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ABSTRACT

Graph Contrastive Learning (GCL) is a powerful self-supervised learning frame-
work that performs data augmentation through graph perturbations, with growing
applications in the analysis of biological networks such as Gene Regulatory Net-
works (GRNs). The artificial perturbations commonly used in GCL, such as node
dropping, induce structural changes that can diverge from biological reality. This
concern has contributed to a broader trend in graph representation learning toward
augmentation-free methods, which view such structural changes as problematic
and to be avoided. However, this trend overlooks the fundamental insight that
structural changes from biologically meaningful perturbations are not a problem
to be avoided but a rich source of information, thereby ignoring the valuable op-
portunity to leverage data from real biological experiments. Motivated by this in-
sight, we propose SupGCL (Supervised Graph Contrastive Learning), a new GCL
method for GRNs that directly incorporates biological perturbations from gene
knockdown experiments as supervision. SupGCL is a probabilistic formulation
that continuously generalizes conventional GCL, linking artificial augmentations
with real perturbations measured in knockdown experiments and using the latter
as explicit supervisory signals. To assess effectiveness, we train GRN represen-
tations with SupGCL and evaluate their performance on downstream tasks. The
evaluation includes both node-level tasks, such as gene function classification,
and graph-level tasks on patient-specific GRNs, such as patient survival hazard
prediction. Across 13 tasks built from GRN datasets derived from patients with
three cancer types, SupGCL consistently outperforms state-of-the-art baselines.

1 INTRODUCTION

Graph representation learning has recently attracted attention in various fields to learn a meaningful
latent space to represent the connectivity and attributes in given graphs (Ju et al.| [2024). Applica-
tions of graph representation learning are advancing in numerous areas where network data exists,
such as analysis in social networks, knowledge graphs (Hu et al., 2023} [Shen & Zhang| 2023)), and
biological network analysis in bioinformatics (Liu et al.,2023; Wu et al., [2021)).

The application of graph representation learning to Gene Regulatory Networks (GRNs), which con-
tain information about intracellular functions and processes, is particularly important in the fields of
biology and drug discovery. It is expected to contribute to the identification of therapeutic targets
and the elucidation of disease mechanisms. Representation learning for GRNs has been applied to
tasks such as transcription factor inference (Yu et al.,|2025) and predicting drug responses in cancer
cell lines (Liu et al., [2022). Advances in gene expression measurement and analysis technologies
have enabled the construction of patient-specific GRNs, highlighting gene regulation patterns that
differ from the population as a whole (Nakazawa et al.,[2021)). Hereafter, this paper will refer to
such individualized networks simply as GRNs.

Among the various graph representation learning methods, Graph Contrastive Learning (GCL) has
emerged as a powerful self-supervised learning framework (You et al.|[2020). GCL learns by maxi-
mizing the similarity between node representations across different views of the same graph gener-
ated via data augmentation, a process that assumes the preservation of essential features like graph
topology (Zhu et al., 2021} |Wang et al.l |2024). While augmentation methods have been refined in
the application of GCL to GRNs, there have been concerns that conventional artificial perturbations
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like node dropping can cause structural changes so significant—disrupting the function of networks
including critical nodes like master regulators—that they hinder learning (Paull et al., [2021)). In
response to these challenges, Augmentation-Free approaches have been developed, which perturb
model parameters instead of the graph structure itself, and have shown high performance (Thakoor
et al., [2021; |He et al.| [2024).

However, this trend overlooks a fundamental insight: that the representational shifts caused by graph
augmentation are not an obstacle to overcome, but rather a rich source of information to be exploited.
Consequently, it ignores the valuable opportunity to leverage data obtained from actual biological
experiments, such as knockdown experiments.

To address these issues, we propose a novel supervised GCL method (SupGCL) that leverages
gene knockdown perturbations within GRNs. Our method uses experimental data from actual gene
knockdowns as supervision, enabling biologically faithful representation learning. In gene knock-
down experiments, the suppression of specific genes causes biological perturbations, leading to the
observation of a new, altered GRN. By using these perturbations as supervision signals for GCL, we
can perform data augmentation that retains biological characteristics. Moreover, since our method
naturally extends traditional GCL models in the direction of supervised augmentation within a prob-
abilistic framework, conventional GCL approaches emerge as special cases of our proposed model.

To evaluate the effectiveness of the proposed SupGCL method, we apply it to GRN datasets from
cancer patients across three cancer types and conduct multiple downstream tasks. For gene-level
downstream tasks, we perform classification into biological process, cellular component, and cancer-
related gene categories. For patient-level tasks, we conduct hazard prediction and disease subtype
classification. The performance of our method is compared against existing graph representation
learning techniques, including conventional GCL methods.

The main contributions of this study are as follows:

* Proposal of a novel GRN representation learning method utilizing gene knockdown
experiments: We develop a new GCL method tailored for GRNs that incorporates gene
knockdown data as supervision to enhance biological plausibility.

* Theoretical extension of GCL: We formulate supervised GCL, incorporating augmenta-
tion selection into a unified probabilistic modeling framework, and theoretically demon-
strate that existing GCL methods are special cases of our proposed approach.

* Empirical validation of the proposed method: We apply the method to 13 downstream
tasks on GRNs derived from real cancer patients and consistently outperform conventional
approaches across all tasks.

2 RELATED WORKS

2.1 AUGMENTATION-FREE GRAPH CONTRASTIVE LEARNING (GCL)

GCL is a powerful framework for learning representations by maximizing the similarity between
multiple ”views” of a graph generated through data augmentation. While early node-level methods
like GRACE achieved high performance (Zhu et al.| [2020), graph-level approaches like GraphCL
struggled with the loss of key node features (You et al., 2021} |Sun et al., 2025).

A common challenge for these methods was their heavy reliance on the choice of data augmenta-
tions. This led to a trend in augmentation-free GCL, pioneered by BGRL (Thakoor et al.l [2021),
which used a bootstrapping mechanism to circumvent heuristic augmentations that could damage the
graph’s structure, influencing subsequent research such as simGRACE (Xia et al., |2022) and AF-
GRL (Lee et al., 2022). SGRL (He et al., 2024) further advanced this trend by integrating concepts
like feature uniformity from early GCL to prevent the representation collapse problem often faced
by methods like BGRL, achieving stable and high-performance self-supervised learning. However,
these methods view perturbations to the graph as a problem to be avoided, thereby overlooking the
opportunity to utilize real-world supervisory signals that arise from structural changes.
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2.2 REPRESENTATION LEARNING FOR GENE REGULATORY NETWORKS(GRNS)

Applying Graph Neural Networks (GNNs) to known GRNSs is a growing area of research for
downstream tasks such as gene function classification and patient survival prediction(Zohari &
Chehreghani| 2025). The prevailing approach in this field has been supervised learning without
pre-training (Liu et al., 2022; [Yu et al., 2025). While link prediction addresses the important task
of inferring the unknown structure of GRNs (Huynh-Thu et al., 2010; [Yu et al.l [2025), our work
focuses on learning representations from known GRN structures for downstream applications.

Recently, self-supervised methods have been introduced to this domain. Initial efforts focused on
applying general augmentation-free methods, such as the Graph Autoencoder (GAE), which learns
representations by reconstructing the graph’s structure (Jung et al., [2024). More recently, the fo-
cus has begun to shift towards specialized GCL frameworks tailored for GRNs, although such ap-
proaches are still uncommon. A notable example is MuSe-GNN (Liu et al., [2023)), which leverages
different data modalities (e.g., sScRNA-seq and scATAC-seq) as natural ”views,” avoiding the need
for artificial augmentations by using biologically diverse information. In contrast to these methods,
our work, SupGCL, uniquely incorporates real-world perturbations from within a single modality as
supervisory signals for GCL.

3 PRELIMINARIES

3.1 BACKGROUND OF GRAPH CONTRASTIVE LEARNING

Although there are various definitions of contrastive learning, it can be expressed using a proba-
bilistic model based on KL divergence over pairs of augmentations or node instances (Alshammari
et al., [2025). Let X denote a set of entities and let (x,y) € X x X be a pair from that set. The
contrastive loss is formulated as follows:

A 1
Lossi.con = m Z DKL(pe(y|x)|Q¢(y|x))- Q)
zeX

Here, g4 (y|x) is the probability distribution of the learned model with parameter ¢, and pg(y|x)
is a reference distribution. To avoid trivial solutions when training both py and g4 simultaneously,
the reference distribution py is almost fixed. The reference model py(y|z) is often designed as a
probability that assigns a non-zero constant to positive pairs (x, y) and zero to negative pairs (z, y).

Graph Contrastive Learning (GCL) handles the learned model ¢ (j|i) corresponding to a pair of
nodes (¢, 7). Consider graph operations for augmentation, order them, and represent the index of
these operations by a. Let z¢ € R? be the graph embedding of the i-th node obtained from the
Graph Neural Network under the a-th augmentation operation. For two augmentation operations

(a,b), the pair of probability models (p, qg’b) used in GCL is defined by

exp(sim(zf, z;?)/Tn)
> eey exp(sim(z¢, 20)/m)
Here, V is the set of nodes in the given graph, d;; is the Dirac delta, 7, > 0 is a temperature
parameter and sim(-, -) denotes cosine similarity. This setting is often extended so that the definitions
of (p, qg’b) vary according to how positive and negative pairs are sampled. Note that the target

model g4 depends on the sampling method of augmentation operators, so the probability model also
depends on (a, b).

p(ili) £ 05, q3°(jili) £ )

GCL trains the model using the following loss function on the pair of probability models (p, qg’b)
induced by augmentation operations (a,b), according to the formulation of contrastive learning

loss (T).

a,b 1 7Y A% I 7
Loss™? 2 Vv >~ D (p(ili)]a3 (i10))- 3)
iev

This encourages the embeddings at the node level z¢ and z? of the same node under different aug-
mentation operations to be close to each other. Typically, augmentation operations a, b are chosen by
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uniform sampling from a set of candidates .4. Hence, in practice, the expected value is minimized
under the uniform distribution U 4 over A:
b
Lossnode = Eq pou  [Losst) ] 4)
While GCL achieves node-level representation learning via the procedure described above, in many
cases the augmentation operations themselves rely on artificial perturbations such as randomly

adding and/or deleting nodes and/or edges. In this study, we introduce gene knockdown—a bio-
logical perturbation—as supervision for these augmentation operations.

