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ABSTRACT

Image segmentation is a fundamental task in computer vision with applications
spanning diverse domains, particularly in medical imaging. However, the effec-
tiveness of segmentation techniques often varies across datasets and tasks. For
instance, methods like SRL and cLDice focus on segmenting thin tubular struc-
tures, while models such as IC-Net are tailored for brain tumor segmentation in
MRI scans. Despite the availability of such specialized approaches, there remains
a need for a unified framework that can generalize well across different segmenta-
tion challenges. In this study, we work on the observation that most of the strate-
gies disproportionately emphasize reducing either False Negatives (FN) or False
Positives (FP) and fail to achieve an optimal balance between the two. Build-
ing on this observation, we propose a novel method, Supervised Mask Modula-
tion (SMM), that enhances segmentation performance by conditioning the ground
truth masks during training to keep a balance between both highly important met-
rics. Our approach is architecture-agnostic and has been validated on a range
of benchmark datasets, consistently outperforming state-of-the-art methods, often
achieving significantly better results than the baseline.

1 INTRODUCTION

In the ever-evolving field of computer vision, image segmentation remains a critical task with wide-
ranging applications in domains such as autonomous driving, industrial inspection, and medical
imaging. To tackle the diverse challenges posed by different segmentation problems, a multitude
of architectural innovations have been proposed over the years. Classical designs like U-Net (Azad
et al., 2024) laid the groundwork for encoder-decoder based segmentation, and have since been ex-
tended in numerous directions. Several methods have been developed to address domain-specific
challenges, particularly in medical image segmentation. Innovations in loss function such as cen-
terlineDice (clDice) (Shit et al., 2021) and Skeleton Recall Loss (SRL) (Kirchhoff et al., 2024),
specifically target segmentation of thin curvilinear structures. On similar lines, Kervadec (Kervadec
et al., 2019) utilizes a novel loss function focusing on enhanced boundary predictions. Apart from
novel loss functions, architectural novelties have also been introduced, catering to specific segmen-
tation tasks. ICNet (Li et al., 2020) integrated a convolutional network with multiple resolution
inputs, designed for accurate tumor core and enhancing region segmentation in brain tumor segmen-
tation tasks. DeepMedic (Kamnitsas et al., 2016) introduced a dual-pathway 3D CNN with dense
inference for effective segmentation of small lesions in brain MRI. DUNet (Sheng et al., 2024) intro-
duced constant resolution U-blocks and dense feature connections to effectively detect fine-grained
cracks with high accuracy and generalization, even in cluttered scenes.

Amidst the wide array of available segmentation methodologies, selecting an approach well-suited
to a specific task can be non-trivial. To address this challenge, we propose Supervised Mask Mod-
ulation (SMM), a unified architecture-agnostic strategy designed to enhance segmentation perfor-
mance across diverse tasks, including those involving complex and irregular structures. In medical
image segmentation, a false negative corresponds to a missed abnormality, such as a tumor or le-
sion not being detected, whereas a false positive refers to incorrectly identifying a healthy region as
diseased. Minimizing false negatives is especially critical in clinical settings, as they may lead to
missed diagnoses or delayed treatments. Our framework is based on the observation that in medical
image segmentation tasks, the False Negative Rate (FNR) is often significantly higher than the False
Positive Rate (FPR). This observation is supported by both prior experimental data (see Section 3)
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and empirical evidence from our current results (see Section 6). But working merely to reduce the
FNR can take be equally damaging in terms of the toll bore by other generic metrics(Dice Similarity
Coefficient (DSC), Jaccard Similarity Index (JSI), clDice) caused by the imbalance of the FP.

The proposed methodology builds upon the integration of two well-established paradigms: con-
trolling FN-FP balance and mask modulation. While each of these strategies has independently
demonstrated effectiveness in improving segmentation performance, their isolated application of-
ten limits generalizability across diverse tasks (see Section 2). To overcome these limitations, we
introduce a unified framework that synergistically combines false negative suppression with mask
modulation, thereby enabling a more versatile and robust solution adaptable to a broader spectrum
of segmentation challenges.

