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ABSTRACT

Graph generation has emerged as a critical task in fields ranging from drug discov-
ery to circuit design. Contemporary approaches, notably diffusion and flow-based
models, have achieved solid graph generative performance through constructing a
probability path that interpolates between reference and data distributions. How-
ever, these methods typically model the evolution of individual nodes and edges
independently and use linear interpolations in the disjoint space of nodes/edges to
build the path. This disentangled interpolation breaks the interconnected patterns of
graphs, making the constructed probability path irregular and non-smooth, which
causes poor training dynamics and faulty sampling convergence. To address the
limitation, this paper first presents a theoretically grounded framework for prob-
ability path construction in graph generative models. Specifically, we model the
joint evolution of the nodes and edges by representing graphs as connected systems
parameterized by Markov random fields (MRF). We then leverage the optimal
transport displacement between MRF objects to design a smooth probability path
that ensures the co-evolution of graph components. Based on this, we introduce
BWFlow, a flow-matching framework for graph generation that utilizes the derived
optimal probability path to benefit the training and sampling algorithm design.
Experimental evaluations in plain graph generation and molecule generation vali-
date the effectiveness of BWFlow with competitive performance, better training
convergence, and efficient sampling.

1 INTRODUCTION

Thanks to the capability of graphs in representing complex relationships, graph generation (Zhu et al.,
2022; Liu et al., 2023a) has become an essential task in various fields such as protein design (Ingraham
et al., 2019), drug discovery (Bilodeau et al., 2022), and social network analysis (Li et al., 2023).
Among contemporary generative models, diffusion and flow models have emerged as two compelling
approaches for their ability to achieve state-of-the-art performance in graph generation (Niu et al.,
2020; Vignac et al., 2023a; Eijkelboom et al., 2024; Qin et al., 2024; Hou et al., 2024). In particular,
these generative models can be unified under the framework of stochastic interpolation (Albergo
& Vanden-Eijnden, 2023), which consists of four procedures (Lipman et al., 2024): 1) Drawing
samples from the reference (source) distribution p0(⋅) and/or the data (target) distribution p1(⋅) for
training set assembly; 2) Constructing a time-continuous probability path pt(⋅),0 ≤ t ≤ 1 interpolating
between p0 and p1; 3) Training a model to reconstruct the probability path by either approximating
the score function or velocity fields (ratio matrix in the discrete case); and 4) sampling from p0 and
transforming it through the learned probability path to get samples that approximately follow p1.

A core challenge in this framework is constructing the probability path pt. Existing text and image
generative models, operating either in the continuous (Ho et al., 2020; Song et al., 2021; Lipman et al.,
2023; Liu et al., 2023b) or discrete (Campbell et al., 2022; Sun et al., 2023; Campbell et al., 2024;
Gat et al., 2024; Minello et al., 2025) space, typically rely on linear interpolation between source and
target distributions to construct the path. Graph generation models, including diffusion (Niu et al.,
2020; Vignac et al., 2023a; Haefeli et al., 2022; Xu et al., 2024; Siraudin et al., 2024) and flow-based
models (Eijkelboom et al., 2024; Qin et al., 2024; Hou et al., 2024), inherit this design by modeling
every single node and edge independently and linearly build paths in the disjoint space. However,
we argue this approach to be inefficient because it neglects the strong interactions and relational

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Ideal 
Velocity

Estimated
velocity

(a) Training path comparison (b) Training path manipulation

C
onvergence G

ap

(c) Sampling path comparision

Figure 1: Probability path visualization. Since the probability is intractable, the average maximum
mean discrepancy ratio (y-axis) of graph statistics between interpolants and the data points is used as
a proxy for the probability. Lower means closer to the data distribution (details in Section I.6).

structure inherent in graphs, i.e., the significance of a node heavily depends on the configuration of
its neighbors. We first show the negative impact of linear path through a motivating example.

