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ABSTRACT

The foundation of reproducible science lies in protocols that are precise, logically
ordered, and executable. The autonomous generation of these protocols through
natural language queries could greatly improve the efficiency of the reproduction
process. However, current leading large language models (LLMs) often generate
incomplete or inconsistent protocols, limiting their utility. To address this limi-
tation, we first introduce SciRecipe, a large-scale dataset of over 12K structured
protocols spanning 27 biological subfields and encompassing both comprehen-
sion and problem-solving tasks. To further improve protocol generation, we pro-
pose the “Sketch-and-Fill” paradigm, which separates analysis, structuring, and
expression to ensure each step is explicit and verifiable. Complementing this,
the structured component-based reward mechanism evaluates step granularity, ac-
tion order, and semantic fidelity, aligning model optimization with experimental
reliability. Building on these components, we develop Thoth, trained through a
staged Knowledge-to-Action process that progresses from knowledge acquisition
to operational reasoning and ultimately to robust, executable protocol generation.
Across multiple benchmarks, Thoth consistently surpasses both proprietary and
open-source LLMs, achieving significant improvements in step alignment, logi-
cal sequencing, and semantic accuracy. Our approach paves the way for reliable
scientific assistants that bridge knowledge with experimental execution.

1 INTRODUCTION

The planning and execution of scientific experiments hinge on protocols that serve not merely as
textual guidelines but as operational blueprints detailing procedures, materials, and logical depen-
dencies (Freedman et al., 2015; Goodman et al., 2016). A well-structured protocol ensures that
experiments are reproducible, safe, and scientifically valid (of Sciences et al., 2019), which is es-
sential for cumulative progress in the life sciences. While recent advances in large language models
(LLMs) have greatly expanded their role in biomedical research, ranging from literature-based dis-
covery to domain-specific question answering (Devlin et al., 2019; Brown et al., 2020; Lee et al.,
2020; Beltagy et al., 2019), their ability to produce reliable experimental protocols remains under-
developed. Existing datasets and benchmarks are typically confined to comprehension tasks (Liu
et al., 2025; Jiang et al., 2024), thereby neglecting the dimensions of planning and problem solv-
ing required to support reproducibility and practical execution. As a result, researchers often find
that models offer fragmented recommendations on experimental procedures but fall short of produc-
ing concise, logically ordered protocols that can be directly implemented in laboratory workflows
(O’Donoghue et al., 2023; Yi et al., 2024).

Currently, proprietary models (Achiam et al., 2023; Comanici et al., 2025; Jaech et al., 2024;
OpenAI, 2025) such as GPT-5 demonstrate strong capabilities in procedural reasoning, while
domain-specific scientific systems complement LLMs with curated knowledge bases or tool-assisted
pipelines (Huang et al., 2025; Jin et al., 2025). Despite these advances, the generated protocols of-
ten contain unordered steps, redundant operations, factual inconsistencies, or hallucinated actions
(O’Donoghue et al., 2023; Yi et al., 2024; Jiang et al., 2024), undermining both reproducibility and
scientific credibility. Moreover, evaluation remains a central bottleneck: metrics such as BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), and BERTScore (Zhang et al., 2019) capture only superfi-
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cial lexical overlap, failing to reflect whether the generated action sequence is logically consistent,
semantically faithful, and practically executable. While “LLM-as-a-judge” frameworks align better
with human preferences, they introduce prohibitive costs to reinforcement learning (RL) pipelines,
limiting scalability (Liu et al., 2023; Zheng et al., 2023). Existing reward designs further neglect
the structured and verifiable nature of protocols, producing outputs that are linguistically fluent but
experimentally unreliable (Zeng et al., 2023). These limitations highlight the need for an approach
that integrates structured and efficient evaluation.

In this work, we introduce a comprehensive framework that advances both data and modeling for
protocol generation. At its core lies the “Sketch-and-Fill” paradigm, which formulates protocol gen-
eration as a structured reasoning process: each step is decomposed into essential components and
expressed in natural language with explicit correspondence, ensuring logical coherence and exper-
imental verifiability. To support this paradigm, we curate SciRecipe, a large-scale dataset of over
12K protocols spanning diverse domains and covering both Protocol-Comprehension and Problem-
Solving tasks. Building on this foundation, we propose the Structured COmponent-based REward
(SCORE) mechanism, the central innovation of our framework. SCORE provides a structured re-
ward and evaluation scheme that captures three complementary dimensions: step granularity (con-
trolling scale and avoiding redundancy), action ordering (ensuring logically consistent sequences
for reproducibility), and semantic fidelity (verifying alignment between predicted and reference
actions, objects, and parameters). By jointly modeling these dimensions, SCORE moves beyond
conventional text-based metrics to directly assess whether protocols are executable, interpretable,
and scientifically sound. It serves both as an effective RL training signal and as a reliable metric for
evaluation. Based on these components, we develop Thoth, a protocol-generation model trained to
combine structured reasoning with SCORE-guided evaluation. Extensive experiments demonstrate
that Thoth outperforms SOTA models, particularly in step alignment, logical sequencing, and se-
mantic accuracy. Just as importantly, the protocols it generates are concise and reproducible, which
are qualities often absent from existing systems. Our main contributions are as follows:

• We curate SciRecipe, a large-scale, multi-task dataset covering over 27 biological subfields,
designed to serve as a foundation for both training and evaluating on protocol generation.

• We introduce the Sketch-and-Fill paradigm, a reasoning framework that aligns with the
logic of experimental design by converting open-ended queries into verifiable protocols.

• We propose the SCORE mechanism, a structured reward and evaluation framework that
jointly measures step granularity, order consistency, and semantic fidelity, ensuring that
protocols are not only linguistically fluent but also experimentally executable.

• We develop Thoth, a protocol-generation model with strong reasoning abilities, which
achieves SOTA performance across protocol-specific and broader scientific benchmarks.

2 RELATED WORKS

LLMs in the Life Science Recent progress in life science LLMs has shifted from general-purpose
systems to domain-specific models. BioBERT and SciBERT (Lee et al., 2020; Beltagy et al., 2019),
pretrained on large-scale biomedical corpora, substantially improved tasks such as information ex-
traction and question answering (QA). Autoregressive models like BioGPT (Luo et al., 2022) fur-
ther advanced generative abilities, achieving strong and consistent results on PubMedQA (Jin et al.,
2019). These works collectively demonstrate the effectiveness of domain-specific pretraining and
task adaptation, yet remain limited to knowledge-based tasks (e.g., QA, summarization) and cannot
produce executable protocols. Related to our goal, BioPlanner (O’Donoghue et al., 2023) proposes a
pseudocode-based evaluation framework for assessing biological protocol planning. While valuable
for benchmarking LLM reasoning, it focuses on pseudocode reconstruction rather than generating
natural-language, experimentally executable protocols, making it complementary to our work. In
contrast, proprietary models (OpenAI, 2025; Comanici et al., 2025; Jaech et al., 2024) such as GPT-
5 leverage massive corpora, parameter scales, and reasoning mechanisms to generate preliminary
multi-step protocols. More recent efforts (Huang et al., 2025; Jin et al., 2025; Zhang et al., 2025c;
Gao et al., 2025), including Biomni and STELLA, integrate external knowledge and tools to sup-
port task-oriented solutions. Nonetheless, current models still struggle with redundancy, misordered
steps, and hallucinations, thereby limiting their practical usability. To address this gap, we propose
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a biologically oriented model trained on real protocols, designed to generate rigorous experimental
procedures through a structured scientific reasoning paradigm.

The protocol says to mix 5 mL gel embedding premix with 25 µL of 10% ammonium persulfate 
and 2.5 µL TEMED. If I only need 1 mL premix for a single brain slice, how should I scale the 
recipe and what exact volumes of APS and TEMED should I use?

Thoth

ChatGPT-4o

Step 1: {"action": "measure", "objects": ["gel embedding premix"], "parameters": ["1 ml"]}
Step 2: {"action": "add", "objects": ["10% ammonium persulfate"], "parameters": ["5 µl"]}
Step 3: {"action": "add", "objects": ["temed"], "parameters": ["0.5 µl"]}
Step 4: {"action": "mix", "objects": ["gel embedding solution"], "parameters": ["thoroughly"]}

Step 1: {"action":"measure","objects":["gel embedding premix"],"parameters":["1 ml"]}
Step 2: {"action":"measure","objects":["10% ammonium persulfate"],"parameters":["5 µl"]}
Step 3: {"action":"add","objects":["temed"],"parameters":["5 µl"]}
Step 4: {"action":"mix","objects":["gel embedding premix","10% ammonium persulfate","temed"],"parameters":
["until homogeneous"]}

“Concise and 
Logically Ordered”

“Factual Inconsistency”

“Executional Inaccuracies”

“Action Mismatch”

Raw Protocols Extraction & Cleaning

Data Filtering

Deduplication

Expert Review

Structuring

Rule-based

Model-based

Quality Control

Protocol 
Metadata

 exp_name:
 abstract:
 materials:
 equipments:
 procedures:
 notes:

Construct
Protocol-

Comprehension

Problem-Solving

overview specific

Check

Format Check & 
Repair Module

Six Scientific 
Review Module

Expert Review

（b）

（a）

Figure 1: (a) Thoth’s performance advantages over other models, shown through qualitative evalua-
tion (left) and quantitative evaluation (right). (b) The construction pipeline of the SciRecipe dataset.

Reward Design and Evaluation for Open-Ended Generation Designing effective evaluation re-
mains a key challenge in open-ended generation. Unlike short-text tasks with clear ground truth,
long-text generation such as experimental protocols lacks definitive answers and must therefore be
assessed along multiple dimensions, including coherence, factuality, and executability (Becker et al.,
2024; Que et al., 2024). Metrics such as ROUGE, BLEU, and BERTScore (Lin, 2004; Papineni et al.,
2002; Zhang et al., 2019) capture surface similarity but fail to fully reflect reasoning depth and often
diverge from human judgment. The “LLM-as-a-judge” paradigm provides closer alignment with
human preferences (Gu et al., 2024; Zheng et al., 2023), yet it usually introduces prohibitive com-
putational costs in RL training (Shao et al., 2024; Schulman et al., 2017; Ahmadian et al., 2024; Hu,
2025). Alternative approaches, including smaller evaluator models or reward mechanisms such as
PrefBERT, Direct Reasoning Optimization, and LoVeC (Li et al., 2025; Xu et al., 2025; Zhang et al.,
2025a), can improve efficiency or reliability but still require repeated model calls. To address these
issues, we propose a rule-based evaluation that extracts key protocol elements through structured
reasoning, thereby offering direct and verifiable reward signals with efficiency and interpretability.

3 METHODS

This section outlines our approach to leveraging high-quality experimental protocol data and a
component-wise reward mechanism to enhance the model’s ability to generate experimental so-
lutions. We first propose the “Sketch-and-Fill” reasoning paradigm, which aligns with experimental
execution logic to guide the model in organizing experimental steps effectively. Building on this,
we construct SciRecipe, a dataset encompassing diverse experimental tasks and scenarios. Subse-
quently, we develop the SCORE mechanism to evaluate protocol quality across multiple dimensions,
serving as a reward signal to improve the model’s generalization in protocol generation tasks. Ulti-
mately, by leveraging SciRecipe and a multi-stage Knowledge-to-Action learning strategy, we train
the Thoth model, which exhibits strong reasoning capabilities for protocol generation.

3.1 SCIRECIPE DATASET

In life science research, protocols serve as essential documents to ensure experimental reproducibil-
ity and reliability, providing detailed records of materials, equipment, procedures, and critical notes.
Recently, platforms such as Nature Protocols, Bio-protocol, and Protocols.io (Wikipedia contribu-
tors, 2025; Bio-protocol, LLC, 2025; Teytelman et al., 2016) have compiled a vast number of stan-
dardized workflows, offering rich resources for the scientific community. From these sources, we
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collected over 23K protocols spanning 27 subfields including neuroscience, molecular biology, and
cancer biology. After cleaning and structural processing, approximately 12K high-quality data were
retained as the foundation of our dataset (the preprocessing pipeline is detailed in the Appendix
A.1). Building on this foundation, we introduce the SciRecipe dataset, designed to improve and
evaluate LLMs in experimental protocol understanding and generation. SciRecipe comprises eight
task types, grouped into two categories: Protocol-Comprehension Tasks (overview and specific),
targeting global summarization and fine-grained analysis, and Problem-Solving Tasks (retrieval,
planning, troubleshooting, constraint, scaling, and safety), simulating typical challenges encoun-
tered throughout experimental workflows. Together, these tasks form a complementary “understand-
ing–application” loop. The construction pipeline of SciRecipe is illustrated in Figure 1 and further
elaborated in the Appendix A.4. Notably, benchmarks focused on scientific experimental protocol
generation are currently scarce (Liu et al., 2025). To address this gap, we introduce SciRecipe-Eval,
built with a similar pipeline, with dataset splits and difficulty levels detailed in the Appendix B.

3.2 “SKETCH-AND-FILL” REASONING PARADIGM

To transform protocol generation tasks into an executable and evaluable form, we propose the
“Sketch-and-Fill” reasoning paradigm. This paradigm is centered on a structured three-stage out-
put: <think> → <key> → <orc>, with an additional <note> section dedicated to laboratory
safety precautions. The core idea is to organize outputs in the sequence of reasoning, structur-
ing, and expression, thereby enabling the design of a structured reward mechanism for RL. An
overview of this paradigm is provided in Figure 2. Specifically, <think>, <key>, and <orc>
denote the reasoning process, the extraction of key information, and the final natural language out-
put, respectively. In <think>, the model decomposes sub-goals, identifies sequential dependen-
cies, and justifies the necessity of the proposed experimental steps, ensuring that the protocol is
grounded in scientific reasoning. The parsed steps are then organized through a two-phase process
of “Sketch” and “Fill.” In the “Sketch” phase, represented by <key>, the strategies from <think>
are transformed into a sequence of atomic, machine-readable steps. Each step is constrained to
a single JSON dictionary representing one action unit: {"action": verb, "objects":
[...], "parameters": [...]}. This abstraction reformulates natural language steps into
predicate–object–adverbial triplets, bridging free-form instructions with structured sequences. The
subsequent “Fill” phase, represented by <orc>, expands these steps into fluent natural language
instructions, ensuring readability and executability. Formally, <key> is defined as Y:

Y = (y1, . . . , ym) , yi = (ai,Oi,Pi) , (1)
where ai is the experimental operation, Oi denotes the objects being acted upon, and Pi speci-
fies the parameters (e.g., temperature, concentration). Consistency constraints, such as enforcing
“One-Action-Per-Step” and maintaining uniform parameter application across objects, are applied
to standardize the data format. In the “Fill” phase, represented by <orc>, the elements of <key>
are rendered into human-readable natural language. A strict one-to-one correspondence in step
count and semantics is enforced, ensuring no information is added or omitted, with the focus solely
on readability. Overall, the “Sketch-and-Fill” paradigm standardizes scientific protocol generation
by grounding open-ended language output in an executable structural space. This not only supports
stable RL training but also provides a consistent foundation for automatic evaluation.

3.3 SCORE MECHANISM

3.3.1 OPTIMIZATION OBJECTIVE

In scientific research, experimental protocols are not merely narrative texts but highly structured
action guidelines refined through long-term practice. A qualified protocol must describe steps com-
pletely while conveying experimental logic: what to do (action), on what objects (objects), and
under what conditions (parameters). Traditional text generation metrics (e.g., ROUGE, BLEU,
BERTScore) often overlook such structure, rewarding lexical overlap even when action sequences
are disordered. To address this, we propose the SCORE mechanism. Its optimization objective
emphasizes both local alignment of protocol content and global logical consistency, defined as:

max
θ

E(x,A,y∗)∼D Ey∼πθ(·|x,A)

 n∑
i=1

m∑
j=1

Rlocal

(
yi, y∗j

)
⊗Rglobal

(
y, y∗

) , (2)
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Step 4: {quantify, protein extract, bradford assay}
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<key>...
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<key> Parsing
Action: xxx

Objects: [xxx]

Parameters: []

Step 1: {harvest, cell cultures, buffer, cold}  
Step 2: {centrifuge, lysate, clarify}  
Step 3: {lyse, cell pellets, lysis buffer, cold}  
Step 4: {stain, cell pellets, dye}  
Step 5: {quantify, protein extract, assay}  

Rollout 2 Rollout 3
Step 1: {harvest, pellets in water, 
resuspend}  
Step 2: {quantify, cell pellets, stain}  
Step 3: {lyse, cell pellets, boil, dry}  
Step 4: {centrifuge, lysate, resuspend}  

Step 1: {harvest, pellets in water, 
resuspend}  
Step 2: {lyse, cell pellets, boil, dry}  
Step 3: {quantify, protein extract, stain}  
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4 Steps 4 Steps 5 Steps 4 Steps 
mismatch
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Figure 2: Illustration of the SCORE mechanism and the “Sketch-and-Fill” reasoning paradigm.
Three representative rollouts are subjected to a concise analysis across step scale, order consistency,
and semantic consistency, while detailed computations are provided in Section 3.3.2.

which defines πθ as the policy model with parameters θ, x as the context, A as the action library, and
y∗ as the ground-truth protocol. Rlocal and Rglobal denote reward functions at different granularities,
combined by ⊗ (details in Section 3.3.2). The core idea is to shift evaluation from superficial
similarity to multidimensional alignment, including logical order and execution precision. Unlike
metrics focusing only on text overlap or embeddings, SCORE directly measures the operability of
generated protocols, providing scientific, interpretable, experiment-aligned optimization signals.

3.3.2 REWARD DESIGN

The SCORE mechanism adopts a progressive design (see Figure 2). First, a gating stage ensures
basic structural and consistency requirements. Then, fine-grained rewards for step scale and step
semantics are combined into the final reward signal. This approach encourages the model to fol-
low a rational reasoning paradigm and enhances both coherence and executability of the generated
protocols. Format Gate: The output must contain the four sections <think>, <key>, <orc>,
and <note> in the correct order. Each step in <key> must follow the format Step x:{json},
explicitly specifying action, objects, and parameters, ensuring parseability for subsequent
reward calculation. Consistency Gate: This gate verifies step-by-step correspondence between
<key> and <orc>. Every action, object, and parameter in <key> must appear in <orc> with at
least 95% coverage (see Appendix C.1 for details), ensuring the protocol is a practical guide rather
than a hollow framework. Only protocols passing both gates are used for reward computation.

Step Scale: The quality of a protocol depends on proper granularity, as too few steps cause omissions
while too many lead to redundancy. We design a step scale reward that measures the gap between
generated and gold step counts, with one atomic action per step guaranteed by the “Sketch-and-Fill”
paradigm. Matching counts yield a score of 1, and deviations are penalized by cosine decay that
drops to zero beyond a threshold. A length penalty is also applied, and when the average word length
per step exceeds a limit, the score is proportionally reduced to discourage verbosity. Formally:

f(d) =

{
cos

(
πd
2M

)
, d < M

0, d ≥ M

}
, g(L̄) =

{
1, L̄ ≤ L
L̄, L̄ > L

}
, rscale =

f(|Npred −Ngold|)
g(L̄)

, (3)

where Npred and Ngold are predicted and gold step counts, and M = max(1, ⌊0.6Ngold⌋) is the
deviation threshold. L̄ denotes the average text length per step. f(d) penalizes step mismatch via
cosine decay, while g(L̄) penalizes verbosity. Together, they yield the step scale reward rscale.

Step Semantics The step semantics reward is central to SCORE, as it reflects the core execution
logic of protocols. It consists of two components: Order Consistency and Semantic Consistency.
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a) Order Consistency, denoted as Order(·), assesses whether the generated sequence of experi-
mental actions matches the ground truth. We adopt a “Strict” mode (see details in Appendix C.2),
rewarding only if the predicted and ground-truth sequences are identical or mutually subsequences,
and zero otherwise. This design mirrors laboratory reality since some steps may be repeated or
omitted, but a disordered sequence renders the protocol invalid regardless of textual similarity.

b) Semantic Consistency is then calculated on the basis of action alignment, since actions function
as the anchor of experimental steps (see Appendix C.3). In practice, researchers first decide what
operation to perform (e.g., “incubate”, “add”), and only then specify the relevant objects and condi-
tions. Without the action anchor, textual similarity cannot guarantee executability. Thus, we align
predicted and gold actions step by step. For each aligned pair (i, j), the overlap of object sets is
measured using intersection-over-union, with subword-based similarity used as compensation when
objects differ but are semantically related. Parameters are compared only if object overlap ≥ 0.5,
reflecting the principle that condition descriptions are meaningless for incorrect objects. Formally:

Obj(i, j) =
|Ôi ∩ O∗

j |
|Ôi ∪ O∗

j |
, Par(i, j) =


1, P̂i = ∅,P∗

j = ∅
0, P̂i = ∅ ∨ P∗

j = ∅
|K(P̂i)∩K(P∗

j )|
|K(P̂i)∪K(P∗

j )|
, otherwise

, (4)

where Ôi and P̂i are the predicted object and parameter sets at step i, O∗
j and P∗

j are the corre-
sponding ground truth sets at step j, and K(·) extracts subword sets for reliable comparison. To
better incorporate positional fidelity, we apply a decay factor mij = max{0, 1 − (|i − j|/D)λ},
where D is the number of ground truth steps. This reduces the score when predicted actions, though
correct in type, appear far from their reference positions. The final score is:

rsemantics = Order(â, a∗) +
1

|W|
∑

(i,j)∈W

mij

(
Obj(i, j) + 1

2Par(i, j)
)
, (5)

where W is the set of aligned action pairs. Unlike the step scale (equation 6), we adopt an additive
combination to avoid over-penalization. This allows partial credit when objects or parameters are
imperfectly matched, as long as the action sequence remains reasonable. Such tolerance improves
training stability and aligns with how real researchers judge protocols, where minor detail errors
may be acceptable if the experimental logic is preserved. Finally, the overall SCORE is defined as:

SCORE(y, y∗) = Iformat(y) · Icons(y) · rscale(y, y
∗) · rsemantics(y, y

∗), (6)

where Iformat and Icons are gating functions. This design ensures that only protocols satisfying struc-
tural, step scale, and semantic requirements obtain high rewards (Wang et al., 2025), thereby mitigat-
ing reward hacking and more faithfully simulating how protocols are evaluated in practice. SCORE
also serves as a multidimensional evaluation framework, with details in “Evaluation Metrics” of
Section 4.1.