3.2 NOTATION AND PROBLEM DEFINITION

In this study, we describe a GRN as a directed graph G = (V, €, XV, X ) that contains information
on nodes and edges. Here, V, and £ are the sets of nodes and edges, respectively, and each node
represents a gene. X, is the feature of the i-th gene, and X, is the feature of the i-th edge in the
network. The augmentatmn operation corresponding to the knockdown of the i-th gene is modeled
by setting the feature of the i-th gene to zero and also setting the features of all edges connected to
the i-th gene to zero.

We associate the a-th augmentation operation with the knockdown of the a-th gene. In what follows,
we denote by G, the graph obtained by applying the a-th augmentation operation to G. Moreover,
in this study, let #, be the teacher GRN for the knockdown of the a-th gene , and let X be the set of
all augmentation operations for which such teacher GRNs exist. In other words, H,, is a GRN that
serves as a teacher for artificial augmentation for the a-th gene.

Our goal is to use the original GRN G and its teacher GRNs {#,},cx to train a Graph Neural
Network (GNN) fy. Defining embedded representations through the GNN f; as

Za é f¢(ga) c ]:R|V|><Cl7 Ya é fd)(Ha) c R‘V|Xd, (5)

where z;* and y;' denote the embedding vectors of the ¢-th node in Z¢ and Y ¢, respectively, and d
is the embedding dimension. Note that the same GNN f is used to produce both Z* and Y *.

In this work, we train the neural network f, using the set of pairs {(Z%,Y %)} ,cx, where (Z%,Y*)
corresponds to the graph embedding obtained by the GRN augmentation operation and the embed-
ding of the teacher GRN for the corresponding gene knockdown.

4 METHOD

For the set of embedded representations {(Z%, Y *)},ci, we consider the pair of augmentation op-
erations (a,b) and the pair of nodes (¢, j) according to the contractive learning scheme. First, for
the pair of augmentation operations (a, b), we clarify the supervised learning problem for augmen-
tation operations using KL divergence and then propose SupGCL using a distribution over pairs
of combinations of nodes and extension operations. A sketch of the proposed method is shown in
Figure

The probability distribution of augmentation operations is naturally introduced by using similarities
in the entire graph embedding space RIVI*? (rather than per node). By introducing the Frobenius
inner product as the similarity in the matrix space, we define the probability models for the augmen-
tation operations as:

exp (simp (Y%, Y?) /1) exp (simp(Z°, Z°)/7.)
> cex €xp (simp(Y0,Y¢) /7,) > cex €xp (simp(Z2, Z°) /1,)’
where simp(-,-) denotes the cosine similarity via the Frobenius inner product, and 7, > 0 is a
temperature parameter. Unlike node-level learning, p,(bla) is not a fixed constant but rather a

reference distribution based on the supervised embeddings {Y *},cx. Both probability models py
and g, are parameterized by the same GNN f.

pe(bla) £ qp(bla) & (6)

Using these probability distributions, substituting the reference model py(b|a) and the learned model
¢4(bla) into the formulation of contrastive learning in . yields the loss function for augmentation
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Figure 1: Schematic overview of SupGCL. Artificial augmentations are generated by simulating
gene knockdowns in a patient GRN, while the teacher GRNs for supervision are derived from real-
world knockdown experiments. Embeddings are extracted using a shared GNN, and both node-level
and augmentation-level contrastive losses are computed via KL divergence.

operations:

A
Lossaug =

1
KT 22 Dt (s (la)as ). )
acl

Minimizing this loss reduces the discrepancy in embedding distributions between the artificially
augmented graphs and the biologically grounded knockdown graphs. However, if both pg and gg
are optimized simultaneously, the model may converge to a trivial solution. For instance, if the
GNN outputs constant embeddings, both distributions become uniform and Lossa,e = 0. Thus,
minimizing Loss g alone is insufficient for learning meaningful graph representations.

To address this issue, here we first introduce a reference model py(j, bé, a) and a learned model
¢4(J, bli, a) that use conditional probabilities for each pair of node and augmentation (¢, a), (j, b) €
V x K. By substituting these into the contrastive learning formulation in (I), we derive the loss
function of Supervised Graph Contrastive Learning:

1

VIK| Z Dx1(ps (4, bli, a)las (4, bli, a)). (8)

i€V, aeX

A
Losssupacr =

Since data augmentation affects the entire graph, we assume that the graph-level teacher distribution
Py (bla), which evaluates the similarity between augmentation operations, and the node-level teacher
distribution p(j|¢), which evaluates node identity, are independent. This leads to the following
theorem.

Theorem 1. Assuming py (i, j, a,b) = p(i, j)pe(a, b), then
LosssupGOL = Ea.bp (bla) Urc(a) [LOSS10c] + LoSSaug: ©)

Proof: This follows directly from the standard decomposition of KL divergence:

Dxv(p(z, 9)la(z,y)) = Ezup [Dxulpylz)lq(ylz))] + Dxup(z)lg(x)).  See Appendix
for details. ]

The first term in Theorem (1| corresponds to the expectation of the node-level GCL loss LosszobdC

(as defined in .) with respect to the supervised augmentation distribution py(bla). This allows
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Figure 2: Overview of downstream tasks. Node-level tasks involve gene classification into Bio-
logical Process [BP.], Cellular Component [CC.], and cancer relevance [Rel.]. Graph-level tasks
include patient survival prediction [Hazard] and breast cancer subtyping [Subtype]. Mean pooling
provides graph-level representations.

Table 1: Description of the downstream tasks
Task Task Type Metrics

Node-Level Task
[BP.]: Biological process classification Multi-label binary classification (with 3 labels)  Subset accuracy
[CC.]: Cellular component classification —Multi-label binary classification (with 4 labels) ~ Subset accuracy

[Rel.]: Cancer relation Classification (binary) Accuracy
Graph-Level Task

[Hazard]: Hazard prediction Survival analysis (1-dim risk score) C-index

[Subtype]: Disease subtype prediction Classification (5 groups) Accuracy

node-level contrastive learning to reflect biological similarity between knockdown operations. Im-
portantly, since the theorem is independent of the specific choice of the node-level model (p, qg’b),
any contrastive loss described by KL divergence can be used in practice. Meanwhile, the second term
reduces the distributional difference between the artificially generated augmentation-based GRN and
the teacher GRN. Together, these two components ensure both expressive node representations and
biologically meaningful augmentations.

Moreover, the performance of node-level representation learning and the biological validity follow-
ing the teacher data for augmentation operations can be controlled by the temperature parameters
T, and 7, of each probability model. In particular, when the temperature parameter 7, involved in
the augmentation operation is sufficiently large, the augmentation operation becomes independent
of the teacher GRNs {Y, }.ck, and coincides with the conventional node-level GCL loss function.

Corollary 1. lim,, _, Losssupacr = Lossnode-

Proof: As 7, — o0, we have py(bla) — Ux(b) and g4(bla) — Uk(d). Therefore,
the expectation term becomes: limy, o0 Eq pp, (ba)U(a) [LOSStige] = Eapouy [Lossi,

lim,, o0 Dkr.(pg(bla)|ge(bla)) = O thus proving the corollary. O

In this study, we train the GNN using standard gradient-based optimization applied to the loss func-
tion defined in Theorem [T} The corresponding pseudocode is provided in Appendix B}

5 EXPERIMENTS

This chapter verifies the effectiveness of the proposed method using actual GRNs from cancer pa-
tients and biologically augmented GRNs based on gene knockdown experiments.
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Table 2: Fine-tuning results of node-level downstream tasks

Task w/o-pretrain GAE GraphCL GRACE SGRL SupGCL
BP.
Breast 0.23240.031  0.230+0.029  0.167+0.042  0.230+0.051  0.220+0.052  0.243+0.052
Lung 0.259+0.056  0.247+0.038  0.115+£0.024  0.259+0.063  0.233+0.027  0.282+0.037
Colorectal ~ 0.231+£0.062  0.245+0.023  0.207+0.058  0.249+0.050 0.146+0.029  0.262+0.030
CC.
Breast 0.264£0.042  0.250+0.034  0.131+0.050  0.236+0.026  0.249+0.030  0.291+0.026
Lung 0.267+0.041  0.245+0.033  0.069+0.041  0.255+0.043  0.248+0.037  0.274+0.044
Colorectal ~ 0.278+0.098  0.256+0.042  0.190+0.062  0.265+0.030  0.133+£0.081  0.279+0.052
Rel.
Breast 0.573£0.033  0.561+0.059 0.553+0.051 0.575+0.035 0.580+£0.055  0.600+0.057
Lung 0.575+0.053  0.568+0.029  0.555+0.036  0.592+0.038  0.593+0.034  0.604+0.053

Colorectal ~ 0.563+0.071  0.574+0.049  0.535+0.056  0.576+0.071  0.580+0.042  0.594+0.039

Table 3: Fine-tuning results of graph-level downstream tasks

Task w/o-pretrain GAE GraphCL GRACE SGRL SupGCL
Hazard
Breast 0.601+£0.035  0.625+£0.035 0.638+0.049  0.642+0.064 0.640+0.077  0.650+0.059
Lung 0.611+£0.052  0.619+0.062 0.616+0.049  0.609+0.055 0.611+0.060 0.627+0.051
Colorectal ~ 0.621+£0.070  0.631+£0.091 0.657+0.071  0.647+0.059 0.616+0.123  0.698+0.085
Subtype
Breast 0.804+0.031  0.834+0.028 0.719+0.077 0.841+0.026  0.829+0.030  0.847+0.036

5.1 BENCHMARK OF GENE REGULATORY NETWORKS

Evaluation Protocol: We evaluated the proposed method through the following procedure. First,
we constructed patient-specific GRNs from cancer patient gene expression data and teacher GRNs
from gene knockdown experiment data. Then, pre-training was performed on the proposed method
using both the patient-specific and teacher GRNs. Subsequently, the performance of the down-
stream tasks, such as classification accuracy and regression performance, was evaluated using the
pre-trained models and compared against comparative methods.

