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ABSTRACT

Empirical studies suggest that machine learning models trained with empirical risk
minimization (ERM) often rely on attributes that may be spuriously correlated with
the class labels. Such models typically lead to poor performance during inference
for data lacking such correlations. In this work, we explicitly consider a situation
where potential spurious correlations are present in the majority of training data.
In contrast with existing approaches, which use the ERM model outputs to detect
the samples without spurious correlations and either heuristically upweight or
upsample those samples, we propose the logit correction (LC) loss, a simple yet
effective improvement on the softmax cross-entropy loss, to correct the sample
logit. We demonstrate that minimizing the LC loss is equivalent to maximizing the
group-balanced accuracy, so the proposed LC could mitigate the negative impacts
of spurious correlations. Our extensive experimental results further reveal that
the proposed LC loss outperforms state-of-the-art solutions on multiple popular
benchmarks by a large margin, an average 5.5% absolute improvement, without
access to spurious attribute labels. LC is also competitive with oracle methods that
make use of the attribute labels.†

1 INTRODUCTION

In practical applications such as self-driving cars, a robust machine learning model must be designed
to comprehend its surroundings in rare conditions that may not have been well-represented in its
training set. However, deep neural networks can be negatively affected by spurious correlations
between observed features and class labels that hold for well-represented groups but not for rare
groups. For example, when classifying stop signs versus other traffic signs in autonomous driving,
99% of the stop signs in the United States are red. A model trained with standard empirical risk
minimization (ERM) may learn models with low average training error that rely on the spurious
background attribute instead of the desired ”STOP” text on the sign, resulting in high average
accuracy but low worst-group accuracy (e.g., making errors on yellow color or faded stop signs). This
demonstrates a fundamental issue: models trained on such datasets could be systematically biased
due to spurious correlations presented in their training data (Ben-Tal et al., 2013; Rosenfeld et al.,
2018; Beery et al., 2018; Zhang et al., 2019). Such biases must be mitigated in many fields, including
algorithmic fairness (Du et al., 2021), machine learning in healthcare (Oakden-Rayner et al., 2020;
Liu et al., 2020b; 2022a), and public policy Rodolfa et al. (2021).

Formally, spurious correlations occur when the target label is mistakenly associated with one or
more confounding factors presented in the training data. The group of samples in which the spurious
correlations occur is often called the majority group since spurious correlations are expected to
occur in most samples, while the minority groups contain samples whose features are not spuriously
correlated. The performance degradations of ERM on a dataset with spurious correlation (Nagarajan
et al., 2021; Nguyen et al., 2021) are caused by two main reasons: 1) the geometric skew and 2) the
statistical skew. For a robust classifier, the classification margin on the minority group should be
much larger than that of the majority group (Nagarajan et al., 2021). However, a classifier trained
with ERM maximizes margins and therefore leads to equal training margins for the majority and
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minority groups. This results in geometric skew. The statistical skew is caused by slow convergence
of gradient descent, which may cause the network to first learn the “easy-to-learn” spurious attributes
instead of the true label information and rely on it until being trained for long enough (Nagarajan
et al., 2021; Liu et al., 2020a; 2022b).

To determine whether samples are from the majority or minority groups, we need to know the group
information during training, which is impractical. Therefore, many existing approaches consider the
absence of group information and first detect the minority group (Nguyen et al., 2021; Liu et al.,
2021b; Nam et al., 2020) and then upweight/upsample the samples in the minority group during
training (Li & Vasconcelos, 2019; Nam et al., 2020; Lee et al., 2021; Liu et al., 2021a). While
intuitive, upweighting only addresses the statistical skew (Nguyen et al., 2021), and it is often hard
to define the weighted loss with an optimal upweighting scale in practice. Following Menon et al.
(2013); Collell et al. (2016) on learning from imbalanced data, we argue that the goal of training a
debiased model is to achieve a high average accuracy over all groups (Group-Balanced Accuracy,
GBA, defined in Sec. 3), implying that the training loss should be Fisher consistent with GBA (Menon
et al., 2013; Collell et al., 2016). In other words, the minimizer of the loss function should be the
maximizer of GBA.

In this paper, we revisit the logit adjustment method (Menon et al., 2021) for long-tailed datasets,
and propose a new loss called logit correction (LC) to reduce the impact of spurious correlations.
We show that the proposed LC loss is able to mitigate both the statistical and the geometrical skews
that cause performance degradation. More importantly, under mild conditions, its solution is Fisher
consistent for maximizing GBA. In order to calculate the corrected logit, we study the spurious
correlation and propose to use the outputs of the ERM model to estimate the group priors. To further
reduce the geometrical skew, based on MixUp (Zhang et al., 2018), we propose a simple yet effective
method called Group MixUp to synthesize samples from the existing ones and thus increase the
number of samples in the minority groups.

The main contributions of our work include:

• We propose logit correction loss to mitigate spurious correlations during training. The loss
ensures the Fisher consistency with GBA and alleviates statistical and geometric skews.

• We propose the Group MixUp method to increase the diversity of the minority group and
further reduce the geometrical skew.

• The proposed method significantly improves GBA and the worst-group accuracy when the
group information is unknown. With only 0.5% of the samples from the minority group,
the proposed method improves the accuracy by 6.03% and 4.61% on the Colored MNIST
dataset and Corrupted CIFAR-10 dataset, respectively, over the state-of-the-art.

2 RELATED WORK

Spurious correlations are ubiquitous in real-world datasets. A typical mitigating solution requires to
first detect the minority groups and then design a learning algorithm to improve the group-balanced
accuracy and/or the worst-group accuracy. We review existing approaches based on these two steps.

