average of all remaining subsets.

The concept of foundation models has been most prominently developed
in the fields of natural language processing (NLP) and computer vision (CV).
In NLP, foundation models like Generative Pre-trained Transformer (GPT) [1]
and Bidirectional Encoder Representations from Transformers (BERT) [10] have
revolutionized the field by enabling a range of applications, including text gener-
ation, sentiment analysis, question answering, and language translation, without
the need for task-specific model architectures.

Models such as Contrastive Language–Image Pre-training (CLIP) [37] and
DALL-E [38] demonstrate the ability to understand and generate visual content
in response to natural language prompts, showcasing the versatility and creative
potential of foundation models. Segment Anything Model (SAM) [24] is a foun-
dation model for image segmentation. The utility of foundation models lies in
their ability to leverage their pre-trained knowledge to perform a wide variety of
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Fig. 3: Examples from six COCO-O benchmark subsets depicted with predictions by
open-vocabulary models: OWL-ViT, YOLO World, and Grounding DINO. The input
textual query includes the object categories identified in the labels.

tasks with minimal additional training. This versatility makes them a powerful
tool for developing AI applications quickly and efficiently, opening up new possi-
bilities for innovation and research in AI. Open-vocabulary object detection has
gained researchers’ interest in solving real-world problems. Recent advances in
open-vocabulary (OV) object detection in computer vision extend the capabili-
ties of traditional object detection frameworks to recognize and classify objects
beyond predefined categories present in their training datasets. Open-vocabulary
(OV) models demonstrated zero-shot or few-shot learning capabilities by using
vision-language pre-training, making the models to accurately identify and cat-
egorize objects they have never encountered during training.

Robustness, defined as a model’s ability to maintain consistent performance
under varying and unforeseen conditions, has emerged as a critical factor in eval-
uating the utility of modern machine learning models across diverse applications
and data distributions. These conditions include but are not limited to, noisy
data, distribution shifts, and adversarial attacks. Robustness involves balancing
the trade-off between model accuracy and the ability to generalize well across
unforeseen scenarios, challenging the traditional focus on maximizing dataset-
specific performance. Robust models contribute to enhanced security, privacy,
and user trust, necessitating strategies encompassing data augmentation, reg-
ularization techniques, ensemble learning, and more to address challenges like
adversarial robustness and long-tail robustness [16].

We explore the robustness of foundation models, with a particular focus on
open-vocabulary models. The connection between robustness and the trustwor-
thiness of these models is crucial; robust models inspire greater confidence in
their application across various domains, especially when leveraging zero-shot
and few-shot learning capabilities. By bringing attention to the topic of ro-
bustness of open-vocabulary models, we inspire to improve trustworthiness by
investigating the out-of-distribution performance on zero-shot evaluation.

To the best of our knowledge, we are the first study to provide compar-
ative analysis of recent state-of-the-art OV object detectors: OWL-ViT [36],
YOLO-World [6], and Grounding DINO [30] for open vocabulary object detec-
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tion through the lenses of robustness. OWL-ViT leverages the Vision Trans-
former (ViT) for transfer learning, YOLO-World builds on the efficient and
practical CNN architecture, and Grounding DINO integrates the Swin Trans-
former [31] with a novel grounded pre-training strategy.

We employ a zero-shot evaluation approach (Refer Figure 3), where mod-
els are tested on the out-of-distribution benchmarks such as COCO-O [33] and
COCO-C [34], without any additional training on its specific subsets. COCO-
O offers six subsets with decreasing details of objects in terms of shape, color,
and textures, whereas COCO-C comprises fifteen subsets corresponding to cor-
ruptions from [18]. This evaluation investigates the models’ ability to generalize
from learned representations to unseen categories and conditions. The notable
observation suggests that all three open-vocabulary foundation model-based ob-
ject detectors, when subjected to degradation of image quality and distribution
shift, exhibit significant deviations in performance. This indicates an inherent
relationship between OV object detectors and the quality of data. Therefore, this
work draws attention to the research community and motivates further research
towards improving robustness (refer Figures 1 and 2).