We compared the proposed method with the following five comparative models:

w/o-pretrain : Directly performs classification or regression for downstream tasks.

GAE (Kipf & Welling} 2016): Reconstruction based graph representation learning method.
GraphCL (You et al.,|2021): Graph contrastive learning using positive pairs between graphs.
GRACE (Zhu et al.;|2020): Node-level graph contrastive learning method.

SGRL (He et al.,[2024): State-of-the-art augmentation-free GCL.

Datasets: To evaluate the performance of SupGCL, we conducted benchmark evaluations using
real-world datasets. For constructing patient-specific GRNs, we used cancer cell sample data from
The Cancer Genome Atlas (TCGA). For constructing teacher GRNs, we used gene knockdown ex-
periment data from cancer cell lines in the Library of Integrated Network-based Cellular Signatures
(LINCS). The TCGA dataset (Weinstein et al., 2013) and the LINCS dataset (Subramanian et al.,
2017) are both large-scale and widely-used public platforms providing gene expression data from
cancer patients and cell lines, respectively.

Experiments were conducted for three cancer types across both datasets: breast cancer, lung cancer,
and colorectal cancer. Furthermore, the set of genes constituting each network was restricted to the
975 genes common to the TCGA gene set and the 978 LINCS landmark genes. The number of
patient samples for each cancer type was N=1092 (breast), 1011 (lung), and 288 (colorectal), and
the total number of knockdown experiments was 8793, 11843, and 15926, respectively. The number
of unique knockdown target genes / total common genes was 768/975, 948/975, and 948/975.
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Figure 3: t-SNE visualization of pre-trained graph-level embeddings on breast cancer GRNs. Each
point represents the readout feature of an individual patient’s network. NMI and ARI scores indicate
quantitative clustering metrics of the embeddings.

The TCGA dataset also includes survival status and disease subtype labels associated with each
gene expression profile. Additionally, each gene was annotated with multi-labels based on Gene
Ontology (Ashburner et al.,2000) — Biological Process (metabolism, signaling, cell organization;
3 classes), and Cellular Component (nucleus, mitochondria, ER, membrane; 4 classes). We also
used the OncoKB (Chakravarty et al., 2017) cancer-related gene list to assign binary relevance
labels. These labels were used for downstream tasks. Details are provided in Appendix [C|

Pre-processing: To estimate the network structure of each GRN from gene expression data, we
used a Bayesian network structure learning algorithm based on B-spline regression (Imoto et al.,
2002). For each experiment, gene expression values were used as node features, while edge features
were defined as the linear sum of estimated regression coefficients and the parent node’s gene ex-
pression (Tanaka et al.,2020). This structure estimation was performed per cancer type per dataset
using the above algorithm. Further details are provided in Appendix D]

5.2 RESULT 1: EVALUATION BY DOWNSTREAM TASK

In this experiment, pre-training of the proposed and conventional methods was conducted using
patient-specific GRNs from TCGA and teacher GRNs from LINCS. Subsequently, fine-tuning was
performed on the pre-trained models using patient GRNs, and downstream task performance was
evaluated (see Figure[2). During fine-tuning, two additional fully connected layers were appended
to the node-level representations and graph-level representations (obtained via mean pooling), and
downstream tasks were performed.

Graph-level tasks (hazard prediction, subtype classification) used survival and subtype labels from
TCGA. Note that subtype classification was conducted only for breast cancer. Node-level tasks
(Biological Process - BP., Cellular Component - CC., and cancer relevance - Rel.) used gene-level
annotations from Gene Ontology and OncoKB. Details of these downstream tasks are summarized
in Table[Il

Each downstream task — hazard prediction, subtype classification, BP, and CC classification — was
evaluated using 10-fold cross-validation. For cancer gene classification, due to label imbalance, we
performed undersampling over 10 random seeds. Results are reported as mean + standard deviation.

For all methods including the SupGCL and conventional methods, we used the same 5-layer Graph
Transformer architecture (Shi et al.l [2021)). Hyperparameters for pre-training were tuned with Op-
tuna (Akiba et al.}|2019), and the model was optimized using the AdamW optimizer (Loshchilov &
Hutter| [2019). All training runs were performed on a single NVIDIA H100 SXM5 GPU. Additional
experimental details can be found in Appendix

Tables [2 and [3] show the results for node-level and graph-level tasks, respectively. The best perfor-
mance is indicated in bold, and the second-best is underlined. Although SupGCL did not achieve sta-
tistically significant superiority in every single task, it consistently outperformed other pre-training
methods across all datasets and tasks.

For node-level tasks, many existing methods did not show much improvement over without-pretrain,
whereas SupGCL consistently demonstrated strong performance. In graph-level tasks like hazard
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and subtype prediction, while some existing methods showed marginal improvement over without-
pretrain, SupGCL achieved significantly higher performance.

In addition, we evaluated the generalization performance across different cancer types. While the
pre-training was robust even when the cancer types of the teacher and patient GRNs differed, the
fine-tuning was not (see Appendix [G] for details).

5.3 RESULT 2: EFFECTIVENESS OF SUPERVISED LEARNING

In this section, to verify the effectiveness of the reference model pg, we conducted additional ex-
periments by varying the augmentation-level temperature parameter 7,, which controls its degree of
influence. This experiment also serves to empirically validate the theoretical relationship (Corol-
lary [T) that as 7, increases, the SupGCL loss function asymptotically approaches that of unsuper-
vised node-level GCL like GRACE. The experimental results for breast cancer in Table {] show
that SupGCL outperforms GRACE in all settings, demonstrating the effectiveness of incorporating
biologically plausible information. Furthermore, as 7, increases and the influence of supervised in-
formation weakens, the performance of SupGCL tends to approach that of the unsupervised method
GRACE, which supports Corollary |1} It should be noted that due to the different definitions of the
denominator in their loss functions, this experiment and GRACE are not strictly identical.

Table 4: Ablation study of SupGCL on the augmentation temperature 7, for breast cancer.

Ta Hazard Subtype BP. CC. Rel.

0.10 0.670+0.078 0.837+£0.029 0.262+0.035 0.289 £ 0.049 0.586 + 0.047
0.25 (default) 0.650 +0.059 0.847+0.036 0.243+0.052 0.291+£0.026  0.600 £ 0.057
0.50 0.648 4+ 0.053 0.846 £+ 0.032 0.261 £+ 0.034 0.284 £ 0.061  0.606 + 0.039
1.00 0.640 4+ 0.056 0.835 + 0.031 0.244 +0.042 0.280 4+ 0.032 0.596 + 0.048
2.00 0.656 £+ 0.060 0.842 +0.031 0.237 +0.024 0.277 + 0.058 0.590 + 0.044

Reference: GRACE ~ 0.642 + 0.064 0.841 £ 0.026 0.230 £ 0.051 0.236 £ 0.026 0.575 £ 0.035

5.4 RESULT 3: LATENT SPACE ANALYSIS

We visualized the graph-level embedding spaces from the breast cancer dataset (Figure 3} additional
visualizations including node-level embeddings are in Appendix [F). The embeddings, colored by
disease subtype, show that GAE and GraphCL fail to separate subtypes, while GRACE and SGRL
exhibit moderate separation. SupGCL achieves the clearest separation, indicating a superior ability
to learn subtype-specific representations. This qualitative observation was confirmed by quantita-
tive clustering metrics. SupGCL consistently outperformed other methods on both the Normalized
Mutual Information (NMI) and the Adjusted Rand Index (ARI), affirming that its embeddings more
effectively capture subtype-specific structure.

6 CONCLUSION

In this study, we proposed a supervised graph contrastive learning method, SupGCL, for representa-
tion learning of gene regulatory networks (GRNs), which incorporates real-world genetic perturba-
tion data as supervision during training. We formulated GCL with supervision-guided augmentation
selection within a unified probabilistic framework, and theoretically demonstrated that conventional
GCL methods are special cases of our proposed formulation. Through benchmark evaluations us-
ing downstream tasks based on both node-level and graph-level embeddings of GRNs from cancer
patients, SupGCL consistently outperformed existing GCL methods.

A key limitation of our study is that SupGCL, when pre-trained on a specific cancer type, fails
to improve performance on downstream tasks for other cancer types. As future work, we plan to
expand the target cancer types and develop a large-scale, general-purpose SupGCL model that can
operate across multiple cancer types.
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A DETAIL PROOF OF THEOREM

Since the loss function of contrastive learning (I)) is formulated as the KL divergence between the
joint distributions p(z,y) and ¢(z,y), under the assumption that p(z) and ¢(z) follow uniform
distributions. Then, the following derived for Loss;_con:

1 _ _—
LOSSSquCL = Tt Z DKL(p¢(]7b|Zva)|q¢(]7b‘z7a))'
VIKT eimex

- DKL(ptb(imjv a, b)|Q¢(za]7 a, b))
= E(a,b)Np(p(a,b) |:DKL (p¢(i, j|aa b>|q¢> (Za j‘aﬂ b))i| + Dk <p¢ (a’ b)|q¢(a’7 b))

= E(a,b)wp¢(a,b) [DKL(p(ivj”qtﬁ(ivﬂav b))} + DKL(]%(G, b)|Q¢(av b))

a,b
= Eq bpy (bla) Uk (a) [LOSSpone] + LOSSAug

The derivation from the second to the third line utilizes the basic decomposition of KL divergence:
Dxr(p(z,9)q9(%,y)) = Eomp(a) [Pk (p(y|2)|g(y|2))] + Dxr(p(w)lg(z)).