Detecting Spurious Correlations. Early researches often rely on the predefined spurious correla-
tions (Kim et al., 2019; Sagawa et al., 2019; Li & Vasconcelos, 2019). While effective, annotating the
spurious attribute for each training sample is very expensive and sometimes impractical. Solutions
that do not require spurious attribute annotation have recently attracted a lot of attention. Many of the
existing works (Sohoni et al., 2020; Nam et al., 2020; Liu et al., 2021a; Zhang et al., 2022) assume that
the ERM model tend to focus on spurious attribute (but may still learn the core features Kirichenko
et al. (2022); Wei et al. (2023)), thus “hard” examples (whose predicted labels conflict with the
ground-truth label) are likely to be in the minority group. Sohoni et al. (2020); Seo et al. (2022), on
the other hand, propose to estimate the unknown group information by clustering. Our work follows
the path of using the ERM model.

Mitigating Spurious Correlations. Previous works (Nagarajan et al., 2021; Nguyen et al., 2021)
show that the geometric skew and the statistical skew are the two main reasons hurting the performance
of the conventional ERM model. Reweighting (resampling), which assigns higher weights (sampling
rates) to minority samples, is commonly used to remove the statistical skew (Li & Vasconcelos, 2019;
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Nam et al., 2020; Lee et al., 2021; Liu et al., 2021a). While intuitive, reweighting has limited effects
to remove the geometric skew (Nagarajan et al., 2021). Also, there are surprisingly few discussions
on how to set the optimal weights. We argue that the reweighting strategy should satisfy the Fisher
consistency (Menon et al., 2013), which requires that the minimizer of the reweighted loss is the
maximizer of the balanced-group accuracy (see Sec. 4.1). On the other hand, synthesizing minority
samples/features is widely utilized in removing the geometric skew. Minderer et al. (2020); Kim
et al. (2021) propose to directly synthesize minority samples using deep generative models. Yao et al.
(2022); Han et al. (2022) synthesize samples by mixing samples across different domains. While
synthesizing the raw image is intuitive, the computation complexity can be high. DFA (Lee et al.,
2021) mitigates this issue by directly augmenting the minority samples in the feature space.

DFA (Lee et al., 2021) is the most related work to our approach. It applies reweighting to reduce the
statistical skew and feature swapping to augment the minority feature, thus removing the geometric
skew. However, our approach uses logit corrected loss and is proved to be Fisher consistent with the
group-balanced accuracy. The proposed logit corrected loss has a firmer statistical grounding and can
reduce both the statistical skew and the geometric skew. By combining the logit correction loss and
the proposed Group MixUp, our approach outperforms DFA, especially on the dataset containing
very few minority samples.

3 PROBLEM FORMULATION

Let’s first consider a regular multi-class classification problem. Given a set of n training input samples
X = {(xi, yi)}, i = 1, . . . , n, where, x ∈ Rd has a input dimension of d and y ∈ Y = {1, . . . , L}
with a total number of L categories. Our goal is to learn a function (neural network), f(·) : X → RL,
to maximize the classification accuracy Px(y = argmaxy′∈Y fy′(x)). With ERM, we typically
minimize a surrogate loss, e.g., softmax cross-entropy LCE(·) where,

LCE(y, f(x)) = log

∑
y′

efy′ (x)

− fy(x). (1)

We assume there is a spurious attribute A with K different values in the dataset. Note that K and
the number of classes L may not be equal. We define a combination of one label and one attribute
value as a group g = (a, y) ∈ A×Y . The spurious correlation means an attribute value a and a label
y commonly appear at the same time. Different from ERM, the goal of training a model to avoid
spurious correlation is to maximize the Group-Balanced Accuracy (GBA):

GBA(f) =
1

KL

∑
g∈G

Px|(y,a)=g

(
y = argmax

y′∈Y
fy′(x)

)
. (2)

Note that spurious correlation is “harmful” when it is not present during the evaluation. The spurious
attribute can not be disentangled from other features if spurious correlations are present in all samples.

4 OUR APPROACH: LOGIT CORRECTION

Following Nam et al. (2020), we adopt a two-branch network (as shown in Figure 1). The top branch
(denoted as f̂(·)) is a network trained with ERM using generalized cross-entropy (GCE) loss Zhang
& Sabuncu (2018):

LGCE =
1− p̂(x)q

q
, (3)

where p̂(x) represents the probability outputs (after a softmax layer) of the ERM model f̂ , q ∈ [0, 1)
is a hyperparameter. Compared to the standard cross-entropy loss, the gradient of GCE loss upweights
examples where p̂(x) is large, which intentionally biases f̂ to perform better on majority (easier)
examples and poorly on minority (harder) examples. The second (bottom) branch is trained to learn
from the first branch. To be more specific, we use the probability output of the first branch to correct
the logit output of the second branch. We further adopt Group MixUp to increase the number of
unique examples in minority groups. The details of the method are demonstrated in the following
sections.
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Figure 1: The overview of our proposed logit correction approach on the Waterbirds dataset, where
the background (water/land) is spuriously correlated with the foreground (waterbird/landbird). Most
training samples belong to the group where the background matches the bird type (highlighted in
red); While only a small fraction belongs to the groups where the background mismatches the bird
type (highlighted in green). To address this issue, we train both an ERM network and a robust
network simultaneously. The ERM network is trained with a generalized cross-entropy (GCE) loss
that intentionally biases it toward the majority groups. The logit correction loss corrects the logits
of the robust network by a term p̂, which is generated by the probability predictions of the ERM
network. After logit correction, the robust network is trained with the standard cross-entropy loss.