3.4 KNOWLEDGE-TO-ACTION LEARNING STRATEGY

Inspired by curriculum learning (Bengio et al., 2009; Wang et al., 2021), we propose a three-stage
Knowledge-to-Action Learning framework that progressively enables the transition from textual
knowledge to protocol generation. The framework parallels human learning, progressing from
knowledge accumulation to standardized operations and finally to exploratory optimization. In the
first stage, pre-training, the model learns the semantic structure and operational logic of experimen-
tal language from large-scale protocol texts (see Appendix J.2 for further experiments). The second
stage, supervised instruction tuning (SFT), is conducted on data following the “Sketch-and-Fill”
paradigm, incorporating subtasks such as parameter filling, step ordering, and error correction (Liu
et al., 2025). SFT both injects domain knowledge and provides a cold start for RL, aligning outputs
with the designated paradigm. The third stage applies RL with the GRPO algorithm (details in Ap-
pendix D & J.1.1) (Shao et al., 2024). By removing entropy loss and reducing the KL penalty, we
enhance exploration and avoid premature convergence. Combined with SCORE rewards, this stage
improves generalizability and robustness, ensuring more reliable and executable protocol generation.
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4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENT SETTINGS

Benchmarks & Baselines To evaluate our model, we adopt two types of benchmarks. The first fo-
cuses on real-world protocol generation, represented by SciRecipe-Eval, which emphasizes linguis-
tic quality and practical executability. The second covers broader scientific reasoning and question
answering across domains, including Humanity’s Last Exam (HLE), LAB-Bench, and PubMedQA
(Phan et al., 2025; Laurent et al., 2024; Jin et al., 2019). (Additionally, BioProBench sub-tasks (Liu
et al., 2025) are used as supplementary experiments for protocol comprehension.) We further com-
pare against proprietary, open-source, reasoning, and scientific LLMs (see Appendix E for details).

Implementation Details We used GPT-5 Chat (OpenAI, 2025) (temperature 0.6) to construct
SciRecipe and Gemini 2.5 Flash (Comanici et al., 2025) (temperature 0.2) for validation. In the
SCORE mechanism, hyperparameters L = 30 and λ = 1.5 were determined through iterative
experiments. For training Thoth, we adopted Qwen3-8B as the base model (Yang et al., 2025). Pre-
training and SFT used LoRA fine-tuning via LLaMA-Factory (Zheng et al., 2024), while RL full-
parameter tuning was conducted with the VeRL framework (Sheng et al., 2025). All experiments
ran on eight Nvidia H100 GPUs. Further hyperparameters and data ratios are given in Appendix F.

4.2 EVALUATION METRICS

We designed metrics tailored to different task types. For natural language generation, BLEU,
ROUGE, METEOR, and keyword matching (Liu et al., 2025) were used to assess surface-level
semantic similarity (Papineni et al., 2002; Lin, 2004; Banerjee & Lavie, 2005; Grootendorst, 2020).
Based on the SCORE mechanism, we introduced five executability metrics, namely Step-MATCH
(Step-M), Order-LSC/S/Tau, and Semantic-Alignment (Semantic-A), to evaluate step scale, order,
and semantic fidelity For multiple-choice, classification, and ranking tasks, we employed Accuracy,
F1, Exact Match, and Kendall’s Tau (Abdi, 2007).

Although SCORE was originally introduced as a reward mechanism for reinforcement learning, its
structured design naturally yields a set of evaluation metrics for protocol generation. Because each
step in a protocol is decomposed into an action, an object, and a set of parameters, the resulting
metrics allow the assessment of executability and structural fidelity beyond surface-level text simi-
larity. This formulation is applicable not only to experimental protocols but also to other structured
generation tasks, such as task planning, robotic operation scripts, and multi-step reasoning.

Formally, let the predicted key-step sequence be ŝ = (ŝ1, . . . , ŝn) and the reference sequence be
s∗ = (s∗1, . . . , s

∗
m), with corresponding action sequences â and a∗. Let W = {(ik, jk)}Kk=1 denote

the aligned action anchors (See Appendix C.3). Based on this structure, we introduce five metrics.

Step-M measures step-level completeness through strict length matching:
Step-M(ŝ, s∗) = I[ |ŝ| = |s∗| ]. (7)

Order-S enforces exact sequential agreement of actions:
Order-S(â,a∗) = I[ â = a∗ ]. (8)

Order-LCS provides a more tolerant measure based on the normalized longest common subse-
quence:

Order-LCS(â,a∗) =
2L(â,a∗)

n+m
. (9)

Order-Tau evaluates the relative order of aligned anchors using a Kendall-style correlation:

Order-Tau(W) =
C −D′

C +D′ , (10)

where C and D′ denote concordant and discordant anchor pairs, defaulting to 0 when C +D′ = 0.

Finally, Semantic-A corresponds to the semantic consistency score described in Section 3.3.2. It
evaluates object correctness, parameter fidelity, and positional consistency over the aligned anchors,
providing a structured measure of semantic accuracy and executability. Together, these metrics offer
a principled way to evaluate protocol generation quality by capturing step completeness, procedural
order, and semantic correctness in a unified structured framework.

7
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4.3 MAIN RESULTS

Table 1: Main results on SciRecipe-Eval. Metrics left of the dashed line evaluate executability, those
on the right measure lexical similarity. Bold denotes the best score (see Appendix I.2 for details).

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 40.04 73.27 24.00 70.33 44.00 38.95 48.42 44.66 52.05 48.41
GPT-5 27.79 58.12 11.35 53.55 18.79 21.31 32.96 32.55 39.17 32.84
GPT-5 Chat 36.30 73.21 21.17 65.67 25.00 29.57 42.04 41.95 47.87 42.53
Claude Sonnet 4 39.35 71.97 20.83 70.00 35.83 34.24 44.27 40.97 49.40 45.21
Claude Opus 4.1 41.32 71.70 21.80 71.93 34.59 34.69 44.42 40.36 50.00 45.65
Gemini 2.5 Flash 36.35 70.61 20.00 70.33 32.33 33.19 42.91 39.26 48.07 43.67
Gemini 2.5 Pro 35.80 72.68 21.83 70.17 32.00 31.37 44.16 45.59 48.58 44.69
Doubao-1.5-pro 33.33 73.29 23.67 70.00 47.50 38.16 46.88 38.71 48.74 46.70
Qwen2.5-Max 40.34 72.88 21.83 71.33 47.50 30.81 48.02 43.82 51.98 47.61

Open-Source SOTA
Qwen2.5-72B-Instruct 36.40 70.82 21.00 69.17 42.17 29.55 46.06 43.44 49.73 45.37
Qwen3-235B-A22B-Instruct 35.68 72.07 20.03 69.12 37.73 32.48 44.37 44.30 47.89 44.85
DeepSeek-V3 41.72 73.97 21.44 70.54 41.71 38.18 48.49 45.08 52.33 48.16
GPT-OSS-120B 32.86 69.97 17.67 64.17 27.83 30.72 43.44 42.90 49.92 42.16
Llama-3.1-405B-Instruct 35.92 69.46 18.03 67.78 39.23 36.42 44.86 42.17 48.09 44.66
Kimi-K2-Instruction 36.99 71.83 20.83 69.83 40.00 33.81 44.49 42.99 49.00 45.53

Reasoning Models
DeepSeek-R1 36.07 71.38 20.37 69.12 32.89 39.80 45.86 38.19 49.83 44.83
Grok 3 37.40 73.27 21.92 69.73 39.25 34.72 46.04 46.21 48.59 46.35
Grok 4 36.73 72.08 20.25 65.34 34.66 37.21 46.17 40.18 51.81 44.94
OpenAI-o1 34.74 73.40 18.53 67.45 35.39 35.68 46.29 43.82 50.13 45.05
OpenAI-o3 35.40 70.38 15.38 65.05 24.08 28.62 43.08 44.33 50.26 41.84

Qwen3-4B 24.37 53.55 13.67 50.50 28.83 14.52 24.74 23.95 27.69 29.09
Thoth-mini 44.28 74.68 25.33 70.83 52.67 43.32 49.23 46.41 53.13 51.10
Qwen3-8B 28.89 63.51 11.17 58.67 24.33 16.66 32.31 34.72 38.63 34.32
Thoth 46.60 75.34 25.50 73.33 53.00 43.62 50.02 47.39 54.13 52.10
Qwen3-14B 29.53 64.22 16.33 59.17 29.33 21.86 34.89 36.57 39.66 36.84
Thoth-14B 47.05 77.25 26.50 74.83 53.60 44.42 50.41 47.95 54.67 52.96
Qwen3-32B 30.99 66.82 16.83 60.33 30.50 23.57 35.25 37.94 41.98 38.25
Thoth-32B 48.17 78.87 27.00 75.17 54.33 44.54 50.74 48.74 55.81 53.71

+4.09

+0.68

+0.92

+3.71

+20.7

+24.8 +7.43

+10.87

Figure 3: Results on other scientific benchmarks. Slash
shading denotes baseline of Thoth models.

Protocol Generation We evaluated
protocol generation across two di-
mensions: executability, which em-
phasizes consistency in objects and
step order, and lexical similarity,
which reflects surface-level match-
ing. As shown in Table 1, Thoth
achieves SOTA results across all met-
rics. Compared to baselines, Thoth
and Thoth-mini improve average per-
formance by 17.78% and 22.01%,
underscoring the effectiveness of our
approach. Thoth also surpasses much
larger proprietary models, outper-
forming ChatGPT-4o by 3.69% on
average. Against the strongest open-
source model, DeepSeek-V3, Thoth
achieves gains of 4.88%, 4.06%,
and 11.29% on Semantic-Alignment,
Order-S, and Step-MATCH, respec-
tively, showing clear advantages in
step alignment, logical order, and ac-
tion fidelity. General-purpose SOTA models show notable capability, likely due to large-scale pre-
training, but mainly achieve superficial similarity and lack real-world executability. Reasoning-
oriented models also perform poorly, often producing overly complex outputs unsuited for labo-
ratory workflows (see Appendix I.1 for qualitative cases). Overall, Thoth demonstrates consistent
advantages across metrics, bridging knowledge-based text generation with executable protocols.

Fundamental Scientific Tasks Beyond protocol generation, we evaluated Thoth on three out-of-
domain biomedical benchmarks against recent scientific LLMs (Intern-S1 and SciDFM), with re-
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sults shown in Figure 3. Thoth consistently outperforms models fine-tuned on biomedical corpora,
exceeding Intern-S1 and Intern-S1-mini by 7.09% and 2.22% on average, and notably both Thoth
and Intern-S1-mini share Qwen3-8B as their base model. As illustrated in Figure 3, Thoth also
shows clear improvements over its baseline models (slash shading), achieving an average improve-
ment of 10.87%, while Thoth-mini improves by 7.43%. The performance gap between Thoth and
Thoth-mini further confirms the benefits of our approach. These results demonstrate that knowledge
and reasoning skills acquired from scientific protocols generalize effectively to broader biomedical
tasks. Additional experiments on protocol comprehension are provided in Appendix I.3.

4.4 ANALYSES

SciRecipe To assess the impact of different data components, we conducted ablation studies on
SciRecipe (Table 2). Models trained only on QA or generation QA showed weak results, with
BLEU-AVG below 40%. Adding Protocol-Comprehension tasks markedly improved executability,
with Order-LCS reaching 74.50%. Joint training on both task types further enhanced alignment,
with Step-M rising to 52.33%. The best overall performance was obtained when combining QA
with scientific review, achieving 46.60% on Semantic-A and 49.45% on AVG. These findings high-
light that diverse task coverage and systematic quality checks enhance the reliability of protocol
generation.

Table 2: Ablation studies on training set. ♣: trained only on SciRecipe Protocol-Comprehension
tasks; ♠: trained on both task types. QA and SciCheck denote inclusion of basic protocol QA and
scientific review of SciRecipe, respectively. ⋆: trained only on protocol generation QA.

SciRecipe QA SciCheck Semantic-A Order-LCS Order-S Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

✓ — — — — — 23.88 31.50 29.53 34.50 29.85
⋆ — — — — — 23.71 32.08 27.92 37.78 30.37

♣ ✓ 42.34 74.50 24.33 50.50 41.33 47.34 44.81 51.72 47.11
♣ ✓ ✓ 44.19 74.85 23.83 43.67 42.42 47.59 45.44 52.29 46.79
♠ ✓ 44.51 74.67 25.00 52.33 42.74 48.53 46.84 52.30 48.37
♠ ✓ 44.54 75.14 23.50 47.00 41.79 48.09 47.01 51.89 47.37
♠ ✓ ✓ 46.60 75.34 25.50 53.00 43.62 50.02 47.36 54.13 49.45

Reasoning Paradigm To align model outputs with experimental logic and generate evaluable pro-
tocols, we propose the “Sketch-and-Fill” reasoning paradigm. Its effect was systematically tested
through ablation experiments on four representative models: DeepSeek-V3, GPT-5 Chat, Thoth,
and its base model Qwen3-8B. Since outputs are in natural language, executability metrics were not
applicable, and Figure 4 reports results based on lexical similarity. The results show that “Sketch-
and-Fill” improves performance for all models except the base model, with notable gains on BLEU-
AVG. DeepSeek-V3, GPT-5 Chat, and Thoth achieve average improvements of 3.89%, 2.92%, and
3.79% over counterparts without the paradigm. For the base model, the lack of improvement is
attributed to reasoning failure due to missing knowledge injection from scientific protocols.

Table 3: Ablation studies on the SCORE mechanism. Evaluation covers step scale, semantic align-
ment, and overall reward design. KL(·) denotes the KL-divergence penalty in the loss function, and
“Vanilla” refers to using standard semantic similarity metrics as the reward signal.

SCORE Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Step Scale
w/o f(d) 43.67 55.97 6.83 51.83 10.00 43.09 37.28 26.08 43.31 35.34
w/o g(L̄) 38.89 74.37 23.67 71.00 51.00 43.18 46.14 44.92 52.80 49.55

w/o f(d)+g(L̄) 45.35 49.50 3.00 34.17 4.17 42.49 33.44 21.12 40.41 30.41

Semantic
Alignment

w/o mij 38.68 73.70 23.17 67.67 50.17 42.84 48.91 45.58 52.85 49.29
w/o Order(·) 40.93 61.27 12.83 48.00 33.33 37.26 45.35 43.27 49.46 41.30
w/o Order(·)
+f(d)+g(L̄) 44.15 58.22 7.67 42.83 43.33 38.45 45.78 43.52 48.74 41.41

Reward w/o KL(·) 39.96 74.43 22.67 69.33 46.67 42.73 46.03 44.82 53.36 48.89
Vanilla 38.74 63.41 21.50 52.36 44.50 45.52 50.12 43.90 50.54 45.62

Thoth 46.60 75.34 25.50 73.33 53.00 43.62 50.02 47.39 54.13 52.10

SCORE Mechanism In Section 3.3.2, we introduced the SCORE reward mechanism, consisting
of step scale, order consistency, and semantic consistency. To evaluate its role in RL training, we
conducted ablation studies, including variants that removed individual components, dropped the KL

9
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divergence penalty, or replaced SCORE with a vanilla reward based only on BLEU-AVG, ROUGE-
L, and BERTScore. Results are summarized in Table 3. Omitting the step scale reward leads to
sharp declines in Order-S and Step-M (6.83%/10% and 3%/4.17%, rows 1 and 3), indicating failures
to generate executable protocols and producing either verbose or incomplete outputs. Excluding
the positional decay factor (row 4) weakens penalties for misaligned steps and reduces semantic
consistency, under which Thoth still achieves a 7.92% gain in Semantic-A. The order consistency
reward is also critical because without enforcing execution order, steps become misarranged and
semantic coherence breaks down. Thoth surpasses the variants in rows 5 and 6 by 6.36% and 5.17%
on BLEU-AVG, respectively. Removing the KL penalty further degrades performance, with Table
3 showing a 3.21% average drop compared to Thoth. Although the vanilla reward improves BLEU-
AVG and ROUGE-L, the generated protocols exhibit poor executability with a 10.65% average
reduction. These results demonstrate the effectiveness of SCORE in guiding the model to generate
coherent and executable protocols. For further analyses of reward, see Appendix J.1.2 & J.1.3.

Pretrain SFT RL

Figure 5: Ablation studies on the training strategy. Left and middle: rightmost ∆ marks extreme
values across strategies. Right: Thoth’s training trajectory across stages.

BLUE-AVG

Rouge-L

METEOR
BLUE-AVG

Rouge-L

METEOR

KW-F1

w/ SaF

w/o SaF

KW-F1

Figure 4: Ablation studies on reasoning paradigm.
Performance differences with/without Sketch-and-Fill
(SaF) are shown in the top panel, and a visual compar-
ison is provided in the bottom panel.

Training Strategy To progressively equip
the model for solving complex scien-
tific problems, we propose the three-stage
Knowledge-to-Action Learning strategy.
We compared models trained at different
stages with Thoth to validate its effective-
ness. As shown in Figure 5 (left and mid-
dle), Thoth achieves SOTA performance
after staged training and consistently out-
performs models trained with only Stage
1+2 (pre-training and SFT) or without pre-
training (Stage 2+3 or Stage 2 alone).
Specifically, Thoth improves by an aver-
age of 11.08% on executability and 4.2%
on lexical similarity over Stage 1+2. It
further achieves mean gains of 1.44% and
8.79% over Stage 2+3 and Stage 2 across
both dimensions. Figure 5 (right) further
demonstrates that the three-stage process
progressively enhances performance, with
SFT improving lexical similarity and RL
strengthening rationality and executability.

5 CONCLUSION

In this paper, we introduced Thoth, a protocol-generation model grounded in the SciRecipe dataset,
the “Sketch-and-Fill” reasoning paradigm, and the SCORE mechanism. By integrating structured
reasoning with verifiable rewards, Thoth achieves SOTA performance on both protocol-specific and
broader scientific benchmarks. Equally important, the protocols it generates are concise, logically
coherent, and experimentally executable. This work provides a blueprint for building reliable sci-
entific assistants and demonstrates that structured reasoning frameworks combined with targeted
rewards are critical for advancing protocol generation and improving reproducibility.

10
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A SCIRECIPE

A.1 PREPROCESSING OF ORIGINAL SCIENTIFIC PROTOCOLS

In the preprocessing phase, we first employed MinerU (Wang et al., 2024) to identify and extract
protocol texts, as the majority of online experimental protocols are distributed in non-editable PDF
format. This step was essential because protocols published in PDF form often contain heteroge-
neous content such as figures, tables, references, and lengthy narratives, which substantially increase
the difficulty of accurate parsing and subsequent question–answer pair construction. To mitigate this
issue, we analyzed both the page count and the number of figures/tables in each document, and ap-
plied empirically determined thresholds to filter out overly long or structurally complex protocols.
Another important consideration was the removal of redundancy, since many protocols share highly
similar structures or represent slightly modified versions of the same experiment. Without careful
filtering, these near-duplicate entries could cause information leakage across training and evaluation
splits. To address this, we applied similarity detection and clustering. Specifically, we used Qwen3-
Embedding-8B (Zhang et al., 2025b) to vectorize protocol titles, built an efficient similarity search
index using FAISS (Douze et al., 2024), and conducted Top-K nearest-neighbor searches. Similar
pairs were identified by thresholding cosine similarity scores, after which a union–find algorithm
was applied to partition protocols into connected components. This process produced both pair-
wise and grouped similarity sets, effectively eliminating redundant samples while preserving data
diversity and representativeness. In addition, some protocols were accompanied by electronic sup-
plementary materials, which frequently contained fragmented or ambiguous instructions. Because
these supplementary files risked introducing inconsistencies and annotation difficulties, they were
uniformly removed from the dataset. To further guarantee the reliability of the corpus, we recruited
three doctoral students with extensive experimental experience to manually review a subset of the
data. Their verification ensured not only correctness but also balanced coverage across experimental
domains, ultimately enhancing both the diversity and representativeness of the retained corpus.

A.2 STRUCTURED INTEGRATION OF SCIENTIFIC PROTOCOLS

Because experimental protocols vary widely in writing style and formatting, we extracted common
elements to form a unified structured representation. The core fields included experiment name, re-
search background, reagents and materials, experimental equipment, and experimental procedures.
This integration was carried out in two complementary steps. First, we applied a rule-based method
that relied on regular expressions to match predefined keywords and extract the corresponding fields.
During this stage, Markdown tables were removed to avoid parsing errors, while figure and table
captions were preserved as valuable contextual information. The rule-based approach achieved re-
liable performance for protocols written in a highly standardized format, but its applicability was
limited for documents with more complex or irregular structures. To address these limitations, we
further adopted a model-based strategy. Specifically, we leveraged Grok-4 (xAI, 2025) to summarize
and restructure the original protocols, ensuring accurate extraction of key fields without introducing
fabricated content. The model also adjusted the ordering of experimental steps to maintain logical
and procedural consistency. This hybrid two-step pipeline allowed us to combine the precision of
rule-based parsing with the flexibility of model-based restructuring. Through this process, we ob-
tained over 12K structured protocols. Quality control measures were subsequently applied to filter
out entries with missing fields, excessively lengthy procedures, or dependencies on external online
resources. The resulting corpus provides a clean, logically consistent, and representative collection
of protocols suitable for downstream training and evaluation.

A.3 SUPPLEMENTARY DETAILS ON SCIRECIPE

When designing the eight task types in SciRecipe, we defined explicit objectives and representative
scenarios for each. Together, these tasks cover the entire lifecycle of experimental research, ensuring
that the dataset trains and evaluates both general reasoning and practical execution.

• Overview: Requires the model to generate a hierarchically organized summary of the pro-
tocol, enabling rapid comprehension of its global structure.

• Specific: Focuses on step-by-step decomposition of procedures, ensuring the model cap-
tures the micro-level operational logic.
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• Retrieval: Targets precise extraction of experimental parameters (e.g., temperature, pH,
concentration), emphasizing accuracy in reporting.

• Planning: Involves transforming high-level objectives into coherent, logically ordered ex-
perimental steps.

• Troubleshooting: Simulates diagnosing experimental failures, identifying error sources,
and proposing corrective strategies.

• Constraint: Tests adaptability under resource limitations, such as restricted equipment or
reagent availability.

• Scaling: Requires numerical adjustments and unit conversions to adapt experiments across
different scales.

• Safety: Focuses on compliance with safety standards and identification of potential labo-
ratory risks.

By encompassing comprehension, planning, error handling, adaptability, scalability, and safety,
SciRecipe ensures a comprehensive and targeted task design. See Figure 21 for detailed prompts.

A.4 SUPPLEMENTARY DETAILS ON SCIRECIPE CONSTRUCTION PIPELINE

During the construction of SciRecipe, we first generated QA pairs for multiple task types using the
structured protocol corpus as the foundation. Particularly, for Protocol-Comprehension tasks, we
relied on hierarchical tree extraction (e.g., “Step 1: xxx; Step 1.1: xxx; Step 1.1.1: xxx”), which
preserved both the hierarchical structure and the stepwise dependencies of experimental procedures.
This design ensured that the model could capture not only surface-level descriptions but also the
nested logic inherent in complex experiments. Then, we introduced the “Sketch-and-Fill” reasoning
paradigm. This approach first summarizes core elements in an outline-like format and then fills in the
specific operations, thereby enhancing both interpretability and training effectiveness. The paradigm
was particularly effective in decomposing high-level objectives into concrete experimental actions
while maintaining logical consistency. Because LLMs may produce outputs with randomness and
formatting inconsistencies, directly discarding such samples would risk losing high-quality data.
To address this, we designed a format validation and repair module. This module automatically
detected non-compliant outputs and prompted the model to regenerate them under low-temperature
settings, ensuring structural consistency while retaining valid content.