2 Related Work

AlexNet [25] revolutionized computer vision by applying deep learning, which
was further advanced by Fast R-CNN [14] and Faster R-CNN [40], enhancing
proposal classification and generation. RetinaNet’s [29] Focal Loss addressed
class imbalance, while YOLO [39] achieved real-time detection through a unified
regression framework. The Vision Transformer (ViT) [11] innovated by applying
transformers to image patches, demonstrating their potential beyond NLP, and
the Swin Transformer [31] introduced a hierarchical structure for efficient image
processing, setting new standards in vision benchmarks.

Carion et al. [4] developed the DEtection TRansformer (DETR), redefining
object detection as a set prediction problem. Utilizing a transformer architecture
with an encoder-decoder and a global set-based loss for unique prediction via
bipartite matching, DETR streamlines the detection process, removing the ne-
cessity for components like non-maximum suppression. However, the detection
capability of such models is confined to their trained categories, limiting their
effectiveness on unseen objects. To address these constraints, the introduction
of foundation models [27,37] has been proposed.

Foundation AI models like GPT [1] and BERT [10] in NLP, and CLIP [37],
DALL-E [38], and SAM [24] in computer vision, demonstrate the power of large-
scale pre-training across data-rich domains. These models have revolutionized
tasks like text generation, sentiment analysis, and visual content understanding.
Their vast parameter space and training breadth enable extensive adaptability,
facilitating the rapid development of specialized AI applications and propelling
forward AI research.

Radford et al.’s CLIP [37] redefines visual learning with natural language,
pre-trained on 400 million web-sourced image-text pairs. This method enables
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understanding of various visual concepts and supports zero-shot transfer to tasks
without specific training. Tested on over 30 benchmarks, including OCR, action
recognition, and geo-localization; CLIP’s adaptability significantly expands vi-
sual model applications.

The Grounded Language-Image Pre-training (GLIP) [27] advances visual
learning by fusing language supervision, setting new zero-shot and few-shot
learning standards. It leverages 27 million annotated and web-sourced data
points to enhance object recognition. Open-vocabulary detection, by leverag-
ing NLP, allows models to recognize new objects from descriptions, improving
adaptability and robustness in changing environments.

To the best of our knowledge, Zareian et al. [46] first open-vocabulary ob-
ject detection using image-caption pairs for detecting unannotated objects, out-
performing zero-shot and weakly supervised approaches by leveraging visual-
semantic spaces from captions. Chen et al. [5] developed MEDet, enhancing
Open-Vocabulary Object Detection by aligning vision-language at the proposal
level and balancing predictions between known and novel categories, showing top
results on MS COCO and LVIS. Bravo et al. [3] proposed a method for open-
vocabulary detection that uses localized vision-language matching to improve
alignment of visual and linguistic representations, aiming to expand detection
vocabularies. Zhao et al. [48] demonstrated how combining Vision and Lan-
guage models with unlabeled data can improve object detection, highlighting
the synergy between pre-trained models and large, unlabeled datasets. Zang et
al. [45] introduced OV-DETR, extending DETR for open-vocabulary detection
using conditional matching with CLIP-generated embeddings, achieving signif-
icant advances on LVIS and COCO. RegionCLIP [49] tackled domain shift in
open-vocabulary detection by aligning regional visual representations with text,
surpassing existing methods on COCO and LVIS for novel and zero-shot cate-
gories. Du et al. [12] presented DetPro, a method for learning continuous prompt
representations, enhancing the detection of novel classes through innovative pro-
posal handling and context grading on the LVIS dataset. Feng et al. [13] created
PromptDet, combining CNNs and transformers for object detection, leveraging
spatial and global context for improved accuracy and robustness in detection
tasks.

Kaul et al. [21] present a multi-modal OVOD method, surpassing the LVIS
benchmark by fusing text and visual classifiers with large language models. Cho
et al. [8] innovate in novel object detection using PCL for captions, enhancing
LVIS performance via image captioning model distillation. Arandjelovic et al. [2]
show that combining semantic segmentation with detection improves accuracy
in complex scenes. Minderer et al. [35] explore the benefits of self-training on
detection models with large image-text datasets. Shi et al. [41] develop an OV
detection framework based on scene graphs, validated by comprehensive tests.
Zhao et al. [47] introduce SAS-Det, a method tackling noisy pseudo labels for
improved detection, achieving high COCO and LVIS scores. Kim et al. [22]
propose CFM-ViT, a contrastive learning approach for OV detection that excels
on LVIS. Kuo et al. [26] demonstrate efficient OV detection with F-VLM by
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training only the detector head. Kim et al. [23] present RO-ViT, a pretraining
strategy enhancing OV detection alignment, leading to top LVIS and COCO
results. Finally, Wang et al. [43] reveal OADP, an approach for transferring
knowledge to OV detectors, outdoing current methods on MS-COCO, and Yao
et al. [44] introduce DetCLIPv2, a scalable OVD training framework that sets a
new zero-shot AP record on LVIS.