4.1 LOGIT CORRECTION AS MAXIMIZING GBA

Recall that our goal is to maximize GBA in Eq 2, which depends on the (unknown) underlying distribu-
tion P(x, y, a), the Bayes-optimal prediction function under this setting is f∗ ∈ argmaxf GBA(f).

Proposition 1. Let P (y, a) be the prior of group (y, a), and P (y, a|x) is the true posterior probability
of group (y, a) given x, the prediction:

argmax
y∈Y

f∗
y (x) = argmax

y

∑
a

P (y, a|x)
P (y, a)

= argmax
y

∑
a

P (y|a,x)P (a|x)
P (y, a)

(4)

is the solution to Eq. 2. See proof in Appendix A.

Assume each example x can only take one spurious attribute value (e.g. waterbirds can either be on
the water or land, and can not be on both), that is to say, the prior probability P (a|x) is 1 when the
spurious attribute a = ax and 0 otherwise. We have

argmax
y∈Y

f∗
y (x) = argmax

y
P (y|ax,x)/P (y, ax). (5)

Note that although ax is unknown in the dataset, it can be estimated using the outputs of ERM model
(see Sec. 4.2).

Because we are using the second branch to estimate the posterior probability P (y|ax,x), supposing
the underlying class probability P (y|ax,x) ∝ exp(f(x)) for an (unknown) scorer f , we can rewrite
Eq. 5 as

argmax
y∈Y

f∗
y (x) = argmax

y∈Y
exp(fy(x))/P (y, ax),

= argmax
y∈Y

(fy(x)− lnP (y, ax)). (6)

In other words, optimizing the GBA solution f∗ is equivalent to optimizing the ERM solution f minus
the logarithm of the group prior lnP (y, ax). In practice, we could directly bake logit correction
into the softmax cross-entropy by compensating the offset. Specifically, we can use the corrected
logits f(x) + ln P̂y,ax instead of the original logits f(x) to optimize the network, where P̂y,ax are
estimates of the group priors P (y, ax). Such that by optimizing the loss function as usual, we can
derive the solution for f∗ (Menon et al., 2021). The logits corrected softmax cross entropy function
can be written as,

LLC(y, f(x)) = log

∑
y′

efy′ (x)+ln P̂y′,ax

−
(
fy(x) + ln P̂y,ax

)
. (7)

4



Published as a conference paper at ICLR 2023

... ...... ... ...... ... ......... ......

one-to-one many-to-one one-to-many many-to-many

Figure 2: Example of different situations for spurious correlation that can be considered for the
colored MNIST dataset. Spurious correlations existed in the majority groups: In the many-to-one
situation, multiple digits share the same color; for the many-to-one situation, multiple digits are
colored by the same color; Conversely, in the one-to-many situation, a single digit can be colored by
several different colors. The many-to-many situation encompasses all of these possibilities, allowing
for spurious correlations to occur in multiple directions. Note that the figure only illustrates how
labels are spuriously correlated with the attributes.

We show that when P (a|x) follows a one-hot categorical distribution, Eq. 7 is Fisher consistent
with maximizing the GBA (Eq. 2). Intuitively, the more likely the combination of (y, ax) appears
in the training dataset, the less we subtract from the original logits. Meanwhile, the less likely the
combination of (y, ax) appears in the training dataset, the more we subtract from the original logits,
resulting in less confidence in the prediction. It leads to larger gradients for samples in the minority
group, making the network learns more from the minority group. To this end, the logit corrected loss
helps reduce the statistical skew. Moreover, Eq. 7 can be further rewritten as

LLC(y, f(x)) = log

1 +
∑
y′ ̸=y

efy′ (x)−fy(x)+ln(P̂y′,ax
/P̂y,ax)

 . (8)

It’s a pairwise margin loss (Menon et al., 2013), which introduces a desired per example margin
ln
(
P̂y′,ax/P̂y,ax

)
into the softmax cross-entropy. A minority group example demands a larger

margin since the margin is large when P̂y,ax is small. To this end, LC loss is able to mitigate the
geometric skew resulting from maximizing margins. We also empirically compare the training
margins of minority groups and majority groups in Figure 4 for different methods. In the next section,
we will introduce, given a sample x in the training dataset, how to estimate ax and the group prior.

4.2 ESTIMATING THE GROUP PRIOR

In this section, we analyze different spurious correlation relations. The spurious correlation between
the target label and the spurious attribute can be categorized into 4 different types (Figure 2): 1)
one-to-one, where each label only correlates with one attribute value and vice versa; 2) many-to-one,
where each label correlates with one attribute value, but multiple labels can correlate with the same
attribute value; 3) one-to-many, where one label correlates with multiple attribute values; and 4)
many-to-many, where multiple labels and multiple attribute values can correlate with each other. In
the next section, we will first discuss the most common one-to-one situation and then extend it to
other situations.

4.2.1 ONE-TO-ONE

One-to-one is the most common situation studied in the previous works, e.g., the original Colored
MNIST dataset. To estimate the group prior probability P (y, a), we consider

P (y, a) =

∫
x

P (y, a,x)dx =

∫
x

P (y, a|x)P (x)dx ≈ 1

N

∑
x

P (y, a|x). (9)

The last approximation is to use the empirical probability estimation to estimate the prior, where N is
the number of total samples. It’s impractical to use the whole dataset to estimate the group prior after
each training iteration is finished. In practice, we try different estimation strategies and find out that
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using a moving average of the group prior estimated within each training batch seems to produce
reasonable performance (see Figure 3). We apply this method to all the experiments in the paper.