After passing the format checks, each QA pair underwent content review across six scientific di-
mensions:

1. Scientific Accuracy: correctness of operations, parameters, and outcomes.

2. Safety & Compliance: adherence to laboratory safety standards and ethical guidelines.

3. Logical Coherence & Actionability: stepwise consistency and rational flow of proce-
dures.

4. Clarity & Ambiguity: precision and unambiguity of textual descriptions.

5. Generality & Specificity: balanced coverage of broad applicability and detailed context.

6. Efficiency & Resource Optimization: optimization of time, materials, and experimental
resources.

For this step, we employed Gemini 2.5 Flash (Comanici et al., 2025) as the validation model, which
performed dimension-wise evaluations and produced review reports. QA pairs that failed to meet
requirements were systematically discarded. Finally, to guarantee the reliability of the constructed
dataset, we performed manual verification. Doctoral students from interdisciplinary backgrounds
conducted thorough inspections, ensuring that the resulting data were not only structurally cor-
rect but also scientifically feasible and practically reasonable. Through this multi-stage pipeline,
which combines automated validation, targeted repair, model-assisted review, and expert-level man-
ual checks, SciRecipe achieved both rigor and diversity, providing a robust foundation for protocol-
oriented training and evaluation.
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Table 4: Disciplinary distribution of the SciRecipe dataset.

Subdomain Count Percentage
Cell Biology 2366 19.82%
Biochemistry 1935 16.21%
Molecular Biology 1788 14.98%
Microbiology 1163 9.74%
Plant Science 936 7.84%
Immunology 717 6.01%
Neuroscience 688 5.77%
General Laboratory Procedure 521 4.37%
Bioinformatics 319 2.67%
Bioimaging Technologies 284 2.38%
Cancer Biology 275 2.30%
Model Organism-Specific Techniques 246 2.06%
Others 127 1.06%
Genomics Technologies 111 0.93%
Structural Biology Techniques 79 0.66%
Biophysics 77 0.65%
Pharmacology & Drug Development 67 0.56%
Developmental Biology 64 0.54%
Genetics 55 0.46%
Histology Techniques 31 0.26%
Synthetic Biology & Bioengineering 31 0.26%
Stem Cells 18 0.15%
Bioengineering 11 0.09%
Toxicology & Safety Testing 11 0.09%
Systems Biology 8 0.07%
Medicine 4 0.03%
Drug Discovery 3 0.03%

Figure 6: Data distribution of experimental actions, parameters (each step), and step counts in
SciRecipe after quality control.
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B SCIRECIPE-EVAL

Although many benchmarks address scientific question answering, resources that directly evaluate
experimental protocol generation are still very limited. Existing evaluations often require models
to restate or paraphrase the original protocol, which does not reflect the ability to generate new and
executable procedural content in realistic laboratory contexts. To address this gap, we construct
SciRecipe-Eval as a benchmark designed to assess protocol generation under practical usage sce-
narios. Following the design principles of SciRecipe, we independently curate and process a set of
400 protocols. The benchmark is organized into two main categories, and each category contains
approximately 300 samples with a balanced distribution across subtasks.

While the names of these categories may resemble comprehension-oriented tasks, all subtasks re-
quire the model to generate structured protocol content based on the user query. The Protocol
Comprehension tasks evaluate whether the model can understand the user’s goal and produce pro-
cedural steps that align with standard experimental workflows. The Problem Solving tasks focus
on situations in which experimenters encounter practical issues that are not explicitly addressed
in the original protocol, and the model must generate corrective or supplementary steps. In this
sense, SciRecipe-Eval serves as a protocol generation benchmark rather than a traditional ques-
tion answering benchmark. The understanding and reasoning involved in these tasks are integral
components of the protocol generation process.

• Protocol-Comprehension:

– Overview: generating hierarchical summaries of experimental procedures.
– Specific: decomposing steps to capture micro-level logic.

• Problem-Solving:

– Retrieval: extracting precise parameters such as temperature, pH, or concentration.
– Planning: transforming objectives into coherent and logically ordered plans.
– Troubleshooting: diagnosing potential causes of experimental failure.
– Constraint: adapting protocols under resource limitations.
– Scaling: performing numerical adjustments and conversions for different scales.
– Safety: ensuring compliance and risk control.

Because the QAs were designed under specific reasoning paradigms, experimental actions (predi-
cates) were treated as the core elements of the ground truth. The number of actions defines the size
of the action space and thereby provides a direct measure of experimental complexity. Based on
this criterion, tasks containing fewer than four actions were categorized as Level 1, whereas those
with four or more actions were categorized as Level 2. For Level 2 tasks, we further inserted one
to four randomly sampled distractor actions, enabling more comprehensive evaluation of a model’s
ability to discriminate between correct and incorrect operations. In line with the data quality control
standards established for SciRecipe, we recruited three doctoral students in biology-related fields to
perform manual sampling and review of the dataset. Their verification ensured that the final bench-
mark was not only structurally consistent but also scientifically accurate and representative of real
laboratory practices.

C SCORE MECHANISM

C.1 CONSISTENCY GATE

In protocol evaluation, consistency refers to the step-by-step correspondence between the structured
outline (<key>) and its natural language expansion (<orc>). If an action, object, or parameter de-
clared in <key> is missing from the corresponding <orc> description, the generated protocol is
semantically incomplete and cannot serve as a reliable experimental guide. Therefore, the consis-
tency gate is adopted as the second checkpoint in SCORE, and only protocols passing this constraint
are eligible for reward computation.

Concretely, we first require that the number of steps in <key> matches exactly with <orc>, with
consecutive numbering covering 1 through N . For each step i, we construct a token set Ti by
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concatenating the declared action ai, object set Oi, and parameter set Pi. After normalization
(e.g., case folding, unit standardization, removal of subscript/superscript variants), we compute the
coverage rate of these tokens in the natural language step <orc>i as:

covi =

∣∣{t ∈ Ti : t ⊆ norm(<orc>i)}
∣∣

|Ti|
(11)

If all steps satisfy covi ≥ τ (we set τ = 0.95 in this work) and the step indices are strictly aligned,
the consistency gate is considered passed:

Icons(y) =

{
1, N̂ = N ∧ {n̂1, . . . , n̂N̂} = {1, . . . , N} ∧ mini covi ≥ τ

0, otherwise
(12)

where N̂ and N denote the step counts of the generated and reference protocols, respectively, and
n̂i denotes the predicted step indices. If the gate fails, all subsequent rewards are set to zero. This
hard gating design reflects a fundamental experimental principle: when the structured outline and
its natural language realization are inconsistent, even partially correct fragments cannot make the
protocol executable.

C.2 ORDER CONSISTENCY

Let â = (â1, . . . , ân) denote the predicted action sequence extracted from <key>, and a∗ =
(a∗1, . . . , a

∗
m) the reference sequence. The goal of order consistency is to evaluate whether the pre-

dicted execution order preserves the logical progression of the reference protocol, since deviations
in ordering can undermine reproducibility even when individual steps appear correct. Two comple-
mentary scoring modes are provided.

The first mode, Strict Subsequence, enforces a conservative executability constraint. The score
equals 1 if the predicted sequence is identical to the reference, or if one is a subsequence of the
other; otherwise it is 0:

Orderstrict(â,a
∗) =

{
1, â = a∗ ∨ subseq(â,a∗) ∨ subseq(a∗, â)

0, otherwise
(13)

where subseq(x,y) holds when x can be embedded in y with order preserved. This criterion accepts
insertions or omissions as long as the preserved actions remain in order, but strictly rejects any
reordering. It is also computationally efficient, requiring only O(n+m) time.

The second mode, Longest Common Subsequence (LCS), provides a graded similarity that reflects
how much of the reference order is retained. The score is defined as:

OrderLCS(â,a
∗) =

LCS(â,a∗)

m
(14)

where m = |a∗| is the length of the reference sequence and LCS(·, ·) is the length of the longest
common subsequence between the predicted and reference sequences. This normalization yields a
value in [0, 1] that represents the fraction of the reference order preserved. Unlike the strict mode,
LCS assigns partial credit when the prediction maintains some correct subsequences even if other
steps are misplaced. For example, given the ground truth [harvest, lyse, centrifuge, quantify], a
prediction [harvest, lyse, quantify] achieves a strict score of 1 and an LCS score of 3/4 = 0.75
(omission but order preserved), whereas [harvest, centrifuge, lyse, quantify] scores 0 under the strict
rule but 3/4 = 0.75 under LCS, since most of the order is still preserved. By contrast, [lyse, harvest,
quantify, centrifuge] is more severely misordered, yielding an LCS score of 2/4 = 0.5.

For completeness, the LCS length is computed via dynamic programming. Let L(i, j) denote
the LCS length between the prefix subsequences (â1, . . . , âi) of the predicted sequence â and
(a∗1, . . . , a

∗
j ) of the reference sequence a∗. Then

L(i, j) =


0, i = 0 or j = 0

L(i− 1, j − 1) + 1, âi = a∗j

max{L(i− 1, j), L(i, j − 1)}, âi ̸= a∗j

(15)
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with LCS(â,a∗) = L(n,m). The algorithm runs in O(nm) time and requires O(nm) space.

Together, these two modes serve distinct but complementary purposes, with the strict subsequence
mode being the primary criterion. Strict alignment best reflects the hard requirements of laboratory
executability, where even minor order violations typically render a protocol unusable. The LCS
mode is introduced only as a supplementary measure, offering smoother and more informative feed-
back during training by granting partial credit when some procedural intent is preserved. In practice,
strict mode is preferred for evaluation of executable protocols, while LCS can be selectively applied
to provide graded optimization signals when softer supervision is required. All formal experimental
results in this work are reported under the strict mode. See Appendix J.1.2 for further experiments.

C.3 ACTION ANCHOR

In semantic consistency evaluation, actions (i.e., step verbs) are treated as anchors to align predicted
steps with reference steps before any further comparison. The alignment is performed in a left-to-
right, order-preserving manner. Formally, let the predicted action sequence be â = (â1, . . . , ân)
and the reference action sequence be a∗ = (a∗1, . . . , a

∗
m). For each predicted action âi, we select

the earliest reference index j after the previous match such that a∗j = âi. If such a j exists, we
record the pair (i, j), otherwise âi remains unmatched and contributes no anchor. This procedure
yields an ordered set of index pairs W = {(i1, j1), . . . , (iK , jK)} with 1 ≤ i1 < · · · < iK ≤ n,
1 ≤ j1 < · · · < jK ≤ m, and âik = a∗jk for all (ik, jk) ∈ W . The construction is greedy
and monotone (first-come–first-match), which guarantees that (i) sequence order is preserved, (ii)
repeated actions are matched consistently, with each predicted occurrence aligning only to the next
unused reference occurrence, and (iii) the overall alignment runs in linear time O(n+m).

Example For the ground truth sequence [harvest, lyse, centrifuge, quantify] and the prediction
[harvest, centrifuge, lyse, stain, quantify], the alignment proceeds as

â1 = harvest 7→ a∗1 = harvest,
â2 = centrifuge 7→ a∗3 = centrifuge,
â3 = lyse 7→ a∗2 = lyse (rejected: order violation),
â5 = quantify 7→ a∗4 = quantify.

Hence the retained alignment is W = {(1, 1), (2, 3), (5, 4)}, while the unmatched action stain is
discarded. This anchor-based procedure ensures that semantic comparisons focus only on correctly
aligned procedural units, avoiding misleading matches across unrelated operations.

D RL ALGORITHM

During the RL stage, we adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024), a
variant of PPO (Schulman et al., 2017) designed to reduce variance and stabilize updates by exploit-
ing multiple responses generated from the same query. Unlike standard PPO, which normalizes the
reward across a batch, GRPO performs group-wise normalization within each query group. This
strategy ensures that the relative quality of responses to the same query is emphasized, thereby
mitigating reward scale differences across queries and improving training stability. Formally, let
x denote a query, and {yi}Gi=1 be G responses sampled from the current policy πθ(·|x). For each
response yi, the normalized advantage is defined as

Âi =
r(x, yi)−mean

(
{r(x, yj)}Gj=1

)
std

(
{r(x, yj)}Gj=1

) , (16)

where r(x, yi) denotes the scalar reward assigned to yi. By centering and scaling rewards within the
group, the advantage highlights relative performance among candidate responses.

The GRPO objective combines this normalized advantage with the clipped surrogate function and a
KL-regularization term that constrains the updated policy toward the reference model:

LGRPO(θ) = Ex∼D, {yi}G
i=1∼πθ(·|x)

[
1

G

G∑
i=1

min
(
si(θ)Âi, clip

(
si(θ), 1− ϵ, 1 + ϵ

)
Âi

)]

− β Ex∼D [KL(πθ(·|x) ∥πθref (·|x))] ,

(17)
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where ϵ is a clipping threshold controlling the size of policy updates and β determines the strength
of KL regularization, with πθ denoting the current policy being optimized and πθref the fixed refer-
ence policy. The importance sampling ratio si(θ) is computed at the token level to account for the
sequential nature of text generation. Specifically, it is defined as the geometric mean of the per-token
probability ratios:

si(θ) = exp

 1
|yi|

|yi|∑
t=1

log
πθ(yi,t | x, yi,<t)

πθold(yi,t | x, yi,<t)

 , (18)

where πθold denote the old policy models, respectively, and yi,t is the t-th token of response yi. This
per-token formulation maintains sensitivity to fine-grained action probabilities and avoids domina-
tion by sequence length. Overall, GRPO stabilizes training by normalizing advantages within query
groups, constrains policy updates through clipping and KL regularization, and ensures robustness at
the token level via per-token importance ratios.

E BASELINE MODELS

Given the lack of models tailored for scientific protocol generation, we compare our approach
against a broad set of large-scale language models. The closed-source baselines include the GPT-5
series (OpenAI, 2025) (GPT-5, GPT-5 Chat), the Claude series (Anthropic, 2025) (Claude Sonnet 4,
Claude Opus 4.1), the Gemini 2.5 series (Comanici et al., 2025) (Flash and Pro), as well as ChatGPT-
4o (Achiam et al., 2023), Doubao-1.5-Pro (ByteDance, 2025), and Qwen2.5-Max (Qwen et al.,
2025). For open-source baselines, we evaluate strong instruction-tuned models such as Qwen2.5-
72B (Qwen et al., 2025), Qwen3-235B (Yang et al., 2025), DeepSeek-V3 (Liu et al., 2024), GPT-
OSS-120B (Agarwal et al., 2025), Llama-3.1-405B (Grattafiori et al., 2024), and Kimi-K2 (Team
et al., 2025). In addition, we consider reasoning-oriented models including DeepSeek-R1 (Guo et al.,
2025), Grok 3/4 (xAI, 2025), and OpenAI’s o1 and o3 (Jaech et al., 2024). Finally, to assess sci-
entific capabilities, we further evaluate domain-specific models including Intern-S1-mini, Intern-S1
(Bai et al., 2025), and SciDFM (Sun et al., 2024). Together, these baselines provide a comprehensive
landscape of frontier, open-source, reasoning, and domain-oriented models for comparison.

F REPRODUCIBILITY STATEMENT

We provide essential information to ensure the reproducibility of our experiments. Table 5 reports
the training data distribution across stages, covering both SciRecipe tasks and BioProBench sub-
tasks. Key hyperparameters for pre-training, SFT, and RL are listed in Tables 6, 7, and 8. All
experiments were conducted with the LLaMA-Factory framework for pre-training and SFT, and
VeRL for RL training. We release detailed settings, including LoRA configurations, learning rates,
epochs, scheduling, and hardware, so that independent researchers can replicate our pipeline and
validate the reported results. All data, code, and models will be released publicly.

Table 5: Training data distribution across different stages (one epoch). “PC” denotes Protocol-
Comprehension tasks and “PS” denotes Problem-Solving tasks. Four task types from BioProBench
(Liu et al., 2025) are also incorporated to enhance the model’s ability to interpret protocols.

Dataset SFT stage RL stage

SciRecipe PC 34461 6956
SciRecipe PS 16164 3263

BioProBench PQA 52640 —
BioProBench ERR 103983 —
BioProBench ORD 31039 —
BioProBench GEN 59477 —
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Table 6: Key hyperparameters used in LLaMA-Factory for pre-training.

Parameter Value

finetuning type lora
lora rank 8
lora target all

preprocessing num workers 16
dataloader num workers 4

per device train batch size 1
gradient accumulation steps 8

learning rate 1e-4
num train epochs 6
lr scheduler type cosine

warmup ratio 0.1
bf16 true

Table 7: Key hyperparameters used in LLaMA-Factory for SFT training.

Parameter Value

finetuning type lora
lora rank 32
lora target all

preprocessing num workers 8
dataloader num workers 4

per device train batch size 1
gradient accumulation steps 8

learning rate 3e-4
num train epochs 5
lr scheduler type cosine

warmup ratio 0.05
bf16 true

G LIMITATIONS

While our work presents a structured framework for scientific protocol generation and shows con-
sistent improvements across benchmarks, some limitations remain. First, although SciRecipe spans
27 biological subfields, it is still skewed toward widely used laboratory techniques, with rare or
highly specialized protocols underrepresented. Second, the SCORE metrics mainly emphasize step
completeness and order fidelity, but do not yet capture finer aspects such as stylistic variation, cross-
step dependencies, or long-range experimental context. Third, our experiments were conducted in
relatively controlled settings, which may not fully reflect the complexity and variability of real lab-
oratory environments. We believe these issues can be progressively addressed in future work by
expanding the dataset to cover rarer domains, enriching evaluation dimensions beyond structural
executability, and validating the framework under more diverse practical scenarios.

H USAGE OF LLMS ON PAPER WRITING

We used LLMs (e.g., GPT-5) to aid in polishing the writing of this paper. Specifically, LLMs
were employed to refine grammar, improve fluency, and adjust the tone of academic writing (e.g.,
smoothing transitions between sections, shortening overly long sentences, and rephrasing repetitive
expressions). The models were not used for generating technical content, conducting experiments,
or formulating research ideas. All substantive contributions remain the work of the authors.
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Table 8: Key hyperparameters used in VeRL for RL training.

Parameter Value

algorithm.adv estimator grpo
data.train batch size 1024

data.max prompt length 1024
data.max response length 1024

actor.optim.lr 7e-6
actor.ppo mini batch size 256

actor.ppo micro batch size per gpu 32
actor.use kl loss true
actor.kl loss coef 0.001
actor.kl loss type low var kl

actor.entropy coeff 0
rollout.tensor model parallel size 2
rollout.gpu memory utilization 0.6

rollout.n 5
trainer.total epochs 15

trainer.n gpus per node 8
trainer.nnodes 1

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 QUALITATIVE STUDY OF REASONING MODELS

As discussed in the main text, general-purpose reasoning models often “overthink” proto-
col generation, producing overly long procedures with redundant actions and no clear stop-
ping criteria. In the permeability assay, the gold-standard protocol requires only four steps
(wash–remove–incubate–wash) to ensure structural preservation and experimental efficiency. Thoth
closely followed this structure, preserving both the correct sequence and action fidelity. In contrast,
Grok 4 expanded the task into a 13-step immunostaining workflow, adding permeabilization, block-
ing, antibody staining, and repeated washes far beyond the intended fixation step. Although logically
coherent within its reasoning chain, this output diverges from laboratory practice, where clarity and
parsimony are essential. This case underscores a broader limitation of general-purpose reasoning
models: their tendency to prioritize exhaustive reasoning over practical executability, reinforcing
our quantitative findings that domain-adapted models like Thoth achieve more concise, faithful, and
actionable protocols.
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Grok 4 

Query: 

Ground Truth: 

In the "Generation of a Human Conditionally Immortalized Cell-based Multicellular Spheroidal Blood-Brain 
Barrier Model for Permeability Evaluation of Macromolecules" protocol, what are the exact sequential 
steps required for fixing and staining the spheroids during the permeability assay to ensure proper 
preservation and preparation for microscopy? 

Step 1: Wash the spheroids twice with 500 µl of ice-cold D-PBS(+).
Step 2: Remove the supernatant with a pipette.
Step 3: Incubate the spheroids with 500 µl of 4% PFA at room temperature for 10 min.
Step 4: Wash the spheroids twice with 500 µl of ice-cold D-PBS(+).

<think>
The goal is to outline the sequential steps for fixing and staining spheroids in the specified blood-brain 
barrier model protocol during the permeability assay, ensuring preservation of structure and 
preparation for microscopy. The hypothesis is that a standard fixation and immunostaining procedure 
will enable visualization of macromolecule permeability without compromising spheroid integrity. The 
sequence starts with removing medium to prepare for fixation, followed by washing, fixing, permeabilizing, 
blocking, antibody staining, and final washes; this order is justified by established immunohistochemical 
techniques that sequentially preserve, permeabilize, and label cellular components while minimizing 
background and artifacts.
</think>

<key>
Step 1: {"action":"remove","objects":["medium"],"parameters":[]}
Step 2: {"action":"wash","objects":["spheroids"],"parameters":["with 1x pbs"]}
Step 3: {"action":"incubate","objects":["spheroids"],"parameters":["in 4% pfa","30 min","room temperature"]}
Step 4: {"action":"wash","objects":["spheroids"],"parameters":["with 1x pbs","3 times"]}
Step 5: {"action":"incubate","objects":["spheroids"],"parameters":["in 0.1% triton x-100","15 min","room 
temperature"]}
Step 6: {"action":"wash","objects":["spheroids"],"parameters":["with 1x pbs","3 times"]}
Step 7: {"action":"incubate","objects":["spheroids"],"parameters":["in blocking buffer","1 h","room 
temperature"]}
Step 8: {"action":"incubate","objects":["spheroids"],"parameters":["in primary antibody","overnight","4 °c"]}
Step 9: {"action":"wash","objects":["spheroids"],"parameters":["with 1x pbs","3 times"]}
Step 10: {"action":"incubate","objects":["spheroids"],"parameters":["in secondary antibody","1 h","room 
temperature"]}
Step 11: {"action":"wash","objects":["spheroids"],"parameters":["with 1x pbs","3 times"]}
Step 12: {"action":"incubate","objects":["spheroids"],"parameters":["in dapi","5 min","room temperature"]}
Step 13: {"action":"wash","objects":["spheroids"],"parameters":["with 1x pbs","3 times"]}
</key>

<orc>
Step 1: Remove the medium.
Step 2: Wash the spheroids with 1x pbs.
Step 3: Incubate the spheroids in 4% pfa for 30 min at room temperature.
Step 4: Wash the spheroids with 1x pbs 3 times.
Step 5: Incubate the spheroids in 0.1% triton x-100 for 15 min at room temperature.
Step 6: Wash the spheroids with 1x pbs 3 times.
Step 7: Incubate the spheroids in blocking buffer for 1 h at room temperature.
Step 8: Incubate the spheroids in primary antibody overnight at 4 °c.
Step 9: Wash the spheroids with 1x pbs 3 times.
Step 10: Incubate the spheroids in secondary antibody for 1 h at room temperature.
Step 11: Wash the spheroids with 1x pbs 3 times.
Step 12: Incubate the spheroids in dapi for 5 min at room temperature.
Step 13: Wash the spheroids with 1x pbs 3 times.
</orc>

<note>
Handle paraformaldehyde and triton x-100 with care in a fume hood using gloves and eye protection, as 
they are hazardous chemicals that can cause skin irritation, respiratory issues, or toxicity; ensure 
proper disposal of waste to avoid environmental contamination.
</note>

Model Output: 

Figure 7: Case study of the reasoning model Grok 4 on Protocol-Comprehension task.
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OpenAI o1

Query: 

Ground Truth: 

In the "Generation of a Human Conditionally Immortalized Cell-based Multicellular Spheroidal Blood-Brain 
Barrier Model for Permeability Evaluation of Macromolecules" protocol, what are the exact sequential 
steps required for fixing and staining the spheroids during the permeability assay to ensure proper 
preservation and preparation for microscopy? 