B ALGORITHM

The learning algorithm of this research is presented in Algorithm [I] We train the Graph Neural
Network (GNN) f, using the target GRN dataset for all patients, Gy = {GV 1}, and the teacher

GRN dataset, H, = {’Ht(f) }iez. acic- Here, Z, is the set of indices for teacher GRNS, {’Hfj) Yiez, s
which correspond to data augmentations for the a-th node.

Our algorithm follows a standard training loop, consisting of the calculation of Losss,pccr, and the
optimization of f4 using AdamW. Furthermore, to reduce computational costs, we employ sampling-
based estimation of the normalization constant for the calculation of softmax functions p,(bla) and

q4(bla), and use importance sampling for the calculation of Loss®?

node ANd LOSS A yg.

Algorithm 1 Training loop of SupGCL:
Require: Graph Neural Net f,, all patient GRNs Gy = {GW1N | all teacher GRNs H,; =
{Hl(ll)}i,GIa,aelC

1: for G C G, do
2: a,b~ Ug
3: Ga, Gy < The a-th and b-th artificial augmentation of G
4: Ha, Hp < Pick up the a-th and b-th knockdown teacher GRN from H 4
50 Z% 2" « f4(Ga), fs(G) > Embedding target GRNs
6 YY — fu(Ha), fo(Hp) > Embedding teacher GRNs
7 ge(bla) < softmax ( [%} ) 5] > Calculate augmentation-level target model
8: Py (bla) < softmax ( {(Y"TiYﬁ} > [b] > Calculate augmentation-level teacher model
9:  Lossaug < |K[pg(bla)( logp¢(£)|a) — log g¢(bla)) > Importance sampling of Lossfggg
10:  qy(jli,a,b) < softmax ([%%)D (5] > Calculate node-level target model
a,b .
11:  Lossi) < \71| > iev log qe(ili, a, b)
122 Losssupacr < |Klpg(bla)Loss®’,. 4 Lossaug > Importance sampling of Loss™”,
13: Update f4 using Losssupccr, and AdamW optimizer
14: end for

15: return Trained Graph NN: f

C DETAILS OF EXPERIMENTAL DATASETS

This section provides details on data acquisition and preprocessing procedures.
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C.1 DETAILS ON THE TCGA DATASET

In this study, for gene expression data, we used normalized count data from the TCGA TAR-
GET GTEx study provided by UCSC Xena (UCSC Xena| (2016)) for the TCGA dataset. For the
LINCS dataset, we used normalized gene expression data from the LINCS L1000 GEO dataset
(GSE92742) (Subramanian|(2017)).

The TCGA platform contains four datasets: the gene expression dataset ’dataset: gene expression
RNAseq — RSEM norm_count,” the dataset for cancer type attributes of individual patients ’dataset:
phenotype — TCGA TARGET GTEx selected phenotypes,” the patient prognosis dataset “dataset:
phenotype — TCGA survival data,” and the patient phenotype data ’dataset: phenotype - Pheno-

types.”

In this study, based on the dataset of patient cancer type attributes, we extracted patient IDs cor-
responding to the TCGA cohorts listed in Table [5] and subsequently obtained the associated gene
expression data. Notably, the study population was limited to patients whose target cancer was a
primary tumor. Additionally, overall survival time (OS.time) and survival status (OS: alive = 0/ de-
ceased = 1) were retrieved from the patient prognosis dataset. For breast cancer specifically, disease
subtype labels based on the PAMS50 classification were acquired from the patient phenotype dataset.
PAMS0 classification using RNA expression data was feasible for all samples, assigning all 1,092
breast cancer patients to one of five subtypes: Luminal A (N =438), Luminal B (N =311), Basal (N
=196), Her2 (N = 111), and Normal (N = 36). Patient samples with missing values were excluded
during the data extraction process. The final sample sizes and mortality rates for each cancer type
after processing are summarized in Table 5]

Table 5: Sample extraction conditions and survival data statistics for each cancer type

Number of samples with  Number  Mortality

Cancer Type  TCGA Cohort Name valid survival time data  of deaths  rate (%)

Breast cancer Breast Invasive Carcinoma 1,090 151 13.9
Lung cancer = Lung Adenocarcinoma 996 394 39.6
+ Lung Squamous Cell
Carcinoma
Colon cancer Colon Adenocarcinoma 286 69 24.1

C.2 DETAILS ON THE LINCS DATASET

In this study, we used the Level 3 normalized gene expression data (filename on LINCS
datasets:  "GSE92742 _Broad _LINCS Level3_INF_mlIr12k n1319138x12328.gctx.gz”) provided
from the GEO dataset (GSE92742) of the LINCS L1000 project. Additionally, by referring to the
concurrently provided experimental metadata ("GSE92742_Broad _LINCS _inst_info.txt.gz”’ indicat-
ing cell lines and treatment conditions, and "GSE92742 _Broad_LINCS _pert_info.txt.gz” indicating
drug and gene knockdown information), we extracted only the shRNA-mediated knockdown exper-
iment groups. The cell lines and treatment durations were limited to samples from: MCF7 breast
cancer cell line treated for 96 hours, A549 lung cancer cell line treated for 96 hours, and HT29 colon
cancer cell line treated for 96 hours. The expression data was limited to 978 landmark genes.

C.3 EXTRACTION OF GENE LABEL DATA FOR BP/CC TASKS USING GENE ONTOLOGY

In this study, for Biological Process (BP) classification and Cellular Component (CC) classification
in downstream tasks, we performed multi-label annotation for each of the 975 genes constituting
the GRN, based on terms obtained from the GO database. For BP labels, three categories whose
importance is known were used: "Metabolism’, ’Signal Transduction’, and ’Cellular Organization’
(Paolacci et al.|(2009)). Similarly, for CC labels, four categories were used: 'Nucleus’, "Mitochon-
drion’, ’Endoplasmic Reticulum’, and *Plasma Membrane’ (Costa et al.|(2010)). These categories
were selected to cover the major functions of the GRN.

To extract these multi-labels, the following steps were performed:
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1. Batch retrieve terms associated with each gene using the MyGene.info API (Xin et al.
(2015)) and the OBO file (available at https://geneontology.org/docs/download-ontology/).

2. Aggregate multi-labels for the target genes using the GOATOOLS library (Ashburner et al.
(2000)).

Genes that could not be labeled into any of the BP or CC categories were excluded from the down-
stream tasks in this study. The number and percentage of genes included in each category are shown
in Table[al

Table 6: Gene label distribution for high-level BP/CC categories (n = 975)

Category Number of genes  Percentage of category (%)
BP: Metabolism 533 54.67
BP: Signal Transduction 261 26.77
BP: Cellular Organization 369 37.85
BP: Not Applicable 204 20.92
CC: Nucleus 388 39.80
CC: Mitochondrion 151 12.49
CC: Endoplasmic Reticulum 148 15.18
CC: Plasma Membrane 231 23.69
CC: Not Applicable 257 26.36

C.4 ANNOTATION BY ONCOKB

For cancer-related gene classification in downstream tasks, cancer-related genes were obtained from
the OncoKB™ Cancer Gene List provided by OncoKB (Oncology Knowledge Base) (Chakravarty
et al., |2017). Using the list of 1188 cancer-related genes provided as of April 30, 2025, positive
labels were assigned to the 975 genes used in this study. As a result, 106 genes were labeled as
cancer-related genes.

D ESTIMATING GENE REGULATORY NETWORKS

D.1 TAXONOMY OF GENE REGULATORY NETWORK ESTIMATION

Estimating accurate gene regulatory networks (GRNS) is crucial for elucidating cellular processes
and disease mechanisms. Methods for computationally estimating GRNs from gene expression data
can be categorized into correlation-based (Langfelder & Horvath! (2008))), mutual information-based
(Margolin et al.|(2006)), probabilistic graphical models-based such as Bayesian networks (Friedman
et al|(2000)), and deep learning-based approaches (Shu et al.| (2021)). The number of experimen-
tally validated GRNSs is limited. Therefore, GRN estimation methods need the ability to account
for measurement errors and appropriately capture non-linear and multimodal interactions between
genes while mitigating overfitting. Thus, we adopted a method combining Bayesian network estima-
tion using multiple sampling and non-parametric regression (Imoto et al.,[2002) to identify patient-
or sample-specific GRNs (Nakazawa et al., 2021).

D.2 DETAILS OF ESTIMATING GRNS

To construct patient-specific GRNs, we estimate Bayesian Networks using B-spline regression.
First, we estimate the conditional probability density functions between genes using the entire gene
expression dataset. Then, using these learned parameters, we construct patient- or sample-specific
GRNE.

Let 21, X2, ..., ,, be random variables for n nodes, and let pa(i) be the set of parent nodes of the
i-th node. In this case, a Bayesian network using B-spline curves (Imoto et al., | 2002) is defined as a
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probabilistic model decomposed into conditional distributions with parent nodes:
n
p(x1,. . T0) = Hp(ffi|xpa(i))
i=1

= HN(l‘l Z mij(mj),02>.

Jé€pa(i)
Here, \V is a Gaussian distribution, and m;; is a B-spline curve defined by B-spline basis functions
bs : R — Ras

M
mij(z;) =Y wf ;bs(x) (10)
s=1

The Bayesian network is estimated by learning the relationships with parent nodes based on the
model described above and the parameters of the conditional distributions. In this study, the score
function used for searching the structure of the Bayesian Network can be analytically derived us-
ing Laplace approximation (Imoto et al., |2002). Since the problem of finding a Directed Acyclic
Graph (DAG) that maximizes this score is NP-hard, we performed structure search using a heuris-
tic structure estimation algorithm, the greedy hill-climbing (HC) algorithm (Imoto et al.| (2003)).
Furthermore, to ensure the reliability of the estimation results by the HC algorithm, we performed
multiple sampling runs.