For a training sample of (xi, yi, ai), since the label yi is known, we have

P (y, a|xi) =

{
P (a|xi), if y = yi,

0 otherwise. (10)

Since the spurious correlation is one-on-one, the number of categories and the number of different
attribute values are the same. Without loss of generality, we assume that the j-th category (y(j)) is
correlated with the j-th attribute value (a(j)), where j = [1, . . . , L] and L = K. L and K are the
number of categories and the number of different attribute values respectively.

Since the ERM network would be biased to the spurious attribute instead of the target label, the
prediction of the ERM network can be viewed as an estimation of P (a|xi). Formally, denote the
output logits of the ERM network as f̂(xi), and the j-th element of f̂(x) is denoted as f̂j(xi), we
have

P (a = a(j)|xi) =
exp(f̂j(xi))∑K
k=1 exp(f̂k(xi))

. (11)

Given Eq. 9 to Eq. 11, we can estimate the group prior P (y, a). The associated attribute value in
Eq. 5 can be estimated as ax = argmaxa P (a|x).

4.2.2 MANY-TO-ONE

Under this scenario, multiple labels can be correlated with the same attribute value. Without loss of
generality, we assume that y(1) and y(2) are correlated with a(1), and y(j), j > 2 is correlated with
a(j−1). We consider that the first 2 label predictions are spuriously correlated with attribute value a(1),
i.e., f̂j(x) ∝ P (y(j), a(1)|x), j = 1, 2 and other predictions are similar as the one-to-one situation,
where f̂j(x) ∝ P (a(j−1)|x), j > 2. Compared to the one-on-one mapping, the only difference is the
calculation of P (a = a(1)|xi) in Eq. 11. Considering both y(1) and y(2) contribute to a(1), we have,

P (a = a(1)|xi) = P (y(1), a = a(1)|xi) + P (y(2), a = a(1)|xi)

= [exp(f̂1(xi)) + exp(f̂2(xi))]/

K∑
k=1

exp(f̂k(xi)). (12)

The associated attribute value can then be estimated as well, i.e. ax = argmaxa P (a|x).

4.2.3 ONE-TO-MANY

In this scenario, one label can be correlated with multiple attribute values. Since we don’t
have the attribute label, to distinguish different attributes correlated with the same label, we
follow Seo et al. (2022) to create pseudo labels for multiple attribute values. Without loss of
generality, we assume y(1) is correlated with a(1) and a(2). Therefore, P (a = a(j)|xi) =

wj

w1+w2
exp(f̂1(xi))/

∑K
k=1 exp(f̂k(xi)), j = 1, 2, where w is the weight defined in Seo et al. (2022),

Eq. (6). The associated attribute value can also be estimated with the estimated posterior.

4.2.4 MANY-TO-MANY

Since this is a combination of the previous cases, we can apply the solutions mentioned above together.
In order to accurately calculate the prior probability P(y, a), we need to at least know how the label
set Y and the attribute set A are correlated. Annotating the category-level relation is much easier
than annotating the sample-level attribute. In the case where even the category-level relation is not
available, we show in Sec. E that directly applying the one-to-one assumption in other situations
(one-to-many and many-to-one) still shows reasonable performance.

4.3 GROUP MIXUP

To further mitigate the geometric skew and increase the diversity of the samples in the minority group,
we proposed a simple group MixUp method. We also start with the one-to-one situation and other
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situations can be derived similarly. Same as Sec. 4.2.1, without loss of generality, we assume the
j-th category (y(j)) is correlated with the j-th attribute value (a(j)). An training sample (xi, yi) is in
the minority group when argmaxy′ f̂ ′

y(xi) ̸= yi, else it is in the majority group. Given one sample
xi in the minority group, we randomly select one sample xj in the majority group with the same
label (yi = yj), instead of using the original xi in training, following the idea of MixUp (Zhang et al.,
2018), we propose to generate a new training example (x′

i, yi) as well as its correction term via the
linear combination of the two examples,

x′
i = λxi + (1− λ)xj , P̂ ′

yi,. = λP̂yi,a(i) + (1− λ)P̂yj ,a(j) , (13)

where λ ∼ U(0.5, 1) to assure that the mixed example is closer to the minority group example. Since
both samples are with the same label, we expect their convex combination shares the same label.
Using such a convex combination technique increases the diversity of minority groups. The pseudo
code of the implementation can be found in Appendix B.
5 EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed logit correction (LC) method on five
computer vision benchmarks presenting spurious correlations: Colored MNIST (C-MNIST) (Arjovsky
et al., 2020), Corrupted CIFAR-10 (C-CIFAR10) (Hendrycks & Dietterich, 2019; Nam et al., 2020),
Biased FFHQ (bFFHQ) (Karras et al., 2019; Lee et al., 2021), Waterbird (Wah et al., 2011), and
CelebA (Liu et al., 2015). Sample images in the datasets can be found in Figure 5 of Appendix.

5.1 EXPERIMENTAL SETUP

Datasets. C-MNIST, C-CIFAR-10 and Waterbird are synthetic datasets, while CelebA and bFFHQ
are real-world datasets. The above datasets are utilized to evaluate the generalization of baselines over
various domains. The C-MNIST dataset is an extension of MNIST with colored digits, where each
digit is highly correlated to a certain color which constitutes its majority groups. In C-CIFAR-10, each
category of images is corrupted with a certain texture noise, as proposed in Hendrycks & Dietterich
(2019). Waterbird contains images of birds as “waterbird” or “landbird”, and the label is spuriously
correlated with the image background, which is either “land” or “water”. CelebA and bFFHQ are
both human face images datasets. On CelebA, the label is blond hair or not and the gender is the
spurious attribute. The group containing samples of male with blond hair is the minority group.
bFFHQ uses age and gender as the label and spurious attribute, respectively. Most of the females are
“young” and males are “old”.