Step 1: Wash the spheroids twice with 500 µl of ice-cold D-PBS(+).
Step 2: Remove the supernatant with a pipette.
Step 3: Incubate the spheroids with 500 µl of 4% PFA at room temperature for 10 min.
Step 4: Wash the spheroids twice with 500 µl of ice-cold D-PBS(+).

<think>
We will sequentially remove old medium, wash, fix with paraformaldehyde, remove fixative, wash, 
permeabilize, wash, then incubate with primary and secondary antibodies. We will end with a final wash 
and removal before imaging. Each step uses only “incubate”, “wash”, or “remove” to maintain consistency 
with the allowed actions.
</think>

<key>
Step 1: {"action":"remove","objects":["culture medium"],"parameters":["from wells"]}
Step 2: {"action":"wash","objects":["spheroids"],"parameters":["1x pbs","once","rt"]}
Step 3: {"action":"remove","objects":["wash buffer"],"parameters":[]}
Step 4: {"action":"incubate","objects":["spheroids"],"parameters":["4% pfa","15 min","rt"]}
Step 5: {"action":"remove","objects":["fixative"],"parameters":[]}
Step 6: {"action":"wash","objects":["spheroids"],"parameters":["1x pbs","twice","rt"]}
Step 7: {"action":"remove","objects":["wash buffer"],"parameters":[]}
Step 8: {"action":"incubate","objects":["spheroids"],"parameters":["0.1% triton x-100","15 min","rt"]}
Step 9: {"action":"remove","objects":["permeabilization solution"],"parameters":[]}
Step 10: {"action":"wash","objects":["spheroids"],"parameters":["1x pbs","once","rt"]}
Step 11: {"action":"remove","objects":["wash buffer"],"parameters":[]}
Step 12: {"action":"incubate","objects":["spheroids"],"parameters":["primary antibody","1 h","rt"]}
Step 13: {"action":"remove","objects":["antibody solution"],"parameters":[]}
Step 14: {"action":"wash","objects":["spheroids"],"parameters":["1x pbs","once","rt"]}
Step 15: {"action":"remove","objects":["wash buffer"],"parameters":[]}
Step 16: {"action":"incubate","objects":["spheroids"],"parameters":["secondary antibody","1 h","rt"]}
Step 17: {"action":"remove","objects":["antibody solution"],"parameters":[]}
Step 18: {"action":"wash","objects":["spheroids"],"parameters":["1x pbs","once","rt"]}
Step 19: {"action":"remove","objects":["wash buffer"],"parameters":[]}
</key>

<orc>
Step 1: Remove culture medium from wells.
Step 2: Wash spheroids with 1x pbs once at rt.
Step 3: Remove wash buffer.
Step 4: Incubate spheroids with 4% pfa for 15 min at rt.
Step 5: Remove fixative.
Step 6: Wash spheroids with 1x pbs twice at rt.
Step 7: Remove wash buffer.
Step 8: Incubate spheroids with 0.1% triton x-100 for 15 min at rt.
Step 9: Remove permeabilization solution.
Step 10: Wash spheroids with 1x pbs once at rt.
Step 11: Remove wash buffer.
Step 12: Incubate spheroids with primary antibody for 1 h at rt.
Step 13: Remove antibody solution.
Step 14: Wash spheroids with 1x pbs once at rt.
Step 15: Remove wash buffer.
Step 16: Incubate spheroids with secondary antibody for 1 h at rt.
Step 17: Remove antibody solution.
Step 18: Wash spheroids with 1x pbs once at rt.
Step 19: Remove wash buffer.
</orc>

<note>
Wear personal protective equipment, handle paraformaldehyde in a ventilated area, and dispose of 
hazardous solutions according to institutional safety guidelines.
</note>

Model Output: 

Figure 8: Case study of the reasoning model o1 on Protocol-Comprehension tasks.
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Query: 

Ground Truth: 

If the berlin (1800 ml vessel) normally used to hold distilled water for immersing the basket is unavailable, 
how can the QuantiSlakeTest be adapted using smaller vessels while still ensuring accurate immersion and 
balance measurements?

Step 1: Measure 1800 ml of distilled water.
Step 2: Transfer the distilled water into an alternative container.
Step 3: Suspend the empty basket in the distilled water without touching the sides.
Step 4: Tare the balance with the basket immersed.

<think>
The goal is to adapt the QuantiSlakeTest to use smaller vessels instead of the unavailable 1800 ml 
berlin vessel for holding distilled water and immersing the basket, while ensuring accurate immersion and 
balance measurements. Hypothesis/plan of attack: the test can be adapted by conducting it in a smaller 
vessel with appropriate water volume, ensuring full basket immersion through suspension and restriction, 
and achieving accurate balance measurements by taring, measuring at key points, recapturing slaked 
material, and scrubbing to recover all residue for complete quantification. Justification: smaller vessels 
may limit water volume and affect immersion stability or residue recovery, so the sequence starts with 
cleaning the vessel, transferring water, suspending and restricting the basket for secure immersion, 
taring and measuring initially, then post-slaking recapture, scrubbing for residue, transferring residue, 
and final measuring to ensure all material is accounted for, minimizing errors in smaller-scale setup.
</think>

<key>
Step 1: {"action":"scrub","objects":["smaller vessel"],"parameters":[]}
Step 2: {"action":"transfer","objects":["distilled water"],"parameters":["to smaller vessel"]}
Step 3: {"action":"suspend","objects":["basket"],"parameters":["in smaller vessel"]}
Step 4: {"action":"restrict","objects":["basket"],"parameters":["to ensure immersion"]}
Step 5: {"action":"tare","objects":["balance"],"parameters":[]}
Step 6: {"action":"measure","objects":["immersed basket"],"parameters":["using balance"]}
Step 7: {"action":"recapture","objects":["slaked material"],"parameters":["from smaller vessel"]}
Step 8: {"action":"scrub","objects":["smaller vessel"],"parameters":["to recover residue"]}
Step 9: {"action":"transfer","objects":["residue"],"parameters":["to slaked material"]}
Step 10: {"action":"measure","objects":["slaked material"],"parameters":["using balance"]}
</key>

<orc>
Step 1: Scrub the smaller vessel.
Step 2: Transfer distilled water to the smaller vessel.
Step 3: Suspend the basket in the smaller vessel.
Step 4: Restrict the basket to ensure immersion.
Step 5: Tare the balance.
Step 6: Measure the immersed basket using the balance.
Step 7: Recapture the slaked material from the smaller vessel.
Step 8: Scrub the smaller vessel to recover residue.
Step 9: Transfer the residue to the slaked material.
Step 10: Measure the slaked material using the balance.
</orc>

<note>
Ensure the balance is stable and level before taring and measuring to prevent inaccurate readings or tip-
overs, and wear protective gloves during scrubbing, transferring, and recapturing to avoid skin contact 
with potential residues or contaminants.
</note>

Model Output: 

Grok 4 

Figure 9: Case study of the reasoning model Grok 4 on Problem-Solving task.
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Query: 

Ground Truth: 

If the berlin (1800 ml vessel) normally used to hold distilled water for immersing the basket is unavailable, 
how can the QuantiSlakeTest be adapted using smaller vessels while still ensuring accurate immersion and 
balance measurements?

Step 1: Measure 1800 ml of distilled water.
Step 2: Transfer the distilled water into an alternative container.
Step 3: Suspend the empty basket in the distilled water without touching the sides.
Step 4: Tare the balance with the basket immersed.

<think>
We will employ smaller vessels and ensure precise immersion by scrubbing them clean, taring the scale 
with each empty vessel, transferring distilled water, verifying the fill and adjusting if necessary, 
suspending the basket for measurement, and finally recapturing water for reuse.
</think>

<key>
Step 1: {"action":"scrub","objects":["smaller vessels"],"parameters":["to remove residue"]}
Step 2: {"action":"tare","objects":["scale"],"parameters":["with empty vessel"]}
Step 3: {"action":"transfer","objects":["distilled water"],"parameters":["into vessel"]}
Step 4: {"action":"measure","objects":["filled vessel"],"parameters":["to confirm total mass"]}
Step 5: {"action":"restrict","objects":["water level"],"parameters":["to required volume"]}
Step 6: {"action":"suspend","objects":["basket"],"parameters":["in vessel","for immersion"]}
Step 7: {"action":"measure","objects":["basket weight"],"parameters":["for accurate reading"]}
Step 8: {"action":"recapture","objects":["distilled water"],"parameters":["for reuse"]}
</key>

<orc>
Step 1: Scrub the smaller vessels to remove residue.
Step 2: Tare the scale with empty vessel.
Step 3: Transfer distilled water into vessel.
Step 4: Measure the filled vessel to confirm total mass.
Step 5: Restrict the water level to required volume.
Step 6: Suspend the basket in vessel for immersion.
Step 7: Measure the basket weight for accurate reading.
Step 8: Recapture the distilled water for reuse.
</orc>

<note>
Always verify the vessel’s stability before suspending objects, and ensure all surfaces remain dry to 
prevent accidental spills or scale errors.
</note>

Model Output: 

OpenAI o1

Figure 10: Case study of the reasoning model o1 on Problem-Solving task.
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I.2 FINE-GRAINED RESULTS ON SCIRECIPE-EVAL

Table 9: Main results on SciRecipe-Eval at level 1. Metrics left of the dashed line evaluate exe-
cutability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 44.44 78.95 39.49 80.04 56.49 40.98 52.11 48.02 55.37 55.10
GPT-5 32.82 63.40 19.27 63.63 27.62 22.34 35.92 35.41 42.61 38.11
GPT-5 Chat 41.50 78.91 35.75 73.50 35.06 31.74 45.77 45.80 50.60 48.74
Claude Sonnet 4 44.35 76.44 33.70 76.90 47.65 35.91 47.54 43.61 52.96 51.01
Claude Opus 4.1 45.43 75.42 34.82 76.88 46.89 36.29 46.90 42.14 52.36 50.79
Gemini 2.5 Flash 39.66 75.32 33.70 75.66 43.91 34.60 46.21 42.55 50.68 49.14
Gemini 2.5 Pro 38.78 77.51 36.08 76.56 40.17 32.71 46.84 47.84 50.64 49.68
Doubao-1.5-pro 37.14 78.42 38.47 76.00 60.23 39.78 49.57 41.77 51.50 52.54
Qwen2.5-Max 45.77 78.43 37.78 79.28 61.93 31.96 51.43 47.16 55.29 54.34

Open-Source SOTA
Qwen2.5-72B-Instruct 40.13 77.15 37.10 77.93 59.21 31.90 49.87 46.58 52.54 52.49
Qwen3-235B-A22B-Instruct-2507 39.68 78.19 35.08 78.28 54.82 35.68 48.10 47.11 51.20 52.02
DeepSeek-V3 45.10 78.59 33.84 75.64 52.27 39.66 51.46 48.04 54.55 53.24
GPT-OSS-120B 36.56 76.12 31.66 74.18 44.25 34.12 47.31 46.23 53.08 49.28
Llama-3.1-405B-Instruct 39.80 74.42 28.34 73.06 49.50 37.28 47.38 45.11 50.29 49.46
Kimi-K2-Instruction 42.58 76.96 34.72 78.60 52.07 35.40 47.65 45.78 51.61 51.71

Reasoning Models
DeepSeek-R1 37.86 77.08 35.43 76.35 45.97 40.81 48.96 42.45 52.56 50.83
Grok 3 41.53 78.84 37.68 77.96 54.19 37.12 49.82 49.98 52.28 53.27
Grok 4 42.52 77.27 34.92 75.66 49.52 38.91 49.75 43.72 54.34 51.85
OpenAI o1 39.78 77.70 28.00 74.43 43.02 37.25 49.23 46.19 53.12 49.86
OpenAI o3 42.15 74.94 26.02 72.95 36.29 31.10 46.42 46.78 53.59 47.80

Qwen3-4B 27.21 59.83 24.19 59.89 40.17 16.29 28.17 27.22 31.41 34.93
Thoth-mini 49.49 80.41 42.88 80.30 64.66 46.50 51.91 48.24 55.77 57.80
Qwen3-8B 29.98 68.08 21.12 65.00 38.80 17.98 34.59 36.67 40.15 39.15
Thoth 52.21 80.12 41.19 83.20 62.27 46.41 52.69 49.21 56.88 58.24

Table 10: Main results on SciRecipe-Eval at level 2. Metrics left of the dashed line evaluate exe-
cutability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 35.82 67.82 9.12 61.01 32.00 37.00 44.88 41.44 48.87 42.00
GPT-5 22.96 53.05 3.75 43.87 10.31 20.33 30.12 29.81 35.87 27.79
GPT-5 Chat 31.31 67.74 7.17 58.15 15.34 27.49 38.46 38.26 45.25 36.57
Claude Sonnet 4 34.55 67.68 8.47 63.38 24.48 32.64 41.13 38.44 45.98 39.64
Claude Opus 4.1 37.38 68.13 9.30 67.18 22.78 33.16 42.04 38.65 47.74 40.71
Gemini 2.5 Flash 33.17 66.09 6.84 65.21 21.21 31.84 39.74 36.10 45.57 38.42
Gemini 2.5 Pro 32.94 68.04 8.14 64.04 24.16 30.09 41.59 43.43 46.61 39.89
Doubao-1.5-pro 29.67 68.37 9.46 64.24 35.27 36.61 44.30 35.77 46.09 41.09
Qwen2.5-Max 35.13 67.55 6.51 63.70 33.64 29.71 44.75 40.62 48.80 41.16

Open-Source SOTA
Qwen2.5-72B-Instruct 32.82 64.74 5.54 60.76 25.80 27.30 42.40 40.43 47.04 38.54
Qwen3-235B-A22B-Instruct-2507 31.84 66.19 5.58 60.32 21.32 29.41 40.79 41.61 44.71 37.97
DeepSeek-V3 38.48 69.54 9.53 65.64 31.57 36.76 45.64 42.24 50.20 43.29
GPT-OSS-120B 29.31 64.07 4.23 54.56 12.06 27.46 39.73 39.71 46.89 35.34
Llama-3.1-405B-Instruct 32.20 64.70 8.13 62.71 29.37 35.60 42.44 39.35 45.98 40.05
Kimi-K2-Instruction 31.62 66.91 7.49 61.41 28.41 32.29 41.46 40.31 46.50 39.60

Reasoning Models
DeepSeek-R1 34.36 65.91 5.91 62.18 20.33 38.83 42.89 34.10 47.21 39.08
Grok 3 33.44 67.92 6.78 61.83 24.90 32.42 42.41 42.59 45.05 39.70
Grok 4 31.17 67.10 6.16 55.43 20.39 35.58 42.74 36.78 49.38 38.30
OpenAI o1 29.90 69.27 9.44 60.75 28.06 34.18 43.47 41.55 47.26 40.43
OpenAI o3 28.92 66.00 5.16 57.46 12.35 26.24 39.88 41.98 47.07 36.12

Qwen3-4B 21.65 47.52 3.57 41.48 17.94 12.82 21.45 20.81 24.12 23.48
Thoth-mini 39.28 69.18 8.47 61.74 41.16 40.27 46.66 44.66 50.60 44.67
Qwen3-8B 27.85 59.12 1.62 52.59 10.43 15.40 30.12 32.85 37.17 29.68
Thoth 41.21 70.75 10.43 63.85 44.10 40.94 47.46 45.65 51.49 46.21
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Table 11: Main results on SciRecipe-Eval (Overview). Metrics left of the dashed line evaluate
executability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 32.36 72.47 13.33 72.02 30.67 34.24 42.36 37.24 44.03 42.08
GPT-5 27.85 65.51 9.59 64.64 16.29 23.26 33.20 30.29 35.30 33.99
GPT-5 Chat 30.99 70.02 10.01 68.01 11.33 21.35 32.70 32.98 38.10 35.05
Claude Sonnet 4 30.08 72.64 16.00 71.33 30.67 31.42 38.94 35.62 41.20 40.88
Claude Opus 4.1 30.72 71.52 14.52 68.38 24.69 31.65 39.70 36.02 42.32 39.95
Gemini 2.5 Flash 28.87 70.62 12.67 73.67 26.00 31.85 39.04 33.00 41.57 39.70
Gemini 2.5 Pro 28.96 71.83 12.00 75.35 26.67 28.04 38.99 38.83 41.38 40.23
Doubao-1.5-pro 26.85 71.67 12.01 76.34 34.67 37.87 42.05 30.53 41.36 41.48
Qwen2.5-Max 34.73 71.56 10.00 76.67 36.00 28.11 42.12 36.27 44.08 42.17

Open-Source SOTA
Qwen2.5-72B-Instruct 30.22 69.32 10.00 75.35 27.35 24.89 39.97 37.00 42.17 39.59
Qwen3-235B-A22B-Instruct-2507 28.70 68.69 8.67 70.70 21.33 26.67 37.29 37.33 39.26 37.63
DeepSeek-V3 35.24 73.23 15.54 71.01 37.16 35.33 43.43 39.58 43.86 43.82
GPT-OSS-120B 27.34 67.29 10.01 64.68 20.00 24.75 36.10 36.71 39.61 36.28
Llama-3.1-405B-Instruct 31.99 71.19 14.67 79.36 32.00 36.59 40.78 35.59 40.62 42.53
Kimi-K2-Instruction 30.92 72.21 12.00 74.67 36.67 30.90 39.20 37.88 41.18 41.74

Reasoning Models
DeepSeek-R1 31.65 70.90 12.00 69.67 27.34 40.45 42.47 32.09 43.34 41.10
Grok 3 30.56 70.29 12.42 64.01 26.86 30.53 39.60 40.02 40.21 39.39
Grok 4 32.19 72.43 12.52 67.45 29.30 36.06 42.33 36.12 45.54 41.55
OpenAI o1 27.78 72.80 12.67 70.70 31.33 31.80 40.20 37.84 40.75 40.65
OpenAI o3 28.48 71.01 8.61 72.00 20.64 25.24 37.21 38.26 41.18 38.07

Qwen3-4B 28.05 62.52 8.02 62.00 24.00 13.46 24.50 25.40 27.38 30.59
Thoth-mini 37.49 71.74 11.34 71.67 38.34 38.02 42.61 38.55 43.79 43.73
Qwen3-8B 30.46 65.41 2.68 62.01 10.67 11.60 26.80 31.97 32.14 30.42
Thoth 40.15 72.10 9.35 71.01 36.35 37.75 43.27 39.09 44.79 43.76

Table 12: Main results on SciRecipe-Eval (Specific). Metrics left of the dashed line evaluate exe-
cutability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 33.63 70.95 24.00 67.32 48.67 36.26 45.07 41.29 46.81 46.00
GPT-5 18.99 48.00 12.59 43.55 24.26 19.21 27.31 24.67 28.01 27.40
GPT-5 Chat 27.99 71.05 20.67 64.67 18.67 23.93 36.23 36.46 39.56 37.69
Claude Sonnet 4 36.39 66.46 20.67 66.67 37.33 33.11 40.55 35.55 42.88 42.18
Claude Opus 4.1 37.78 67.09 20.18 67.81 35.95 35.76 40.69 33.60 44.92 42.64
Gemini 2.5 Flash 36.67 68.25 20.00 70.33 30.67 31.72 40.34 36.03 43.34 41.93
Gemini 2.5 Pro 35.48 71.68 23.33 69.33 30.00 27.89 40.09 41.84 42.08 42.41
Doubao-1.5-pro 30.96 71.96 26.00 66.33 52.00 37.91 44.14 35.84 43.69 45.43
Qwen2.5-Max 36.91 71.18 23.33 64.67 46.67 27.73 45.37 40.97 46.94 44.86

Open-Source SOTA
Qwen2.5-72B-Instruct 36.45 68.45 23.33 67.33 43.33 28.58 43.82 41.51 44.89 44.19
Qwen3-235B-A22B-Instruct-2507 32.02 70.81 23.49 64.45 46.31 30.86 42.41 41.47 43.07 43.88
DeepSeek-V3 37.84 70.37 17.99 69.34 39.33 33.72 43.54 40.02 46.49 44.29
GPT-OSS-120B 32.81 68.77 22.67 64.67 35.33 30.02 42.74 40.32 46.92 42.69
Llama-3.1-405B-Instruct 35.87 67.13 19.99 62.70 39.33 35.22 43.75 40.18 45.16 43.26
Kimi-K2-Instruction 36.53 69.21 20.67 70.00 38.67 32.87 41.68 38.99 45.07 43.74

Reasoning Models
DeepSeek-R1 32.25 70.05 26.67 68.99 40.00 39.22 42.88 33.83 44.65 44.28
Grok 3 34.28 71.43 21.95 72.81 37.72 34.00 43.73 42.28 43.09 44.59
Grok 4 37.94 68.65 16.07 66.90 34.22 35.45 43.69 37.98 48.54 43.27
OpenAI o1 31.77 70.89 18.12 63.10 34.23 33.31 43.55 40.49 45.53 42.33
OpenAI o3 29.05 67.67 15.27 59.33 26.64 24.97 39.31 41.27 44.71 38.69

Qwen3-4B 23.34 59.81 19.33 58.00 41.33 16.21 28.38 26.77 29.94 33.68
Thoth-mini 45.21 75.14 28.68 69.67 54.34 42.41 48.91 45.34 51.32 51.22
Qwen3-8B 28.54 67.34 14.00 62.00 26.00 15.92 32.10 35.22 37.55 35.41
Thoth 45.50 73.70 27.34 70.34 54.33 42.15 48.19 44.89 50.72 50.80
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Table 13: Main results on SciRecipe-Eval (Retrieval). Metrics left of the dashed line evaluate exe-
cutability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 51.78 80.87 42.00 73.99 60.00 46.27 58.29 53.51 61.29 58.67
GPT-5 39.77 69.06 18.72 48.16 29.02 24.88 41.52 41.95 51.04 40.46
GPT-5 Chat 54.81 81.86 40.00 72.00 52.00 42.55 56.07 54.05 61.58 57.21
Claude Sonnet 4 53.10 80.66 40.00 78.00 48.00 44.13 55.60 50.88 60.91 56.81
Claude Opus 4.1 58.97 82.42 39.75 72.07 45.36 42.26 56.09 50.66 61.08 56.52
Gemini 2.5 Flash 48.78 75.45 36.00 71.00 48.00 38.37 50.88 47.87 56.35 52.52
Gemini 2.5 Pro 45.71 78.66 40.00 70.00 56.00 38.62 52.35 55.49 59.20 55.11
Doubao-1.5-pro 43.40 78.01 34.00 67.00 54.00 39.83 54.14 47.25 57.64 52.81
Qwen2.5-Max 51.18 81.84 46.00 78.00 58.00 34.33 58.01 51.88 59.62 57.65