We extracted edges that appeared more frequently than a predefined threshold relative to the number
of sampling runs in the estimated networks. Finally, for each edge in the obtained network structure,
the conditional probabilities were relearned using all input data.

Using the network and conditional probabilities learned here, we derive patient-specific
GRNs (Tanaka et al., [2020). The node set and edge set of the graph for a patient-specific GRN
are defined by the network learned with gene expression levels as random variables 1, ..., z,.
Furthermore, the feature of the i-th node X is the gene expression level of each sample, and the
feature of an edge from i to j (designated as the k-th edge) is the realization of the learned B-spline
curve X ,‘f = m,;(x;). Patient-specific networks using such edge features have led to the discovery
of subtypes that correlate more strongly with prognosis than existing subtypes (Nakazawa et al.,
2021). Additionally, using differences in edge features between patients to extract patient-specific
networks has been reported to contribute to the identification of novel diagnostic and therapeutic
marker candidates in diseases such as idiopathic pulmonary fibrosis (Tomoto et al.| (2024)) and
chronic nonbacterial osteomyelitis (Yahara et al.|(2022)))

For GRN estimation, we used INGOR (version 0.19.0), a software that estimates Bayesian Networks
based on B-spline regression, and executed it on the supercomputer Fugaku. INGOR is based on
SiGN-BN (Tamada et al|(2011)), a software that similarly estimates Bayesian Networks using B-
spline regression, and achieves faster estimation by optimizing parallel computation on Fugaku. In
all GRN estimations, the number of sampling runs was set to 1000, and the threshold for adopting
edges was set to 0.05. Since network estimation with a large amount of sample data can lead to
Out of Memory errors, the upper limit of gene expression data used for network estimation was set
to 3000 (especially for LINCS data). All other hyperparameters related to network estimation used
the default settings of SiGN-BN. The number of Fugaku nodes and the required execution times
are shown in Table m In addition, the number of parallel threads was set to 4 for estimations using
TCGA data and 2 for LINCS data.

Table 7: Estimated network times in supercomputer Fugaku

Breast cancer Lung cancer Colorectal cancer
TCGA LINCS TCGA LINCS TCGA LINCS
Number of Fugaku Nodes 288 288 288 528 288 528

Estimated Time [hh:mm:ss] 00:54:49 08:35:12 00:38:24 13:28:07 00:05:40 21:01:38
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D.3 RESULTS

The statistics of the estimated networks are shown in Table [8l It should be noted that network
estimation methods using sampling can extract highly reliable edges, but they may occasionally
extract structures containing cyclic edges. However, all networks estimated in this study maintained
a DAG structure.

Table 8: Estimated network statistics

Breast cancer Lung cancer Colorectal cancer
TCGA  LINCS TCGA LINCS TCGA LINCS
Number of Nodes 975 975 975 975 975 975

Number of Edges 13170 10498 13322 13968 13686 12541
Average Degree 13.5077 10.7671 13.6636 14.3262 14.0369 12.8626

E EXPERIMENTAL SETTING

E.1 VALIDITY OF GNN ENCODER

In this study, we consistently employed the Graph Transformer as the GNN encoder architecture.
The choice of encoder is a critical factor that directly affects model performance, and its validity
must be carefully assessed for our method. Our decision to adopt the Graph Transformer was based
on prior work on GRNs (Liu et al.| 2023) (Appendix E.1), where it achieved the best performance
among various architectures. That study evaluated multiple GNN encoders—including GCN, GAT,
TransformConv, SURGL, GPS, and GRACE—in the context of learning gene representations by
integrating heterogeneous modalities such as scRNA-seq, scATAC-seq, and spatial transcriptomics.
Their results showed that the Graph Transformer consistently outperformed other models, whereas
GCN- and GAT-based models failed to sufficiently capture gene functional similarity across datasets.
It should be noted, however, that this prior work focused on heterogeneous modalities, and is there-
fore not directly comparable to our setting, which relies exclusively on GRNs.

Motivated by these findings, we chose the Graph Transformer over GCN or GAT in our framework.
Both GAT and Graph Transformer share the ability to incorporate real-valued edge features into
node updates. However, in our experiments (using GRACE as an example), replacing the Graph
Transformer with GAT sometimes led to degraded performance. The results are reported in Table[9]

Table 9: Comparison of downstream task performance with different encoders in GRACE (Breast
Cancer GRN).

Model Setting Hazard (c-index) BP (Subset Accuracy)
GRACE (Graph Transformer, in paper) 0.642 £ 0.064 0.230 £ 0.051
GRACE (GAT) 0.632 £ 0.038 0.241 + 0.040

E.2 HYPERPARAMETERS SETTINGS

In this study, we used Optuna (Akiba et al.,|2019), a Bayesian optimization tool, for hyperparam-
eter search in pre-training. The search space for all models included the AdamW learning rate
Ir € [1075,1073], batch size batch_size € {4, 8}, and model-specific hyperparameters. Model-
specific hyperparameters were the temperature parameter 7 € {0.25, 0.5, 0.75, 1.0} for GraphCL,
GRACE, and SupGCL, and the global-hop parameter k& € {1, 2,3} for SGRL. The graph embed-
ding dimension was unified to 64 for all models. See Appendix [H for a discussion on embedding
dimension. For training the pre-trained models, the data was split into training and validation sets
at an 8 : 2 ratio, and the validation loss was used as the metric for various decisions. The optimal
hyperparameters determined by actual hyperparameter tuning are shown in Table
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Table 10: Hyperparameter settings for each cancer type

Cancer Type Model learning rate  batch size  temperature  global hop
GAE 5.74 x 1074 4 — —
GRACE 9.71 x 1074 4 0.25 —
Breast cancer GraphCL  1.23 x 107* 4 0.25 —
SGRL 2.39 x 1074 4 — 3
SupGCL  2.37 x 1074 4 0.25 —
GAE 2.16 x 1074 4 — —
GRACE 4.44x107° 8 0.25 —
Lung cancer GraphCL  6.24 x 107° 4 0.25 —
SGRL 8.18 x 107° 8 — 2
SupGCL  1.89 x 1074 4 0.25 —
GAE 2.26 x 1074 4 — —
GRACE  4.03x107° 8 0.25 —
Colorectal cancer ~ GraphCL ~ 8.83 x 107° 4 0.25 —
SGRL 7.10 x 1074 4 — 3
SupGCL  3.32 x 107* 4 0.25 —

E.3 COMPUTATIONAL ENVIRONMENT AND COMPUTATION TIME

All experiments were conducted on an NVIDIA H100 SXMS5 (95.83 GiB), and the computation
time for each model is shown in Table[T1] Please note that although the number of training steps is
based on 3000 epochs, the actual training time varies due to early stopping using the validation data.

Table 11: Pre-training computation time for each cancer type

Cancer Type Model Computation Time  Epochs
GAE 3.354 hr 3000
GRACE 10.77 hr 3000
Breast cancer GraphCL 8.306 hr 2000
SGRL 5.859 hr 2000
SupGCL 21.40 hr 1500
GAE 1.875 hr 1800
GRACE 9.960 hr 3000
Lung cancer GraphCL 3.303 hr 1300
SGRL 7.485 hr 3000
SupGCL 19.67 hr 1500
GAE 45.23 min 2500
GRACE 2.839 hr 3000
Colorectal cancer ~ GraphCL 1.476 hr 2000
SGRL 53.14 min 1100
SupGCL 9.551 hr 2500

E.4 FINE-TUNING SETTINGS
E.4.1 GRAPH-LEVEL TASK

For fine-tuning graph-level tasks (Hazard Prediction, Subtype Classification), training was per-
formed on a per-patient basis. The latent states embedded by the Graph Neural Network were
transformed into graph-level embeddings using mean-pooling, and then fed through a 2-layer MLP
to train task-specific models.

We employed 10-fold cross-validation across patients to generate training/test datasets. Fine-tuning
was performed using AdamW with a learning rate of 1 x 1072, For evaluation, we reported the
mean and standard deviation of the scores across all folds.
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Hazard Prediction :  For the hazard prediction task, we adopted the classic Cox proportional
hazards model. In the Cox model, the hazard function for a patient at time ¢ is defined as

Wt | @) = ho(t) exp(8T )

Here, ho(t) is the baseline hazard, « is the input variable, and 3 is the regression coefficient to be
learned. The prognosis estimation is performed by connecting this input variable x to the graph NN
and its head.

This study performed training using partial likelihood maximization based on patient prognosis
information and evaluated performance using the C-index.

Subtype Classification: For the subtype classification task, we created a classification model
using a 5-class softmax function and trained it using multi-class cross-entropy. Furthermore, per-
formance was evaluated using Accuracy and Macro Fl-score. The Fl-score results are shown in

Appendix [F}
E.4.2 NODE-LEVEL TASK

For fine-tuning node-level tasks (BP/CC Classification, Cancer Rel. Classification), tasks were
solved on a per-gene basis. For the latent state of each node embedded by the Graph Neural Network,
task-specific models were learned through a 2-layer MLP.

In BP/CC Classification, performance was evaluated using gene-wise 10-fold cross-validation. For
Cancer Rel. Classification, it is necessary to mitigate class imbalance in positive and negative label
data. To achieve this, we prepared a dataset by undersampling the negative label data, split it into
training and test data at an 8:2 ratio, and performed fine-tuning and accuracy evaluation. This
undersampling and data splitting process was repeated 10 times with different seeds to evaluate the
performance on this task.

For optimization, AdamW was used with a batch size of 8 and a learning rate of 1 x 10~3. For
evaluation, we reported the mean and standard deviation of the scores for each fold.