Robustness is crucial for assessing the resilience and reliability of machine
learning models, emphasizing their ability to perform consistently under variable
and unexpected conditions, such as noisy data, distribution shifts, and adversar-
ial attacks. It shows the importance of a model’s capacity to generalize beyond its
training, ensuring dependable predictions against non-standard inputs. This ne-
cessitates a delicate balance between accuracy and generalization, moving away
from solely focusing on dataset-specific performance to prevent overfitting. Ad-
dressing robustness requires strategies like data augmentation, regularization,
and ensemble learning to combat adversarial threats and variability, enhancing
model security, privacy, and trustworthiness [16]. These measures are essential for
the practical application of AI in diverse, changing real-world scenarios, aiming
to create accurate, secure, and adaptable systems. To the best of our knowl-
edge, Hendrycks et al. [17] proposed one of the earliest datasets Imagenet-C
to benchmark robustness. Over the years, different versions of datasets have
been derived from the original Imagenet dataset to study the topic of robust-
ness for image classification models. Some of the notable datasets are Imagenet-
A [19], Imagenet-R [15], Imagenet-CD [9], Imagenet-E [28], Imagenet-X [20] and
Imagenet-Sketch [42]. However, very little work is available in the literature to
study the impact of distribution shifts on object detection models.

3 Out-of-Distribution benchmarks

In this section, We briefly discuss two OOD benchmarks for the robustness eval-
uation, namely COCO-O [33], COCO-DC [32] and COCO-C [34].

3.1 COCO-O

Recent robustness benchmark COCO-O [33] dataset dedicated to pose the chal-
lenge of object detection under natural distribution shifts, serving as a com-
prehensive benchmark for assessing detector robustness beyond the typical con-
straints of existing datasets. COCO-O encompasses a range of challenges inher-
ent to object detection, including occlusion, blurring, variations in pose, deforma-
tion, illumination differences, and the detection of small-sized objects. COCO-
O comprises 6,782 images collected online across six distinct subsets: weather,
painting, handmake, cartoon, tattoo, and sketch, arranged in descending order
based on the level of detail present within the objects they contain. This orga-
nization reflects varying degrees of abstraction across the objects within each
domain.
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3.2 COCO-DC

The COCO-DC [32] object detection robustness benchmark is recently curated
from the COCO 2017 validation set, comprising 1,127 images that distinctly
separate foreground objects from their backgrounds. This dataset is designed
to evaluate the robustness of object detection and classification models under
various background conditions. The COCO-DC benchmark features four sub-
sets: Adversarial, BLIP-2 Caption, Color, and Texture. The Adversarial subset
includes images with adversarial background changes crafted to challenge the
models’ robustness. The BLIP-2 Caption subset utilizes the BLIP-2 model to
generate captions for the images, providing a different context for evaluation. The
Color subset features images with altered background colors to assess the models’
performance under color variations. The Texture subset consists of images with
modified background textures to test the models’ resilience to texture changes.
This benchmark allows for a comprehensive analysis of model performance across
diverse and challenging scenarios, highlighting the strengths and weaknesses
of contemporary vision-based models in handling object-to-background context
variations.

3.3 COCO-C

COCO-C [34] dataset introduces 15 types of image corruptions, each with five
levels of severity, covering a broad range of corruption types sorted into four
groups: noise, blur, digital, and weather. This comprehensive approach enables
a nuanced assessment of model robustness across different distortion types and
severity levels, which are not part of the original training regime. The datasets
are not intended for training data augmentation but rather to measure a model’s
robustness against unseen corruptions, thus helping to identify areas for improve-
ment in object detection models.