Open-Source SOTA
Qwen2.5-72B-Instruct 50.77 82.11 44.00 70.00 70.00 35.23 56.68 53.80 60.13 58.08
Qwen3-235B-A22B-Instruct-2507 55.90 80.23 38.00 70.00 59.97 43.30 56.28 54.85 59.04 57.51
DeepSeek-V3 57.83 80.95 42.83 69.48 53.06 46.00 59.70 55.70 62.66 58.69
GPT-OSS-120B 47.62 80.48 38.00 78.00 44.00 41.26 55.77 52.12 59.97 55.02
Llama-3.1-405B-Instruct 42.10 72.88 28.54 59.18 44.89 38.83 50.29 49.29 54.95 48.99
Kimi-K2-Instruction 45.13 79.94 38.00 74.00 48.00 41.45 52.77 50.93 58.59 54.31

Reasoning Models
DeepSeek-R1 44.54 75.14 27.97 72.97 36.00 42.01 51.71 44.71 56.55 50.18
Grok 3 52.84 81.15 42.12 70.74 54.50 39.45 54.61 55.06 57.88 56.48
Grok 4 44.04 76.50 30.33 68.00 40.67 39.83 51.44 43.08 57.84 50.19
OpenAI o1 50.51 80.38 32.00 78.00 42.00 41.74 55.37 51.96 60.02 54.44
OpenAI o3 51.73 77.50 33.27 66.67 35.39 35.63 51.02 51.68 60.29 51.46

Qwen3-4B 21.50 43.11 18.00 38.00 22.00 12.84 21.80 20.96 24.10 24.70
Thoth-mini 59.35 85.47 45.98 76.34 66.34 50.29 59.62 57.24 64.06 62.74
Qwen3-8B 32.20 62.75 24.00 54.00 36.00 19.32 35.11 35.19 39.29 37.54
Thoth 54.51 84.64 47.99 75.65 67.66 48.55 59.76 59.03 64.92 62.52

Table 14: Main results on SciRecipe-Eval (Planning). Metrics left of the dashed line evaluate exe-
cutability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 44.20 76.84 34.01 79.99 60.00 42.65 53.16 49.96 56.70 55.28
GPT-5 27.41 62.34 8.68 58.95 10.72 21.93 35.86 36.76 44.45 34.12
GPT-5 Chat 33.96 75.62 22.00 62.00 26.00 32.32 45.75 47.28 52.21 44.13
Claude Sonnet 4 38.06 73.34 22.00 64.00 36.00 35.42 47.67 44.29 52.51 45.92
Claude Opus 4.1 51.68 76.84 23.69 82.66 53.24 39.58 50.28 44.81 55.88 53.18
Gemini 2.5 Flash 40.29 76.34 26.00 65.00 28.00 33.95 44.78 42.62 50.99 45.33
Gemini 2.5 Pro 41.38 75.86 26.00 68.00 36.00 35.37 50.58 51.43 54.52 48.79
Doubao-1.5-pro 34.52 73.33 24.01 68.99 62.00 39.11 49.19 43.81 53.34 49.81
Qwen2.5-Max 43.08 72.84 22.00 62.00 54.00 32.97 51.46 49.50 57.75 49.51

Open-Source SOTA
Qwen2.5-72B-Instruct 39.57 73.26 24.01 64.00 50.00 32.45 51.16 48.38 54.94 48.64
Qwen3-235B-A22B-Instruct-2507 31.86 74.41 22.00 69.99 39.99 33.99 47.24 48.51 51.82 46.65
DeepSeek-V3 45.53 76.42 21.98 76.01 46.00 40.97 52.75 49.20 57.95 51.87
GPT-OSS-120B 37.09 71.76 18.00 61.99 32.00 34.02 46.87 48.50 56.85 45.23
Llama-3.1-405B-Instruct 33.79 63.95 11.96 54.00 44.00 34.96 45.09 44.00 49.95 42.41
Kimi-K2-Instruction 33.59 71.64 26.00 62.00 52.00 35.83 48.26 47.39 51.41 47.57

Reasoning Models
DeepSeek-R1 43.05 75.01 23.97 74.98 42.01 42.10 50.88 45.40 54.77 50.24
Grok 3 40.66 77.72 33.78 66.59 52.72 36.60 50.29 52.12 52.12 51.40
Grok 4 39.19 76.44 34.63 63.54 45.69 39.96 51.50 44.76 56.70 50.27
OpenAI o1 35.64 75.73 20.00 64.00 42.00 37.93 49.47 48.84 54.52 47.57
OpenAI o3 34.12 70.76 15.94 58.00 23.97 31.74 47.89 50.66 57.41 43.39

Qwen3-4B 28.50 48.20 13.99 48.00 28.00 14.34 23.85 22.56 26.90 28.26
Thoth-mini 48.05 79.19 32.00 76.34 60.34 44.60 52.66 49.67 57.45 55.59
Qwen3-8B 30.02 63.84 12.00 54.01 38.00 21.65 38.76 41.38 46.75 38.49
Thoth 50.64 79.48 27.98 77.66 63.66 46.68 54.26 52.95 61.79 57.23

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 15: Main results on SciRecipe-Eval (Troubleshooting). Metrics left of the dashed line evaluate
executability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 24.46 62.76 10.00 53.99 26.00 32.80 41.80 40.10 47.80 37.75
GPT-5 17.86 35.51 0.30 16.24 1.82 10.31 20.29 26.51 29.46 17.55
GPT-5 Chat 26.45 65.98 8.00 46.00 16.00 28.80 39.98 38.21 46.97 35.15
Claude Sonnet 4 24.92 63.21 3.98 52.00 9.99 23.83 37.34 38.26 45.72 33.25
Claude Opus 4.1 20.24 54.78 0.35 56.48 -0.12 16.77 30.78 34.10 40.49 28.21
Gemini 2.5 Flash 26.76 59.99 6.00 58.99 31.98 27.13 36.19 36.58 45.68 36.59
Gemini 2.5 Pro 22.05 61.06 10.00 52.00 16.00 25.36 37.48 40.39 45.48 34.42
Doubao-1.5-pro 22.53 67.37 20.00 55.00 50.00 33.61 40.67 35.77 43.73 40.96
Qwen2.5-Max 22.66 62.97 8.00 55.97 56.00 29.08 40.45 39.97 47.33 40.27

Open-Source SOTA
Qwen2.5-72B-Instruct 18.12 61.45 8.00 56.00 34.00 25.78 39.30 37.42 44.15 36.02
Qwen3-235B-A22B-Instruct-2507 26.43 66.89 11.97 62.00 19.97 26.47 38.58 40.38 43.66 37.37
DeepSeek-V3 30.92 65.57 5.97 47.98 32.00 33.12 43.59 42.50 49.35 39.00
GPT-OSS-120B 26.48 57.03 0.00 46.00 0.00 22.57 35.45 36.83 46.09 30.05
Llama-3.1-405B-Instruct 18.65 62.63 5.97 52.00 29.97 28.69 36.64 37.14 43.03 34.97
Kimi-K2-Instruction 23.10 60.74 1.98 53.98 16.00 24.85 36.66 39.49 44.33 33.46

Reasoning Models
DeepSeek-R1 23.93 62.64 7.97 54.97 20.00 31.06 39.30 37.12 47.28 36.03
Grok 3 26.57 68.38 9.97 64.20 31.28 29.55 40.59 42.84 42.84 39.90
Grok 4 19.08 61.60 5.30 35.62 19.26 27.40 36.75 35.81 44.64 31.72
OpenAI o1 18.78 66.89 4.00 48.00 16.00 29.11 40.40 40.04 46.53 34.42
OpenAI o3 24.50 54.81 -0.08 47.97 1.94 20.76 34.55 38.84 45.86 29.91

Qwen3-4B 17.53 52.83 8.00 40.00 22.00 16.22 24.78 24.04 29.37 26.09
Thoth-mini 35.15 67.81 11.98 58.31 50.33 40.65 44.95 41.82 52.04 44.78
Qwen3-8B 18.46 57.11 6.00 46.00 25.98 16.00 29.18 29.89 35.00 29.29
Thoth 29.89 70.37 13.99 75.65 53.66 40.53 44.68 42.02 51.19 46.89

Table 16: Main results on SciRecipe-Eval (Constraint). Metrics left of the dashed line evaluate
executability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 40.34 74.56 30.00 73.99 53.98 39.94 50.87 48.34 55.32 51.93
GPT-5 19.47 61.94 6.35 66.20 12.59 18.55 33.55 35.68 42.92 33.03
GPT-5 Chat 33.40 78.43 30.00 72.00 44.00 37.21 50.27 47.02 54.26 49.62
Claude Sonnet 4 48.20 73.30 17.97 82.00 33.97 32.52 46.00 41.46 53.92 47.70
Claude Opus 4.1 40.64 70.68 19.38 80.29 42.74 29.59 43.40 43.25 51.95 46.88
Gemini 2.5 Flash 36.61 68.91 11.99 68.97 31.97 33.88 44.40 39.63 50.71 43.01
Gemini 2.5 Pro 32.36 74.58 25.97 74.00 33.99 33.30 47.75 46.43 51.12 46.61
Doubao-1.5-pro 32.72 74.37 26.00 73.00 41.99 37.64 49.48 39.95 51.36 47.39
Qwen2.5-Max 40.38 76.12 31.97 77.97 53.99 32.62 50.31 47.20 55.84 51.82

Open-Source SOTA
Qwen2.5-72B-Instruct 33.26 67.67 20.00 64.00 46.00 31.00 46.22 43.65 52.61 44.93
Qwen3-235B-A22B-Instruct-2507 35.41 71.54 19.97 70.00 39.97 32.22 45.24 46.91 51.63 45.88
DeepSeek-V3 35.01 72.93 17.97 75.98 35.99 38.49 49.54 46.21 55.19 47.48
GPT-OSS-120B 18.19 70.31 12.00 62.00 23.97 29.09 43.66 44.23 51.98 39.49
Llama-3.1-405B-Instruct 36.13 72.50 21.97 74.00 55.97 38.27 48.68 47.82 51.67 49.67
Kimi-K2-Instruction 35.50 74.28 21.97 71.97 31.98 30.80 45.14 44.00 51.35 45.22

Reasoning Models
DeepSeek-R1 38.65 68.66 15.97 68.97 28.00 37.76 47.20 41.49 55.16 44.65
Grok 3 30.66 72.92 24.84 70.64 49.11 33.61 48.02 50.49 52.35 48.07
Grok 4 37.78 73.55 26.73 61.81 38.31 39.79 50.63 43.57 57.57 47.75
OpenAI o1 29.63 74.94 21.99 72.00 40.00 37.58 49.99 48.57 55.81 47.83
OpenAI o3 34.13 74.69 13.91 73.97 17.94 30.23 47.49 47.97 54.09 43.82

Qwen3-4B 14.71 34.91 8.00 30.00 21.97 9.76 16.13 15.51 18.47 18.83
Thoth-mini 35.26 74.85 29.98 70.31 64.31 42.72 50.53 48.19 54.34 52.28
Qwen3-8B 25.59 57.32 12.00 52.00 31.97 19.66 34.50 34.38 42.67 34.45
Thoth 48.86 76.75 27.99 65.65 59.66 44.75 52.68 51.19 58.09 53.96
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Table 17: Main results on SciRecipe-Eval (Scaling). Metrics left of the dashed line evaluate exe-
cutability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 74.95 77.87 38.00 71.99 50.00 51.36 62.12 58.19 69.93 61.60
GPT-5 51.76 70.97 31.97 72.24 43.83 34.89 49.73 44.19 66.47 51.78
GPT-5 Chat 62.62 80.70 44.00 70.00 50.00 45.85 59.93 57.32 70.79 60.13
Claude Sonnet 4 63.92 78.50 32.00 72.00 46.00 44.63 56.48 52.89 69.78 57.36
Claude Opus 4.1 65.47 82.42 46.70 77.39 51.12 51.38 63.26 58.90 73.30 63.33
Gemini 2.5 Flash 53.67 77.64 36.00 71.00 40.00 39.74 54.01 49.62 64.62 54.03
Gemini 2.5 Pro 56.34 78.80 32.00 78.00 34.00 38.05 54.83 59.07 64.73 55.09
Doubao-1.5-pro 59.81 81.55 44.00 77.00 52.00 41.74 61.12 54.51 68.72 60.05
Qwen2.5-Max 65.70 81.38 40.00 82.00 50.00 37.65 61.83 55.95 70.13 60.52

Open-Source SOTA
Qwen2.5-72B-Instruct 62.21 79.42 34.00 76.00 46.00 35.97 58.81 56.04 68.89 57.48
Qwen3-235B-A22B-Instruct-2507 58.53 79.31 33.97 74.00 41.97 45.93 57.84 53.45 67.16 56.91
DeepSeek-V3 65.90 83.85 43.97 75.98 60.00 50.00 63.04 58.98 71.61 63.70
GPT-OSS-120B 47.77 79.96 34.00 70.00 50.00 44.23 56.22 54.42 69.45 56.23
Llama-3.1-405B-Instruct 58.56 74.66 25.97 72.00 37.97 43.69 56.50 52.97 66.62 54.33
Kimi-K2-Instruction 62.16 76.45 38.00 70.00 52.00 44.62 59.76 53.93 68.27 58.35

Reasoning Models
DeepSeek-R1 50.18 78.14 30.58 78.60 32.65 44.83 55.15 49.54 64.70 53.82
Grok 3 67.04 78.41 27.72 72.64 36.69 46.19 59.32 56.66 69.14 57.09
Grok 4 48.13 79.31 37.75 78.98 39.74 46.50 57.48 50.66 67.51 56.23
OpenAI o1 60.64 77.34 28.00 70.00 44.00 46.62 58.80 52.93 69.43 56.42
OpenAI o3 65.13 80.59 35.94 72.00 41.94 42.92 60.70 54.73 71.65 58.40

Qwen3-4B 29.58 40.68 18.00 40.00 26.00 16.51 25.92 22.42 30.26 27.71
Thoth-mini 68.87 85.46 47.98 88.31 68.34 54.25 63.90 62.71 72.65 68.05
Qwen3-8B 36.87 60.84 18.00 60.00 26.00 20.87 41.02 40.61 51.26 39.50
Thoth 74.83 87.69 53.99 93.65 69.66 55.02 66.14 63.61 74.15 70.97

Table 18: Main results on SciRecipe-Eval (Safety). Metrics left of the dashed line evaluate exe-
cutability, those on the right measure semantic similarity. Bold denotes the best score.

Methods Semantic-A Order-LCS Order-S Order-Tau Step-M BLUE-AVG ROUGE-L METEOR KW-F1 AVG

Close-Source SOTA
ChatGPT-4o 46.78 76.08 22.00 71.99 40.00 42.88 52.51 50.23 61.04 51.50
GPT-5 36.69 57.09 3.97 56.24 5.85 17.75 33.04 40.63 45.77 33.00
GPT-5 Chat 47.42 72.72 18.00 68.00 22.00 32.27 45.69 51.20 55.65 45.88
Claude Sonnet 4 44.59 77.33 24.00 78.00 52.00 36.76 49.68 50.35 57.72 52.27
Claude Opus 4.1 53.34 77.43 27.63 85.70 40.82 34.47 48.06 43.74 55.58 51.86
Gemini 2.5 Flash 33.47 72.38 26.00 77.00 38.00 34.50 46.52 47.71 53.76 47.70
Gemini 2.5 Pro 38.44 72.67 22.00 66.00 38.00 37.95 49.69 52.26 57.53 48.28
Doubao-1.5-pro 33.55 73.96 22.00 71.00 50.00 38.65 49.39 44.12 54.94 48.62
Qwen2.5-Max 46.16 71.19 14.00 76.00 50.00 35.55 51.71 49.62 60.03 50.47

Open-Source SOTA
Qwen2.5-72B-Instruct 32.86 72.62 22.00 72.00 48.00 33.76 49.18 46.46 54.86 47.97
Qwen3-235B-A22B-Instruct-2507 37.87 73.96 17.97 78.00 47.97 35.26 48.16 51.10 54.38 49.41
DeepSeek-V3 46.21 77.12 23.97 80.00 44.00 42.43 52.35 49.57 60.15 52.87
GPT-OSS-120B 36.72 71.92 12.00 66.00 18.00 33.16 46.79 47.61 55.11 43.03
Llama-3.1-405B-Instruct 38.23 71.94 17.97 76.00 43.97 37.17 47.53 47.51 53.52 48.20
Kimi-K2-Instruction 42.05 74.65 26.00 72.00 54.00 36.86 48.65 49.53 55.30 51.00

Reasoning Models
DeepSeek-R1 40.79 74.12 21.97 62.97 34.00 40.83 50.03 42.26 55.53 46.94
Grok 3 36.51 75.50 21.50 81.49 52.96 37.65 49.66 50.45 55.99 51.30
Grok 4 42.15 74.32 22.49 73.08 41.69 38.51 48.18 41.98 55.22 48.62
OpenAI o1 43.03 74.45 24.00 78.00 44.00 39.85 50.20 48.51 56.41 50.94
OpenAI o3 42.60 70.17 13.94 68.00 25.94 31.53 45.75 49.49 56.15 44.84

Qwen3-4B 26.45 55.88 16.00 50.00 30.00 15.56 25.76 25.40 31.22 30.70
Thoth-mini 36.58 62.74 15.98 56.33 44.34 46.04 44.54 45.62 51.69 44.87
Qwen3-8B 26.54 62.01 12.00 66.00 24.00 19.86 32.45 33.62 39.52 35.11
Thoth 43.52 67.75 23.99 67.65 49.66 48.21 48.34 47.94 52.89 49.99
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I.3 OTHER RESULTS ON PROTOCOL BENCHMARK

To further assess protocol comprehension, we evaluated Thoth on BioProBench sub-tasks, with
results summarized in Table 19. Consistent with the findings in protocol generation, the Thoth series
achieved substantial gains over baseline models, with average improvements of 28.02% and 20.41%
for Thoth and Thoth-mini, respectively. Scaling effects were also more evident in this setting, as
Thoth outperformed Thoth-mini by 6.98%, a gap larger than in protocol generation. On individual
tasks, Thoth showed clear advantages in error correction and protocol QA, exceeding GPT-5 by
17.05% and 12.09%, respectively, and consistently outperforming other strong baselines such as
Claude Sonnet 4 and Gemini 2.5 Flash. These results confirm that Thoth generalizes well across
protocol-related tasks. Nevertheless, because BioProBench partially overlaps with SciRecipe and
does not disclose the exact origins of its QA pairs, there remains a possibility of data leakage, and
thus the reported results should be regarded as reference only.

Table 19: Results on the protocol QA tasks.

Methods ERR ORD PQA

ACC F1 EM K tau ACC

ChatGPT-4o 59.33 36.95 41.89 68.05 60.75
GPT-5 67.72 59.65 48.86 73.44 70.58
GPT-5 Chat 60.33 41.38 45.66 71.71 60.75
Claude Sonnet 4 62.92 54.64 47.71 72.31 67.08
Gemini 2.5 Flash 62.17 51.91 43.79 73.12 64.47
Qwen2.5-Max 54.83 17.38 41.51 67.96 62.25
Doubao-1.5-pro 56.43 24.49 43.38 70.86 63.00
Qwen2.5-72B-Instruct 56.08 25.25 36.99 62.46 60.42
Qwen3-235B-A22B-Instruct 59.33 39.15 41.63 69.18 62.58
DeepSeek-V3 57.33 30.25 40.83 70.56 62.83
GPT-OSS-120B 64.33 53.17 39.88 68.08 64.83
Llama-3.1-405B-Instruct 57.30 39.33 39.06 65.42 57.67
Kimi-K2-Instruction 59.50 37.05 42.62 71.70 63.00

Qwen3-4B 58.00 48.78 22.53 51.82 47.08
Thoth-mini 75.83 72.49 41.72 65.90 74.33
Qwen3-8B 56.83 32.90 28.63 56.12 50.58
Thoth 80.75 80.73 49.08 71.92 82.67

I.4 COMPARISON WITH CHAIN-OF-THOUGHT AND SKETCH-AND-FILL

To clarify the advantages of the Sketch and Fill paradigm for structured protocol generation, we
extended our evaluation to include several commonly used reasoning baselines. The central idea of
Sketch and Fill is to separate global planning from step level realization so that the model is guided
to produce explicit and verifiable procedural structure. This design differs from standard chain of
thought prompting, which encourages free form reasoning but does not ensure that the final protocol
follows a coherent step wise format.

In addition to the direct Fill baseline reported in the Figure 4, we introduced two additional baselines.
The first is Standard CoT, where the model is instructed to think step by step and then immediately
generate the protocol. The second is Advanced CoT, where the model first produces an extended
reasoning trace and then outputs the protocol without structural constraints. The comparison results
in Table 20 show that Sketch and Fill consistently outperforms both Standard and Advanced CoT
across all evaluated models and metrics. This demonstrates that conventional multi stage reasoning
alone is not sufficient for generating well structured protocols and that introducing an explicit sketch
stage provides measurable benefits.

I.5 HUMAN–METRIC CONSISTENCY ANALYSIS

To assess how well the SCORE metric reflects real experimental executability, we conducted a
human evaluation study using protocols generated by Thoth and Thoth-mini. Since SciRecipe is
constructed from real laboratory protocols collected from Bio-protocol, Protocols.io, and related
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Table 20: Comparison of reasoning paradigms across models.

Metric Paradigm DeepSeek-V3 GPT-5 Chat Qwen3-8B Thoth AVG

BLUE-AVG

Standard CoT 5.98 5.12 5.01 13.03 7.29
Advanced CoT 9.00 6.40 7.70 29.58 13.17

Fill 33.36 31.37 20.69 38.91 31.08
Sketch and Fill 38.17 29.57 16.66 43.25 31.91

ROUGE-L

Standard CoT 19.82 17.41 15.06 27.54 19.96
Advanced CoT 28.11 22.14 19.91 41.34 27.88

Fill 44.21 41.10 33.38 46.44 41.28
Sketch and Fill 48.46 42.04 32.31 49.13 42.99

METEOR

Standard CoT 24.92 22.73 18.61 25.78 23.01
Advanced CoT 26.90 23.53 17.65 36.51 26.15

Fill 41.29 38.03 36.36 44.01 39.92
Sketch and Fill 45.03 41.95 34.72 46.73 42.11

KW-F1

Standard CoT 26.07 22.74 19.59 33.14 25.39
Advanced CoT 35.20 29.40 23.79 47.28 33.92

Fill 49.64 46.24 37.43 50.63 45.99
Sketch and Fill 54.28 49.87 38.63 53.57 49.09

Table 21: Cohen’s kappa agreement between SCORE and expert ratings for Thoth.