The proposed framework has been rigorously evaluated on a diverse set of publicly available
datasets, each selected to represent distinct and challenging segmentation scenarios. These datasets
span a broad spectrum of applications, ranging from irregular and complex structures in histopathol-
ogy images to object delineation in real-world aerial imagery. This diversity underscores the gener-
alizability and robustness of our approach across varied domains and segmentation tasks. With the
proposed SMM framework we make the following contributions:

• Exploitation of the FP: Our framework exploits the hypothesis that the number of FN
is significantly higher than the number of FP. We attempt to improve the model’s per-
formance by introducing intended FP, conditioned by model performance, into the ground
truth masks for enhanced training, thereby penalizing the model for missing out class pixels
in smaller regions or some structures entirely. The results validate that this strategy tends
to bring an overall improvement in the model performance.

• Multi-Class Compatibility: The framework has proved effective across diverse datasets,
demonstrating improved performance on both binary and multi-class segmentation tasks.
Its versatility makes it applicable to a wide range of imaging scenarios.

• Architecture Agnostic: The framework does not include making alterations to any partic-
ular architecture. rather, it proposes in a change in the training paradigm of models and
can therefore integrate seamlessly with a wide range of pipelines across different model
architectures.

2 RELATED WORK

Enhancing segmentation performance by mitigating FN, often reflected as improved recall, has been
a central focus of recent studies. A common approach involves modifying loss functions to increase
model sensitivity, particularly in imbalanced or complex medical datasets. For instance, Xiang
et al. (2019a;b) designed loss functions to enhance reliability, while Chan et al. (2020) employed
maximum likelihood estimation with Bayesian decision theory to better handle underrepresented
classes. Other methods, including Zhong et al. (2021) and Kervadec et al. (2019), introduce pixel-
wise or contour-based losses specifically aimed at reducing FN in fine structures. Beyond loss
design, architectural innovations such as PatchRefineNet (Nagendra & Kifer, 2024) refine outputs by
correcting spatial biases in logits, and depth-based strategies (Maag, 2021; Maag & Rottmann, 2022)
further improve recall. However, these architectural solutions often incur additional computational
complexity, rendering loss-based approaches a more lightweight and widely adopted alternative.

Mask transformations have also been explored to enhance segmentation. Skeletonization transforms
have been utilized for the detection of fine tubular structures, with a focus on preserving topological
integrity (Kirchhoff et al., 2024; Shit et al., 2021). Similarly, Kats et al. (2019) introduced a soft-
labeled mask combined with soft dice loss for lesion segmentation, while Vasudeva et al. (2024)
employed geodesic distance transforms to assign soft labels near boundaries.

Building on these efforts, we propose a novel mask transformation strategy guided by model-
predicted false negatives, complemented by tailored training mechanisms. This approach broadens
the applicability of our methodology while directly addressing the FNR-FPR trade-off in segmenta-
tion tasks.
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3 THE EXAGGERATED FALSE NEGATIVES

While numerous studies have proposed segmentation techniques tailored to specific tasks, several
underlying principles emerge that are broadly applicable across diverse segmentation problems:

1. De Rosa et al. (2024) observed that although their U-Net-based ensemble achieved high
precision, it exhibited low recall, indicating that while false positives (FP) were reduced,
false negatives (FN) remained predominant.

2. In a teacher-student weakly supervised setup for colon polyp segmentation, Jia et al. (2024)
reported that the segmentation outputs “present a quite high FNR inside the polyp area.”

3. By modulating the Tversky-loss parameter β, Do et al. (2020) highlighted the FNR-FPR
trade-off, noting that “as β increased, the false-positive rate systematically decreased while
the false-negative rate systematically increased.”

These observations, corroborated by additional studies (Delgado et al., 2024; Luo et al., 2023),
demonstrate that FNR often substantially exceeds FPR in many segmentation tasks. Our own eval-
uation of U-Net models, reported in Table 2, further confirms this trend.

This phenomenon can be intuitively explained in medical imaging tasks such as brain tumor or
lesion segmentation, where the foreground region typically occupies only a small fraction of the im-
age relative to the background. Such an imbalance hampers the model’s ability to comprehensively
capture the foreground. From a theoretical standpoint, standard objectives such as cross-entropy
minimize the expected misclassification rate under maximum likelihood estimation, implicitly as-
suming equal costs for false positives and false negatives. Consequently, they fail to emphasize recall
in settings where false negatives are more critical. Evaluation metrics in many domains—including
medical imaging—are based on precision and recall rather than accuracy, and these metrics are not
aligned with the likelihood training criterion (Goodfellow et al., 2016, p. 265). This misalignment
often leads to models that prioritize precision over recall, exacerbating the FNR. Our method lever-
ages this insight by guiding the model to predict additional positives, thereby reducing FNR while
minimally affecting FPR, ultimately achieving an optimal trade-off between these inversely related
metrics.