4 Open-Vocabulary Object detectors Models

In this section, we describe the three open-vocabulary foundation models: OWL-
ViT, YOLO World, and Grounding DINO.

4.1 OWL-ViT

OWL-ViT [36] method introduces an efficient and effective solution for open-
vocabulary object detection by leveraging the Vision Transformer (ViT) archi-
tecture with minimal modifications and a comprehensive strategy for transferring
image-text pre-training to the task of object detection. At its core, OWL-ViT
employs a standard ViT for image encoding, which, during the transfer phase
to detection, is slightly altered by removing the final token pooling layer and
adding lightweight object classification and box prediction heads directly to the
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output tokens. This design choice allows for the direct prediction of object in-
stances without the need for additional complex mechanisms. The methodol-
ogy progresses through integrating text embeddings derived from a pretrained
language model, facilitating open-vocabulary classification capabilities. This ap-
proach strengthens the model to identify a diverse spectrum of object categories
beyond those encountered during its initial training phase. Through the end-to-
end fine-tuning of both visual and linguistic components on conventional object
detection datasets, OWL-ViT showcases exceptional efficacy across various eval-
uation benchmarks. This performance is attributed to the strategic utilization
of extensive image-text corpora for pre-training, succeeded by meticulous fine-
tuning processes. Consequently, OWL-ViT establishes new benchmarks in the
domains of zero-shot, text-conditioned, and one-shot, image-conditioned object
detection tasks.

4.2 YOLO-World

YOLO-World [6] introduces a novel open-vocabulary object detection frame-
work that significantly enhances the conventional YOLO detection model with
the capacity for open-vocabulary detection, achieving real-time efficiency and
high accuracy across diverse benchmarks. YOLO-World incorporates the Re-
parameterizable Vision-Language Path Aggregation Network (RepVL-PAN) and
a distinct region-text contrastive loss. These components work in tandem to en-
sure a robust visual-semantic alignment between image features and textual em-
beddings. This strategic integration strengthens the model’s ability to adeptly
navigate the complex interplay between visual and linguistic information, signif-
icantly enhancing its open-vocabulary detection capabilities while maintaining
real-time processing speeds. This approach leverages large-scale datasets for pre-
training, effectively combining detection, grounding, and image-text data into a
unified learning framework. As a result, YOLO-World not only extends the ca-
pabilities of the YOLO architecture to recognize a broader array of object cat-
egories in a zero-shot manner but also does so with remarkable inference speed
and deployment efficiency.

4.3 Grounding DINO

Grounding DINO [30] a novel approach to open-set object detection by inte-
grating the strengths of the Transformer-based detector DINO with grounded
pre-training techniques. This method allows for detecting arbitrary objects based
on human input, such as category names or referring expressions, by effectively
fusing language and vision modalities. Grounding DINO partitions a closed-
set detector into three phases—feature enhancement, language-guided query se-
lection, and cross-modality decoder—to achieve a tightly integrated fusion of
language and vision. Unlike prior works that evaluate open-set object detec-
tion primarily on novel categories, Grounding DINO also extends evaluations to
referring expression comprehension (REC), enabling the model to understand
objects specified with attributes.
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5 Experiments and Results

The list of the object categories present in the input image is used as a text query
for zero-shot evaluation of the open vocabulary object detection models (refer to
Figure 3). This work evaluates OWL-ViT, YOLO-World, and Grounding DINO
models on all six OOD subsets of COCO-O, 5 subsets of COCO-DC [32], and
on fifteen corruption subsets (at severity level 1) of COCO-C benchmark [15].

5.1 Evaluation Method

This work evaluates the robustness of OWL-ViT, YOLO World, and Grounding
DINO models for their zero-shot capability based on their performance on OOD
benchmarks COCO-O, COCO-DC, and COCO-C, as shown in Figure 4.

Fig. 4: Zero-shot evaluation process of open vocabulary object detector models.

5.2 Metrics

AP (Average Precision) measures the precision of a model at different confidence
thresholds, summarizing its detection accuracy for a specific class. It is the area
under the precision-recall curve.

mAP@IoU=0.5 (mean Average Precision at Intersection over Union of 0.5)
averages the AP values for all classes at an IoU threshold of 0.5, meaning de-
tections are correct if the predicted and ground truth boxes overlap by at least
50%. Box mAP@IoU=0.5:0.95 evaluates the model across IoU thresholds from
0.5 to 0.95, in steps of 0.05. It calculates the AP at each threshold and averages
these values, providing a rigorous assessment of detection precision at varying
overlap levels.