BP./CC. Classification : In Biological Process (BP) classification, three categories for each
gene—"metabolism,” ’signal transduction,” and “cellular organization”—are predicted as a multi-
hot vector. In Cellular Component (CC) classification, four categories— "nucleus,” “mitochondria,”
“endoplasmic reticulum,” and ”’plasma membrane”—are predicted as a multi-hot vector. The model
was structured using a sigmoid function for each category, and training was performed using bi-
nary cross-entropy for each respective category. Performance was evaluated using Subset Accuracy,
Macro F1-score, and Jaccard Index as evaluation metrics. The Macro F1-score and Jaccard Index
results are shown in Appendix [F

Cancer Rel. Classification In cancer-related gene classification, 106 genes defined as positive
by OncoKB were labeled as positive,” and all other genes were labeled as “negative” for binary
classification. A model was created to estimate negative and positive cases using a sigmoid function,
and training was performed using binary cross-entropy. Performance was evaluated using Accuracy
and F1-score as evaluation metrics. The F1-score results are shown in Appendix [

F ADDITIONAL RESULTS

As additional experimental results, we performed the following six analyses:

1. Performance evaluation of the proposed and existing methods using various evaluation met-
rics.
2. Visualization of the latent states of pre-trained models.

3. Performance comparison with varying embedding dimensions.
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4. Statistical significance testing for the performance metrics across downstream tasks.
5. Comparison with Augmentation-Adjustment Methods and Augmentation-Free.

6. Evaluation on Link Prediction.

Furthermore, an analysis of the robustness of SupGCL against dataset changes is provided in Ap-
pendix [H

F.1 ADDITIONAL EVALUATION METRICS

In the main paper, we presented results using only Accuracy (or subset accuracy). Below, we report
the results using other metrics for the same tasks.

Tables [12] and [13] show the Macro Fl-score and Jaccard index results for node-level tasks. Please
note that for the cancer-related classification task, we evaluate only the F1-score because it involves
binary data. Additionally, Table [14] shows the Macro F1-score for subtype classification in breast
cancer. While our proposed method, SupGCL, did not individually achieve state-of-the-art results
across all tasks and metrics, it demonstrated the most balanced performance overall.

Table 12: Node-level downstream task: macro F1-score

Task w/o-pretrain GAE GraphCL GRACE SGRL SupGCL
BP.
Breast 0.553+0.024  0.551£0.034  0.540+0.045 0.558+0.022 0.543+0.022  0.571+0.025
Lung 0.538+0.039  0.546+0.021  0.584+0.065 0.555+0.026  0.549+0.023  0.546+0.031
Colorectal ~ 0.514+0.053  0.550+0.025 0.516+0.033  0.560+0.042 0.560+0.040  0.547+0.038
CC.
Breast 0.404+0.036  0.378+£0.021  0.336+0.018  0.362+0.040  0.384+0.037  0.418+0.024
Lung 0.349+0.086  0.395+0.023 0.376+0.072  0.393+0.026  0.385+0.026  0.387+0.028
Colorectal  0.288+0.060  0.403+0.032  0.265+0.029  0.372+£0.047 0.401+0.049  0.397+0.030
Rel.
Breast 0.523+0.094  0.571£0.048 0.593+0.072 0.591+0.038  0.578+0.067  0.610+0.070
Lung 0.507+0.117  0.559+0.045 0.538+0.236  0.535+0.139  0.575+0.061  0.592+0.067

Colorectal ~ 0.474+0.242  0.582+0.081 0.556+0.124  0.547+0.197  0.569+0.145  0.596+0.060

Table 13: Node-level downstream task: Jaccard index

Task w/o-pretrain GAE GraphCL GRACE SGRL SupGCL
BP.
Breast 0.490+0.017  0.487+0.028 0.454+0.046 0.478+0.037 0.468+0.028  0.500+0.035
Lung 0.539+0.030  0.494+0.034  0.484+0.030 0.510+0.051 0.479+0.019 0.518+0.027
Colorectal ~ 0.537+0.031  0.506+£0.019  0.500+0.036  0.514+0.024 0.469+0.030  0.502+0.022
CC.
Breast 0.402+0.052  0.378+0.021  0.303+£0.028 0.359+0.028 0.377+0.029  0.422+0.028
Lung 0.387+0.040  0.382+0.035 0.321+£0.062 0.384+0.036  0.376+0.031  0.392+0.034

Colorectal ~ 0.377+0.055  0.379+0.036  0.308+0.067  0.388+0.036  0.360+0.053  0.395+0.033

Table 14: Macro F1-score for subtype classification

Task w/o-pretrain GAE GraphCL GRACE SGRL SupGCL

Subtype
Breast 0.626 £0.070 0.720 £0.057 0.552+£0.089 0.761 £0.063 0.715 £0.064  0.785 % 0.056

F.2 ADDITIONAL LATENT SPACE ANALYSIS

Node-level latent Space: Previously, in|Result 3: Latent Space Analysis| we visualized the graph-
level embedding space generated by pre-trained models(Figure [3). Node-level results for the breast,
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Figure 4: t-SNE visualization of pre-trained embeddings on breast, lung, and colorectal cancer
GRNeE.

lung, and colorectal cancer datasets are presented in Figure[d Since subtype data were unavailable
for the lung and colorectal cancer datasets, only node-level latent space visualizations are presented
for these cancers.

These results confirm that both GRACE and our proposed method, SupGCL, yield stable latent
representations for these cancers, with no observed latent space collapse. A more detailed analysis
on latent space collapse is provided in the next section. Furthermore, a more detailed analysis of the
latent space from a biological perspective is provided in Appendix|l]

Analysis of Latent Space Collapse: To further investigate the characteristics of the node-level
latent spaces presented in [Result 3: Latent Space Analysis|, we employed Principal Component
Analysis (PCA). Figure 5] displays the PCA-projected latent spaces from pre-trained models on the
breast cancer dataset, along with their corresponding explained variance ratios. For GraphCL, which
previously exhibited tendencies towards latent space collapse, this analysis confirmed that its PCA
explained variance ratio was overwhelmingly concentrated in the first principal component (PC1),
accounting for 98.3%.

F.3 PERFORMANCE EVALUATION ACROSS DIFFERENT EMBEDDING DIMENSIONS

Finally, we investigated the effect of varying embedding dimensions on performance. Figure [6]
presents the performance metrics and their corresponding standard deviations across 13 tasks for
embedding dimensions of {8, 16,32,64}. Excluding GraphCL, which exhibited instability in gen-
erating stable latent spaces, the other five methods showed only marginal performance gains when
the embedding dimension was increased from 32 to 64. Furthermore, the proposed method con-
sistently achieved high performance across all tasks and embedding dimensions, experimentally
demonstrating its superiority over existing representation learning approaches for biological down-
stream tasks.
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Figure 5: PCA analysis of the latent spaces of pre-trained models.

F.4 STATISTICAL SIGNIFICANCE TESTING

We further conducted statistical significance testing for the performance metrics across downstream
tasks. Specifically, we computed Bonferroni-corrected p-values for pairwise comparisons between
our proposed method SupGCL and five baseline methods, using Student’s t-test with a significance
level of 5%. While most comparisons did not reveal statistically significant differences, we observed
significant improvements over GraphCL and SGRL in a subset of node-level tasks. Table[I3]reports
the tasks where significant differences were found, along with the corresponding p-values.

Table 15: Comparison of SupGCL with other methods using Bonferroni-corrected p-values.

Task Cancer Subtype Compared Method p-value
BP Lung GraphCL 1.88 x 1073
BP  Colorectal SGRL 1.65 x 1072
CC  Breast GraphCL 1.43 x 1072
CC  Lung GraphCL 4.01 x 1073

F.5 COMPARISON WITH AUGMENTATION-ADJUSTMENT METHODS AND
AUGMENTATION-FREE

In graph contrastive learning (GCL), topological changes introduced by augmentations such as node
or edge dropping are known to degrade performance. To address this issue, recent works have pro-
posed frameworks that either correct or avoid the effects of augmentation. For instance, SGRL

[2024) (NeurIPS 2024), the successor to BGRL (Thakoor et al| (2021))), has established a
state-of-the-art augmentation-free paradigm. Other representative methods include GCA (Zhu et al |

(2021))), which automatically adjusts and corrects augmentation effects; AFGRL 2022),
which integrates reconstruction and bootstrap learning; and SInGRACE 2022), which
perturbs model parameters with simple Gaussian noise.
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Figure 6: Embedding dimension analysis. This figure shows the performance changes across 13
tasks as the embedding dimension varies. The left column shows the results for breast cancer, the
center column for lung cancer, and the right column for colorectal cancer. The first row presents the
subset accuracy of BP classification, the second row shows the subset accuracy of CC classification,
the third row displays the accuracy of cancer-related gene classification, the fourth row indicates the
C-index for hazard prediction, and the fifth row shows the results of subtype classification.
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In contrast, SupGCL differs fundamentally from augmentation-free approaches. Rather than avoid-
ing topological changes, SupGCL leverages them as informative signals by supervising augmenta-
tions with knockdown-derived GRNs. That is, while conventional approaches aim to circumvent
augmentation-induced topology shifts, SupGCL explicitly exploits them as positive supervision,
transforming a traditionally negative factor into a beneficial learning signal.

Table [T6|reports the comparison on breast cancer GRNs for hazard prediction (graph-level) and BP
classification (node-level).

As shown in the results, SupGCL consistently outperformed representative augmentation-correction
and augmentation-free models (GCA, AFGRL, SimGRACE). This indicates that actively utilizing
topology changes as supervisory signals leads to improved representation learning performance.

Table 16: Comparison with augmentation-correction and augmentation-free methods (Breast Cancer
GRN).