4 METHODOLOGY

Given that FPR values are consistently lower than FNR in medical imaging tasks, we leverage this
asymmetry to guide our approach. Specifically, the framework introduces controlled FP regions
in the ground truth masks to encourage the model to predict positives in previously missed areas.
Implementation details are discussed in subsequent sections.

4.1 MISS-AWARE MASK MODULATION (MAMM)

Algorithm 1 Miss-Aware Mask Modulation (MAMM)

Require: Prediction Ŷ, Ground truth Y
1: FN← (Y − Ŷ) > 0 ▷ Extract false negatives
2: U← Dilate(FN) ▷ Expand missed regions
3: YM ← U ∪Y ▷ Generate modulated mask
4: return YM

FN are defined as regions in the ground truth mask that belong to the foreground but were incorrectly
predicted as background by the segmentation model. To extract these missed regions, we compute
the difference between the ground truth mask, Y, and the predicted mask, Ŷ:

FN = (Y − Ŷ) > 0,

where positive values correspond to false negatives, negative values correspond to false positives,
and correctly classified pixels (true positives and true negatives) are reduced to zero. We then retain
only the positive entries corresponding to the FN.

3
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Figure 1: Miss-Aware Mask Modulation The mask modulation process begins by subtracting the
predicted mask from the ground truth to identify misclassified pixels. Only the false negatives are
retained, dilated, and combined with the original ground truth to generate the updated modulated
mask.

Dilation: To emphasize regions overlooked by the model, the FN mask is dilated with a diamond-
shaped kernel of radius 2, and its union with the ground truth yields the updated modulated mask.
This operation is performed independently for each class to construct the final mask.

This modulation strategy, termed Miss-Aware Mask Modulation (MAMM), adaptively updates
the mask to reflect the model’s current errors while remaining anchored to the original ground truth.
By refreshing the modulated masks at each epoch, the procedure ensures that training consistently
targets the most recent false negatives (Figure 1).

4.2 TRAINING ALGORITHM

Algorithm 1 provides a mechanism to enhance focus on regions prone to being missed. We propose
two strategies to leverage this transformation during training, differing in the degree of penalization
applied to the model. These can be interpreted as ’hard’ and ’soft’ approaches to mask modulation,
which are described in detail in the subsequent subsections.

Algorithm 2 Supervised Mask Modulation v1

Require: Input X, Ground Truth Y, and Modulated Mask YM
0 = Y

1: for each epoch (t) do
2: Ŷt ← Model(X)

3: L ← Lvanilla(Ŷt,Y) + LESL(Ŷt,Y
M
t )

4: Backpropagate loss L
5: Ỹt+1 ← MAMM(Ŷt, Y)
6: end for

4.2.1 SUPERVISED MASK MODULATION v1

In this variant, we propose a specialized loss function, Elevated Senstivity Loss (ESL), explicitly
designed to impose a strong penalty on FN in the model’s predictions. Its primary objective is to
ensure that small or subtle regions are accurately detected and not overlooked. This is achieved by
incorporating the count of FN directly into the denominator of the loss formulation. To maintain
scale invariance and normalize the contribution of each pixel, the total number of pixels, being a
constant, is also included in the denominator. The explicit focus on penalizing missed detections
characterizes this approach as a hard penalization strategy, motivating its designation as the hard
training algorithm for SMM.

Let Y denote the ground truth mask and Ŷ denote the predicted mask, each consisting of N pixels
indexed by i ∈ Ω, where Ω is the set of all pixel locations. Let yi ∈ {0, 1} and ŷi ∈ [0, 1] denote the
values of the ith pixel in Y and Ŷ , respectively. We define the Elevated Sensitivity Loss (ESL) as:
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LESL = −
∑

i∈Ω yi ŷi

N +
∑

i∈Ω yi(1− ŷi)
(1)

where:

• N = |Ω| is the total number of pixels in the mask.
• yi ∈ {0, 1} is the ground truth value of the ith pixel.
• ŷi ∈ [0, 1] is the predicted value of the ith pixel.

The multiplicative factor of N acts as a normalization term for the loss, ensuring scale consistency.
Its significance is discussed in further detail in Appendix B.

Figure 2: Supervised Mask Modulation. Given
an input X, the segmentation model predicts Ŷ,
which is compared with the ground truth Y and
modulated mask YM

t to compute the loss. This
loss updates the modulated mask for subsequent
epochs, yielding YM

t+1. Both SMM variants em-
ploy MAMM to generate these masks.