The effective robustness metric ER(f) for a detector f is computed as given
in Eq. 1. mAPood is the mAP on COCO-O dataset, and mAPid is the mAP on
original COCO dataset. mAPid is multiplied by a factor β in the equation. The
value of β is fixed to 0.45, adopted from [33].

ER(f) = mAPood(f)− β ×mAPid(f) (1)

5.3 Discussions

Detailed results on six subsets of COCO-O benchmarks are described in Table
1 and 2, results on subsets of COCO-DC benchmark is in Table 3, and for 15
corruptions subsets of COCO-C benchmarks, results are in Table 4, 5, 7, and 6.
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Table 1: Comparison of Box mAP (@IoU=0.50:0.95) for different detectors in original
COCO and COCO-O datasets. ∗referred from Grounding DINO [30].

Box mAP@IoU=0.50:0.95

Venue COCO
mAP

COCO-O
mAP

Sketch Weather Cartoon Painting Tattoo Handmake Average
OWL-ViT ECCV’22 26.40 14.60 19.50 17.20 24.50 7.70 12.30 15.97

YOLO World CVPR’24 39.30 15.00 37.90 18.40 36.00 10.10 23.10 23.42
Grounding DINO ECCV’24 48.40∗ 44.90 33.70 47.50 42.30 41.10 39.60 41.52

Table 2: Comparison of mAP (@IoU=0.50) for different detectors in original COCO
and COCO-O datasets.

mAP@IoU=0.50

Venue COCO
mAP

COCO-O
mAP

Sketch Weather Cartoon Painting Tattoo Handmake Average
OWL-ViT ECCV’22 42.90 18.90 31.00 23.50 33.30 9.80 16.10 22.10

YOLO World CVPR’24 51.20 17.30 46.00 22.50 43.80 12.40 27.40 28.23
Grounding DINO ECCV’24 - 53.00 40.90 55.90 49.50 50.90 45.20 49.23

COCO-O: Following the results in Table 1 and 2, OWL-ViT on the origi-
nal COCO dataset stands at 26.40 and 42.90 for IoU=0.50:0.95 and IoU=0.50,
respectively. When subjected to the COCO-O dataset, the average performance
drops to 15.97 and 22.10 across the same IoU thresholds, indicating a significant
decrease in robustness under out-of-distribution conditions. Similarly, YOLO
World, which achieves a higher baseline mAP of 39.30 and 51.20 on the COCO
dataset for IoU=0.50:0.95 and IoU=0.50, respectively, shows a reduced aver-
age mAP of 23.42 and 28.23 on COCO-O. This suggests a resilience to out-of-
distribution data compared to OWL-ViT, though the performance still notably
decreases. Grounding DINO demonstrates the most remarkable performance,
with a mAP of 48.40 on COCO for IoU=0.50:0.95 and a consistent lack of data
for IoU=0.50. On COCO-O, it achieves an average mAP of 41.52 and 49.23 across
the respective IoU thresholds. Grounding DINO exhibits the least performance
drop among the three, indicating robustness to out-of-distribution scenarios, as
indicated the trend of effective robustness of models in Fig. 5.

COCO-DC: The performance of three open-vocabulary object detectors—OWL-
ViT, YOLO World, and Grounding DINO—on the COCO-DC dataset subsets is
summarized in Table 3. All three models exhibit high performance on the Orig-
inal subset, with YOLO World achieving the highest Box mAP (49.8), followed
by OWL-ViT (42.5) and Grounding DINO (40.4). However, the Adversarial sub-
set causes a significant drop for all models. Grounding DINO demonstrates the
highest robustness (34.7), while YOLO World and OWL-ViT drop to 24.6 and
22.8, respectively. On the BLIP-2 Caption subset, Grounding DINO (42.6) and
YOLO World (39.5) perform well, but OWL-ViT lags (34.2).

