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Abstract

Dynamic 3D scene reconstruction from multi-view videos demands representation
to model complex deformations at scale. Current Gaussian Splatting based methods
often either suffer from significant computation cost due to dense MLP-based mod-
eling or explicit modeling deformation of each Gaussian independently. However,
the dynamics of objects within a scene are typically hierarchical and exhibit struc-
tural correlations. To leverage these structural priors into the representation, we
introduce TreeSplat, a Tree data structure for deformable Gaussian Splatting. In
TreeSplat, as the name suggests, motions of Gaussian are represented hierarchically
within a tree. Each node learns coefficients for time-varying basis functions, defin-
ing a part of the motion. The full motion for any given Gaussian is then determined
by accumulating these transformations along the tree path from its leaf node to the
root node. This tree isn’t predefined; instead, it is constructed adaptively alongside
Gaussian densification, where cloning or splitting a Gaussian correspondingly
creates new leaf nodes. One central property of TreeSplat is its mergeability;
after optimization during training, the hierarchical motion parameters for each
Gaussian can be efficiently consolidated. By performing this merging step before
test time, we eliminate the need to traverse the tree explicitly for each Gaussian
during rendering. This results in dramatically faster rendering over 200 FPS and
compact storage, while maintaining state-of-the-art rendering quality. Experiments
on diverse synthetic and real-world datasets validate these advantages. Code and
results are available at https://github.com/florinshen/treesplat.

1 Introduction

Dynamic 3D scene reconstruction aims to recover deformable 3D representations from multi-view
videos. This, in turn, makes it possible to synthesize novel views from different viewpoints and
moments in time. Despite recent progress, achieving efficient dynamic 3D scene reconstruction
remains challenging due to limitations in fitting time, data storage, and rendering speed.

Neural Radiance Fields (NeRF) [1H6] have demonstrated remarkable performance in static 3D
reconstruction by optimizing multi layer perceptrons (MLPs) with volumetric ray marching. Several
extensions [[7H9}[9H18]] incorporated temporal components into the MLP to capture scene deformations
over time. However, these methods often suffer from high computational demands, significantly
impacting their efficiency, particularly when scaling to complex dynamic scenes.

Recent developments in 3D Gaussian Splatting (3DGS) [19] have established it as a compelling
alternative for efficient 3D scene reconstruction. Building upon this foundation, a growing body
of work [16, 20H37]] has incorporated temporal components into static Gaussians to model scene
deformations over time. Among them, some approaches adopt isotropic 4D Gaussians [22, 23] or
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polynomial functions [24H26] to explicitly represent motion. These representations circumvent dense
MLP computation and thus enable efficient rendering.

Despite these success, a key limitation of these methods is the independent modeling of motion
for each Gaussian. In reality, the dynamics are not independent. They are inherently correlated
across space and time, often exhibiting complex, hierarchical structures. Consequently, assuming
independence prevents the capture of coherent and structured motion patterns, creating a significant
modeling gap. Thus, it is crucial to model deformations collaboratively, allowing Gaussians to share
information with their neighbors and better reflect the structured nature of real-world motion.

To achieve this, we introduce TreeSplat, a novel representation that employs a tree data structure
to explicitly model both individual Gaussian motions and their inter-correlations. The core idea
is to organize motion hierarchically within this tree. Specifically, each node stores coefficients for
a set of shared, time-varying basis functions, with these coefficients defining a component of the
motion. The complete motion for any Gaussian is then determined by aggregating these component
transformations—typically via weighted summation—along the path from its associated leaf node to
the tree’s root. Consequently, the tree explicitly defines the motions for all Gaussians, and crucially,
Gaussians that share common ancestor nodes inherently share motion components, thus modeling
their correlation.

One central problem is how we construct the tree. Rather than manual or rule-based creation, we
adaptively grow the tree in conjunction with Gaussian densification. As standard densification
operations, cloning and splitting generate new Gaussians in adjacent regions, the tree structure grows
alongside them.

Specifically, we define two forms tree growth modes, that operate alternately. Leaf Expansion
broadens the tree. It links motion of new Gaussians (resulting from densification) with new leaf
nodes under the same parent as their source Gaussian. Depth Promotion increases the depth of the
tree. It transforms an existing Gaussian’s leaf node into a new parent, which then links it to two new
child leaf nodes associated with newly generated Gaussians. Furthermore, to control the influence of
different tree levels, each Gaussian applies a learnable decay to the coefficients of motion nodes with
increasing depth. This ensures that motion components defined by nodes deeper in the tree have a
smaller impact, while components closer to the root dictate more significant.