Method Hazard (c-index) BP (Subset Accuracy)
GCA 0.620 = 0.039 0.241 +0.021
AFGRL 0.616 £+ 0.037 0.240 + 0.026
SimGRACE 0.638 +0.032 0.228 +0.044
SupGCL (Ours) 0.650 = 0.059 0.243 +0.052

F.6 EVALUATION ON LINK PREDICTION

In addition to node-level and graph-level downstream tasks, we also evaluated performance on an
edge-level task, namely link prediction. While the primary goal of SupGCL is to perform repre-
sentation learning on already constructed GRNs rather than GRN inference itself, it is nevertheless
possible to blind edges during training and use the learned representations to predict the existence
of unseen edges. This provides a useful auxiliary evaluation of the learned embeddings.

We conducted experiments on the breast cancer GRN. Edges present in the GRN were treated as
positive examples, and absent edges were treated as negatives. From these, 500 positive and 500
negative samples were drawn to form 1000 test cases, which were then split into train:test = 8:2
with a fixed seed. This procedure was repeated across 10 different seeds (0-9). Node embeddings
were fed into a two-layer MLP head, and the inner product between resulting vectors was passed
through a sigmoid function to predict edge existence. Binary cross-entropy (BCE) was used as the
loss function, with target edges masked during encoding to simulate inference of unseen edges.
Optimization settings were aligned with those of other tasks and kept consistent across all methods.
We report Accuracy and F1 score as evaluation metrics, averaged over the 10 seeds with standard
deviations.

Recent studies have also proposed supervised GNN-based approaches specifically designed for GRN
inference. A representative example is GCLink (Yu et al.,[2025)), which directly learns from ground-
truth transcriptional networks. In contrast, our study focuses on GRNs estimated from gene ex-
pression via Bayesian network inference, which encode statistical causal relationships and are not
restricted to transcription factor-regulon interactions. For reference, we additionally report results of
applying a GCLink-style model to our setting. Note that the GCLink results in Table|l7|correspond
not to the original setup (supervised by ground-truth transcriptional networks), but to a modified
variant adapted to our estimated GRNS.

The results (Table[T7) show that SupGCL outperforms existing baselines on edge-level GRN infer-
ence tasks as well. In particular, SupGCL achieved the highest Accuracy and F1 score compared
to all other models, including GRACE. Performance was also comparable to or slightly better than
GCLink. These findings suggest that although SupGCL is primarily designed for representation
learning, it remains competitive for GRN inference tasks such as link prediction.
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Table 17: Performance on link prediction (Breast Cancer GRN).

Method Accuracy F1 score

w/o pretrain 0.730 £ 0.021 0.843 £0.014
GAE 0.743 + 0.024 0.846 + 0.014
GraphCL 0.714 £0.031 0.824 + 0.022
GRACE 0.757 + 0.031 0.848 + 0.016
SGRL 0.741 £ 0.032 0.835 £ 0.023
GCLink 0.756 + 0.031 0.853 + 0.018
SupGCL (Ours) 0.763 +=0.028 0.855 +0.018
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G CROSS-DOMAIN TRAINING

Our proposed method ultimately aims to enable cancer-type—agnostic representation learning of
GRNSs. Since SupGCL is a scale-free graph representation learning framework with respect to the
set of genes and the knockdown perturbations applied, it can in principle be applied to diverse GRNs
derived from different cancer types. Accordingly, pre-training is feasible even when the patient
graphs G and supervision graphs , come from different cancer types. Moreover, downstream
tasks can be learned even if the cancer types used for pre-training and fine-tuning differ. It is also
possible to take a model fine-tuned on one cancer type and directly apply it to predict outcomes for
another. Nevertheless, the extent to which SupGCL retains predictive accuracy under such cross-
domain conditions requires careful investigation.

To examine cancer-type dependency, we conducted three cross-domain experiments. (i) Pre-
training phase: using knockdown GRNs from a different cancer type than the patient GRNs. (ii)
Fine-tuning phase: applying a pre-trained model from one cancer type to fine-tune on another. (iii)
OOD setting: applying a model pre-trained and fine-tuned on one cancer type directly to patients
of a different type. The results are summarized in Table[T§]

From experiment (i), we found that using breast knockdown data to supervise learning on lung or
colorectal patient GRNs yielded performance comparable to the in-domain setting. In experiment
(ii), performance was preserved when the model was pre-trained on lung data and fine-tuned on
breast, but performance degraded when using colorectal as the source. A similar trend was observed
in experiment (iii). Overall, these results suggest that SupGCL can generalize across cancer types
at the pre-training stage, where the supervision GRN comes from a different cancer type. However,
differences in cancer type during the fine-tuning phase cannot be ignored: models fine-tuned on a
single cancer type do not exhibit robustness when directly applied to unseen cancer types.

Table 18: Cross-domain performance of SupGCL across three evaluation settings. (i) Pre-training
phase: “original” indicates settings where patient GRNs and knockdown GRNs come from the
same cancer type (e.g., Lung/Lung KD, Colorectal/Colorectal KD). “cross domain 1, 2” use breast
knockdown GRNSs as supervision for lung or colorectal patient GRNs, respectively. (ii) Fine-tuning
phase: “original” indicates pre-training and fine-tuning on the same cancer type (Breast—Breast).
“cross domain 1, 2” denote models pre-trained on lung or colorectal GRNs and fine-tuned on breast
patient GRNs. (iii) OOD setting: “original” indicates training and testing on the same cancer type
(e.g., Lung/Lung, Colorectal/Colorectal). “cross domain 1, 2” denote directly applying a breast-
trained model to lung or colorectal patient GRNS.

Setting  Configuration Hazard (c-index) BP (Subset Acc.)
(i) Cross Domain at Pre-training Phase: patient / cell line (teacher graph)
original: Lung / Lung KD 0.627 £ 0.051 0.282 +0.037
cross domain 1: Lung / Breast KD 0.633 £ 0.069 0.270 £ 0.060
original: Colorectal / Colorectal KD 0.698 + 0.085 0.262 £+ 0.030
cross domain 2: Colorectal / Breast KD 0.687 + 0.092 0.257 £+ 0.044
(ii) Cross Domain at Fine-tuning Phase: pre-trained model — downstream task
original: model Breast—Breast 0.650 £ 0.059 0.243 £ 0.052
cross domain 1: model Lung — Breast 0.654 £+ 0.075 0.248 + 0.043
cross domain 2: model Colorectal — Breast 0.632 + 0.072 0.249 + 0.030
(iii) OOD: cancer type of fine-tuning / prediction
original: Lung / Lung 0.627 £ 0.051 0.282 £0.037
cross domain 1: Breast / Lung 0.603 0.163
original: Colorectal / Colorectal 0.698 £ 0.085 0.262 £ 0.030
cross domain 2: Breast / Colorectal 0.583 0.162
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H ROBUSTNESS ANALYSIS OF SUPGCL

In this section, we evaluate the robustness of the proposed SupGCL method. We analyze three
aspects: (a) scaling with respect to the number of pretraining samples, (b) the impact of the sample
size of supervision graphs, and (c) robustness to noise in the estimated GRNs.

A. SCALING WITH RESPECT TO PRETRAINING DATA SI1ZE

To assess the effect of pretraining sample size, we progressively reduced the number of breast can-
cer patient GRNs and evaluated performance on downstream tasks. Specifically, we compared the
original dataset with conditions using 1/2 and 1/4 of the samples, evaluating hazard prediction
(graph-level task) and BP classification (node-level task) (Table[T9).

The results show a consistent performance improvement in hazard prediction with increasing data
size. In contrast, the impact of sample size was marginal for node-level BP classification, suggesting
that node-level GCL methods, including SupGCL, can effectively learn node representations even
from a limited number of graphs (in some cases a single graph).

Table 19: Performance as a function of patient sample size (Breast Cancer GRN).

Sample Setting Hazard (c-index) BP (Subset Accuracy)
original (N=1092) 0.650 = 0.059 0.243 +0.052
1/2 sample (N=546) 0.640 £ 0.040 0.243 £+ 0.026
1/4 sample (N=273) 0.631 + 0.045 0.247 +0.038

B. EFFECT OF SUPERVISION GRAPH SAMPLE SIZE

Next, we examined the effect of reducing the number of knockdown samples used to construct
supervision graphs. For breast cancer cell lines, we randomly subsampled the knockdown dataset
from 8793 (original) — 4397 (~ 1/2 original) — 2199 (~ 1/4 original) and evaluated downstream
task performance (Table [20).

Even with a reduction to one quarter of the original size, performance degradation was minimal.
SupGCL targets GRNs with 975 genes, meaning that the 1/4 setting (2199 samples) corresponds
to approximately two experiments per gene. This indicates that the method is robust to limited
supervision and does not easily overfit, making it suitable for realistic data conditions.

Table 20: Performance under reduced supervision graph sample size (Breast Cancer GRN).

Supervision Sample Setting Hazard (c-index) BP (Subset Accuracy)

original (N=8793) 0.650 £ 0.059 0.243 £ 0.052
1/2 sample (N=4397) 0.656 = 0.062 0.239 £ 0.034
1/4 sample (N=2199) 0.644 £ 0.053 0.245 £ 0.043

C. ROBUSTNESS TO NOISE IN ESTIMATED GRNsS

In our framework, edge contributions from estimated GRNs are used as input features to the GNN.
To evaluate robustness against noise in estimated GRNs, we performed additional experiments.

We employed Bayesian network inference for GRN estimation (see Appendix D for details), which
is known to be sensitive to initialization and may introduce errors. To mitigate this, we estimated
GRNs 1000 times and applied frequency-based filtering of edges. The current setting applies a
cutoff of 5%, but we additionally evaluated thresholds of 3% and 10%. The results (Table@ show
only minor differences across thresholds, confirming that SupGCL is robust to uncertainty inherent
in GRN estimation.
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Figure 7: Elbows of k-means clustering

Table 21: Performance under different filtering thresholds in GRN estimation (Breast Cancer GRN).