Evaluation. Following Nam et al. (2020), for C-MNIST and C-CIFAR-10 datasets, we train the
model with different ratios of the number of minority examples to the number of majority examples
and test the accuracy on a group-balanced test set (which is equivalent to GBA). The ratios are set
to 0.5%, 1%, 2%, and 5% for both C-MNIST and C-CIFAR-10. For bFFHQ dataset, the model is
trained with 0.5% minority ratio and the accuracy is evaluated on the minority group Lee et al. (2021).
For Waterbird and CelebA datasets, we measure the worst group accuracy (Sohoni et al., 2020).

Baselines. We consider six baselines methods:
• Empirical Risk Minimization (ERM): training with standard softmax loss on the original dataset.
• Group-DRO (Sagawa et al., 2019): Using the ground truth group label to directly maximize the

worst-group accuracy.
• Learn from failure (LfF) (Nam et al., 2020): Using ERM to detect minority samples and estimate a

weight to reweight minority samples.
• Just train twice (JTT) (Liu et al., 2021b): Similar to LfF but weight the minority samples by a

hyperparameter.
• Disentangled feature augmentation (DFA) (Lee et al., 2021): Using the generalized cross entropy

loss (Zhang & Sabuncu, 2018) to detect minority samples and reweight the minority. Using feature
swapping to augment the minority group.

Implementation details. We deploy a multi-layer perception (MLP) with three hidden layers as the
backbone for C-MNIST, and ResNet-18 for the remaining datasets except ResNet-50 for Waterbirds
and CelebA. The optimizer is Adam with β = (0.9, 0.999). The batch size is set to 256. The learning
rate is set to 1× 10−2 for C-MNIST, 1× 10−3 for Waterbird and C-CIFAR-10, and 1× 10−4 for
CelebA and bFFHQ. For q in Eq. 3, it’s set to 0.7 for all the datasets except for Waterbird which is
set to 0.8. More details are described in Appendix. D.
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Table 1: Classification accuracy (%) evaluated on group balanced test sets of C-MNIST and C-CIFAR-
10 with varying ratio (%) of minority samples. The baseline method results are taken from Lee
et al. (2021) as the same experiment settings are adopted. We denote whether the model requires
group or spurious attribute annotations in advance by ✗(i.e., not required), and ✓(i.e., required). Best
performing results are marked in bold.

Methods Group C-MNIST C-CIFAR-10
Info 0.5 1.0 2.0 5.0 0.5 1.0 2.0 5.0

Group DRO ✓ 63.12 68.78 76.30 84.20 33.44 38.30 45.81 57.32

ERM ✗ 35.19 (3.49) 52.09 (2.88) 65.86 (3.59) 82.17 (0.74) 23.08 (1.25) 25.82 (0.33) 30.06 (0.71) 39.42 (0.64)
JTT ✗ 53.03 (3.89) 62.9 (3.01) 74.23 (3.21) 84.03 (1.10) 24.73(0.60) 26.90(0.31) 33.40(1.06) 42.20(0.31)
LfF ✗ 52.50 (2.43) 61.89 (4.97) 71.03 (2.44) 84.79 (1.09) 28.57 (1.30) 33.07 (0.77) 39.91 (0.30) 50.27 (1.56)
DFA ✗ 65.22 (4.41) 81.73 (2.34) 84.79 (0.95) 89.66 (1.09) 29.95 (0.71) 36.49 (1.79) 41.78 (2.29) 51.13 (1.28)

LC(ours) ✗ 71.25 (3.17) 82.25 (2.11) 86.21 (1.02) 91.16 (0.97) 34.56 (0.69) 37.34 (1.26) 47.81 (2.00) 54.55 (1.26)

Table 2: Worst-group accuracies on Waterbirds, CelebA, and minority-group accuracy on bFFHQ.
For the ERM, JTT and Group-DRO baselines, we provide the results reported in Liu et al. (2021a),
except for bFFHQ, we rerun the baseline methods. The Group Info column shows whether group
labels are available during training.

Method Group Info Waterbirds CelebA CivilComments bFFHQ
Worst Worst Worst Minority

Group-DRO ✓ 91.4 88.9 - -
ERM ✗ 62.9 (0.3) 46.9 (2.2) 58.6 (1.7) 56.7 (2.7)
JTT ✗ 85.8 (1.2) 81.5 (1.7) 69.3 (-) 65.3 (2.5)
LfF ✗ 78.0 (0.9) 77.2 (-) 58.3 (0.5) 62.2 (1.6)
DFA ✗ 87.7 (0.2) 84.1 (1.2) - 63.9 (0.3)

LC(ours) ✗ 90.5 (1.1) 88.1 (0.8) 70.3 (1.2) 70.0 (1.4)

6 RESULTS

6.1 CLASSIFICATION ACCURACY

Table 1 reports the accuracies on group balanced test sets for all baseline approaches and the proposed
method when trained with various minority-to-majority ratios. Models trained with ERM commonly
show degraded performance and the phenomenon is aggravated by the decrease in the number of
examples in the minority groups. Compared to other approaches, LC consistently achieves the highest
test accuracy. The performance gain is even more significant when the minority ratio is low. For
example, compared to DFA Sohoni et al. (2020), LC improves the accuracy by 6.03%, 4.61% on
C-MNIST and C-CIFAR-10 datasets respectively, when the minority ratio is 0.5%. While at 5%
minority ratio, the improvements are 1.51% and 3.42%. It shows the superior performance of the
proposed method in datasets with strong spurious correlations. Even compared to the approach which
requires the ground-truth attribute label during training (Group DRO), LC still achieves competitive
or even better performance. Table 2 shows the model performances on Waterbird, CelebA and bFFHQ
datasets. LC again achieves the highest worst/minority-group accuracy among all methods without
group information. The clear performance gaps again prove the effectiveness of the proposed method.