Our motion tree offers a key advantage: its coefficients are mergeable after training. This mergeability
means that although the tree structure is essential for training, it is not required at inference time. Once
training is complete, we can merge the coefficient for each Gaussian by traversing its leaf-to-root
path and accumulating the corresponding transformations. Crucially, this merging process occurs
offline, before test time. Consequently, we eliminate the requirement for per-Gaussian tree traversal
and significantly accelerating runtime performance.

To maintain computational efficiency during training, we periodically prune inactive motion nodes,
preserving a sparse and lightweight tree structure. Once training converges, the tree structure is
fixed, and the motion coefficients are merged offline as described. This final representation, with
pre-aggregated motion for each Gaussian, enables highly efficient rendering of complex dynamic
scenes without runtime tree traversal overhead.

In summary, the contributions of this work are as follows:

* We propose a hierarchical motion tree structure for dynamic Gaussian Splatting, where the tree is
grown in conjunction with Gaussian densification to model collaborative and structured motion.

* The motion tree is formulated as mergeable, in which the linear structure enables offline pre-
aggregation of motion coefficients. This design eliminates the need for tree traversal during
rendering, thereby substantially improving efficiency and reducing storage overhead.

* Our TreeSplat framework achieves state-of-the-art reconstruction quality on both synthetic and
real-world datasets, while maintaining real-time rendering speed over 200 FPS.

2 Related works

Dynamic 3D Scene Reconstruction. 3D Gaussian Splatting (3DGS) [19} 138-40] have become a
key approach for efficient 3D scene reconstruction. A stream of recent works [[16} 2036, 41-43]]
has extended 3DGS to dynamic scene reconstruction by introducing temporal components to model
deformations over time. These methods can be broadly divided into two categories based on how they



incorporate temporal components: implicit and explicit deformation modeling. In implicit approaches,
several representative methods [20, [21] employ a shared MLP to predict the deformation of each
Gaussian over time. This design is similar to deformation components used in dynamic NeRFs.
However, real-world dynamic scenes often require millions of Gaussians for accurate reconstruction.
As a result, querying an MLP for each Gaussian introduces significant computational overhead, which
becomes a major bottleneck during rendering. To mitigate this issue, more recent work has focused
on explicit deformation representations that avoid per-Gaussian MLP inference. Such methods either
encode deformation using isotropic 4D Gaussians [22, 23] or parameterize the deformation of each
Gaussian using polynomial functions of time [24-26]. While these techniques improve efficiency in
both training and rendering, they learn motion parameters independently for each Gaussian and ignore
the spatial dependencies between motions of Gaussians. This independence assumption neglects the
hierarchical and coherent motion patterns often present in dynamic scenes, leaving a critical modeling
gap. In contrast, our approach introduces a hierarchical and mergeable motion tree that explicitly
models collaborative motion across Gaussians, enabling improved dynamic scene reconstruction and
rendering effiency.

Hierarchy in Gaussian Splatting. Hierarchical representations are fundamental in 3D reconstruction.
Early works [44] |45]] introduced strategies such as spatial partitioning and pyramid features into
NeRF [1]] to improve both rendering speed and visual quality across diverse 3D scenes. Thanks to its
fully explicit formulation, Gaussian Splatting allows for more direct modeling over spatial structure,
making it a natural candidate for hierarchical representation. Several recent works [46-50] have
explored constructing hierarchical representations based on Gaussian Splatting. HierarchicalGS [46]
proposed a tree-based hierarchy that enables the reconstruction of large-scale scenes by dividing
them into independent spatial chunks. OctreeGS [48]] employed an octree data structure to adaptively
capture level-of-detail variations across different scene regions, while SVRaster [47] also adopted an
octree structure and introduced a sparse voxel rasterization method to mitigate popping artifacts [51]]
in Gaussian Splatting rendering.

More recently, HiCoM [49]] explored hierarchical motion modeling using 4DGaussian [20] for
streamable dynamic scene reconstruction. However, its hierarchy is constructed using fixed heuristics,
which limits adaptability across varying scenes. Concurrent work HiMoR [50] introduced a fixed-
structure tree of depth 3 to represent motion for monocular dynamic scene reconstruction. Different
from these approaches, our framework focuses on mining motion hierarchies between Gaussians in
an adaptive manner. We couple tree construction with the densification process, enabling the tree
to grow adaptively in both depth and width to reflect motion complexity. Moreover, our linear tree
structure supports pre-aggregation of motion coefficients after training, enabling highly efficient
rendering without additional tree traversal overhead.