Setting Hazard (c-index) BP (Subset Accuracy)
SupGCL (3% threshold) 0.665 + 0.059 0.238 +0.029
SupGCL (5% threshold, original) 0.650 £ 0.059 0.243 + 0.052
SupGCL (10% threshold) 0.646 £ 0.039 0.244 £+ 0.029

I BIOLOGICAL ENRICHMENT ANALYSIS USING LATENT REPRESENTATIONS

In this section, we investigate the biological interpretability and validity of the gene embeddings
learned by GCL models through enrichment analyses based on Gene Ontology (GO) and KEGG.
We focus on breast cancer, whose molecular mechanisms are well characterized, and examine the
embeddings obtained by our proposed method and baseline approaches. The analysis consists of
three steps: (a) clustering in the latent space, (b) GO enrichment analysis for each cluster, and (c)
KEGG pathway enrichment analysis.

A. CLUSTERING IN THE LATENT SPACE

We applied k-means clustering (K = 7) to the gene embeddings obtained from each method and
performed GO:BP (Biological Process) and KEGG enrichment analyses using g:Profiler for each
cluster. Since embeddings are computed for each node in each patient graph, we used patient-
averaged gene embeddings for clustering. The number of clusters (K = 7) was determined based
on the elbow criterion (see Fig. [7)).

A.1 CLUSTERING RESULTS

The clustering results are shown in Table 22] and Fig.[8] SupGCL and GAE achieved lower Gini
Index values compared to other methods, indicating more balanced cluster formation.

B. GENE ONTOLOGY ENRICHMENT ANALYSIS
For enrichment analysis, we primarily focus on GAE, a reconstruction-based baseline, and GRACE,

which corresponds to an ablation of our proposed method. Clusters containing fewer than five genes
were excluded from the analysis.
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Figure 8: Gene-level embedding and the k-means clustering

Table 22: Clustering results (number of genes per cluster) for each method.

Cluster GAE GraphCL GRACE SGRL SupGCL
Cl0 53 482 73 658 251
Cl1 22 44 556 11 130
Cl2 96 1 70 129 2
Cl3 262 151 1 1 192
Cl4 293 3 102 25 37
Cl5 105 6 169 1 160
Cl6 144 288 4 150 203

Gini Index  0.375 0.632 0.594 0.699 0.334

B.1 GO RESULTS

Table 23] reports the top 5 significantly enriched GO terms for each cluster and method.

Overall, SupGCL and GAE recovered significant functional modules in 6 out of 7 clusters, whereas
GRACE succeeded in only 4 clusters. Notably, SupGCL captured distinct separation of autophagy-
related processes: regulatory terms (Cl 3) versus execution processes (Cl 6). CI 0 represented a com-
posite cluster including organelle organization, macromolecule localization, and stress/catabolism.
GAE revealed clear boundaries between ROS response, mitophagy, and other biological processes.
In contrast, GRACE detected only a limited number of significant terms in most clusters, indicating
lower resolution.

C. KEGG PATHWAY ENRICHMENT ANALYSIS

c.1 KEGG RESULTS

The KEGG enrichment results are shown in Table 24 SupGCL identified breast cancer—related
modules, capturing endocrine resistance, ER stress, and estrogen signaling in CI 6, and separating
FoxO/p53/metabolic pathways into Cl 5. GAE distinguished DNA damage response, cell cycle, and
metabolism, reflecting clear functional boundaries. In contrast, GRACE grouped infection-related
and metabolic pathways into broad clusters, showing lower resolution.
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Table 23: GO enrichment results per cluster (Top 5 terms). “**skip**” indicates clusters with fewer

than five genes (excluded), and “—

i

’ indicates no significant enrichment.

Cluster | GAE GraphCL GRACE SGRL SupGCL
Cl0 Negative regulation of Mitotic cell cycle pro- Intrinsic apoptotic sig- Positive regulation of Organelle organization;
reactive oxygen species cess; Cell cycle process; naling pathway; Regula-  cellular process; Positive =~ Macromolecule  local-
metabolic process;  Cell cycle; Cellular re- tion of programmed cell —regulation of biolog- ization;  Chromosome
Negative regulation of sponse to stress; Mitotic ~ death; Intrinsic apoptotic ~ ical process; Cellular  organization; Catabolic
intrinsic apoptotic sig-  cell cycle signaling pathway in re- response  to  stress; process; Cellular re-
naling pathway; Intrinsic sponse to DNA damage; Regulation of cellular sponse to stress
apoptotic signaling Apoptotic process; Pro- component organization;
pathway; Regulation of grammed cell death Catabolic process
reactive oxygen species
metabolic process; Lym-
phoid  progenitor cell
differentiation
Cl1 — Antigen processing and  Catabolic process; Cel- Mitotic cell cycle pro- Cell cycle; Positive reg-
presentation of exoge- lular response to stress; cess; Mitotic cell cycle; ulation of hydrolase ac-
nous peptide antigen via  Positive regulation of Cell cycle phase transi- tivity; Cell cycle process;
MHC class II; Catabolic ~ cellular process; Pro- tion; Mitotic cell cycle Regulation of cell cycle
process tein metabolic process;  phase transition; Cell cy-
Regulation of metabolic ~ cle process
process
Cl12 Catabolic process;  **skip** — Cell cycle process; Cel-  **skip**
Autophagy of mitochon- lular response to stress;
drion Chromosome  organiza-
tion; Mitotic cell cycle
process; DNA metabolic
process
Cl3 Regulation of cellular Programmed cell death; **skip** *Egkip** Regulation of macroau-
component organization;  Cell death; Regulation of tophagy; Positive regula-
Positive regulation of programmed cell death; tion of macroautophagy;
biological process; Cel- Negative regulation of Positive regulation of au-
lular response to stress; programmed cell death; tophagy; Positive regula-
Organelle organization;  Apoptotic process tion of organelle assem-
Positive regulation of bly; Regulation of au-
cellular process tophagy
Cl4 Positive regulation of  *¥skip** Mitotic cell cycle pro- Mitotic sister chromatid Positive regulation of bi-
cellular process; Cell cess; Mitotic cell cycle; segregation; Sister  ological process; Sys-
cycle; Positive regulation Cell cycle process; Cell chromatid segregation; tem development; Posi-
of biological process; cycle; Sister chromatid Mitotic nuclear division; tive regulation of cellular
Regulation of cell cycle; segregation Nuclear ~ chromosome  process; Nervous system
Cell cycle process segregation; Mitotic cell  development; Regulation
cycle of multicellular organis-
mal development
Cl5 Cell migration;  Or- Regulation of calcium Catabolic process; Estab- — **skip** Small molecule
ganelle organization;  ion transport lishment of protein local- metabolic process;
Cellular  response to ization; Protein transport Small molecule biosyn-
stress; Positive regula- thetic process; Response
tion of cellular process to endogenous  stim-
ulus; Carboxylic acid
metabolic process;
Oxoacid metabolic pro-
cess
Cl6 Macromolecule localiza-  Positive regulation of  **skip** Amino acid metabolic Catabolic process; Pro-
tion; Establishment of cellular process; Positive process; Catabolic pro-  cess utilizing autophagic
protein localization; Pro-  regulation of biolog- cess; Small molecule mechanism; Autophagy;
tein transport; Protein lo-  ical process; Positive metabolic process;  Macroautophagy; Reg-
calization; Protein local-  regulation of metabolic Apoptotic mitochondrial ~ulation of programmed
ization to organelle process; Catabolic pro- changes; Sulfur com- cell death
cess;  Regulation of pound metabolic process
metabolic process

D. SUMMARY

In breast cancer samples, SupGCL demonstrated superior biological interpretability by: (i) sepa-
rating autophagy into regulatory (Cl 3) and execution (Cl 6) processes in GO analysis, (ii) distin-
guishing endocrine resistance/ER stress (CI 6) and FoxO/p53/metabolic modules (Cl 5) in KEGG
analysis, and (iii) isolating DNA repair (CI 0) as an independent cluster.

While GAE also delineated major biological functions, it failed to detect breast cancer—specific en-
docrine pathways as distinct clusters. GRACE exhibited limited resolution, with insufficient reflec-
tion of cancer-specific pathway differentiation. These results suggest that SupGCL provides more
biologically meaningful and interpretable latent representations in the context of breast cancer.
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Table 24: KEGG enrichment results per cluster (Top 5 terms). “**skip**” indicates clusters with
fewer than five genes (excluded), and “—” indicates no significant enrichment.

Cluster | GAE GraphCL GRACE SGRL SupGCL
Cl0 Amino sugar and  Cell cycle; Mismatch re-  Kaposi sarcoma- MAPK signaling path- Mismatch repair
nucleotide sugar pair; Nucleotide exci- associated herpesvirus  way; Epstein-Barr virus
metabolism sion repair; DNA replica-  infection; Epstein-Barr  infection; Biosynthesis
tion; Terpenoid backbone  virus infection; Hepatitis of nucleotide sugars;
biosynthesis B; Colorectal cancer; Valine, leucine  and
Human immunodefi-  isoleucine degradation;
ciency virus 1 infection Endocrine resistance
Cl1 — Lysosome Protein processing in Cell cycle; Motor pro- —
endoplasmic reticu-  teins

lum; Lysosome; Vibrio
cholerae infection

Cl2 — #*skip** Protein processing in ER;  — *Eskip**
Lysosome

Cl3 Mismatch repair; En-  Metabolic pathways — *Hgkip** —
dometrial cancer; Nu-
cleotide excision repair;
Platinum drug resistance;

DNA replication
Cl4 Cell cycle; p53 signaling ~ **skip** — Cell cycle —
pathway
Cl5 — — Fructose and mannose  **skip** FoxO signaling pathway;
metabolism p53  signaling  path-
way; Insulin resistance;
Metabolic pathways
Clé6 Valine, leucine and Colorectal cancer; En-  **skip** Nucleotide excision re- Protein processing in en-
isoleucine degradation; dometrial cancer; Pan- pair doplasmic reticulum; En-
Arginine and proline creatic cancer; Breast docrine resistance; Estro-
metabolism cancer; Pathways in can- gen signaling pathway;

cer Vibrio cholerae infection
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