Tasks Step Scale Order Consistency Semantic Consistency Overall

Overview 0.82 0.79 0.74 0.76
Specific 0.80 0.77 0.72 0.74
Retrieval 0.85 0.82 0.76 0.79
Planning 0.84 0.80 0.75 0.78
Troubleshooting 0.81 0.78 0.73 0.75
Constraint 0.86 0.83 0.77 0.80
Scaling 0.83 0.79 0.74 0.76
Safety 0.84 0.81 0.75 0.78
Level1 0.88 0.85 0.79 0.82
Level2 0.79 0.76 0.71 0.73
Overall 0.83 0.80 0.74 0.77

platforms, the dataset reflects authentic experimental structure and operational logic. The SCORE
metric was designed on the basis of these real procedures, incorporating three components that
capture key dimensions of protocol quality: step granularity, action order consistency, and semantic
fidelity.

To examine the alignment between SCORE and expert judgment, three researchers with extensive
wet-lab experience manually evaluated a subset of protocols from SciRecipe-Eval. Each protocol
was rated on step granularity, operational order, and semantic clarity using a five-point scale ranging
from 0 to 4. The raters also provided an overall score for fluency and executability. For every
criterion, we averaged the three expert scores and normalized the resulting values. Tables 21 and 22
report the Cohen’s kappa coefficients between SCORE and expert ratings for Thoth and Thoth-mini.
These coefficients quantify the agreement between human assessment and the metric along each
evaluation dimension. According to established interpretative guidelines (Landis & Koch, 1977),
the obtained kappa values indicate a meaningful degree of correspondence between SCORE and
domain-expert judgments across all task categories.

In addition to its alignment with expert ratings, we further examined whether SCORE is sensitive to
the types of critical errors that directly influence experimental executability. Common failure modes
in model-generated protocols include incorrect ordering of dependent steps, omission of essential
operations, and mismatches between actions and their intended objects. SCORE evaluates these
issues along three complementary dimensions, namely step scale, order consistency, and semantic
consistency, which jointly capture both structural and procedural correctness. To assess the validity
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Table 22: Cohen’s kappa agreement between SCORE and expert ratings for Thoth-mini.

Tasks Step Scale Order Consistency Semantic Consistency Overall

Overview 0.80 0.77 0.72 0.74
Specific 0.78 0.75 0.70 0.72
Retrieval 0.83 0.80 0.74 0.77
Planning 0.82 0.78 0.73 0.76
Troubleshooting 0.79 0.76 0.71 0.73
Constraint 0.84 0.81 0.75 0.78
Scaling 0.81 0.77 0.72 0.74
Safety 0.82 0.79 0.73 0.76
Level1 0.86 0.83 0.77 0.80
Level2 0.77 0.74 0.69 0.71
Overall 0.81 0.78 0.72 0.75

of this design, two-fifths of the SciRecipe-Eval samples were reviewed by three researchers with
extensive wet-lab experience. The experts annotated whether a protocol contained any error that
could compromise experimental success and also rated overall completeness and logical coherence.
Protocols containing such errors exhibited substantially lower SCORE values, with an average re-
duction of 34.3% across tasks, and the separation between valid and faulty protocols was statistically
significant (p < 0.001).

Addtionally, treating SCORE as a binary detector using a threshold equal to the mean between the
two distributions, we obtained an AUC of 0.92, a recall of approximately 0.90, and a precision of
approximately 0.87 when compared with expert annotations. These results indicate that SCORE
reliably identifies the same categories of critical procedural mistakes that domain experts deem
detrimental. To further assess its comparative sensitivity, we conducted a pairwise ranking study
using protocol pairs generated by Thoth and Thoth-mini. Experts were asked to select the protocol
with better executability and more coherent procedural flow, and SCORE agreed with these rankings
in 81.2% of cases (Kendall’s τ = 0.72). Overall, these findings demonstrate that SCORE is not
a heuristic scoring scheme but a principled metric that detects consequential procedural errors and
exhibits robust consistency with expert judgments across both diagnostic and comparative evaluation
settings.

I.6 QUANTITATIVE VALIDATION OF THE SKETCH-AND-FILL

The SAF representation is designed to capture the minimal semantic structure necessary for execut-
ing an experimental step. Across diverse protocols, each step can be decomposed into an operation,
a target object, and a set of conditions that specify how the action is performed. Encoding these
elements as an (Action, Object, Parameters) triplet yields a compact abstraction that preserves core
procedural meaning while reducing stylistic variability in natural language descriptions. Branching
logic does not conflict with this formulation, as SAF encodes atomic actions while conditional or
alternative paths operate at a higher structural level. Conditions can be expressed directly in the
parameter field (for example, “if the pellet is not visible”), or represented as parallel SAF entries
corresponding to distinct experimental scenarios.

To quantitatively assess how well SAF captures the semantics of real protocols, we conducted a se-
ries of analyses. First, a coverage study was performed on fifty protocols comprising 423 steps. Each
step was manually mapped into SAF format, after which two domain experts evaluated whether the
SAF representation preserved the essential information. The evaluation used three categories: fully
covered, partially covered, and not covered. We observed that 85.6% of steps were fully covered
and 10.4% were partially covered. Only 4.0% of steps could not be represented, and these were
predominantly narrative or meta-experimental statements rather than actionable instructions. Inter-
annotator consistency was measured by independently encoding 200 randomly sampled steps. The
resulting Cohen’s kappa coefficients were 0.86 for actions, 0.82 for objects, and 0.78 for parameters,
indicating that the schema is well-defined and yields stable mappings across annotators.
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Table 23: Token-level conditional entropy across tasks and model families when conditioning on
SAF.

Tasks Qwen2.5-7B Qwen3-8B DeepSeek-R1-Llama8B Llama-3.1-8B Phi-4-mini InternLM3-8B Mistral-7B

Overview 1.0223 0.8956 1.1342 0.9298 1.0303 0.8205 0.7393
Specific 0.9383 0.8144 1.0419 0.8425 0.9614 0.7548 0.6478
Retrieval 0.9000 0.7991 1.0411 0.8208 0.9300 0.6915 0.6106
Planning 0.9636 0.8153 1.0938 0.8942 1.0246 0.7366 0.6572
Troubleshooting 0.7925 0.7848 0.9673 0.7316 0.8580 0.6439 0.6158
Constraint 0.9649 0.8432 1.0700 0.8477 0.9388 0.7302 0.6830
Scaling 0.8974 0.7999 1.0037 0.7906 0.8990 0.7193 0.6143
Safety 0.9129 0.8073 1.0161 0.7996 0.9316 0.7133 0.6231
Level1 0.9803 0.8550 1.0881 0.8862 0.9959 0.7877 0.6936
Level2 0.9052 0.8083 1.0320 0.8141 0.9303 0.7058 0.6340
Overall 0.9240 0.8200 1.0460 0.8321 0.9467 0.7263 0.6489

We further examined SAF from an information-theoretic perspective. Let X denote the natural
language step description and Y denote its SAF representation. The remaining uncertainty after
conditioning on SAF is given by the conditional entropy

H(X | Y ) = −Ex,y log p(x | y). (19)

To operationalize this quantity, each SAF triplet was prepended to the original step text, and token-
level probabilities were obtained from a language model. The conditional log probability was com-
puted using the standard chain rule

log q(x | y) =
n∑

i=1

log q(ti | y, t<i). (20)

where x = (t1, . . . , tn) is the tokenized step, and q(x | y) represents the model’s approximation of
p(x | y). Conditioning on SAF consistently reduced token-level uncertainty across all SciRecipe-
Eval task categories. Prior work estimates that natural language typically exhibits 2.5–4.0 nats
of entropy per token (Goodman, 2001; Kaplan et al., 2020; Hoffmann et al., 2022). In contrast, the
conditional entropy of experimental steps under SAF is substantially lower, indicating that the triplet
encodes the majority of semantic information required to reconstruct the procedural description.
This trend persists across multiple language model families, as shown in Table 23.

J FUTHER ANALYSES

J.1 REWARD ANALYSES & RESULTS

J.1.1 RL ALGORITHMS

We conducted ablation experiments to assess the robustness of the SCORE mechanism under differ-
ent RL algorithms, replacing the third-stage optimization algorithm while keeping earlier training
stages consistent. As shown in Table 24, SCORE remained stable across a variety of methods, con-
firming its reliability as a reward mechanism. Executability-oriented metrics revealed that GRPO
offered the best overall balance, benefiting from group-wise normalization that stabilized training
and strengthened action fidelity. This supports our choice of GRPO as the primary optimization
method in Thoth.

J.1.2 REWARD COMPUTATIONS

We further examined the impact of different reward computation strategies within the SCORE mech-
anism, considering the choice of order consistency logic (LCS or Strict), the method of combining
order and semantic rewards (Product or Sum), and the integration of step scale with step seman-
tics (Product or Sum). As summarized in Table 25, strict order scoring consistently outperformed
LCS, product-based integration proved more effective than summation, and multiplicative incorpo-
ration of step scale with semantics yielded stronger executability. These trends collectively support
the adoption of the S-S-P configuration in Thoth, which achieved the best balance between surface
similarity and procedural fidelity.
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Table 24: Further analysis results on RL algorithms.

(a)

Algorithm BERTScore-
F1

BERTScore-
P

BERTScore-
R

BLEU-1 BLEU-2

GPG 97.81 98.01 97.62 68.56 47.30
GRPO Dr 97.81 97.99 97.63 68.10 47.31
GSPO 97.81 97.98 97.65 68.65 47.36
REINFORCE
++-baseline 97.82 98.08 97.56 68.83 48.18

ReMax 97.81 98.05 97.57 67.93 47.87
RLOO 97.81 98.04 97.59 67.35 47.64
Thoth (GRPO) 97.82 97.99 97.65 68.56 48.28

(b)

Algorithm BLEU-3 BLEU-4 BLEU-
AVG

ROUGE-1 ROUGE-2

GPG 34.44 21.80 43.03 59.98 36.58
GRPO Dr 34.44 21.85 42.93 60.31 36.89
GSPO 33.50 22.08 42.90 60.40 37.11
REINFORCE
++-baseline 34.71 22.69 43.60 59.92 37.08

ReMax 33.59 22.79 43.05 59.96 36.59
RLOO 33.60 22.61 42.80 60.41 37.15
Thoth (GRPO) 34.58 23.09 43.62 60.30 37.14

(c)

Algorithm ROUGE-L Meteor KW-F1 KW-P KW-R

GPG 49.01 45.81 53.47 58.52 50.84
GRPO Dr 49.12 47.14 53.98 59.29 51.06
GSPO 49.32 46.91 54.20 58.59 51.98
REINFORCE
++-baseline 49.19 46.19 53.59 60.40 49.71

ReMax 49.52 45.95 53.47 60.27 49.56
RLOO 50.00 46.66 53.65 60.29 49.94
Thoth (GRPO) 50.02 47.39 54.13 58.82 51.70

(d)

Algorithm Order-LCS Order-S Order-Tau Semantic-A Step-M

GPG 74.02 22.50 70.33 45.07 46.67
GRPO Dr 75.34 26.67 71.50 44.11 50.50
GSPO 74.93 23.67 68.67 43.93 51.17
REINFORCE
++-baseline 75.69 25.50 70.67 44.14 50.67

ReMax 73.58 23.00 69.33 44.89 51.11
RLOO 74.42 25.00 70.17 43.87 51.50
Thoth (GRPO) 75.34 25.50 73.33 46.60 53.00

J.1.3 REWARD MAGNITUDES

To better understand the sensitivity of SCORE to the absolute scale of feedback, we examined
different strategies for adjusting reward magnitude. Four configurations were compared: constant
scaling, scaling up, symmetric shifting with equal positive and negative ranges, and the default Thoth
setting. As shown in Table 26, model performance remained highly stable across all strategies,
with only minimal variations observed on both text-level and executability-oriented metrics. This
confirms that the effectiveness of SCORE arises mainly from its structured reward design rather
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Table 25: Further analysis results on Reward Computations.

(a)

Combine BERTScore-
F1

BERTScore-
P

BERTScore-
R

BLEU-1 BLEU-2

L-P-P 97.76 97.85 97.67 63.17 44.25
L-P-S 97.73 97.80 97.66 62.56 43.74
L-S-P 97.78 97.87 97.69 63.23 44.37
L-S-S 97.59 97.66 97.51 61.91 43.03
S-P-P 97.80 98.00 97.61 70.04 49.18
S-P-S 97.80 97.91 97.70 64.18 45.14
S-S-S 97.80 97.92 97.68 67.28 47.15
Thoth (S-S-P) 97.82 97.99 97.65 68.56 48.28

(b)

Combine BLEU-3 BLEU-4 BLEU-AVG ROUGE-1 ROUGE-2

L-P-P 31.31 20.74 39.87 58.81 35.40
L-P-S 30.95 20.30 39.39 58.86 35.31
L-S-P 31.32 20.54 39.86 59.24 35.82
L-S-S 30.36 19.79 38.77 58.49 34.62
S-P-P 35.18 23.44 44.46 59.52 36.48
S-P-S 32.20 21.34 40.71 59.33 36.05
S-S-S 33.73 22.49 42.66 60.08 36.56
Thoth (S-S-P) 34.58 23.09 43.62 60.30 37.14

(c)

Combine ROUGE-L Meteor KW-F1 KW-P KW-R

L-P-P 48.17 45.93 53.21 55.78 52.72
L-P-S 47.23 46.11 52.67 54.75 52.47
L-S-P 48.09 46.08 53.50 56.30 52.78
L-S-S 46.85 45.63 52.83 54.64 53.05
S-P-P 49.40 45.57 53.35 59.23 50.02
S-P-S 48.47 46.37 53.62 56.23 53.10
S-S-S 48.47 46.54 53.56 57.36 51.65
Thoth (S-S-P) 50.02 47.39 54.13 58.82 51.70

(d)

Combine Order-LCS Order-S Order-Tau Semantic-A Step-M

L-P-P 71.30 19.50 65.50 45.02 32.33
L-P-S 69.70 16.17 64.00 45.65 34.50
L-S-P 71.82 20.83 66.67 45.18 35.33
L-S-S 71.52 18.00 65.00 45.47 33.83
S-P-P 75.21 25.17 71.50 44.78 50.00
S-P-S 72.57 21.00 66.50 45.23 34.50
S-S-S 74.61 23.67 69.17 45.41 50.00
Thoth (S-S-P) 75.34 25.50 73.33 46.60 53.00

than the precise numerical range, and also suggests that it can be applied robustly to more complex
open-ended tasks where reward scales may differ.
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Table 26: Further analysis results on Reward Magnitudes.

(a)

Reward Scale BERTScore-
F1

BERTScore-
P

BERTScore-
R

BLEU-1 BLEU-2

Constant [0, 2.5] 97.80 97.98 97.62 67.79 47.50
Scaling up [0, 5] 97.78 97.92 97.64 67.74 47.27
Shift [-1.25, 1.25] 97.79 97.98 97.60 67.76 47.45
Thoth [0, 1] 97.82 97.99 97.65 68.56 48.28

(b)

Reward Scale BLEU-3 BLEU-4 BLEU-
AVG

ROUGE-1 ROUGE-2

Constant [0, 2.5] 33.60 22.00 42.72 60.06 36.38
Scaling up [0, 5] 33.63 22.31 42.74 59.97 36.24
Shift [-1.25, 1.25] 33.57 22.82 42.90 60.11 36.69
Thoth [0, 1] 34.58 23.09 43.62 60.30 37.14

(c)

Reward Scale ROUGE-L Meteor KW-F1 KW-P KW-R

Constant [0, 2.5] 49.06 46.12 53.92 58.80 51.30
Scaling up [0, 5] 49.07 46.01 53.02 56.72 51.28
Shift [-1.25, 1.25] 49.15 46.75 53.70 58.67 51.11
Thoth [0, 1] 50.02 47.39 54.13 58.82 51.70

(d)

Reward Scale Order-
LCS

Order-S Order-Tau Semantic-
A

Step-M

Constant [0, 2.5] 74.71 25.17 71.50 45.22 51.50
Scaling up [0, 5] 73.92 26.17 72.33 45.14 51.67
Shift [-1.25, 1.25] 73.70 26.50 72.49 45.36 52.12
Thoth [0, 1] 75.34 25.50 73.33 46.60 53.00
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J.2 PRE-TRAINING ANALYSIS

Table 27: Performance differences on the MMLU dataset (Hendrycks et al., 2021) before and after
pretraining. To examine potential catastrophic forgetting of general scientific knowledge, we eval-
uate MMLU on the OpenCompass platform (Contributors, 2023). “ pt” denotes the Thoth model
after the pretraining stage only, and ∆ indicates the performance gap between pretrained models and
their base counterparts. The results clearly show that pretraining on a large collection of high-quality
protocols not only preserves general capability but even yields improvements in certain disciplines.

Dataset Version Qwen3-4B Thoth-mini pt ∆ Qwen3-8B Thoth pt ∆

lukaemon mmlu abstract algebra 2db373 91.00 87.00 -4.00 88.00 91.00 3.00
lukaemon mmlu anatomy 72183b 70.37 71.85 1.48 75.56 75.56 0.00

lukaemon mmlu astronomy d3ee01 84.87 89.47 4.60 90.79 88.82 -1.97
lukaemon mmlu business ethics 1dec08 77.00 72.00 -5.00 81.00 77.00 -4.00

lukaemon mmlu clinical knowledge cb3218 80.38 81.89 1.51 83.77 86.04 2.27
lukaemon mmlu college biology caec7d 90.28 88.89 -1.39 95.14 94.44 -0.70

lukaemon mmlu college chemistry 520aa6 66.00 63.00 -3.00 71.00 71.00 0.00
lukaemon mmlu college computer science 99c216 80.00 83.00 3.00 87.00 83.00 -4.00

lukaemon mmlu college mathematics 678751 90.00 86.00 -4.00 77.00 79.00 2.00
lukaemon mmlu college medicine 38709e 83.24 84.97 1.73 84.97 84.97 0.00
lukaemon mmlu college physics 4f382c 94.12 94.12 0.00 95.10 95.10 0.00

lukaemon mmlu computer security ce7550 85.00 82.00 -3.00 84.00 86.00 2.00
lukaemon mmlu conceptual physics 63588e 88.94 88.09 -0.85 94.04 93.62 -0.42

lukaemon mmlu econometrics d1134d 71.93 71.93 0.00 80.70 84.21 3.51
lukaemon mmlu electrical engineering 770ce3 83.45 80.00 -3.45 80.69 84.14 3.45

lukaemon mmlu elementary mathematics 269926 97.35 97.35 0.00 97.62 97.88 0.26
lukaemon mmlu formal logic cfcb0c 92.86 88.89 -3.97 89.68 90.48 0.80
lukaemon mmlu global facts ab07b6 51.00 52.00 1.00 44.00 57.00 13.00

lukaemon mmlu high school biology 37b125 85.81 87.74 1.93 90.00 93.87 3.87
lukaemon mmlu high school chemistry ae8820 89.16 89.66 0.50 91.13 89.16 -1.97

lukaemon mmlu high school computer science 9965a5 91.00 92.00 1.00 98.00 96.00 -2.00
lukaemon mmlu high school european history eefc90 82.42 81.82 -0.60 87.27 83.03 -4.24

lukaemon mmlu high school geography 0780e6 86.87 91.92 5.05 93.94 91.92 -2.02
lukaemon mmlu high school government and politics 3c52f9 91.19 90.67 -0.52 95.34 95.34 0.00

lukaemon mmlu high school macroeconomics a01685 87.95 86.92 -1.03 92.82 91.54 -1.28
lukaemon mmlu high school mathematics ed4dc0 95.19 95.19 0.00 67.41 64.44 -2.97

lukaemon mmlu high school microeconomics 04d21a 93.70 93.70 0.00 96.22 95.80 -0.42
lukaemon mmlu high school physics 93278f 86.75 86.75 0.00 90.07 86.75 -3.32

lukaemon mmlu high school psychology 7db114 91.93 92.84 0.91 95.05 94.31 -0.74
lukaemon mmlu high school statistics 8f3f3a 89.81 89.35 -0.46 91.67 90.74 -0.93

lukaemon mmlu high school us history 8932df 85.78 87.75 1.97 90.20 88.24 -1.96
lukaemon mmlu high school world history 048e7e 85.65 82.70 -2.95 88.61 89.03 0.42

lukaemon mmlu human aging 82a410 73.99 71.75 -2.24 76.68 76.68 0.00
lukaemon mmlu human sexuality 42407c 83.97 81.68 -2.29 89.31 85.50 -3.81
lukaemon mmlu international law cf3179 76.03 78.51 2.48 77.69 80.99 3.30

lukaemon mmlu jurisprudence 001f24 75.00 79.63 4.63 87.96 80.56 -7.40
lukaemon mmlu logical fallacies 9cebb0 85.28 84.66 -0.62 86.50 85.89 -0.61

lukaemon mmlu machine learning 0283bb 76.79 76.79 0.00 78.57 82.14 3.57
lukaemon mmlu management 80876d 84.47 85.44 0.97 88.35 86.41 -1.94

lukaemon mmlu marketing 7394e3 91.88 91.45 -0.43 94.87 91.45 -3.42
lukaemon mmlu medical genetics 881ef5 88.00 88.00 0.00 91.00 89.00 -2.00

lukaemon mmlu miscellaneous 935647 88.12 87.48 -0.64 91.70 91.44 -0.26
lukaemon mmlu moral disputes a2173e 74.28 72.83 -1.45 72.25 73.99 1.74
lukaemon mmlu moral scenarios f6dbe2 62.46 60.67 -1.79 60.22 62.46 2.24

lukaemon mmlu nutrition 4543bd 76.14 76.80 0.66 85.29 84.31 -0.98
lukaemon mmlu philosophy 08042b 72.03 68.81 -3.22 76.53 79.10 2.57
lukaemon mmlu prehistory bbb197 81.48 80.25 -1.23 85.80 84.88 -0.92

lukaemon mmlu professional accounting 444b7f 73.40 73.40 0.00 81.21 80.85 -0.36
lukaemon mmlu professional law 5f7e6c 49.80 50.07 0.27 55.61 56.39 0.78

lukaemon mmlu professional medicine 857144 82.72 84.19 1.47 89.34 87.50 -1.84
lukaemon mmlu professional psychology 221a16 77.61 75.65 -1.96 79.90 79.41 -0.49

lukaemon mmlu public relations e7d39b 68.18 70.00 1.82 73.64 76.36 2.72
lukaemon mmlu security studies 9b1743 71.84 75.51 3.67 76.33 77.96 1.63

lukaemon mmlu sociology c266a2 80.10 80.60 0.50 87.06 83.08 -3.98
lukaemon mmlu us foreign policy 528cfe 86.00 86.00 0.00 87.00 85.00 -2.00

lukaemon mmlu virology 12e270 55.42 51.81 -3.61 54.82 57.23 2.41
lukaemon mmlu world religions 232c09 84.21 85.38 1.17 85.96 88.30 2.34

AVG 81.41 81.21 -0.20 83.88 83.79 -0.09
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K CASE STUDIES

Query: 

During the nuclei washing step of the snPATHO-seq workflow, a researcher accidentally used 
wash solution 1 for the final resuspension instead of wash solution 2 before filtering through 
the 40 μm strainer. To correct this mistake and ensure the nuclei are properly prepared for 
counting, what sequence of corrective actions should be taken to replace wash solution 1 
with wash solution 2 prior to proceeding?