3 Preliminary: 3D Gaussian Splatting

Given a set of images captured from 3D scenes with known camera poses, 3D Gaussian Splatting
(3DGS) [19] iteratively reconstructs the scene as a collection of isotropic Gaussians, denoted as {G}.
Each Gaussian is defined by its central position g1 € R3, opacity o € [0, 1], and view-dependent color
h € R*® represented as spherical harmonics coefficients. Its 3D covariance matrix ¥3P € R3*3
is parameterized by a scale vector s € R? and a rotation quaternion ¢ € R* to ensure positive
semi-definiteness. Collectively, the i-th Gaussian is denoted as G; = {p;, 04, h;, 8;, q; }-

To better represent the scene, adaptive density control, or densification, is employed by dynamically
adjusting the number of Gaussians during optimization. It selectively densifies regions with large view-
space positional gradients, which typically indicate either missing geometry (under-reconstruction)
or excessive coverage (over-reconstruction). Specifically, small Gaussians in under-reconstructed
regions are cloned to cover new geometry, while large Gaussians in high-variance areas are split into
smaller Gaussians to capture finer scene details.

For rendering a 2D image, all 3D Gaussians are first projected onto the image plane as 2D Gaussians.
The opacity of Gaussian ¢ at a pixel x is given by:

a = o exp (—;(x — ) TSP (x - m)) , ()

where ji; and X2 are the projected mean and covariance, respectively. After sorting Gaussians
based on depth, a tile-based rasterizer is used to blend their contributions, producing the final image.



4 Methodology

In this section, we first establish the base formulation of dynamic Gaussian Splatting in Sec.[d.1] The
detailed data structure of the motion tree is elaborated in Sec.[#.2] and the tree merging strategy for
rendering is described in Sec.[d.3] Finally, the initialization and optimization scheme for dynamic
Gaussian Splatting with the motion tree is presented in Sec. .4}

4.1 Dynamic Gaussian Splatting

To adapt 3D Gaussian Splatting for dynamic scene reconstruction, we adopt explicit temporal
components to capture deformations over time. Specifically, per-Gaussian coefficients associated
with shared basis function are applied to encode temporal motion and rotation of each Gaussian as
shown in Fig.[I[a). Rather than relying on predefined motion bases such as Fourier series [24] or
polynomial [26] basis, we initially represent the motion field through per-Gaussian coefficients [25]
with learnable bases:

n(t) = pe + fult uc+20“b“ q(t) = gc +q4(t) —qc+chbq )

where . and q. are the static Gaussian center and rotation quaternion, respectlvely, and B denotes the
number of basis functions. Here, cz-‘ € R and cg- € R are learnable coefficients. The basis functions

bli(t) € R® and bj(t) € R* are shared across all Gaussians and are generated by a lightweight
multi-layer perceptron (MLP) fy with a sinusoidal time embedding:
1

Fo(y(1)) = {(0 (£), ] ()} Ly, ~(2) = (sin(2"7t), COS(Qkﬂ))kfo ; A3)

where 6 denotes the learnable parameters of the MLP, and ~(t) is a sinusoidal positional encoding of
order L to enhance the network’s capacity to model high-frequency temporal variations.

Compared to MLP-based deformation modeling that requires querying the MLP millions of times [20}
21]], once for each Gaussian, our framework only performs a single query to fy per timestamp ¢,
substantially reducing the computational overhead.
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Figure 1: Dynamic Gaussian Splatting with Hierarchical Motion Tree. Our framework encodes
temporal motion and rotation using shared learnable basis functions combined with per-Gaussian
coefficients. Each node in the hierarchical motion tree stores a motion vector parameterized by
learnable coefficients. The tree is constructed in conjunction with Gaussian densification, where Leaf
Expansion and Depth Promotion are performed periodically to adaptively grow the hierarchy.

4.2 Hierarchical Motion Tree

Though the above dynamic Gaussian Splatting models per-Gaussian deformation using shared basis
functions, the associated coefficients are optimized independently for each Gaussian. However, mo-
tions in real-world 3D scenes are inherently spatially entangled and exhibit hierarchical relationships
across multiple scales, where the motion of one structure is often correlated with the motions of its
neighbors. Motivated by this property, we introduce a hierarchical motion tree to collaboratively
learn the temporal motion fi(t) in Eq. [2|among Gaussians.