The ESL loss is applied in conjunction with
modulated masks generated from Algorithm 1.
Training begins with a warm-up phase, de-
faulted to 20% of total epochs, during which
neither mask updates nor ESL computation oc-
curs, allowing the model to learn global struc-
tures. Post pretraining, masks are updated each
epoch, and ESL is computed using the modu-
lated masks, while standard loss functions op-
erate on the original ground truth. The final loss
is the sum of both, ensuring the model follows
the general learning trajectory while explicitly
penalizing FN.

4.2.2 SUPERVISED
MASK MODULATION v2

We propose an adaptive training strategy that
modulates the mask based on the model’s per-
formance, measured via the recall metric after
each epoch. Let the model first undergo pre-
training for 20% of the total epochs. We con-
sistently store the recall values in a fixed-length
queue of size L.

To assess the trend of model performance, we
compute the gradient of the best-fit line for re-
call over epochs, referred to as β:

β =
Cov(x,y)

Var(y)
, (2)

with

x = [x1, x2, . . . , xL]
⊤, xi : recall at epoch i,

y = [1, 2, . . . , L]⊤, yi : epoch index i,

where Var(y) is the variance of y and
Cov(x,y) the covariance between x and y.

A small or negative β indicates stagnation or decline in performance, prompting updates to the mod-
ulated mask. When β falls below a threshold γ, controlled FP are introduced near the true boundary
via dilation (Algorithm 3), while FN are consistently computed against the original ground truth. To
prevent excessive mask expansion, prior modulations are cleared before new ones are applied. This
thresholding mechanism balances exploration and consolidation by adapting to gradient magnitude,
drawing inspiration from adaptive thresholding in semi-supervised learning (Xu et al., 2021): gra-
dients above γ suppress modulation, reinforcing confident regions, whereas those below γ trigger
updates to redirect learning toward uncertain or overlooked areas. Recall is employed solely for
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evaluation and excluded from optimization, and γ is linearly decayed during training to reflect the
model’s evolving identification of novel positives. Unlike earlier variants, this approach dispenses
with explicit penalization, motivating its designation as the soft training algorithm for SMM (Algo-
rithm 4).

Algorithm 3 UpdateMask

Require: Queue Q, Prediction Ŷt, Ground truth Y, and Modulated Mask YM
t

1: Retrieve threshold parameter γ
2: Compute recall r between Y and Ŷt:

r =

∑
(Y ∧ Ŷt)∑

Y
3: Append r to queue Q
4: Compute gradient β from queue Q using Eq. 2
5: if β < γ then
6: YM

t+1 ← MAMM(Ŷt, Y)
7: else
8: YM

t+1 ← YM
t

9: end if
10: return YM

t+1

Algorithm 4 Supervised Mask Modulation v2

Require: Input X, Ground Truth Y, and Modulated Mask YM
0 = Y

1: Initialize: Empty queue Q with fixed length L
2: for each epoch t do
3: Ŷt ← Model(X)

4: L ← Loss(Ŷt,Y
M
t )

5: Backpropagate using L
6: YM

t+1 ← UPDATEMASK(Q, Ŷt, Y, YM
t )

7: end for

5 EXPERIMENTAL SETUP

Table 1: Dataset Summary Characteristics of the datasets used for training and evaluation, covering
multiple 2D segmentation tasks ranging from binary to multi-class segmentation. Tr and Ts are
abbreviations for Train and Test, respectively. # denotes “Number of”.

Dataset
Image
Dims # Classes

# Images
(Tr + Ts)

BoMBR (Raina et al., 2024) 512× 512 4 201 + 50

DRIVE (Hassan et al., 2015) 512× 512 2 80 + 20

Cracks (Tomaszkiewicz & Owerko, 2023) 224× 224 2 572 + 143

Drone0 512× 512 5 320 + 80

5.1 DATASET DESCRIPTION

We validated the proposed framework on four publicly available datasets encompassing diverse im-
age domains and segmentation challenges, including both binary and multi-class tasks. The BoMBR
dataset (Raina et al., 2024) involves segmentation of fat globules, reticulin fibers, and bone marrow
from biopsy images for reticulin quantification. To assess performance on tubular structures, we
used the DRIVE dataset (Hassan et al., 2015) for retinal vessel segmentation. Beyond medical
imaging, we evaluated on two real-world datasets: fine crack segmentation in concrete surfaces

6
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Figure 3: Dataset Samples Representative samples from the four datasets used to validate our
framework, covering diverse 2D segmentation tasks across medical, industrial, and natural image
domains, and including both binary and multi-class settings.