The limitation of linear interpolation. In flow models1, intuitively, the velocity is trained by
approximating the tangent of the probability path in the training set, while generation follows the
learned velocity to reconstruct the path toward the data distribution. The blue line in Fig. 1a illustrates
the training path obtained by linear interpolation: it remains flat until a transition point at t ≈ 0.82,
after which it drops sharply. This non-smooth path leads to poor velocity estimation (red arrow) as:
1) the critical transition region 0.8 < t < 1 is less explored, causing potential underfitting, and 2)
the velocities trained in the flat region t < 0.8 fail to guide the model toward the target distribution.
Consequently, sampling struggles to converge to the data distribution as shown in Fig. 1c. Ideally, we
need a smooth probability path like the green line in Fig. 1a to ensure that at every time t, the model
takes stable, meaningful steps toward the target distribution. More evidence in App. I.5.

We attribute this issue to the linear path construction that fails to capture global co-evolution (Haasler
& Frossard, 2024) of the graph components, and cannot guarantee an optimal transport displacement
between non-Euclidean graph distributions (Formal explanations in Section 2.2). Thus, the con-
structed path is suboptimal with a sharp transition from reference to data distribution or even deviates
from the valid graph domain (Kapusniak et al., 2024). Though not explicitly mentioned, Qin et al.
(2024) mitigates this issue through heuristic strategies to smooth the path, which we conceptually
visualize in Fig. 1b and discussed in App. F.1. This shows a potential benefit in manipulating the path
and we aim at building a theoretically grounded framework for probability path construction.

Proposed solution. To this end, we draw on statistical relational learning and model graphs using
Markov Random Fields (MRFs) (Taskar et al., 2007; Qu et al., 2019). MRFs organize the nodes/edges
as an interconnected system and interpolating between two MRFs captures the joint evolution of the
graph system. Extending Haasler & Frossard (2024), we derive a closed-form Wasserstein distance
between graph distributions and leverage it to construct Bures-Wasserstein (BW) interpolation
that ensures the OT displacement between graph objects. We then integrate these insights into a
flow-matching framework called BWFlow. Specifically, BWFlow operates on smooth, globally
coherent velocity fields, exclusively constructed by BW interpolation, to generate graphs (see Fig. 1c).
Crucially, BWFlow admits simulation-free computation of densities and velocities along the entire
path, which translates into efficient, stable training and sampling.

Contributions. First, observing that the linear interpolation used in existing models is suboptimal, we
propose a theoretically grounded framework for probability path construction and velocity estimation
in graph generation. Second, through parameterizing graphs as MRFs, we introduce BWFlow, a
flow-matching model for graph generation that constructs probability paths respecting the graph
geometry and develops smooth velocities without heuristic path manipulations. Third, BWFlow was
tested on plain graph and molecule generation, exhibiting better performance and dynamics, such as
fast and stable training convergence and efficient sampling.

1This work focus on flow models and left the generalization to diffusions in App. F.2.
2The specific value is an empirical observation and does not have a theoretical significance. Fig. 6 illustrates

that it differs across datasets.
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2 PRELIMINARIES

2.1 FLOW MATCHING FOR GRAPH GENERATION

Flow matching (FM). Generative modeling considers fitting a mapping from state space S → S
that transforms the samples from source distribution,X0 ∼ p0, to samples from target data distribution,
X1 ∼ p13. Continuous normalizing flow (Chen et al., 2018) parameterizes the transformation through
a push-forward equation that interpolates between p0 and p1 and constructs a probability path
pt(X) = [ψtp0] (X) through a time-dependent function ψt (a.k.a flow). A vector field ut, defined
as d

dt
ψt (X) = ut (ψt (X)) with ψ0 (X) = X , is said to generate pt if ψt satisfies Xt ∶= ψt (X0) ∼

pt for X0 ∼ p0. The FM (Lipman et al., 2023) is designed to match the real velocity field through:

LFM(θ) = Et,Xt∼pt(⋅) ∥vθ(Xt) − ut(Xt)∥2 . (1)

where vθ(⋅) ∶ S → S is the parameterized velocity field and t ∼ U[0,1].