In the motion tree structure, each node represents a motion vector encoded as a learnable coefficient
vector in RZ, and the entire motion field is denoted as F € RM*B  where M is the total number of



nodes in the tree. Each leaf node is uniquely associated with one Gaussian, ensuring a one-to-one
correspondence between Gaussians and leaf nodes. Given N (N < M) dynamic Gaussians, the
structure of the motion tree is maintained by the following data mappings:

* Node entry £ € N": maps each Gaussian to its leaf node index in the motion field F;
* Parent index P € N™: records the parent motion node for each motion node;
 Node level . € NV specifies the number of nodes from Gaussian’s leaf node to the root node;

Given a constructed motion tree, the motion fi;(¢) of Gaussian ¢ is computed by traversing its
ancestral path with parent index P and aggregating motion vectors. Formally, we can formulate as:

¢; B )
pit) =Y > FreUPp), )

k=0 j=1

where ¢; denotes the level of Gaussian i in the tree, and k indexes the nodes along its path from the
leaf to the root. The function anc(4, k) returns the index in F of the ancestor node k steps above the
leaf node of Gaussian .

Tree Growth: Leaf Expansion and Depth Promeotion. As Gaussian densification progressively
refines the scene from coarse to fine spatial levels by creating new Gaussians in neighboring regions,
it naturally aligns with the hierarchical motion modeling motivation. The growth of the motion tree is
in conjunction with the densification during optimization. To adaptively balance the depth and width
of the motion tree, we introduce two alternative modes to grow the tree at each densification step as
shown in Fig. [T{b).

Leaf Expansion increases the number of leaf nodes horizontally without increasing tree depth. Newly
densified Gaussians are linked to new leaf nodes under the same parent node as their source Gaussian.
These new leaf nodes share the same parent index p € N and node level [ € N as the leaf node of
their source Gaussian, preserving the flatness of the local tree structure.

Depth Promotion deepens the tree to refine the hierarchical organization of motions. It transforms an
existing Gaussian’s leaf node into a new parent node. The densification operation, whether cloning or
splitting, is treated as a binary operation that creates two new leaf nodes associated with Gaussians
and connect them to the newly promoted parent node. These new leaf nodes are assigned a node level
of [ + 1 and their parent indices p point to the newly promoted parent node.

For all newly created leaf nodes, the associated coefficients in the motion field F are initialized
to zero. This initialization ensures that the aggregated temporal motion fi(¢) remains unchanged
immediately before and after densification.

This two growth modes are scheduled periodically during optimization: multiple rounds of Leaf
Expansion are followed by a Depth Promotion step. This design results in a large, adaptively widening
motion tree with limited depth, ensuring that the tree remains both scalable and capable of capturing
multi-level motion structures throughout training. Besides, unused leaf nodes are periodically remove
during optimization to maintain efficiency during training.

Decay-Weighted Aggregation. As the motion tree deepens, naive aggregation of ancestor nodes, as
formulated in Eq.[4] can result in unstable optimization. Specifically, given the upstream per-Gaussian
gradient g; = OL/0jf1;, the gradient with respect to an ancestor node F2*°(:*) is computed as

oL Tpu Tpp Ty B

JFancR) (g bi(t), g;' bh(t), ..., g/ bls(t) €R (5)
In this naive aggregation, ancestor node accumulates the full strength of the upstream gradient from
each of its descendants. Consequently, the total gradient magnitude at a node grows proportionally to
the number of its descendant Gaussians, which can cause severe gradient explosion for some ancestor
nodes and destabilize optimization.

To mitigate this issue, we introduce a learnable decay factor 8; € (0, 1] for each Gaussian. The
motion aggregation is reformulated as:

l; k—1 B )
pilt) =y (H @:) FreBp ), ©)
k 0 1

=0 \p= Jj=



where deeper ancestors are exponentially attenuated by powers of ;. Correspondingly, gradients
received by each ancestor node is scaled by the same decay factor, ensuring that gradients from
distant descendants are substantially suppressed. The decay factors j3; are differentiable and jointly
optimized with other model parameters during training. A closed-form derivation of their gradients is
provided in the Appendix.