(Tomaszkiewicz & Owerko, 2023) and object segmentation in aerial drone imagery1. Representa-
tive samples are shown in Figure 3.

5.2 MODEL CONFIGURATIONS

We evaluated model performance using a standardized U-Net (Ronneberger et al., 2015) pipeline
with four encoder-decoder stages. Each stage consists of two convolutional layers with batch nor-
malization and ReLU activation. Decoder features are upsampled via transposed convolutions and
fused with encoder outputs through skip connections, preserving spatial detail.

Models were trained with an initial learning rate of 0.1 and linear decay, using a batch size of 4.
Epochs were dataset-specific to ensure convergence. All experiments were run on NVIDIA Tesla
T4 and GeForce GTX 1080 Ti GPUs.

5.3 TRAINING SETUP

We evaluate our models using U-Net as the base architecture, comparing against strong, architecture-
agnostic baselines. All experiments were repeated over five random seeds for significance analysis.
The baselines are: Vanilla U-Net (trained with Dice loss (Dice)+Categorical Cross Entropy loss
(CCE)), U-Net+SRL (Vanilla U-Net with SRL), and U-Net+BL (Vanilla U-Net with Boundary
Loss (BL)).

Since CCE fails under overlapping class regions induced by MAMM, SMMv2 replaces it with class-
wise Binary Cross-Entropy to support multi-label pixels. We set queue length L = 15 and γ to the
mean of β values from pretraining epochs.

Evaluation employed complementary metrics: (i) Overlap (DSC, JSI), (ii) Topology (clDice), and
(iii) Error (FNR, FPR), covering accuracy, structural preservation, and under/over-segmentation
tendencies.

1http://dronedataset.icg.tugraz.at/
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Table 2: Test set metrics of U-Net models trained using different strategies. SMMv1 and SMMv2
present results for both versions of our proposed framework. An asterisk (∗) indicates statistical
significance at p < 0.05, based on t-tests comparing our best-performing method with the strongest
baseline.

Method DSC ↑ clDice ↑ JSI ↑ FNR ↓ FPR ↓
BoMBR (Raina et al., 2024)

Vanilla U-Net 66.02 ± 2.11 63.57 ± 1.76 56.42 ± 2.44 26.04 ± 1.82 7.58 ± 0.81
U-Net + SRL 66.84 ± 2.21 63.54 ± 1.36 57.24 ± 2.41 25.78 ± 2.07 7.29 ± 0.95
U-Net + BL 67.09 ± 1.06 64.15 ± 1.29 57.80 ± 1.04 26.11 ± 1.15 7.23 ± 0.38

SMMv1 66.82 ± 1.16 64.12 ± 0.95 57.37 ± 1.38 25.92 ± 0.77 7.27 ± 0.39
SMMv2 67.46± 1.24 64.42± 0.64 57.96± 1.13 24.73± 1.14 7.09± 0.39

DRIVE (Hassan et al., 2015)

Vanilla U-Net 79.63 ± 1.45 83.48 ± 1.84 66.21 ± 1.98 21.51 ± 2.00 2.55 ± 0.10
U-Net + SRL 80.01 ± 0.47 84.27 ± 0.81 66.72 ± 0.65 18.85± 0.97 2.97 ± 0.08
U-Net + BL 79.72 ± 1.74 83.36 ± 1.48 66.35 ± 2.39 23.40 ± 1.13 2.12± 0.39

SMMv1 80.64± 1.30 84.42± 1.51 67.62± 1.83 20.98 ± 2.08 2.31 ± 0.26
SMMv2 78.93 ± 0.68 82.71 ± 0.94 65.24 ± 0.92 21.53 ± 1.08 2.79 ± 0.09

Cracks (Tomaszkiewicz & Owerko, 2023)

Vanilla U-Net 64.57 ± 0.87 74.92 ± 1.15 51.20 ± 0.80 31.39 ± 1.22 0.33 ± 0.01
U-Net + SRL 62.51 ± 3.31 71.93 ± 5.15 49.12 ± 3.36 29.69± 0.80 0.44 ± 0.13
U-Net + BL 64.05 ± 0.93 74.73 ± 0.82 50.82 ± 0.93 33.15 ± 0.66 0.31± 0.01