Conditional flow matching (CFM). Given that the actual velocity field and the path are not
tractable (Tong et al., 2024), one can construct the per-sample conditional flow. We condition the
probability paths on variable Z ∼ π(⋅) (for instance, a pair of source and target points Z = (X0,X1))
and re-write pt(X) = Eπ(⋅)pt(X ∣ Z) and ut(X) = Eπ(⋅)ut(X ∣ Z) where the conditional path and
the velocity field are tractable. The CFM aims at regressing a velocity vθ(⋅) to ut(X ∣ Z) by the loss,

LCFM(θ) ∶= Et,Z∼π(⋅),pt(⋅∣Z) ∥vθ(Xt) − ut(Xt ∣ Z)∥2 , (2)

where it is shown that the CFM optimization has the same optimum as the FM (Tong et al., 2024).

Graphs as statistical objects. When considering graph generation with CFM, the very first step
is to model graphs as statistical objects. For notation, we let G = {V,E ,X} denote an undirected
graph random variable with edges E = {euv}, nodes V = {v}, and node features X = {xv}. A graph
realization is denoted as G = {V,E,X} ∼ p(G). We consider a group of latent variables that controls
the graph distribution, specifically the node feature mean X = [x1,x2, . . . ,x∣V∣]

⊺ ∈ R∣V∣×K , the
weighted adjacency matrix W ∈ R∣V∣×∣V∣, and the Laplacian matrix L = D −W ∈ R∣V∣×∣V∣, with
D = diag(W1) being the degree matrix (and 1 the all-one vector). In a nutshell, graphs are sampled
from G ∼ p(G;G) = p(X ,E ;X,W ).

Generation with CFM. The new graphs are sampled through iteratively building Gt+dt = Gt +
vθt (Gt) ⋅dt with initial G0 ∼ p0 and a trained velocity field vθt (Gt), so that the medium points follows
Gt ∼ pt(G) and terminates at p1. The velocity can be trained either via numerical approximation (i.e.,
vθt (Gt) ≈ (Gt+dt −Gt)/dt) or through x-prediction (Gat et al., 2024) which parameterize vθt (Gt) as,

vθt (Gt) = EG0∼p0(G),G1∼pθ
1∣t
(⋅∣Gt)

[vt (Gt ∣ G0,G1)] (3)

As such, training the velocity fields is replaced by a denoiser pθ1∣t (⋅ ∣ Gt) to predict the clean datapoint,
which is equivalent to maximizing the log-likelihood (Qin et al., 2024; Campbell et al., 2024),

LCFM = EG1∼p1(⋅),G0∼p0(⋅),t∼U[0,1](⋅),Gt∼pt∣0,1(⋅∣G1,G0) [log pθ1∣t (G1 ∣ Gt)] (4)

where t is sampled from a uniform distribution U[0,1] and Gt ∼ pt∣0,1 can be obtained in a simulation-
free manner. This framework avoids the evaluation of the conditional vector field at training time,
which both increases the model robustness and training efficiency.

To proceed, a closed form of pt(⋅ ∣ G0,G1) is required to construct both the probability path
and the velocity field vt (Gt ∣ G0,G1). A common selection to decompose the probability density
assumes independency for each node and edge (Hou et al., 2024; Qin et al., 2024; Eijkelboom et al.,
2024) giving p(G) = p(X)p(E) = ∏v∈V p(xv)∏euv∈E

p(euv). Choosing π(⋅) = p0 (G)p1 (G), the
boundary conditions follow pi(G) = δ(Xi =Xi) ⋅ δ(Ei =Wi),∀i = {0,1} with δ the dirac function.