This decay-weighted aggregation strategy enables each Gaussian to adaptively control its receptive
field within the motion tree: a smaller 3; concentrates motion learning on nearby ancestors, while
a larger f3; permits broader aggregation. By suppressing contributions from distant and irrelevant
ancestors, it improves the robustness of both forward motion modeling and backward gradient flow,
leading to more stable motion modeling.

4.3 Tree Merging for Rendering

During optimization, computing the motion fi;(¢) for each Gaussian requires traversing its ancestral
path in the deformation tree. Once training is complete and the tree structure is fixed, we pre-aggregate
the motion coefficients for each Gaussian by reordering the summation terms in Eq. [6] Formally, it
can be expressed as:

B 4; k—1 ) B )
pit) = bty ( @») Fre = N b (t)ed 7
0

j=1 k=0 \p=

where ¢! € R? is the merged motion coefficient vector for Gaussian 7. This transformation enables
highly efficient rendering, as it eliminates the need to traverse the tree, the motion computation
reduces to simple linear combination over the B basis vectors per Gaussian.

It is important to note that this coefficient merging is only applied after training. During optimization,
the internal motion nodes must be retained to receive gradient signals from multiple descendant Gaus-
sians and propagate them back across the tree. Merging would prematurely remove the hierarchical
structure necessary for effective gradient flow and motion disentanglement. Hence, mergeability is
a property leveraged only in the inference stage to accelerate rendering without compromising the
training dynamics.

4.4 Training Framework

Following 3D Gaussian Splatting [[19], we conduct interleaved iterative optimization and densification.
Since the tree construction process is coupled with densification, the time overhead introduced by
growing the deformation tree is negligible. Moreover, with our highly optimized CUDA imple-
mentation, tree traversal for each Gaussian during optimization introduces only a marginal time
increase.

Tree Initialization. We first use point cloud to initialize N;,; Gaussians. The node levels .Z are
initialized to O for all Gaussians, corresponding to the root level of the tree. The initial motion field
F has the same length as the number of Gaussians, with all entries initialized to zero. For the node
entry mapping £, each Gaussian is assigned to its corresponding motion node in order, initialized
as [0,1,..., Nii — 1]. The parent indices P are initialized to —1 for all nodes, forming a forest of
independent singleton trees at initialization.

Optimization Scheme. During training, we simply adopt a rendering loss composed of an MSE
term and an SSIM term: £ = (1 — X)Ly + ALssim,» Where A balances the two objectives. To
stabilize training, we initially reconstruct the static components of p(t) and g(t) over the first 10%
of optimization iterations, effectively learning a canonical 3D space before introducing temporal
dynamics. For interleaved densification, we adopt the averaged screen-space 2D gradient of p(t) as
the density control indicator.

5 Experiments

5.1 Implementation details

To balance efficiency and performance, we model the time-varying shared basis fp in Eq. 3|using
a MLP with three hidden layers, each of width 512. The sinusoidal time embedding ~(t) is set



as order L = 32 to capture high-frequency temporal variations. The number of basis vectors B
is set to 10 for the D-NeRF dataset and 16 for the Neural 3D Video dataset, to accommodate the
complexity of real-world scenes. Motion tree construction begins at iteration 500 in conjunction with
Gaussian densification. Depth Promotion is performed at first step, after which Leaf Expansion is
applied every 100 iterations and Depth Promotion every 500 iterations, alternating after every four
rounds of Leaf Expansion. Densification is halted at iteration 15,000, after which the motion tree
is fixed to capture stable collaborative motion patterns among Gaussians. To ensure fast per-frame
motion computation, we implement Eq. [6]and Eq. [7]as custom CUDA kernels separately. Through
careful kernel design, including memory access optimization and parallel thread scheduling, we
ensure that tree traversal overhead is negligible even for real-world dynamic scenes. All other training
hyperparameters, including densification thresholds and learning rates for Gaussian attributes, follow
the original settings used in Gaussian Splatting. The learning rate for the decay factor 3 is set to
5 x 1072, and the learning rate for the shared MLP fj is set to 5 x 10~*. All experiments are
conducted on an NVIDIA RTX4500 Ada GPU. For additional hyperparameter configurations, please
refer to the configuration table provided in the Appendix.