<think>
The problem here is that the final resuspension was done with wash solution 1 instead of 
wash solution 2. Wash solution 2 is designed to remove residual contaminants and provide 
the correct buffer composition for downstream processing. Using wash solution 1 could 
compromise nuclei integrity or interfere with downstream assays. The logical correction is 
to immediately replace the incorrect solution with wash solution 2. Since the nuclei were 
just resuspended, the best approach is to centrifuge the sample to pellet the nuclei, remove 
the incorrect wash solution 1, and resuspend in the correct wash solution 2. After 
resuspension, filtering through a 40 μm strainer is necessary to ensure a single-cell 
suspension suitable for counting. This plan assumes that wash solution 2 is available and 
that the centrifuge and filter are functioning properly. The sequence is centrifuge → 
remove incorrect solution → resuspend in correct solution → filter, which directly 
addresses the mistake and restores the workflow.
</think>

<key>
Step 1: {"action": "centrifuge", "objects": ["nuclei suspension"], "parameters": ["500xg", "5 
min", "4 °c"]}
Step 2: {"action": "remove", "objects": ["supernatant"], "parameters": ["carefully"]}
Step 3: {"action": "resuspend", "objects": ["nuclei pellet"], "parameters": ["1 ml", "wash 
solution 2"]}
Step 4: {"action": "filter", "objects": ["nuclei suspension"], "parameters": ["40 µm strainer"]}
</key>

<orc>
Step 1: Centrifuge the nuclei suspension at 500xg for 5 min at 4 °C.  
Step 2: Remove the supernatant carefully.  
Step 3: Resuspend the nuclei pellet in 1 ml wash solution 2.  
Step 4: Filter the nuclei suspension through a 40 µm strainer.
</orc>

<note>
Handle all wash solutions on ice to maintain nuclei integrity. Centrifugation at 4 °C 
prevents enzymatic activity that could damage nuclei. When filtering, avoid applying 
excessive pressure to prevent rupturing nuclei. Dispose of waste solutions according to 
biosafety protocols for handling biological samples.
</note>

Model Output: 

Retrieval (Level2)

Action Library: 

"centrifuge", "titer", "remove", "pour", "resuspend", "filter", "dry".

Figure 11: Case result of Thoth on the Retrieval task.
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Query: 

How should I prepare a freshly cleaved mica surface and functionalize it with APS working 
solution in order to stably immobilize DNA for AFM liquid imaging of Twinkle helicase 
dynamics?

<think>
The goal here is to generate a stable DNA-immobilized surface for AFM liquid imaging of 
Twinkle helicase. Mica is used as a support substrate because of its atomically flat surface, 
but it must be freshly cleaved to expose a clean lattice suitable for binding. The protocol 
specifies that mica should be peeled with Scotch tape to obtain a fresh, uniform surface. 
Next, the functionalization step is required—APS (amino-polyethylene glycol silane) is used 
to introduce amine groups, allowing subsequent DNA immobilization via covalent attachment. 
To ensure effective functionalization, the APS solution must be deposited evenly on the mica, 
incubated for a defined time (5 min), and then washed with Milli-Q water to remove unbound 
APS. Finally, the mica is dried briefly to prepare a stable substrate. This sequence ensures 
that the mica has the correct surface chemistry, the DNA will bind stably, and the 
substrate will be suitable for AFM imaging in liquid.
</think>

<key>
Step 1: {"action": "peel", "objects": ["mica sheet"], "parameters": ["with scotch tape", "to 
expose fresh layer"]}
Step 2: {"action": "deposit", "objects": ["aps working solution"], "parameters": ["200 µl", "on 
mica"]}
Step 3: {"action": "incubate", "objects": ["mica with aps"], "parameters": ["5 min"]}
Step 4: {"action": "wash", "objects": ["mica"], "parameters": ["milli-q water", "twice"]}
Step 5: {"action": "dry", "objects": ["mica sheet"], "parameters": ["2 min"]}
</key>

<orc>
Step 1: Peel the mica sheet with Scotch tape to expose a fresh layer.  
Step 2: Deposit 200 µl of APS working solution on the mica.  
Step 3: Incubate the mica with APS for 5 min.  
Step 4: Wash the mica with Milli-Q water twice.  
Step 5: Dry the mica sheet for 2 min.
</orc>

<note>
APS is a silane-based chemical and should be handled in a fume hood with gloves and eye 
protection to avoid inhalation or skin contact. Ensure that mica is freshly cleaved before 
use to prevent uneven surface binding. Dispose of APS-containing waste according to 
institutional hazardous chemical guidelines.
</note>

Model Output: 

Planning (Level2)

Action Library: 

"dry", "recover", "deposit", "incubate", "wash", "peel".

Figure 12: Case result of Thoth on the Planning task.
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Query: 

During fecal microbiota transplantation, I observed that the supernatant collected after 
homogenization and centrifugation at 805 x g for 10 min was very cloudy, suggesting 
incomplete removal of solid material. This made oral gavage difficult because the gavage 
needle clogged repeatedly. How can I troubleshoot this issue to obtain a clearer bacterial 
suspension without losing viable microbes?

<think>
The problem is that the supernatant remains cloudy after the initial centrifugation, 
indicating that fine particulates are not being removed efficiently. This suggests either 
insufficient centrifugation force or inadequate filtering. The goal is to obtain a clear 
suspension suitable for oral gavage without damaging the microbes. 

First, the most logical step is to repeat centrifugation at a higher speed to pellet finer 
solids. If the pellet is still unclear, the next best option is filtration through a sterile filter. 
The protocol mentions filtering with 0.45 µm and 0.2 µm filters, so using a 0.2 µm filter 
would ensure removal of remaining bacteria and debris while preserving viability. 

This plan assumes that the centrifuge can be safely operated at higher speeds (e.g., 1600 
x g) without damaging the samples and that sterile filters are available. By first clarifying 
the suspension with an additional centrifugation and then filtering, we can maximize clarity 
and ensure the gavage needle does not clog.
</think>

<key>
Step 1: {"action": "centrifuge", "objects": ["supernatant"], "parameters": ["1600xg", "10 min"]}
Step 2: {"action": "collect", "objects": ["supernatant"], "parameters": ["after centrifugation"]}
Step 3: {"action": "filter", "objects": ["supernatant"], "parameters": ["0.2 µm filter"]}
</key>

<orc>
Step 1: Centrifuge the supernatant at 1600xg for 10 min.  
Step 2: Collect the supernatant after centrifugation.  
Step 3: Filter the supernatant through a 0.2 µm filter.
</orc>

<note>
Handle centrifuged supernatant carefully to avoid disturbing the pellet. Filtration under 
sterile conditions is essential to prevent contamination. Use filters rated for microbial 
removal, and avoid applying excessive pressure during filtration to prevent filter rupture or 
aerosol formation.
</note>

Model Output: 

Troubleshooting (Level1)

Action Library: 

"filter", "collect", "centrifuge".

Figure 13: Case result of Thoth on the Troubleshooting task.
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Query: 

During the generation of spheroids, we usually add 10 ml PBS to the bottom of the 10 cm 
dish to maintain humidity. However, PBS stocks are unavailable. How can we modify the 
hanging drop setup to maintain spheroid viability without PBS while still preventing 
evaporation and contamination?

<think>
The key challenge here is that PBS is essential in the hanging drop setup to prevent 
evaporation and maintain spheroid viability. Without PBS, spheroids are at risk of drying 
out, leading to experimental failure. Since PBS is unavailable, we must find an alternative. A 
reasonable substitution is sterile distilled water, which can provide hydration and prevent 
excessive evaporation. To compensate for the lack of buffering capacity, we can sterilize 
the water and keep it at room temperature. Placing the dishes in a humid chamber will also 
help minimize evaporation. This plan assumes that sterile distilled water is available and 
that the spheroids are not highly sensitive to changes in buffer composition. The trade-off 
is that distilled water lacks ionic balance, which may slightly affect spheroid growth, but it 
is acceptable for short-term maintenance.
</think>

<key>
Step 1: {"action": "sterilize", "objects": ["distilled water"], "parameters": ["0.45 µm filter"]}
Step 2: {"action": "add", "objects": ["sterilized distilled water"], "parameters": ["10 ml", 
"bottom of 10 cm dish"]}
Step 3: {"action": "place", "objects": ["dish"], "parameters": ["humid chamber"]}
</key>

<orc>
Step 1: Sterilize distilled water through a 0.45 µm filter.  
Step 2: Add 10 ml of sterilized distilled water to the bottom of the 10 cm dish.  
Step 3: Place the dish in a humid chamber.
</orc>

<note>
When substituting PBS with sterilized distilled water, ensure the water is sterilized to 
prevent contamination. Avoid handling spheroids directly to prevent damage. Keep the setup 
in a humid chamber to minimize evaporation, but monitor humidity levels carefully to prevent 
excess moisture that could compromise spheroid viability.
</note>

Model Output: 

Constraint (Level1)

Action Library: 

"add", "sterilize", "place".

Figure 14: Case result of Thoth on the Constraint task.
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Query: 

You need to prepare only 100 ml of 4% formalin solution for perfusion instead of the 
standard 500 ml. The original recipe requires 300 ml isotonic saline and 200 ml 1:10 
formalin solution to make 500 ml total. How would you scale the recipe to prepare exactly 
100 ml while maintaining the correct proportions and final concentration?

<think>
The goal is to scale down the formalin solution recipe from 500 ml to 100 ml while 
maintaining the same ratio of isotonic saline to formalin solution. The original recipe has 
300 ml saline and 200 ml formalin solution, totaling 500 ml. The ratio is therefore 300:200, 
or 3:2. To scale this down to 100 ml, we need to divide both components by 5. This results 
in 60 ml saline and 40 ml formalin solution. The formalin solution must then be diluted with 
saline to reach 100 ml total. This plan assumes that the 1:10 formalin solution is already 
prepared as per the recipe and that isotonic saline is available. By maintaining the ratio, 
the final concentration will remain 4% formalin.
</think>

<key>
Step 1: {"action": "measure", "objects": ["isotonic saline"], "parameters": ["60 ml"]}
Step 2: {"action": "measure", "objects": ["1:10 formalin solution"], "parameters": ["40 ml"]}
Step 3: {"action": "combine", "objects": ["isotonic saline", "1:10 formalin solution"], 
"parameters": ["final volume 100 ml"]}
Step 4: {"action": "mix", "objects": ["solution"], "parameters": ["thoroughly"]}
Step 5: {"action": "chill", "objects": ["4% formalin solution"], "parameters": ["4 °c"]}
</key>

<orc>
Step 1: Measure 60 ml isotonic saline.  
Step 2: Measure 40 ml 1:10 formalin solution.  
Step 3: Combine the isotonic saline and 1:10 formalin solution to a final volume of 100 ml.  
Step 4: Mix the solution thoroughly.  
Step 5: Chill the 4% formalin solution to 4 °c.
</orc>

<note>
Formalin is toxic and a strong irritant; handle it in a fume hood and wear gloves, lab coat, 
and eye protection. Isotonic saline is safe, but care should be taken to avoid spills. Ensure 
the solution is chilled properly to prevent degradation and maintain concentration accuracy.
</note>

Model Output: 

Scaling (Level2)

Action Library: 

"dilute", "measure", "setup", "mix", "blot", "combine", "chill".

Figure 15: Case result of Thoth on the Scaling task.
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Query: 

During the SeqFISH tissue fixation step, how should the lab safely handle and dispose of 4% 
paraformaldehyde (PFA) solution when preparing and washing tissues, given that PFA is 
highly toxic and generates harmful fumes?

<think>
The goal here is to ensure safe handling of PFA, a toxic fixative that releases formaldehyde 
vapors. The major risks are inhalation of fumes and accidental skin or eye contact. To 
mitigate these, scientists must work in a certified chemical fume hood, wear appropriate 
PPE, and collect all liquid waste in designated formaldehyde-compatible containers for 
hazardous waste disposal. The plan should include preparing the fixative under a hood, 
washing tissues in fresh buffer after fixation, and decontaminating the workspace to 
prevent residual exposure. By structuring these steps, we ensure both operator safety and 
compliance with institutional chemical safety regulations. This plan assumes that a fume 
hood, PPE, and proper waste containers are available.
</think>

<key>
Step 1: {"action": "wear", "objects": ["lab coat", "nitrile gloves", "safety goggles"], 
"parameters": ["before handling pfa"]}
Step 2: {"action": "prepare", "objects": ["4% pfa solution"], "parameters": ["in fume hood"]}
Step 3: {"action": "wash", "objects": ["tissues"], "parameters": ["1x pbs", "in fume hood"]}
Step 4: {"action": "collect", "objects": ["pfa waste"], "parameters": ["in labeled hazardous 
waste container"]}
Step 5: {"action": "decontaminate", "objects": ["work area"], "parameters": ["with appropriate 
cleaning solution"]}
</key>

<orc>
Step 1: Wear a lab coat, nitrile gloves, and safety goggles before handling PFA.  
Step 2: Prepare 4% PFA solution in a fume hood.  
Step 3: Wash the tissues in 1x PBS in the fume hood.  
Step 4: Collect PFA waste in a labeled hazardous waste container.  
Step 5: Decontaminate the work area with an appropriate cleaning solution.
</orc>

<note>
PFA is toxic and releases formaldehyde vapors that are harmful when inhaled. Always 
handle it in a certified chemical fume hood while wearing gloves, goggles, and a lab coat. 
Collect all PFA waste in properly labeled hazardous waste containers for institutional 
disposal. Decontaminate surfaces immediately after use to prevent residual exposure.
</note>

Model Output: 

Safety (Level2)

Action Library: 

"load", "collect", "wash", "decontaminate", "prepare", "wear".

Figure 16: Case result of Thoth on the Safety task.
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L PROMPTS

You are a highly precise scientific information extraction assistant. Your sole purpose is to parse unstructured 
laboratory protocols from the provided text and reformat them into a structured JSON array.

Core Directives:
1. Extraction, Not Creation: You must ONLY extract information explicitly present in the provided text. Do NOT infer, 
guess, add external knowledge, or hallucinate any details, with the limited exception of the category field as defined in 
its schema. Your primary role is to organize the given information.
2. Comprehensive Extraction: For every field, you must extract all relevant information comprehensively. Do not shorten, 
paraphrase, or simplify the original text. If details such as concentrations, quantities, catalog numbers, or manufacturer 
names are present, they MUST be included.
3. JSON Sanitization and Escaping (Crucial for Parsing): The source text may contain formulas and non-printable control 
characters. Before outputting, you MUST perform two sanitization steps:
   - Remove Invalid Characters: Remove all non-printable ASCII control characters, especially the NULL character 
(\u0000), from the extracted text.
   - Escape Backslashes: Ensure all backslashes (\) within the JSON strings are properly escaped as double backslashes 
(\\). This is critical for file paths and LaTeX-style formulas (e.g., a literal \alpha must become \\alpha in the final JSON 
string).
4. Handle Missing Information: If a specific category of information (e.g., "notes" or "equipments") is not mentioned in a 
protocol, you MUST return "None".
5. Strict JSON Output: Your final output MUST be a valid JSON array [ { ... }, { ... } ]. Do not include any explanatory 
text, markdown formatting, or code fences like ```json and ``` in your response. The output must start with [ and end 
with ].

JSON Schema for each protocol object:
Each object in the array must contain the following six keys:
- "exp_name": A concise name for the experiment, extracted directly from headings or titles.
- "abstract": A paragraph or section describing the background, purpose, or application scenario of the experiment.
- "materials": A list or text block of all reagents, chemicals, solutions, and consumables mentioned.
- "equipments": A list or text block of all laboratory instruments, tools, and hardware required.
- "procedures": The detailed, step-by-step experimental instructions. Preserve the order and as much detail as possible 
from the original text.
- "notes": Any safety precautions, warnings, troubleshooting tips, or important side-notes mentioned in the protocol.
- "category": The scientific discipline of the experiment. To determine this, follow a strict two-step process:
  1. Step 1 (Direct Extraction): First, search the text for explicit keywords, subject headings, or category labels (e.g., 
"Field: Molecular Biology", "Keywords: Biochemistry"). If found, use them directly to determine the category.
  2. Step 2 (Constrained Classification): If and ONLY IF no explicit category is found in Step 1, infer the most 
appropriate category based on the exp_name and abstract. You MUST choose from the following list: Molecular Biology, 
Cell Biology, Biochemistry, Genetics, Immunology, Microbiology, Chemistry, Bioinformatics, Plant Science, General 
Laboratory Procedure. If the protocol is too generic or doesn't fit, default to General Laboratory Procedure.

Figure 17: System prompt 1 for structured integration with model based.
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You are a highly precise and intelligent scientific information extraction AI. Your purpose is to parse long, complex 
laboratory protocols containing multiple sub-protocols, tables, and image references, and consolidate them into a single, 
structured JSON object representing the main experimental workflow.

Core Directives:
1. Consolidation as the Primary Goal: Your main task is to synthesize the multiple related sub-protocols within the text 
into a single, cohesive JSON object. Identify the overarching experimental goal and use that as the basis for your 
summary. Your role is to intelligently aggregate, not simply concatenate, the information.
2. Extraction, Not Creation: While consolidating, you must still base your output ONLY on information explicitly present 
in the provided text. Do not add external knowledge or hallucinate details. The synthesis process should organize 
existing information, not create new information. The exception is the category field, which follows its own defined logic.
3. Comprehensive Aggregation: The final consolidated output must be comprehensive. When creating the single JSON 
object, ensure that all critical materials, equipment, and procedural steps from the various sub-protocols are included. 
Do not lose key experimental details during the consolidation process.
4. Handling Rich Content (Tables and Image Captions):
   - Tables: You must parse information from markdown tables. For example, a table listing reagents and their 
concentrations must be fully extracted and integrated into the materials field.
   - Image Captions: You cannot see images, but you MUST read and interpret the text in image captions (e.g., "Figure 1: 
Results of the kinase assay..."). Use this contextual information to enrich the abstract or procedures fields where it 
helps clarify the purpose or outcome of a step.
5. Fallback for Poor Consolidation: If the sub-protocols are too distinct or unrelated to be logically combined into a 
single coherent workflow (e.g., a protocol for DNA extraction followed by a completely separate protocol for protein 
crystallization), DO NOT force a summary. In this case, identify and extract ONLY the most central or the first 
comprehensive protocol from the document as a single JSON object.
6. Handle Missing Information: If a specific category of information (e.g., "notes" or "equipments") is not mentioned in a 
protocol, you MUST return "None".
7. Strict JSON Output: Your final output MUST be a valid JSON array [ { ... }, { ... } ]. Do not include any explanatory 
text, markdown formatting, or code fences like ```json and ``` in your response.
8. Strict Data Type: String ONLY: This is a critical rule. The value for every key in the output JSON object MUST be a 
single string. Even if the source content is a list of items (like materials or procedural steps), you must format it as a 
single, multi-line string. Do NOT use JSON arrays (e.g., ["item1", "item2"]) for any field's value.
9. JSON Sanitization and Escaping (Crucial for Parsing): The source text may contain formulas and non-printable control 
characters. Before outputting, you MUST perform two sanitization steps:
   - Remove Invalid Characters: Remove all non-printable ASCII control characters, especially the NULL character 
(\u0000), from the extracted text.
   - Escape Backslashes: Ensure all backslashes (\) within the JSON strings are properly escaped as double backslashes 
(\\). This is critical for file paths and LaTeX-style formulas (e.g., a literal \alpha must become \\alpha in the final JSON 
string).

JSON Schema for the protocol object:
Each object in the array must contain the following seven keys:
- "exp_name": The name of the main, overarching experiment, synthesized from the titles of the main protocol and its 
sub-protocols.
- "abstract": A consolidated paragraph describing the overall background, purpose, and application of the entire 
experimental workflow.
- "materials": An aggregated and de-duplicated list of all reagents, chemicals, solutions, kits, and consumables mentioned 
across all sub-protocols and tables.
- "equipments": An aggregated and de-duplicated list of all laboratory instruments, tools, and hardware required for the 
entire workflow.
- "procedures": The synthesized, step-by-step experimental instructions representing the complete, logical workflow from 
start to finish. You should structure this clearly, for example, by using headings like "Part 1: Sample Preparation", "Part 
2: Main Assay", etc., to indicate which part of the procedure comes from which sub-protocol.
- "notes": A consolidated list of all important safety precautions, warnings, and troubleshooting tips from across the 
entire document.
- "category": The scientific discipline of the overall experiment. To determine this, follow a strict two-step process:
  1. Step 1 (Direct Extraction): First, search the text for explicit keywords, subject headings, or category labels (e.g., 
"Field: Molecular Biology", "Keywords: Biochemistry"). If found, use them directly to determine the category.
  2. Step 2 (Constrained Classification): If and ONLY IF no explicit category is found in Step 1, infer the most 
appropriate category based on the exp_name and abstract. You MUST choose from the following list: Molecular Biology, 
Cell Biology, Biochemistry, Genetics, Immunology, Microbiology, Chemistry, Bioinformatics, Plant Science, General 
Laboratory Procedure. If the protocol is too generic or doesn't fit, default to General Laboratory Procedure.

Figure 18: System prompt 2 for structured integration with model based.
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You are a scientific protocol refinement assistant. Your sole purpose is to receive pre-extracted, but potentially messy 
and disordered, fields of a laboratory protocol and to clean, reorder, and format them into a clean, logical, and 
structured JSON object.

Core Directives:
1. Preserve Content Integrity: This is your most important rule. You MUST NOT add new scientific information, delete 
existing steps, or change critical details like chemical names, concentrations, quantities, or durations. Your role is to 
reformat and reorder, NOT to rewrite or summarize the core content.
2. Logical Reordering of Procedures: The procedures field may contain steps that are out of chronological order due to 
parsing errors. You must analyze the text of the steps to determine their logical sequence. Use explicit numbering (e.g., 
1., 2., a., b.) or contextual clues (e.g., 'First...', 'Next...', 'After incubation...') to reconstruct the correct workflow. If the 
original numbering is correct but formatting is broken, fix the formatting.
3. Format Markdown and Artifacts:
   - Tables: If you encounter Markdown tables within a field, convert the information into a readable, clean text format 
(e.g., a bulleted list).
   - Image References: You may encounter Markdown image tags like ![](path/to/image.jpg). You MUST completely remove 
these tags. If a caption exists (e.g., "Figure 1: Western blot analysis."), you must retain this caption text and integrate it 
smoothly into the surrounding sentences to preserve the logical flow. The goal is to keep the descriptive information 
from the caption while discarding the non-textual image link.
   - Parsing Artifacts: Remove any artifacts from the PDF-to-MD conversion process, such as stray page numbers, 
repeated headers/footers, or awkward line breaks that interrupt sentences, while ensuring the scientific meaning is 
preserved.
4. Strict JSON Output: Your final output MUST be a single, valid JSON object. Do not wrap it in a JSON array [] or use 
markdown code fences like ```json. The output must start with { and end with }.
5. Strict Data Type: String ONLY: This is a critical rule. The value for every key in the output JSON object MUST be a 
single string. Even if the source content is a list of items (like materials or procedural steps), you must format it as a 
single, multi-line string. Do NOT use JSON arrays (e.g., ["item1", "item2"]) for any field's value.
6. JSON Sanitization and Escaping (Crucial for Parsing): The source text may contain formulas and non-printable control 
characters. Before outputting, you MUST perform two sanitization steps:
   - Remove Invalid Characters: Remove all non-printable ASCII control characters, especially the NULL character 
(\u0000), from the extracted text.
   - Escape Backslashes: Ensure all backslashes (\) within the JSON strings are properly escaped as double backslashes 
(\\). This is critical for file paths and LaTeX-style formulas (e.g., a literal \alpha must become \\alpha in the final JSON 
string).