3For clarity, we denote the calligraphic styleX being the random variable, the plain X the relevant realizations
and the bold symbol X the latent variables (parameters) that controls the distributons, i.e. X ∼ p(X ;X).
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This decomposition is further combined with linear interpolation to build the path, as introduced
in (Tong et al., 2024), where,

pt(xv ∣ G0,G1) = αt[X1]v + σt[X0]v, and ut(xv ∣X0,X1) = [X1]v − [X0]v,
pt(euv ∣ G0,G1) = αt[E1]uv + σt[E0]uv and ut(euv ∣ G0,G1) = [E1]uv − [E0]uv.

(5)

where αt and σt are two parameters to make the boundary condition satisfied, the selection is
discussed in App. F.2. Similarly, discrete flow matching frameworks for graph generation (Qin et al.,
2024; Siraudin et al., 2024; Xu et al., 2024) is also based on linear interpolation, where the interpolant
is sampled from a categorical distribution whose probabilities are simply linear interpolation between
the boundary conditions.

2.2 WHY WE NEED MORE THAN LINEAR INTERPOLATIONS FOR GRAPH GENERATION?

When we can use linear interpolation? Existing literature (Liu et al., 2023b; Albergo & Vanden-
Eijnden, 2023) argues that the probability path pt(X ∣ Z) should be chosen to recover the optimal
transport (OT) displacement interpolant (McCann, 1997). The (Kantorovich) optimal transport
problem is to find the transport plan between two probability measures, η0 and η1, with the smallest
associated transportation cost defined as follows.

Definition 1 (Wasserstein Distance). Denote the possible coupling as π ∈ Π(η0, η1), which is a
joint measure on S × S whose marginals are η0 and η1 respectively. With c(X,Y ) being the
cost of transporting the mass between X and Y , the Wasserstein distance is defined as,

Wc(η0, η1) = inf
π∈Π(η0,η1)

∫
S×S

c(X,Y )dπ(X,Y ). (6)

When the data follow Euclidean geometry and both boundary distributions p0, p1 follow isotropic
Gaussians, the path shown in Eq. (5) with σt → 0 becomes a solution to Eq. (6) (Tong et al., 2024).

However, given that graphs are non-Euclidean and interconnected objects violating the aformentioned
conditions, linearly interpolating nodes/edges with Eq. (5) cannot guarantee the OT displacement in
graph generation. Blindly using the approach will result in suboptimal probability path and lead to a
problematic velocity estimation (Chen & Lipman, 2024; Kapusniak et al., 2024). To illustrate, recall
that the velocity is trained via either approximating a) (Gt+dt −Gt)/dt or b) (G1 −Gt)/(1 − t). For
both strategies, approximating the path similar to Fig. 1a exposes two issues: 1) Most of the training
points (Gt) center around areas with high ratio, while the critical part for sampling is the region with
intermediate ratio, i.e. the points corresponding to 0.8 < t < 1. The velocity model has the risk of
underfitting in those regions, posing a risk when deployed for sampling. 2) Especially for strategy a,
when t is small, the velocity through numerical approximation (Gt+dt −Gt) /dt may not even point
correctly to the data distribution. Thus, when sampling, the model is difficult to determine the correct
direction in the early stage, which will lead to convergence failure.

To establish a good velocity estimation that yields better training and generation dynamics, an ideal
training probability path should: 1) adequately explore the landscape of Gt so that the velocity at
intermediate points is well-trained. 2) correctly estimate the velocity pointing to the data distribution.
It is worth noting that the superior performance achieved by previous work (Siraudin et al., 2024; Qin
et al., 2024) is partially attributed to their implicit manipulation of the path to satisfy these conditions.
The techniques used, including target guidance, time distortion, and stochasticity injection, are
conceptually visualized in Fig. 1b with discussions in App. F.1.

3 METHODOLOGY

In this paper, we aim to build a theoretically grounded framework for probability path construction
in graph generative models without the reliance on heuristic path manipulations. To this end, we
introduce Bures–Wasserstein Flow Matching (BWFlow), a novel graph generation framework that
is built upon the OT displacement when modeling graphs with Markov Random Fields (MRFs).
We begin by casting graphs in an MRF formulation in Section 3.1. We then derive the BWFlow
framework in Section 3.2 by formulating and solving the OT displacement problem on the MRF,
thereby yielding the fundamental components, interpolations and velocity fields, for FM-based
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graph generation. Finally, in Section 3.3, we extend BWFlow to discrete FM regimes, enabling its
application across a broad spectrum of graph-generation tasks. A schematic overview of the entire
BWFlow is illustrated in Fig. 2.