5.2 Comparison with State-of-the-art

D-NeRF Dataset [7]. The D-NeRF dataset comprises 8 synthetic dynamic scenes captured as
monocular videos. At each time step, only a single training image from one viewpoint is available.
Following standard protocols, we evaluate on test views from novel camera positions within the same
temporal range as the training data. For initialization, we uniformly sample 100,000 points within the
cubic volume [—1.2, 1.2]3. Quantitative results are reported in Tab.|1|in terms of PSNR, SSIM, and
LPIPS. Our TreeSplat achieves the highest reconstruction quality with an average PSNR of 37.11 dB,
while maintaining a compact model size of 28 MB and requiring only 4 minutes of training per scene.
After tree merging, TreeSplat reaches a rendering speed of 230 FPS, outperforming all baselines.
Moreover, it uses significantly fewer Gaussians, averaging only 85K per scene, demonstrating superior
efficiency without compromising quality.

Table 1: Quantitative Evaluation on the D-NeRF [7]] Dataset.

Method PSNRT SSIM{ LPIPS| Train Time|l FPST Storage| #Gauss|
DNeRF [7] 29.67 0.95 0.08 40 h 0.1 N/A N/A
K-Planes [52] 31.07 0.97 0.02 5h 1.2 N/A N/A
HexPlanes [8] 31.04 0.97 0.04 11 min 0.22 N/A N/A
TiNeuVox [53] 32.67 0.97 0.04 49 min 1.6 N/A N/A
4DGaussian [20] 34.05 0.98 0.02 19 min 85 19M 137K
CompactDGS [24] 32.19 0.97 0.04 4 min 202 32M 112K
DynMF [25] 35.72 0.98 0.02 5 min 216 32M 101K
4DRotorGS [22] 34.26 0.97 0.03 26 min 143 242M 392K
RealTime4DGS [23]  34.09 0.98 0.02 28 min 132 278M 445K
TreeSplat (ours) 37.11 0.98 0.02 4 min 230 28M 85K

Neural 3D Video Dataset. The Neural 3D Video (N3V) dataset consists of 6 indoor dynamic scenes
captured with 18 to 21 cameras at a resolution of 2704 x 2028, each lasting ten seconds. Following
standard protocols, we train and evaluate at the half resolution, using 300 frames per scene with
the center camera held out for evaluation. For initialization, we sample 300,000 points from the
COLMAP [54] point cloud using farthest point sampling [55]]. Tab. [2]reports quantitative results in
terms of PSNR, storage size, rendering speed, and training time. We compare our method against 7
NeRF-based approaches and 5 representative Gaussian Splatting methods. Among them, 4DGaus-
sian [20] and Grid4D [35]] employ MLP-based modeling, while DynMF [235]], RealTime4DGS [23]],
and SpaceTimeGS [26] adopt explicit deformation representations. Our TreeSplat achieves the
highest average reconstruction quality of 32.21 dB across scenes, while maintaining a compact model
size of 170 MB and the fastest rendering speed of 206 FPS after tree merging. Remarkably, TreeSplat
also trains significantly faster than most baselines, requiring only 0.57 hours on average per scene.
Besides, we qualitatively compare novel view synthesis results on two representative scenes (Coffee
Martini and Sear Steak) in Fig. 2] showing our method yields better reconstruction. These results
highlight TreeSplat’s superior trade-off between reconstruction quality and efficiency.



Table 2: Quantitative Evaluation on the Neural 3D Video [[12] Dataset.

PSNR (dB) MB Frame/s  Hours
Method Coffee Cook CutRoasted Flame Flame  Sear . Trainin,
Martini ~ Spinach Beef Salmon  Steak  Steak Average Size FPS time &

NeRFPlayer 31.53 30.56 29.35 31.65 3193 29.13 30.69 5130 0.05 6
HyperReel [14] 28.37 32.30 32.92 2826 3220 32.57 31.10 360 2 9

DyNeRF [12] N/A N/A N/A 29.58 N/A N/A 29.58 28 0.015 1344
HexPlane [8] N/A 32.04 32.55 29.47  32.08 32.39 31.71 200 N/A 12
K-Planes [8] 29.99 32.60 31.82 30.44 3238 32.52 31.63 311 0.3 1.8
Mix Voxels-L [15] 29.63 32.25 32.40 29.81 31.83  32.10 31.34 500 37.7 1.3
Mix Voxels-X 30.39 32.31 32.63 30.60  32.10 32.33 31.73 500 4.6 N/A
4DGaussian 27.34 32.46 32.90 2920 3251 3249 31.15 34 137 1.7
Grid4D [35] 28.30 32.58 33.22 29.12 3256  33.16 31.49 146 116 1.9
DynMF [25] 28.87 33.09 32.66 29.03 3270 32.02 31.40 176 197 0.52
RealTime4DGS [23]  28.33 32.93 33.85 29.38  34.03 33.51 32.01 2085 101 5.2
SpaceTimeGS [26] 28.61 33.18 33.52 29.48  33.64 33.89 32.05 200 140 5.5
TreeSplat (ours) 28.91 33.17 33.69 29.50 3389 34.10 32.21 170 206 0.57