Note that all results demonstrated in both Table 1 and 2 are on datasets with one-to-one spurious
correlation. We also tested the proposed algorithm on datasets with many-to-one and one-to-many
correlations as well. The proposed method also outperforms the best baseline methods. Additional
experiments can be found in Appendix E.

6.2 ABLATION STUDY

Effectiveness of each module. Table 3 demonstrates the effectiveness of the LC loss and the Group
MixUp in the proposed method. The evaluation is conducted on the bFFHQ dataset. The first row
shows the performance of the baseline ERM network. From rows 2-4, each proposed module helps
improve the baseline method. Specifically, adding Group MixUp brings 6.35% of the performance
boost, and introducing logit correction is able to improve the performance by 9.64%. Combining
both of the elements achieves 12.80% accuracy improvement. Compared our method without Group
MixUp (third row in Table 3) to LfF in Table 2, both methods use the same pipeline and the only
difference is that we apply LC loss while LfF uses reweighting. The experiment result shows that the
proposed LC loss clearly outperforms reweighting (62.2% → 66.51%). The reasons may be due to
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the proposed LC loss 1) is Fisher consistent with the balanced-group accuracy; and 2) is able to
reduce the geometric skew as well as the statistical skew.

Table 3: Ablation studies on 1) Group MixUp, 2) cor-
recting logit on bFFHQ. Each row indicates a different
training setting with ✓mark denoting the setting applied.
While correcting the logit individually brings a signifi-
cant performance boost, adding Group MixUp further
improves the performance.

Group Logit Minority Group
MixUp Correction Accuracy

✗ ✗ 56.87
✓ ✗ 63.22
✗ ✓ 66.51
✓ ✓ 69.67

Figure 3: The performance comparison
of different strategies for estimating the
group prior (on CMNIST with ratio =
0.5%).

Influence of group prior estimate method. We test how different group prior estimation strategies
in Eq. 9 affect the final performance. We tested 1) updating the prior using all samples in the datasets
after finishing each training epoch (Dataset Avg.); 2) updating the prior using all samples in one
training mini-batch (Batch Avg.); and 3) keeping a moving average for the batch-level prior (Moving
Avg.). The result is shown in Fig. 3. Dataset Avg. performs significantly worse than the other two
strategies. This may be because the Dataset Avg. only updates the prior after each epoch. The delay
in the prior estimation may mislead the model training, especially in the early training stage when the
model prediction can change significantly.
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(c) LC Loss

Figure 4: The effect of the proposed logit correction (LC) method on classification margins (defined
in Appendix C) on CMNIST and Waterbird datasets. ERM produces a ratio (between the majority
group margin and the minority group margin) > 1, ERM + Group Mixup has a ratio < 1 and the
proposed LC loss achieves a ratio ≪ 1.

Analysis of training margins. We show how the proposed LC loss and Group MixUp help reduce
the geometric skew. In Sec. 1, we mentioned that a balanced classifier prefers a larger margin on the
minority group compared to the margin on the majority group, i.e., the ratio between the majority
group margin and the minority group margin should less than 1. In Figure 4, we show the minority
group margin and the majority group margin (defined in Appendix C) of the model trained with ERM,
LC loss, and ERM + Group MixUp on both C-MNIST and Waterbird datasets respectively. Figure 4
shows that both the proposed LC loss and the Group MixUp can reduce the geometric skew since
both of them have a ratio that is less than 1.

7 CONCLUSION

In this work, we present a novel method consisting of a logit correction loss with Group MixUp. The
proposed method can improve the group balanced accuracy and worst group accuracy in the presence
of spurious correlations without requiring expensive group labels during training. LC is statistically
motivated and easy-to-use. It improves the group-balanced accuracy by encouraging large margins
for minority group and reducing both statistical and geometric skews. Through extensive experiments,
The proposed method achieves state-of-the-art group-balanced accuracy and worst-group accuracy
across several benchmarks.
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causes clinically meaningful failures in machine learning for medical imaging. In Proceedings of
the ACM conference on health, inference, and learning, pp. 151–159, 2020.

Kit T Rodolfa, Hemank Lamba, and Rayid Ghani. Empirical observation of negligible fairness–
accuracy trade-offs in machine learning for public policy. Nature Machine Intelligence, 3(10):
896–904, 2021.

Amir Rosenfeld, Richard Zemel, and John K Tsotsos. The elephant in the room. arXiv preprint
arXiv:1808.03305, 2018.

11



Published as a conference paper at ICLR 2023

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations, 2019.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why
overparameterization exacerbates spurious correlations. In International Conference on Machine
Learning, pp. 8346–8356. PMLR, 2020.

Seonguk Seo, Joon-Young Lee, and Bohyung Han. Unsupervised learning of debiased representations
with pseudo-attributes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16742–16751, 2022.

Nimit Sharad Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass
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APPENDIX

A PROOF OF PROPOSITION 1

Proposition 1. Let P (y, a) is the prior on group (y, a), and P (y, a|x) is the true posterior probability
of group (y, a) given x, the prediction:

y = argmax
y′

∑
a

P (y′, a|x)
P (y′, a)

= argmax
y

∑
a

P (y|a,x)P (a|x)
P (y, a)

is the solution to Eq. 2.

Proof. To simplify the notation, we define the output of the classifier as c = argmaxy′∈Y fy′(x).