3.1 GRAPH MARKOV RANDOM FIELDS

We borrow the idea from MRF as a remedy to modeling the complex system organized by graphs,
which intrinsically captures the underlying mechanism that jointly generates the nodes and edges.
Mathematically, we assume the joint probability density distribution (PDF) of node features and graph
structure as p(G;G) = p(X ,E ;X,W ) = p(X ;X,W )p(E ;W ) where the node features and graph
structure are interconnected through latent variables X and W . For node features X , we follow
the MRF assumption in Zhu et al. (2003) and decompose the density into the node-wise potential
φ1(v),∀v ∈ V and pair-wise potential φ2(u, v), ∀euv ∈ E :

p(X ;X,W ) ∝∏
v

exp{−(ν + dv)∥V xv −µv∥2}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ1(v)

∏
u,v

exp{wuv [(V xu −µu)⊺(V xv −µv)]}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ2(u,v)

,

(7)
with ∥ ⋅ ∥ the L2 norm, (⋅)† the pseudo-inverse, V the transformation matrix modulating the graph
feature emission, and µv the node-specific latent variable mean. Eq. (7) can be expressed as a colored
Gaussian distribution in Eq. (8) given that V xv ∼ N(µv, (νI +L)−1). We further assume that edges
are emitted via a Dirac delta, E ∼ δ(W ), yielding our definition of Graph Markov Random Fields
(GraphMRF). The derivation can be found in App. A.2.

Definition 2 (Graph Markov Random Fields). GraphMRF statistically describes graphs as,

p(G;G) = p(X ,E ;X,W ) = p(X ;X,W ) ⋅ p(E ;W ) where E ∼ δ(W ) and

vec(X) ∼ N (X,Λ†) , with X = vec(V †µ),Λ = (νI +L) ⊗V ⊺V .
(8)

The ⊗ is the Kronecker product, vec(⋅) is the vectorization operator and I is the identity matrix.

Remark 1. GraphMRF explicitly captures node–edge dependencies and preserves the advantages
of colored Gaussian distributions. Section 3.2 will soon show that this yields closed-form
interpolation and velocity, and the probability path constructed from GraphMRFs remains on the
graph manifold that respects the underlying non-Euclidean geometry.
Remark 2. We emphasize that transforming a graph into the MRF domain actually enhances the
modeling ability of global information encoded in the low-frequency part of graph spectra. This
parallels the behavior observed in diffusion models with latent space, where latent representations
retain a larger proportion of low-frequency information, which is proven helpful in generative
models. We refer to App. A.3 for a discussion.

3.2 BURES-WASSERSTEIN FLOW MATCHING FOR GRAPH GENERATION

The optimal transport displacement between graph distributions. Given that the joint prob-
ability of graphs decomposed as p(G) = p(X ;X,W )p(E ;W ) and the measure factorized to
ηGj = ηXj ⋅ ηEj with j ∈ {0,1}, the graph Wasserstein distance between ηG0 and ηG1 is written as,

(Graph Wasserstein Distance) dBW(G0,G1) ∶= Wc (ηG0 , ηG1) = Wc(ηX0 , ηX1) +Wc(ηE0 , ηE1).