Figure 2: Qualitative comparisons on the Neural 3D Video Dataset. We qualitatively compare
our TreeSplat with 4DGaussian [20]], DynMF [25]], and RealTime4DGS on two representative
scenes coffee martini and sear steak from the Neural 3D Video dataset [12]].

5.3 Ablation and Discussion

Effects of Tree Depth. Our hierarchical motion tree grows in conjunction with Gaussian densification
through periodically scheduled Leaf Expansion and Depth Promotion. The overall tree depth is
controlled by adjusting the interval between Depth Promotion steps. In Tab.[3] we conduct an ablation
study across five configurations with maximum tree depths of 0, 4, 15, 29, and 73, corresponding
to Depth Promotion intervals of oo, 4000, 1000, 500, and 200, respectively. The results show that
performance consistently improves as tree depth increases. Compared to the baseline without a
hierarchical structure (tree depth 0), our full model with depth 29 achieves notable PSNR gains, such
as +2.63 on Hellwarrior and +1.40dB on Sear Steak. Even moderate depths (e.g., 4 or 15) already
yield substantial improvements, demonstrating that our tree structure captures meaningful motion
correlations with limited hierarchy.

Table 3: Ablation of tree depth. Evaluated on representative scenes from D-NeRF (Hellwarrior,
Mutant) and Neural 3D Video (Cut Roasted Beef, Sear Steak).

Tree Depth Hellwarrior Mutant Cut Roasted Beef Sear Steak
PSNRtT SSIMf{ | PSNRT SSIM{ | PSNRT SSIM{ | PSNRtT SSIMf
73 38.26 0.97 43.28 1.00 33.31 0.96 34.05 0.97
29 38.34 0.97 43.81 1.00 33.69 0.96 34.10 0.97
15 38.11 0.97 42.57 1.00 32.79 0.96 33.81 0.97
4 37.49 0.97 42.79 1.00 33.63 0.96 33.39 0.96
0 35.71 0.95 41.47 0.99 32.15 0.96 32.65 0.96

However, excessively deep trees can reduce the width of the tree and may accumulate irrelevant
motion noise. Moreover, they introduce greater computational overhead and may even cause minor
performance degradation. Empirically, we find that a moderate depth of 29 (interval 500) offers the
best balance between performance, efficiency, and robustness.



Effects of Tree Merging. The main difference between the training-time motion computation in
Eq.[f]and the rendering-time formulation in Eq.[7]lies in the order of aggregation. During training,
we first compute time-dependent motion vectors for all nodes in the motion tree and then aggregate
them for each Gaussian. In contrast, rendering pre-aggregates the motion coefficients per Gaussian
before applying the basis functions, thereby eliminating the need to traverse the tree. While these
two formulations are mathematically equivalent, numerical differences can arise due to floating-point
accumulation order. To evaluate the impact of such differences, we conduct ablation experiments
comparing models with and without coefficient merging. As shown in Tab.[d] merging introduces
negligible variation in reconstruction quality across PSNR, SSIM, and LPIPS, while significantly
improving rendering speed and reducing storage size. These results validate the effectiveness of our
mergeable design, which preserves visual fidelity while enabling high-performance inference.

Table 4: Ablation on Tree Merging. We report the metric difference as “after merging” minus “before
merging.” Merging preserves reconstruction quality while improving efficiency and compactness.

Scene APSNR ASSIM ALPIPS AStorage (MB)  AFPS
Hellwarrior —381x1077 4596 x107° —4.47x1078 —0.62 +15
Mutant +9.53 x 1077 4298 x 107 —1.97x 1078 —1.55 +12

Cut Roasted Beef +3.81 x 1078 —7.94x 10719 —7.45x107* —8.57 +82
Sear Steak —1.27x107%  +1.39x107° +7.45x107? —8.61 +74

Effects of Weight-Decayed Aggregation. To assess the impact of weight-decayed aggregation, we
conduct ablation by disabling it during training on the D-NeRF dataset. As illustrated in Fig. 3]
removing this strategy leads to blurred motion regions in the rendered results. This is caused by
interference from irrelevant nodes in the motion tree. In contrast, enabling this strategy yields
much better reconstruction quality, as the learnable decay factor 3 in Eq.[6] adaptively controls each
Gaussian receptive field in the motion tree.