Following Collell et al. (2016), for a group (y(j), a(k)), the accuracy in this group can be written as,

Acc(y(j), a(k)) =

∫
x

P (y = y(j), a = a(k)|x)P (c = y(j)|x)
P (y = y(j), a = a(k))

P (x)dx. (14)

GBA in Eq. 2 thus can be rewritten as:

GBA =
1

KL

∫
x

∑
y(j)

∑
a(k)

P (y = y(j), a = a(k)|x)P (c = y(j)|x)
P (y = y(j), a = a(k))

P (x)dx. (15)

Maximizing Eq. 15 is equivalent to obtain the optimal choice of P (c = y(j)|x) at each x. Since what
inside of the integral is ∑

y(j)

∑
a(k)

P (y = y(j), a = a(k)|x)P (c = y(j)|x)
P (y = y(j), a = a(k))

=
∑
y(j)

(∑
a(k)

P (y = y(j), a = a(k)|x)
P (y = y(j), a = a(k))

)
P (c = y(j)|x), (16)

which is a convex combination, and is maximized at each x if and only if we place probability 1 to the
largest term. That is to say, at each x, we assign 1 to P (c = y(j)|x) where

∑
a(k)

P (y=y(j),a=a(k)|x)
P (y=y(j),a=a(k))

is the largest term among all possible y values in Y and assigning 0 to other terms. Formally,

P (c = y(j)|x) =

{
1, if y(j) = argmaxy′

∑
a(k)

P (y=y′,a=a(k)|x)
P (y=y′,a=a(k))

0, Otherwise.
(17)

The second equation can be derived by Bayes’ theorem.

B PSEUDO CODE OF THE PROPOSED ALGORITHM

We provide the pseudo-code of the proposed logit correction and Group MixUp in Algorithm 1.

C DEFINITION OF CLASSIFICATION MARGIN

Let f(x) : Rd → Rk be a model that outputs k logits, following previous works (Koltchinskii &
Panchenko, 2002; Cao et al., 2019), we define the margin of an example (x, y) as

m(x, y) = f(x)y −max
j ̸=y

f(x)j . (18)

We can then define the training margin for a group g = (a, y) as the minimum margin of all classes

mg = min
i∈g

m(xi, yi). (19)

The margins for minority groups and majority groups are defined as the average margin of minor-
ity/majority groups.
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Algorithm 1: LC for one-to-one mapping

Input :Training set (X,Y ), Initialize the ERM model f̂θ and the robust model fθ, # epochs
K, # rampup epoch T , moving average momentum α.

1 for epoch = 1 to K do
2 Sample a mini-batch {(x, y)};
3 Update ERM network f̂(θ) parameters by training on {(x, y)} with Equation 3;
4 for (x, y) ∈ {(x, y)} do
5 Let p(x,y) be the ERM model’s probability outputs on sample (x, y).
6 Let ax := argmax p(x,y) be the estimated value of the spurious attribute.
7 Update the group priors by P̂y,ax := αP̂y,ax + (1− α)p

(x,y)
ax

8 end
9 (Optional) Perform Group MixUp to obtain the synthesized batch:

10 τ := 0.5 · exp(−5(1− epoch)/T )2 sigmoid ramp up function
11 {x, y, P̂ (x)} = GroupMixup({x, y, ax}, P̂ , τ)

12 for (x, y, P̂ (x)) ∈ {x, y, P̂ (x)} do
13 for c = 1 to # labeled classes do
14 Correct the cth logit of the robust mode by f(x)c := f(x)c + log P̂

(x)
c,ax

15 end
16 end
17 Update robust model’s parameters θ with softmax cross entropy loss on fθ(x).
18 end
19 Function GroupMixup({x, y, ax}, P̂ , τ):
20 Obtain a set of samples {(x̄, ȳ, ax̄)} that are estimated to be from minority groups i.e. y ̸= ax
21 {(x̄, ȳ, ax̄)} := shuffle({(x̄, ȳ, ax̄)});
22 Sample λ ∼ Uniform(1− 2τ, 1− τ);
23 for i, (x, y, ax) ∈ enumerate({(x, y, ax)}) do
24 Sample (x̄, ȳ, ax̄) from {(x̄, ȳ, ax̄)} such that y = ȳ
25 x := λx+ (1− λ)x̄
26 y := y

27 P̂ (x) := λP̂y,x + (1− λ)P̂y,x̄, the correction term for MixUp sample x.
28 end
29 End Function

D EXPERIMENT DETAILS

We utilize Adam optimizer with β = (0.9, 0.999) without weight decay except for CelebA, we set
weight decay to 1× 10−4, and a batch size of 256. For Waterbird, we use SGD optimizer with weight
decay of 1× 10−4. Learning rates of 1× 10−2, 1× 10−3 and 1× 10−4 are used for Colored MNIST,
Waterbird, and CelebA, respectively. We use a learning rate of 5× 10−4 for 0.5% ratio of Corrupted
CIFAR-10 and 1 × 10−3 for the remaining ratios. We decay the learning rate at 10k iteration by
0.5 for both Colored MNIST and Corrupted CIFAR10. For CelebA, we adopt a cosine annealing
learning rate schedule. For Waterbird, we set the q in GCE as 0.8 and 0.7 for other datasets. The
ramp-up epoch T is set as 50 for waterbird and CelebA and 2 for other datasets, and the moving
average momentum α is set to 0.5 for all datasets.

E RESULTS ON OTHER SPURIOUS CORRELATION

In the previous section, we report the results on one-to-one mapping which is a common scenario
considered by previous works. In this section, we further examine the performance of previous
approaches as well as LC on other spurious correlation types.
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Figure 5: Example images of datasets used in our work. In each dataset, the images above the dotted
line demonstrate the majority groups while the ones below the dotted line are minority groups. For
Colored MNIST and Corrupted CIFAR-10, each column demonstrates each class.