The Color and Texture subsets challenge all models, with pronounced per-
formance drops. Grounding DINO maintains the highest scores (44.4 and 43.9),
showing superior adaptability. YOLO World scores 29.3 for Color and 28.4
for Texture, while OWL-ViT scores 33.4 and 30.6, respectively. This suggests
Grounding DINO’s training strategy allows better generalization across visual
distortions. Overall, while Grounding DINO exhibits the highest resilience, all
models show vulnerabilities under distribution shifts, emphasizing the need for
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Fig. 5: Comparisons of effective robustness for detectors based on their performance
on original COCO and COCO-O datasets.

Fig. 6: Comparisons of performance of the models (Owl-ViT, YOLO-World, and
Grounding DINO) on four corruptions group of COCO-C.

diverse and challenging training scenarios to enhance robustness in real-world
applications.

COCO-C: In the robustness evaluation conducted on the COCO-C dataset,
three models—Owl-ViT, YOLO-World, and Grounding DINO were assessed
across fifteen different corruption types grouped into Weather, Blur, Noise, and
Digital categories (detailed results in Table 4, 5, 6, and 7).

The results reveal a trend of decreasing performance with increasing severity
of corruption across all models and corruption types, highlighted by notable
performance drops such as Owl-ViT’s decrease from 40.0 to 12.6 IoU in Pixelate
corruption from severity 1 to 5.

YOLO-World generally displayed superior resilience in lower severity lev-
els, particularly in handling weather-related and blur corruptions, where it out-
performed Owl-ViT, managing a 37.5 IoU at severity 1 for Frost compared to
Owl-ViT’s 32.4. Conversely, Grounding DINO, while slightly underperforming
in higher intersection over union (IoU) metrics, showed comparable or better
performance in detecting objects at the basic IoU=0.50 level across many cor-
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Table 3: Comparison of Box mAP (@IoU=0.50:0.95) for different detectors in the
COCO-DC dataset subsets.

Box mAP@IoU=0.50:0.95
Original Adversarial BLIP Color Texture

OWL-ViT 42.5 22.8 34.2 33.4 30.6
YOLO World 49.8 24.6 39.5 29.3 28.4

Grounding DINO 40.4 34.7 42.6 44.4 43.9

Table 4: Robustness evaluation on Weather group: Snow, Frost, Fog, and Brightness
corruption subsets in the COCO-C dataset.

Corruption Severity Owl-ViT YOLO-World Grounding DINO
IoU=0.50:0.95 IoU=0.50 IoU=0.50:0.95 IoU=0.50 IoU=0.50:0.95 IoU=0.50

Snow 1 18.0 29.9 25.2 32.7 24.7 34.4
Snow 2 12.8 20.6 14.4 19.3 21.2 30.2
Snow 3 11.9 19.8 14.0 18.8 20.4 28.8
Snow 4 8.3 13.7 10.9 14.8 18.6 27.3
Snow 5 8.2 13.4 10.8 14.6 17.3 25.5
Frost 1 19.8 32.4 28.9 37.5 24.6 33.9
Frost 2 15.5 25.2 17.8 23.6 22.6 31.9
Frost 3 12.2 19.9 14.6 19.4 20.5 29.2
Frost 4 12.1 19.4 14.0 18.5 20.3 28.8
Frost 5 10.1 16.4 11.7 15.5 18.9 27.5
Fog 1 20.9 33.7 29.8 38.4 23.9 32.7
Fog 2 19.6 31.6 22.6 29.8 23.4 32.0
Fog 3 18.6 29.8 21.5 28.3 23.0 31.4
Fog 4 17.6 28.2 21.3 28.1 22.7 31.1
Fog 5 15.4 24.5 19.6 25.8 21.9 30.3

Brightness 1 23.3 37.8 33.5 43.5 26.1 35.5
Brightness 2 22.4 36.2 27.0 35.6 26.1 35.6
Brightness 3 21.2 34.2 26.2 34.6 25.9 35.5
Brightness 4 19.6 31.4 25.0 33.1 25.5 35.0
Brightness 5 17.9 28.5 23.4 31.0 24.9 34.5

Original COCO - 26.40 42.90 39.30 51.20 48.40 -

Fig. 7: Comparisons of performance of the models (Owl-ViT, YOLO-World, and
Grounding DINO) on across severity level of underlying corruptions in COCO-C.

ruption scenarios, such as achieving an IoU of 35.5 in high-severity Brightness
corruption versus Owl-ViT’s 28.5. As trend shown in Figure 6, across all groups
suggests that while Grounding DINO often excels in handling blur-induced dis-
tortions, Owl-ViT generally lags behind, especially as the complexity of corrup-
tions increases. A meta-comparison (Fig. 1 reveals varying degrees of resilience
among the models. Grounding DINO stands out for its robustness, maintaining
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Table 5: Robustness evaluation on Blur group: Zoom blur, Defocus blur, Motion blur,
and Glass blur corruption subsets in the COCO-C dataset.