S w/o Window | With Window ° ‘ )
cene ‘e
PSNR  #Gauss | PSNR  #Gauss = * = \ ’
Hellwarrior 38.34 19K 37.87 22K a u
Mutant 4381 70K | 4135 79K ) y
Cut roasted beef  33.69 416K 33.36 460K ‘;“ l ’

Sear steak 3410 429K | 33.89 519K * &

Table 5: Impact of Temporal Opacity window. We Figure 3: Ablation of weight-decayed
compare with and without opacity window. aggregation.

Analysis of Tree Depths. To better understand the structure of motion hierarchies, we analyze
the distribution of tree depths across four representative scenes: Hellwarrior and Mutant from the
DNeRF dataset, and Cut Roasted Beef and Sear Steak from the Neural 3D Video dataset. As shown
in Figure[d] we divide tree depths into six intervals and visualize the results as histograms. For each
interval, we also report the average number of Gaussians per tree. The resulting distributions exhibit
a long-tailed pattern: over 97% of motion trees have depths less than or equal to 10, while only a
small fraction extend into deeper hierarchies. These findings demonstrate that most Gaussians are
captured through relatively shallow hierarchical motion patterns, with deeper structures emerging
only where necessary.

Number of Trees Averaged number of Gaussians per tree
Cut Roasted Beef Sear Steak Hellwarrior Mutant
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Figure 4: Visualization of hierarchical tree statistics. Here we show statistics across four dynamic
3D scenes (Cut Roasted Beef, Sear Steak, Hellwarrior, and Mutant). For each scene, the histogram
(blue bars) represents the number of trees at different depth intervals, while the dotted orange curve
denotes the averaged number of Gaussians per tree within each depth range.



Temporal Opacity. Some prior works [23L[26] model the opacity o of each Gaussian as a time-varying
unimodal function, often implemented as a temporal window. However, recent findings [56 [57]
suggest that Gaussians tend to learn overly short temporal windows, resulting in limited lifespans
and degrading dynamic 3D reconstruction into near per-frame static modeling. To evaluate the
necessity of temporal opacity in our framework, we follow the same design and assign each Gaussian
a learnable 1D Gaussian window. As reported in Tab. 3] introducing temporal windows degrades
reconstruction quality despite a noticeable increase in the number of Gaussians. This likely occurs
because Gaussians with limited temporal visibility hinder the motion tree from learning coherent
motion trajectories. These results confirm that temporal windowing is unnecessary in our framework.
The temporal modulation of opacity can be sufficiently expressed through Gaussian center motion, as
reflected in the spatial formulation of opacity in Eq.

6 Conclusion

In this work, we present a hierarchical and mergeable motion tree structure for dynamic Gaussian
Splatting. By constructing motion tree in conjunction with Gaussian densification, our method
enables collaborative motion learning across Gaussians in an adaptive, coarse-to-fine manner. A
decay-weighted aggregation strategy further regulates the influence of ancestor nodes, improving
both optimization stability and motion locality. To support efficient rendering, we introduced a pre-
aggregation strategy that merges motion coefficients over the tree path of each Gaussian, eliminating
traversal overhead during rendering. Extensive experiments on both synthetic and real-world datasets
demonstrate that our method achieves state-of-the-art reconstruction quality while maintaining high
efficiency and compactness. Our approach offers a principled framework for hierarchical motion
modeling and sets the stage for future extensions in scalable dynamic 3D representations.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: TreeSplat achieves improved reconstruction quality both on synthetic and real
world dynamic 3D datasets with collaboratively learn motions between Gaussians.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of TreeSplat is discussed and included in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For the theoretical tree merging, we give detail mathematical analysis, numeri-
cal errors are also evaluated in the ablation study.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have clearly describe our key algorithm and configuration parameters are
also elaborated in Appendix to ensure reproduction.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: All code and results of the submission will be made public upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed ablation study is provided in the main paper, and hypera parameters
configuration Table is included in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: All metrics reported in this work is deterministic reconstruction metric.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Running devices are reported in experiments section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work conforms with the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all datasets used in this paper is public available, this work have cited
their papers.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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