(a) Many-to-one spurious correlation.

(b) One-to-many spurious correlation.

Figure 6: Sample images for datasets containing one-to-many and many-to-one correlations. The first
two rows show the training samples from the majority groups and the third row shows the validation
set where groups are balanced. For many-to-one, both digits 0’s and 1’s are colored browns. For
one-to-many, digit 0’s are colored in different colors (red and dark green).
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E.1 MANY-TO-ONE

The digits in the MNIST training dataset is injected with different colors (similar to the original
Colored MNIST). However, we inject the same color into digits 0 and 1 to obtain the many-to-one
relationships between the label and the spurious attribute (Figure 6a). We evaluate the accuracy of
the proposed logit correction method on the many-to-one setting mentioned in Sec. 4.2.2 (LC+). We
also apply LC loss with the one-to-one assumption as LC.

Table 4: Test accuracy on Colored MNIST data with many-to-one correlation.

Methods Group Info Colored MNIST
Train Val 0.5 1.0 2.0 5.0

ERM ✗ ✓ 31.13 50.89 57.92 82.19
LfF ✗ ✓ 46.22 69.32 73.33 82.57
DFA ✗ ✓ 64.7 77.28 84.19 90.17

LC(ours) ✗ ✓ 65.32 78.05 84.24 90.3
LC+(ours) ✗ ✓ 65.06 78.57 84.5 90.3

In Table 4, we report the accuracies on the balanced test set for Colored MNIST. The proposed
method (LC and LC+) constantly outperforms all baselines. Although using the exact mapping
information shows the best performance (LC+), directly applying the one-to-one assumption shows a
very similar performance.

E.2 ONE-TO-MANY

We augmented the MNIST training dataset with colors (similar to Colored MNIST) except that digit
0 has two colors as its major color attribute, as shown in 2. We evaluate the accuracy of the proposed
logit correction method on the one-to-many setting mentioned in Sec.4.2.3 (LC+). We also apply LC
loss with the one-to-one assumption as LC.

Table 5: Benchmark results on the One-to-Many correlation Test accuracy on Colored MNIST
data with one-to-many mapping.

Methods Group Info Colored MNIST
Train Val 0.5 1.0 2.0 5.0

ERM ✗ ✓ 38.47 48.41 67.41 80.61
LfF ✗ ✓ 52.79 66.07 75.09 83.5
DFA ✗ ✓ 70.11 78.75 83.06 90.41

LC(ours) ✗ ✓ 72.02 79.5 83.24 90.83
LC+(ours) ✗ ✓ 72.26 80.1 84.1 91.25

In Table 5, We report the accuracies on the balanced test set for Colored MNIST. The proposed
method (LC and LC+) constantly outperforms all baselines. Although using the exact mapping
information shows the best performance (LC+), directly applying the one-to-one assumption shows a
very similar performance.

F MORE ABLATION STUDY

F.1 ABLATION ON q

We conduct an ablation study to better understand q in the GCE loss. Intuitively, when q is closer to
0, it results in a loss function with a gradient that emphasizes the hard example (e.g. cross-entropy),
and when q is closer to 1, it results in a loss closer to mean absolute error which produces a gradient
that emphasizes less on hard examples. The choice of q depends on different datasets of how fast the
easy examples (i.e. the spurious correlated example) can be learned. We conducted an ablation study
on the waterbird dataset, it turns out the proposed method is quite robust to different values of q, as
illustrated in Table 6.
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Table 6: Ablation study on q of GCE.

q 0.1 0.3 0.5 0.7 0.8 0.9

LC 84.2 88.6 88.9 89.9 90.7 89.4

F.2 LOGIT CORRECTION V.S. REWEIGHTING

We also conduct experiments to compare logit correction with re-weighting/re-sampling. There
is both theoretical and empirical evidence showing that LC is more effective than reweighting for
training a linear classifier since it is not only Fisher consistent, but also able to address the geometric
skew. Theoretically, recent papers Xu et al. (2020); Sagawa et al. (2020) proved that overparametrized
linear model, regardless of trained with reweighted cross entropy and original cross-entropy, would
eventually result in the max-margin classifier with enough training. This is also validated by our
experiments in which we adopt an ImageNet pre-trained ResNet-18, and only train the last linear
classifier on Corrupted CIFAR10 (5%), we obtain that reweighting with the group prior (GBA:
23.75%) results in slightly better results than ERM (GBA: 20.77%). Both are worse than logit
correction (GBA: 30.20%).

We further compare reweighting with logit correction on the fully trained model when ground truth
group information are available. LC also outperforms the Fisher-Consistent reweighting (Table 7).

Table 7: Comparison of reweighting and logit correction with ground truth group information.

Method ERM Fisher-Consistent Reweighting logit correction

Test acc. 39.51 42.13 54.31

17


	Introduction
	Related Work
	Problem Formulation
	Our approach: Logit Correction
	Logit Correction as maximizing GBA
	Estimating the Group Prior
	One-to-one
	Many-to-One
	One-to-Many
	Many-to-Many

	Group MixUp

	Experiments
	Experimental Setup

	Results
	Classification Accuracy
	Ablation Study

	Conclusion
	Proof of Proposition 1
	Pseudo Code of the Proposed Algorithm
	Definition of classification margin
	Experiment Details
	Results on other Spurious Correlation
	Many-to-One
	One-to-Many

	More ablation study
	Ablation on q
	Logit correction v.s. reweighting