Corruption Severity Owl-ViT YOLO-World Grounding DINO
IoU=0.50:0.95 IoU=0.50 IoU=0.50:0.95 IoU=0.50 IoU=0.50:0.95 IoU=0.50

Zoom blur 1 8.3 15.8 12.6 20.8 13.3 22.6
Zoom blur 2 5.1 10.5 4.7 8.8 10.0 18.6
Zoom blur 3 3.4 7.4 3.0 6.0 8.1 16.1
Zoom blur 4 2.2 5.1 1.8 3.9 6.4 13.5
Zoom blur 5 1.6 3.9 1.2 2.7 5.4 11.9

Defocus blur 1 17.9 28.1 28.0 36.3 20.7 28.2
Defocus blur 2 15.5 24.1 19.4 26.0 18.8 26.2
Defocus blur 3 11.9 18.4 14.0 19.2 16.7 23.9
Defocus blur 4 9.1 14.1 9.1 12.7 14.2 20.5
Defocus blur 5 6.9 10.8 5.1 7.2 12.8 18.7
Motion blur 1 19.4 31.8 27.9 37.3 21.8 30.1
Motion blur 2 16.2 26.7 17.3 24.5 19.5 26.2
Motion blur 3 12.0 20.3 11.0 16.0 16.0 22.0
Motion blur 4 7.8 13.3 5.2 7.9 12.5 19.1
Motion blur 5 5.5 9.2 2.8 4.4 10.6 18.2
Glass blur 1 17.3 26.9 25.7 33.7 21.1 28.5
Glass blur 2 14.2 22.0 15.0 20.1 15.4 19.8
Glass blur 3 8.3 12.9 4.5 6.3 12.6 17.6
Glass blur 4 6.8 10.5 3.1 4.3 11.2 15.7
Glass blur 5 5.1 7.9 1.9 2.6 9.3 13.5

Original COCO - 26.40 42.90 39.30 51.20 48.40 -

Table 6: Robustness evaluation on Noise group: Gaussian noise, Shot noise, and Im-
pulse noise corruption subsets in the COCO-C dataset.

Corruption Severity Owl-ViT YOLO-World Grounding DINO
IoU=0.50:0.95 IoU=0.50 IoU=0.50:0.95 IoU=0.50 IoU=0.50:0.95 IoU=0.50

Gaussian noise 1 22.4 36.8 28.2 36.8 21.8 29.6
Gaussian noise 2 19.3 32.0 23.4 31.0 19.3 26.2
Gaussian noise 3 14.9 24.7 16.5 22.0 19.4 27.3
Gaussian noise 4 9.9 16.5 8.5 11.4 17.7 25.9
Gaussian noise 5 4.6 7.5 2.1 2.8 12.7 19.1

Shot noise 1 22.7 37.4 28.4 37.1 22.2 29.9
Shot noise 2 19.3 31.9 18.2 24.5 20.2 27.5
Shot noise 3 14.8 24.4 12.5 17.0 18.5 24.7
Shot noise 4 9.4 15.4 4.7 6.5 15.2 21.0
Shot noise 5 5.5 8.9 1.7 2.4 12.1 18.0

Impulse noise 1 19.6 32.2 25.8 33.8 22.7 30.9
Impulse noise 2 17.1 28.0 15.6 20.9 21.4 29.2
Impulse noise 3 14.7 24.3 11.7 15.9 20.4 28.6
Impulse noise 4 9.9 16.5 4.5 6.1 18.4 26.7
Impulse noise 5 5.1 8.5 0.9 1.3 13.4 20.1