SMMv1 64.74± 0.20 75.35± 0.34∗ 51.44± 0.21∗ 31.16 ± 0.58 0.33 ± 0.01
SMMv2 62.93 ± 2.73 72.64 ± 4.50 49.56 ± 2.80 33.08 ± 2.82 0.33 ± 0.02

Drone1

Vanilla U-Net 49.58 ± 2.54 44.44 ± 2.34 39.95 ± 2.04 29.47 ± 2.76 6.32 ± 0.25
U-Net + SRL 48.92 ± 1.45 43.92 ± 1.38 39.16 ± 1.02 29.69 ± 1.23 6.40 ± 0.24
U-Net + BL 45.37 ± 8.06 40.13 ± 7.81 37.76 ± 6.60 36.23 ± 7.17 6.73 ± 1.28

SMMv1 50.49 ± 1.72 45.45 ± 1.91 40.89 ± 1.46 29.20 ± 1.79 6.07 ± 0.28
SMMv2 51.34± 2.39 46.21± 2.09 41.61± 2.31 27.70± 2.20 5.93± 0.33∗

6 RESULTS AND DISCUSSION

6.1 EVALUATION PROTOCOL

To assess the robustness and generalizability of our approach, we validated the method across a
diverse set of benchmark datasets. Following the recommendations of The Machine Learning Re-
producibility Checklist (Pineau et al., 2021), we attempted to mitigate stochastic effects in training
and ensure reproducibility by repeating each experimental configuration using five fixed random
seeds. Reported results are expressed as mean ± standard deviation across these runs, providing
a reliable estimate of model performance while attributing observed differences to methodological
improvements rather than random variations in initialization or data shuffling.

6.2 METRIC-LEVEL INSIGHTS

Table 2 shows that SRL consistently reduces FNR, often with a moderate increase in FPR relative
to Vanilla U-Net, while BL shows the opposite trend. As discussed in Section 3, striking a balance
between FNR and FPR is critical—our model achieves this, yielding simultaneous reductions in
both rates and improved complementary metrics. Consequently, our method surpasses all baselines
in Dice, clDice, and JSI, evidencing superior overlap and structural segmentation across datasets.

Statistical significance was evaluated as described in Appendix A, using one-sided t-tests (p < 0.05)
for pairwise comparisons with the strongest baselines. Distinct variant-specific trends across dataset
categories are further analyzed in Appendix D.
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Figure 4: Visual Results The figure presents a sample test output of each model for all the utilized
datasets. The better-performing version of SMM is marked by a blue bounding box. It may be
noticed that in cases of Category 1 datasets, SMMv1 is able to segregate the regions missed by the
baselines. SMMv2, on the other hand, efficiently balances under-prediction and over-prediction in
the case of Category 2 datasets, thus ensuring accurate semantic segregation of separate classes.

6.3 ARCHITECTURE-AGNOSTIC DEPLOYMENT

Our training framework is designed to be independent of architecture-specific features, enabling ro-
bust deployment across diverse segmentation networks. Both variants of SMM employ a unified
mask modulation strategy with a generalizable training procedure that can be applied to any seg-
mentation architecture. The effectiveness of this approach is further demonstrated in Appendix C,
where we report results on SegNet (Badrinarayanan et al., 2017), showing that SMM maintains
strong performance even on architectures not seen during primary experiments.

7 CONCLUSION

Despite the proliferation of task-specific segmentation techniques, there remains a pressing need
for a unified training paradigm capable of delivering consistent performance across heterogeneous
tasks and application domains. In this work, we propose a segmentation model training strategy,
denoted Supervised Mask Modulation (SMM), which is architecture-agnostic and demonstrates ef-
ficacy across a broad spectrum of segmentation challenges. The principal motivation of SMM is to
optimize the balance between FN and FP, thereby enhancing segmentation fidelity.

Central to our framework is a novel mask transformation, Miss-Aware Mask Modulation (MAMM),
derived from model-predicted FN regions, which is leveraged alongside two complementary train-
ing strategies to reinforce model learning. This consolidation reduces the otherwise fragmented
landscape of segmentation methodologies into two generalizable strategies. We extensively validate
our approach on publicly available datasets, benchmarking against state-of-the-art baselines, where
our strategies consistently yield superior performance across diverse segmentation scenarios. Eval-
uation using multiple network architectures further highlights the generality and robustness of the
proposed methodology, underscoring its practical utility for real-world segmentation pipelines.
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