We extend Haasler & Frossard (2024) and analytically derive the graph Wasserstein distance using
the OT formula between Gaussians Dowson & Landau (1982); Olkin & Pukelsheim (1982); Takatsu
(2010) (see Lemma 2 proved in App. B.1) as follows.
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f. Generation: sample with velocity: 𝐺𝑡+𝑑𝑡 = 𝐺𝑡 + 𝑣𝜃 𝐺𝑡 𝑑𝑡

𝐺0 𝐺𝑡 𝐺𝑡+𝑑𝑡 𝐺1

𝜂𝐺0 ∼ 𝒩(𝑿0, Λ0−1) 𝜂𝐺𝑡 ∼ 𝒩(𝑿𝑡, Λ𝑡−1) 𝜂𝐺1 ∼ 𝒩(𝑿1, Λ1−1)

𝑡 = 0 𝑡 = 1

c. BW Interpolation between 𝜼𝑮𝟎 and 𝜼𝑮𝟏 to get 𝜼𝑮𝒕

𝜂𝐺𝑡+𝑑𝑡

b. Convert 
graphs to MRFs

d. Convert back to Graph domain 

e. Train the 
velocity 𝑣𝜃 𝐺𝑡a. Sample

𝐺0, 𝐺1

Figure 2: Schematic overview of BWFlow, which consists of: a) Sample the marginal graph condition
G0 and G1; b) Convert graphs to MRFs; c) Interpolate to get intermediate points; d) Convert back to
get Gt; e) Train velocity based on Gt; and f) Generate new points with the trained velocity.

Proposition 1 (Bures-Wasserstein Distance). Consider two same-sized graphs G0 ∼ p (X0,E0)
and G1 ∼ p (X1,E1) with V shared for two graphs, described by the distribution in Definition 2.
When the graphs are equipped with graph Laplacian matrices L0 and L1 satisfying 1) is
Positive Semi-Definite (PSD) and 2) has only one zero eigenvalue. The Bures-Wasserstein
distance between these two random graph distributions is given by

dBW(G0,G1) = ∥X0 −X1∥2F + β trace(L
†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2
) , (9)

as ν → 0 and β is a constant related to the norm of V †. The proof can be found in Section B.2.

Based on the Bures-Wasserstein (BW) distance, we then derive the OT interpolant for two graphs,
which is the solution of the displacement minimization problem described as,

Gt = argmin
G̃

(1 − t)dBW(G0, G̃) + tdBW(G̃,G1). (10)

The probability path. The interpolation is obtained through solving Eq. (10) with the BW distance
defined in Proposition 1, we prove the minimizer of the above problem has the form in Proposition 2.
The proof can be found in App. C.1.

Proposition 2 (Bures-Wasserstein interpolation). The graph minimizer of Eq. (10), Gt =
{V,Et,Xt}, have its node features following a colored Gaussian distribution, Xt ∼ N(Xt,Λ

†
t)

with Λt = (νI +Lt) ⊗V ⊺V and edges following Et ∼ δ(Wt), specifically,

L†
t = L

1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)
2

L
1/2
0 , Xt = (1 − t)X0 + tX1 (11)

The interpolant provides a closed form for the induced probability path p(Gt ∣ G0,G1) and the
velocity v(Gt ∣ G0,G1) that is easy to access without any simulation.

The velocity. We consider the reparameterization as in Eq. (3) and derive the conditional velocity
vt (Gt ∣ G1,G0) as in Proposition 3.
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Proposition 3 (Bures-Wasserstein velocity). For the graph Gt following BW interpolation
in Proposition 2, the conditional velocity at time t with observation Gt is given as,

vt(Et ∣ G0,G1) = Ẇt = diag(L̇t) − L̇t, vt(Xt ∣ G0,G1) =
1

1 − t(X1 −Xt)

with L̇t = 2Lt − TLt −LtT and T = L1/2
0 (L

†/2
0 L†

1L
†/2
0 )1/2L

1/2
0

(12)

where Wt =Dt −Lt and Lt defined in Eq. (11). Derivation can be found in Section C.2.

With Proposition 2 and Proposition 3, we are now able to formally construct the algorithms for
Bures-Wasserstein flow matching. Taking continuous flow matching as an example, Algorithm 1
and 2 respectively introduce the training and sampling pipelines for our BWFlow.