Original COCO - 26.40 42.90 39.30 51.20 48.40 -

closer performance levels between the original and out-of-distribution bench-
marks. YOLO-World shows moderate resilience, with a noticeable but smaller
performance drop compared to OWL-ViT, which experiences the most signifi-
cant decrease in mAP when transitioning from COCO to OOD benchmarks.
Increased severity levels: Figure 7 illustrates the decline in performance
across five severity levels for the Owl-ViT, YOLO-World, and Grounding DINO
models. YOLO-World consistently outperforms the other models across all sever-
ity levels, maintaining a higher mean IoU, particularly at severity level 1 where
it achieves a performance peak notably higher than its counterparts. As severity
increases, all models demonstrate a downward trend, with Owl-ViT having a
substantial drop, especially notable between severity levels 1 and 4. Grounding
DINO, while not leading at lower severities, shows a more gradual decline, sug-
gesting a degree of robustness in more challenging conditions, as its performance
at severity level 5 remains competitive with YOLO-World’s. The consistency of
these results with the earlier detailed performance metrics across various cor-
ruption types validates the trend that model robustness significantly diminishes
with increased corruption severity. This emphasizes the importance of robustness
evaluations across different levels of corruption severity to assess the reliability
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Table 7: Robustness evaluation on Digital group: Pixelate, Contrast, Elastic Trans-
form, and Jpeg compression corruption subsets in the COCO-C dataset.

Corruption Severity Owl-ViT YOLO-World Grounding DINO
IoU=0.50:0.95 IoU=0.50 IoU=0.50:0.95 IoU=0.50 IoU=0.50:0.95 IoU=0.50

Pixelate 1 24.8 40.0 23.4 30.2 23.3 31.1
Pixelate 2 24.3 39.1 13.5 17.8 21.5 28.4
Pixelate 3 17.7 28.0 4.9 6.5 17.5 23.3
Pixelate 4 12.8 19.9 1.9 2.7 13.8 18.4
Pixelate 5 8.5 12.6 0.6 0.7 9.9 13.5
Contrast 1 21.1 33.9 29.7 38.3 23.7 32.3
Contrast 2 19.5 30.9 21.8 28.7 23.0 31.3
Contrast 3 16.3 25.6 18.4 24.1 22.0 30.0
Contrast 4 9.2 14.1 9.4 12.5 16.0 24.0
Contrast 5 2.3 3.5 1.6 2.0 11.0 16.1
Elastic 1 21.6 35.3 27.9 36.7 24.0 33.5
Elastic 2 19.4 32.3 19.1 26.2 22.8 32.3
Elastic 3 16.8 28.2 14.8 20.7 20.5 30.1
Elastic 4 14.4 24.4 11.7 16.5 19.3 28.2
Elastic 5 11.6 20.0 8.2 11.8 17.2 25.5

Jpeg comp. 1 27.3 44.6 24.9 32.5 24.3 33.6
Jpeg comp. 2 26.9 44.3 15.2 20.7 22.4 30.6
Jpeg comp. 3 26.5 44.1 12.4 16.7 19.0 26.2
Jpeg comp. 4 21.4 36.5 6.8 9.3 17.3 24.3
Jpeg comp. 5 13.0 22.4 2.6 3.5 14.3 20.3

Original COCO - 26.40 42.90 39.30 51.20 48.40 -

of models in real-world scenarios. These findings emphasize the need for further
research on robust models capable of maintaining performance under varying
degrees of corruption. The consistent performance drop across models points to
an essential area for future research: enhancing object detection models’ adapt-
ability and resilience against varied and newer visual concept.

6 Conclusion

To the best of our knowledge, we are making one of the earliest attempts to
understand zero-shot evaluation on open-vocabulary foundation models through
the perspective of robustness under distribution shifts. Through extensive analy-
sis of three recent open-vocabulary foundation object detection models on three
public benchmarks, we show that object detection under conditions of out-of-
distribution (OOD) shifts poses significant challenges regarding performance de-
viation, advocating increased focus and investigation by the research community.
Using vision-language models combined with effective, prompt engineering can
be the future direction for developing more robust open-vocabulary object de-
tectors. Enhancing robustness against various distribution shifts increases the
trustworthiness of open-vocabulary object detection models, potentially leading
to their adoption across diverse applications.
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