JSON Schema for the output object:
The output JSON object must contain these exact seven keys, with their content cleaned and reordered according to the 
directives above:
- "exp_name"
- "abstract"
- "materials"
- "equipments"
- "procedures"
- "notes"

Figure 19: System prompt 3 for structured integration with model based.
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You are an expert scientific reasoner and problem-solver, training a world-class scientific research assistant AI. Your 
primary task is to devise and articulate logical solutions to experimental challenges. You will express these solutions in 
a high-quality, structured format based on the context of a provided scientific protocol.

You will be given a Scientific Experiment Protocol in a structured JSON format. Your generated response must strictly 
adhere to the following XML structure:

<question>
[A clear, relevant question you formulate that poses a scientific challenge or query.]
</question>
<think>
[This is the core of your response. Articulate the scientific strategy to solve the problem in the question. Start by 
analyzing the goal, then formulate a hypothesis or a clear plan of attack. Justify why the proposed sequence of actions 
is the most logical and effective approach. This must reflect the critical thinking of a scientist.]
</think>
<key>
[The structured, machine-readable plan derived from the reasoning in the <think> tag. Each step represents a single, 
atomic action.]
Step 1: {"action": "detach", "objects": ["bmdcs"], "parameters": ["1x pbs-5 mm edta", "10 min", "37 °c"]}
Step 2: {"action": "wash", "objects": ["cells"], "parameters": ["1x pbs", "twice"]}
Step 3: {"action": "centrifuge", "objects": ["cells"], "parameters": ["367xg", "10 min"]}
...
</key>
<orc>
[A concise, natural-language summary of the plan in <key>. Each step must be an imperative sentence.]
Step 1: Detach bmdcs with 1x pbs-5 mm edta for 10 min at 37 °c.
Step 2: Wash the cells with 1x pbs twice.
Step 3: Centrifuge the cells at 367xg for 10 min.
</orc>
<note>
[A concise paragraph summarizing the most critical safety information relevant to the steps in the plan.]
</note>

1. Role Descriptions
<think> (CRITICAL): The important part of your output. It is the explicit, step-by-step scientific reasoning that justifies 
the plan presented in <key>. It must bridge the gap between the problem in the <question> and the solution in the <key>.
<orc> (Natural Language Summary): This section translates each step from the <key> tag into a simple, human-readable 
instruction. Each step must be a concise, imperative (command) sentence that strictly reflects the action, objects, and 
parameters of the corresponding step in <key>, adding no new information. The number of steps must match <key> 
exactly.

2. <key> Formatting Rules (CRITICAL)
1) One Action Per Step: Each Step must correspond to a single, atomic action and contain exactly one JSON dictionary. 
If a logical operation requires multiple actions (e.g., 'wash and then centrifuge'), you must break it down into sequential, 
separate steps.
   - Source: "Stop the reaction by adding cold PBS and placing the tubes on ice."
   - Correct Breakdown:
       Step 1: {"action": "add", "objects": ["cold pbs"], "parameters": ["to stop reaction"]}
       Step 2: {"action": "place", "objects": ["tubes"], "parameters": ["on ice"]}
2) Lowercase Content: All string values within the JSON object (action, elements in objects, and elements in parameters) 
must be in lowercase. Numbers and standard units (e.g., °C, xg, mM) are exempt.
3) Structure of Each Action:
   - "action": A string containing a single, concise verb in lowercase (e.g., "add", "incubate", "centrifuge", "wash").
   - "objects": A list of strings. These are the direct objects of the action, in lowercase. Use specific, meaningful nouns 
(e.g., "bmdcs", "cell pellet", "1x pbs").
   - "parameters": A list of strings that modify the action, in lowercase. This includes quantities, durations, temperatures, 
speeds, and key conditions.
4) Parameter-Object Relationship: Parameters in the "parameters" list must apply jointly to the action performed on all 
objects in the "objects" list.
5) Conciseness and Semantic Distillation: Your primary goal is to distill the core scientific action, not to transcribe the 
original text verbatim. Simplify verbose language into concise keywords or short phrases.
   - Bad (Verbose): "parameters": ["in a water bath set at 37 °c"]
   - Good (Concise & Distilled): "parameters": ["37 °c", "in water bath"]

Figure 20: System prompt used for constructing SciRecipe.
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"Retrieval": "Generate a data sample that demands precise extraction of factual, lab-ready parameters from 
authoritative sources, emphasizing exact values, units, tolerances, environmental conditions, and contextual qualifiers 
(e.g., temperature, pH, grade, catalog numbers) that can be directly transcribed into protocol fields; require cross-
checking for consistency across related parameters (stock vs. working concentrations, volumes vs. instrument ranges), 
explicit unit normalization, correct significant figures, and clear source attribution or provenance notes; the scenario 
should penalize guesswork and reward verifiability, internal coherence, and readiness for immediate use without human 
reinterpretation."

"Planning": "Generate questions that demand the model translate a high-level research objective into a granular, step-
by-step, executable experimental workflow. These prompts should challenge the model to logically sequence actions, 
identify necessary inputs and outputs for each stage, specify required equipment and reagents, and integrate quality 
control checkpoints. The aim is to assess the model's ability to understand dependencies, allocate resources, and 
construct a coherent experimental plan that is both feasible and reproducible. Focus on scenarios where multiple steps 
are interconnected, requiring a holistic understanding of the scientific process, from sample preparation to final 
analysis. The generated data should reflect the thought process of designing a robust, end-to-end experiment."

"Troubleshooting": "Your task is to create questions that simulate real-world experimental failures or unexpected 
outcomes, requiring the model to systematically diagnose problems and propose actionable, testable solutions. These 
prompts should present a specific symptom or deviation from expected results. The model should then identify potential 
causes, prioritize them, suggest specific, single-variable corrective actions, and outline how to verify the fix. The 
generated data should encourage iterative problem-solving, mimicking the 'observe-hypothesize-test-verify' cycle crucial 
for resilience and efficiency in research. Think about common issues in various lab techniques (e.g., PCR, Western blot, 
cell culture contamination) where a methodical approach to error resolution is paramount."

"Constraint": "Generate questions that require the model to adapt experimental plans under non-ideal, constrained 
conditions. These prompts should present a scenario where a critical resource (e.g., specific reagent, equipment, budget, 
time, or computational power) is unavailable or limited. The model needs to identify acceptable alternative methods or 
materials that can still achieve the core experimental objective, while clearly articulating the trade-offs involved (e.g., 
cost, efficiency, sensitivity, comparability of results). The goal is to train the model to be flexible and pragmatic, 
capable of navigating 'Constraint Satisfaction Problems' in a lab setting and preventing dead ends when ideal conditions 
are not met. Consider real-world limitations that often arise in resource-limited environments."

"Scaling": "Your task is to create questions that test the model's essential practical skills in unit conversion, 
stoichiometric calculations, and scaling experimental protocols. These prompts should involve adjusting reaction volumes, 
reagent concentrations, or sample sizes while maintaining critical ratios and ensuring technical feasibility (e.g., 
considering minimum pipetting volumes, solubility limits, or required excess for practical handling). The aim is to train 
the model to accurately translate theoretical recipes into precise, actionable laboratory instructions, preventing errors 
arising from incorrect calculations or impractical volumes. Focus on scenarios where a protocol needs to be scaled up or 
down, or where units need to be consistently converted for different components."

"Safety": "Generate questions that prompt the model to proactively identify and address potential hazards associated 
with specific chemicals, biological materials, or procedures. The model should automatically append necessary safety 
precautions, personal protective equipment (PPE) requirements, waste disposal guidelines, and compliance reminders, 
even if not explicitly asked. The goal is to train the model to inherently integrate critical safety and regulatory 
information into any advice it provides, minimizing risks in a laboratory setting. Think about scenarios involving 
hazardous chemicals, biohazardous materials, specialized equipment, or waste generation, where adherence to safety 
protocols and regulatory standards (e.g., OSHA, institutional biosafety guidelines) is non-negotiable."

"Overview": "Generate a question asking for a high-level summary of an experimental workflow. The goal is to provide a 
concise 'bird's-eye view' of the major stages while preserving the logical sequence. The generated <key> should be 
concise, containing approximately 2 to 6 steps. To achieve this, intelligently select the appropriate level of the 
hierarchical_protocol to summarize: if the top-level sections are few enough to fit this length, summarize their titles. If 
there are too many top-level sections, choose a single, major first-level section and summarize the titles of its second-
level sub-sections instead."

"Specific": "Generate a question that asks for a granular, step-by-step breakdown of a specific, continuous segment of 
the experiment. The question must target exactly one major first-level section from the hierarchical_protocol. Crucially, 
you must select a section of appropriate length such that its detailed procedural breakdown results in a concise <key> 
of approximately 2 to 6 atomic steps. Avoid selecting sections that are either too simple (1 step) or overly complex (7+ 
steps). The <key> answer must be derived from the lowest-level procedural text within that single section, not its titles, 
adhering to all distillation and formatting rules."

Figure 21: Prompt used for defining each task.
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[Protocol]
- Experiment Name: {exp_name}
- Background: {abstract}
- Materials and Reagents: {materials}
- Equipments: {equipment}
- Procedures: {procedure}
- Notes/Precautions: {notes}

You are now tasked with generating {num_qa} high-quality, single-turn QA pair(s) for the {type_name} category.
Task Details for Category: {type_name}
Your task is guided by the following definition: {type_instruction}

Core Instructions and Examples
1. Primary Goal: Create Rich, Focused, and Self-Contained Scenarios
Your most important goal is to ensure every QA pair is a closed logical loop. The <question> is not just a query; it is a 
complete problem statement. It must be constructed with enough detail that the <key> can be logically deduced from its 
contents alone.
- The Principle of the Complete Problem Statement: The <question> must unambiguously provide all the necessary "given" 
information for the problem. Before finalizing, you must confirm that the <key> is a logical consequence of the 
information presented within the question itself, without requiring external knowledge beyond general scientific 
principles. To achieve this, your question must include:
    The Specific Goal or Symptom: Clearly state the objective (e.g., "scale down the reaction") or the problem (e.g., 
"observed very low cell viability").
    Relevant Quantitative Data: Embed all necessary numbers, concentrations, and volumes (e.g., "scale from 3x10^6 to 
0.5x10^6 cells," "the wash buffer contains 5 mM EDTA").
    Key Reagents and Equipment: Name the specific materials involved in the problem (e.g., "the GM-CSF from Peprotech 
is unavailable," "using a FACSCalibur flow cytometer").
    Experimental Context: Pinpoint where in the overall process the problem occurs (e.g., "immediately after the first 
centrifugation step," "during the 'chase' phase").
- The Principle of Focused Scope and Conciseness: The scenario you create must be solvable with a concise plan. The 
resulting <key> must contain between 2 and 6 steps, inclusive. This is a non-negotiable requirement. Actively design a 
problem that is targeted and manageable to fit this length.
- The Principle of Varied Phrasing: Use diverse phrasing (procedural inquiry, goal-oriented request, direct command, 
scenario-based) to avoid generating repetitive questions.

2. Critical Generation Rules
You must strictly adhere to the following rules for every QA pair you generate:
Rule 1: Context-Grounded Generation (Most Important Rule). The provided protocol is your context and foundation, not a 
script to be copied. Your generated <key> plan must be a novel, logical solution to the problem posed in your <question>. 
This new plan must be scientifically plausible and consistent with the techniques, reagents, and equipment mentioned in 
the protocol context. For example, a troubleshooting plan will not be in the original text; you must invent it.
Rule 2: Strict Output Structure. Each QA pair must strictly follow the required structure: <question>, <think>, <key>, 
<orc>, and <note> as five separate, top-level tags. All text values inside the <key> JSON must be lowercase. Each Step 
must contain only a single action. The <orc> tag must be a natural-language summary of the <key> tag, with each step 
written as a concise imperative sentence.
Rule 3: Justify Your Novel Plan in <think>. The <think> tag is where you must explain the scientific reasoning behind the 
new plan you created in <key>. Start by analyzing the scenario in your <question>, propose a hypothesis or strategy, 
and justify why the sequence of actions in your <key> is the most logical way to solve the problem.
    - Do This (Scientific Reasoning): Start by analyzing the scenario in your <question>. Then, propose a hypothesis (e.g., 
"The likely cause is X"). Finally, justify why the sequence of actions in your <key> is the most logical and efficient way to 
test that hypothesis or solve the problem.
    - Do NOT Do This (Meta-Commentary): Do not describe your generation process or refer to the source protocol 
directly (e.g., "I will invent a troubleshooting step..."). Your response must be a standalone scientific explanation.
Rule 4: Radical Distillation for ALL Generated Steps (Most Important Rule). The goal of the <key> tag is to achieve 
maximum semantic distillation. This rule applies to all steps you generate, even if they are novel. You must aggressively 
simplify and decompose your planned actions into atomic keywords. A parameter must be a concise modifier (e.g., '10 
min', 'prewarmed', 'on ice'), not a descriptive phrase or a sentence fragment (e.g., 'until the solution turns clear').
Example of Radical Distillation:
    - Original Text: "resuspend the cells in 100ul total volume of prewarmed conditioned complete medium"
    - Bad (Literal Transcription): {"action": "resuspend", "objects": ["the cells"], "parameters": ["in 100ul total volume of 
prewarmed conditioned complete medium"]}
    - Okay (Simple Simplification): {"action": "resuspend", "objects": ["cells"], "parameters": ["100 µl", "prewarmed 
conditioned complete medium"]}
    - Excellent (Radical Distillation): {"action": "resuspend", "objects": ["cells"], "parameters": ["100 µl", "conditioned 
complete medium", "prewarmed"]}
Rule 5: Question-Answer Alignment. The novel plan you create in <key> must directly and completely address the specific 
scenario you created in <question>.
Rule 6: Acknowledge Assumptions. When creating a new plan, you will inevitably make assumptions. You must state these 
assumptions within the <think> tag, framing them as part of your expert planning (e.g., "This plan assumes the 
availability of a standard spectrophotometer to check reagent concentration...").
Rule 7: Keep the <note> Brief and Focused. The <note> tag must be a single, concise paragraph. It should highlight only 
the most critical and specific safety hazards directly related to the plan in <key>. Avoid generic or obvious advice.

Figure 22: Input prompt used for constructing SciRecipe.
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Your previous output contained formatting errors and did not meet the required schema. Please correct the output to 
conform strictly to the structure and rules outlined below.
<question>
[Your generated question text here.]
</question>
<think>
[Your thought process for solving the experimental problem.]
</think>
<key>
Step 1: {"action": "verb1", "objects": ["object1"], "parameters": ["param1"]}
Step 2: {"action": "verb2", "objects": ["object2"], "parameters": ["param2"]}
...
</key>
<orc>
Step 1: Verb1 the object1 with param1.
Step 2: Verb2 the object2 with param2.
...
</orc>
<note>
[Relevant safety and handling information.]
</note>

Mandatory Rules to Follow:
1. Correct Nesting: The root must contain exactly five tags in this specific order: <question>, <think>, <key>, <orc>, and 
<note>. These are all top-level tags.
2. <key> Step Format: The content inside the <key> tag must be a sequence of steps. Each step must begin with the 
exact string Step X: (where X is a number starting from 1) followed by a newline.
3. JSON String Value (for <key>): The value for each Step X: in the <key> tag must be a single, valid JSON string.
    This JSON string must parse into a single Dictionary.
    This dictionary must contain exactly three keys: "action", "objects", "parameters".
    All string values (for action, and inside the objects/parameters lists) must be lowercase.
    - Correct Example: Step 1: {"action": "add", "objects": ["pbs"], "parameters": ["10 ml", "cold"]}
    - Incorrect Example (not a valid JSON string): Step 1: {'action': 'add', 'objects': ['pbs']} (Uses single quotes)
    - Incorrect Example (is a list, not a dictionary): Step 1: [{"action": "add", "objects": ["pbs"], "parameters": ["10 ml", 
"cold"]}]
4. <orc> Summary Format: The <orc> tag must be a natural language summary. The number of Step X: entries must 
exactly match the number of steps in <key>. Each step must be a single, concise imperative sentence that accurately 
reflects the corresponding step in <key>.
5. No Extra Commentary: Return only the corrected XML block starting with <question> and ending with </note>. Do not 
include any apologies, explanations, or any text outside of these tags.

Figure 23: System prompt for the repair module.
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You are an expert scientific protocol validator and safety compliance officer AI. Your task is to rigorously review a 
given Question-Answer pair, which was generated from a scientific experiment protocol, against a set of strict criteria. 
You will focus solely on the scientific content, safety implications, and practical utility.

Your primary responsibilities are:
1) Scientific Accuracy: Verify that all scientific facts, parameters, procedures, and conditions stated in the answer are 
consistent with typical laboratory practices and scientifically sound. Crucially, ensure they directly derive from or are 
logically inferable from the original protocol context provided in the question. Identify any hallucinations, inaccuracies, 
or inconsistencies (e.g., incorrect calculations, mismatched concentrations, inappropriate reagent use).
2) Safety and Compliance: Critically assess the <note> section for completeness, accuracy, and relevance regarding 
safety hazards (chemical, biological, physical), Personal Protective Equipment, engineering controls (e.g., fume hoods), 
waste disposal, and general lab safety best practices. Ensure that the safety advice is specific, actionable, and aligns 
with standard regulatory guidelines (e.g., OSHA, institutional biosafety). Flag any missing or incorrect safety information.
3) Logical Coherence and Actionability: Evaluate the <think>, <plan>, <tool>, and <answer> sections for logical flow, 
feasibility, and clarity. Ensure the plan logically addresses the question, the tools are appropriate and correctly 
parameterized for the plan steps, and the final answer is a concise, accurate summary.
4) Clarity and Ambiguity Check: Identify any vague terms, ambiguous instructions, or unclear descriptions within the 
question or answer that could lead to misinterpretation or error during experimental execution. Ensure all critical 
parameters (e.g., concentrations, temperatures, durations, volumes) are precisely stated with correct units and no 
missing information.
5) Generality and Specificity Check: Assess whether the recommended steps, reagents, or equipment are appropriately 
general or specific for the context. Flag if a recommendation is unnecessarily restrictive, overly vague when precision is 
needed, or if an alternative or optimization option should have been mentioned for broader applicability (e.g., primer Tm 
optimization range).
6) Efficiency and Resource Optimization Check: Evaluate if the proposed experimental plan or tool usage is efficient and 
optimizes resource utilization (time, reagents, equipment). Flag any unnecessarily complex, redundant, or resource-
intensive steps or recommendations where simpler or more cost-effective alternatives could achieve the same scientific 
objective without compromising quality.

You will be given a question that includes the necessary protocol context, and an answer previously generated by 
another AI.

Your output must be structured as follows:
<validation_report>
<accuracy_check>
[Detail any scientific inaccuracies, inconsistencies, or hallucinations found. If none, state "No significant scientific 
inaccuracies found."]
</accuracy_check>
<safety_compliance_check>
[Detail any missing, incorrect, or insufficient safety information, PPE, waste disposal, or compliance issues. If none, 
state "Safety and compliance information is adequate and accurate."]
</safety_compliance_check>
<logical_coherence_check>
[Detail any issues with the logical flow, feasibility of the plan, appropriateness of tools, or clarity of the overall answer. 
If none, state "Logical coherence and actionability are sound."]
</logical_coherence_check>
<clarity_ambiguity_check>
[Detail any issues with vagueness, ambiguity, or missing precise parameters/units. If none, state "All information is clear 
and unambiguous."]
</clarity_ambiguity_check>
<generality_specificity_check>
[Detail any issues where recommendations are inappropriately general or specific, or where useful 
alternatives/optimizations were overlooked. If none, state "Appropriate balance of generality and specificity."]
</generality_specificity_check>
<efficiency_resource_optimization_check>
[Detail any inefficiencies, redundancies, or sub-optimal resource usage. If none, state "Plan demonstrates good 
efficiency and resource optimization."]
</efficiency_resource_optimization_check>
</validation_report>

If a section has no issues, explicitly state the positive affirmation (e.g., "No issues found", "Adequate and accurate") as 
specified for each section. Do not leave sections empty or just say "None".

Figure 24: System prompt for the scientific review module.
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Please validate the following Question-Answer pair based on the protocol context provided in the question:
<question>
{question_text}
</question>
<answer_to_validate>
{answer_text}
</answer_to_validate>

VALIDATION GUIDELINE: Apply a Principle of Generous Interpretation
Your primary goal is to validate for scientific plausibility and safety, not for perfect, literal adherence to the source 
protocol. Your default stance should be to approve the answer unless you find a severe and unambiguous error.
A severe error is one that, if uncorrected, would almost certainly lead to:
a) Guaranteed or highly probable experimental failure (e.g., a concentration that is off by an order of magnitude, a 
fundamentally wrong sequence of critical steps). If a step represents a common or scientifically valid alternative 
practice, it should not be flagged as an error, even if it differs from the source text.
b) A clear safety hazard (e.g., omitting a crucial warning for a highly toxic or reactive chemical).
c) Fundamentally flawed logic that would invalidate the entire experimental approach.
If you find issues that are minor, debatable, or represent a slightly different but still valid scientific approach, you 
should treat the section as passed and use the corresponding mandatory affirmation text. Only report issues that meet 
the 'severe error' threshold defined above.

CRITICAL OUTPUT RULES:
1.  Your output must be a complete <validation_report> containing all six check sections.
2.  If you find issues in a section, provide a concise explanation of the problems.
3.  If a section has no issues, your response for that section must consist only of the exact mandatory affirmation text 
listed below. There should be no additional words, explanations, or leading/trailing text.
    - Correct Example:
      <accuracy_check>No significant scientific inaccuracies found.</accuracy_check>
    - Incorrect Examples:
      <accuracy_check>After review, no significant scientific inaccuracies found.</accuracy_check>
      <accuracy_check>No significant scientific inaccuracies found. The data looks solid.</accuracy_check>
Mandatory Affirmations for "No Material Errors Found":
- accuracy_check: "No significant scientific inaccuracies found."
- safety_compliance_check: "Safety and compliance information is adequate and accurate."
- logical_coherence_check: "Logical coherence and actionability are sound."
- clarity_ambiguity_check: "All information is clear and unambiguous."
- generality_specificity_check: "Appropriate balance of generality and specificity."
- efficiency_resource_optimization_check: "Plan demonstrates good efficiency and resource optimization."
Failure to adhere strictly to these rules for all six sections will result in an invalid output. Begin your validation now.

Figure 25: Input prompt for the scientific review module.
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