Remark: Similar to denoiser/noise-prediction parameterization, there exist multiple ways to
establish or numerically approximate the BW interpolation and velocity for training and inference.
The choice will have an impact on training and sampling dynamics, such as stability and efficiency.
We provide a discussion of the design space and the trade-offs in App. E.

3.3 DISCRETE BURES-WASSERSTEIN FLOW MATCHING FOR GRAPH GENERATION

Up to now we are working on the scenario when p(X ∣ X,W ) is a Gaussian and p(E ∣W ) is a
Dirac distribution. However, previous studies have observed a significant improvement of the discrete
counterpart of the continuous graph generation models Vignac et al. (2023a); Xu et al. (2024); Qin
et al. (2024). To benefit our model from such a nature, we derive the discrete Bures-Wasserstein flow
matching for graph generation.

The discrete probability path. We design the probability path as discrete distributions,

pt(xv ∣ G0,G1) = Categorical([Xt]v), pt(euv ∣ G0,G1) = Bernoulli([Wt]uv)
s.t. p0(G) = δ(G0, ⋅), p1(G) = δ(G1, ⋅)

(13)

where Wt = Dt −Lt with Xt and Lt defined the same in Eq. (11). We consider the fact that the
Dirac distribution is a special case when the Categorical/Bernoulli distribution has probability 1 or
0, so the boundary condition p0(G) = δ(G0, ⋅), p1(G) = δ(G1, ⋅) holds. Even though we are not
sampling from Gaussian distributions anymore, it is possible to approximate the Wasserstein distance
between two multivariate discrete distributions with the Gaussian counterpart so the conclusions,
such as optimal transport displacements, still hold. We left the discussion in App. D.2.

The discrete velocity fields. The path of node features Xt can be re-written as pt(X) = (1 −
t)δ(⋅,X0) + tδ(⋅,X1) so the conditional velocity can be accessed through vt(Xt ∣ G0,G1) =
[δ(⋅,X1)− δ(⋅,Xt)]/(1− t). However, the probability path of edges Et, shown in Eqs. (11) and (13),
cannot be written as a mixture of two boundary conditions given the non-linear interpolation. To this
end, we derive in App. D.3 that the discrete velocity follows,

vt(Et ∣ G1,G0) = (1 − 2Et)
Ẇt

Wt ○ (1 −Wt)
, (14)

where Wt =Dt −Lt, Ẇt = diag(L̇t) − L̇t with Lt, L̇t defined in Eqs. (11) and (12) respectively.
With the interpolation and velocity defined, the discrete flow matching is built in Algorithms 3 and 4.

4 EXPERIMENTS

We evaluate BWFlow through both the plain graph generation and real-world molecule generation
tasks. We first outline the experimental setup in Section 4.1, followed by a general model comparison
in Section 4.2. Next, we conduct behavior analysis in Section 4.3 to understand the superior
training/sampling dynamics BWFlow can bring.
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Algorithm 1: BWFlow Training
Input: Ref. dist p0 and dataset D ∼ p1.
Output: Trained model fθ(Gt, t).

1 Initialize model fθ(Gt, t);
2 while fθ not converged do
3 Sample batched {G0} ∼ p0, {G1} ∼ D;

/* Construct Prob.path */
4 Sample t ∼ U(0,1);
5 Calculate the BW interpolation

p(Gt ∣ G0,G1) via Eq. (11);
/* x-prediction */

6 pθ1∣t(⋅ ∣ Gt) ← fθ(Gt, t);
7 Loss calculation via Eq. (4);
8 optimizer.step();

Algorithm 2: BWFlow Sampling
Input: Reference distribution p0, Trained Model

fθ(Gt, t), Small time step dt,
Output: Generated Graphs {Ĝ1}.

1 Initialize samples {Ĝ0} ∼ p0;
2 Initialize the model pθ1∣t(⋅ ∣ Gt) ← fθ(Gt, t) for

t← 0 to 1 − dt by dt do
/* x-prediction */

3 Predict G̃1 ← pθ1∣t(⋅ ∣ Ĝt);
/* Velocity calculation */

4 Calculate vθ(Ĝt ∣ Ĝ0, G̃1) via Eq. (12);
/* Numerical Sampling */

5 Sample Ĝt+dt ∼ Ĝt + vθ(Ĝt)dt

4.1 EXPERIMENT SETTINGS

Dataset. We evaluate the models’ ability of plain graph generation on three benchmark datasets
following Martinkus et al. (2022); Vignac et al. (2023a); Bergmeister et al. (2024), specifically, planar,
tree, and SBM (stochastic blocking models) graphs. Two datasets, namely MOSES (Polykovskiy
et al., 2018) and GUACAMOL (Brown et al., 2019), are benchmarked to test the model performance
on 2D molecule generation. For 3D molecule generation with coordinate data, we test the model on
QM9 (Ramakrishnan et al., 2014) and GEOM-DRUGS (Axelrod & Gómez-Bombarelli, 2020).

Metrics. In plain graph generation, the evaluation metrics include the percentage of Valid, Unique,
and Novel (V.U.N.) graphs, and the average maximum mean discrepancy ratio (A.Ratio) of graph
statistics between the set of generated graphs and the test set are reported (details in Section I.6). For
molecule generation, we test two scenarios with and without bond type information, where the latter
validates the capacity of our methods in generating the graph structures. To this end, we develop a
new relaxed metric to measure the stability and validity of atoms and molecules when bond types are
not available. Specifically, the atom-wise stability is relaxed as:

Stability of Atom i: si = I[∃{bij}j∈Ni ∈ ∏
j∈Ni

Bij ∶ ∑
j∈Ni

bij = EVi], with the identity function I.

This means atom i is “relaxed-stable” if there is at least one way to pick allowed bond types (Bij)
to its neighbors Ni so that their total exactly matches the expected valences EVi. Such a relaxed
stability of atoms (Atom.Stab.) inherently defines molecule stability (Mol.Stab.) and the validity of
a molecule. In addition to these metrics, distribution metrics including charge distributions and total
variation for atom and angles are also used. Details in App. I.6.

Setup. To isolate the impact from model architecture, we follow Qin et al. (2024) to fix the backbone
model as the same graph transformers. To fairly compare the impact of probability path construction,
we disabled the path manipulation strategies such as time distortion and target guidance from Qin et al.
(2024) and predictor-corrector in Siraudin et al. (2024) (the general comparison with all strategies
enabled is left in App. I.2). More experimental details can be found in App. I.1.

4.2 MAIN RESULTS FOR GRAPH GENERATION

Plain graph generation. Given that the training dynamics on these benchmarks are extremely
unstable and performance continues to fluctuate significantly even after convergence (the transparent
jagged curve in Fig. 3c gives a visualization), we calculate the average results over the last 5
checkpoints (CAVG) to reflect the model behaviour after convergence. The exponentially moving
average (EMA) with decay 0.999 is applied to the model. As illustrated in Table 1, BWFlow
consistently outperforms other benchmarks in terms of A.Ratio and exceeds most competitors on
Planar and SBM in V.U.N. The lone exception is the tree graphs, where our model falls short. We
attribute this gap to the fundamentally different spectral pattern for tree graphs, which we provide a
discussion in App. A.3.
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Table 1: Plain graph generation performance. The path manipulation methods, e.g. target guidance
in Qin et al. (2024) and predictor-corrector in Siraudin et al. (2024), are disabled to purely evaluate the
impact of path construction. This table unifies the path distortion designs as in Table 10 and presents
the CAVG results. We reproduce the state-of-the-art diffusion/flow model for comparison, while
other models evaluated on best-checkpoint results are in the Table 11. The full statistics in Table 13.

Planar Tree SBM

Model Class V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓
Train set — 100 1.0 100 1.0 85.9 1.0

DiGress (CAVG) (Vignac et al., 2023a) Diffusion 61.5±10.1 9.9 ±3.3 56.0 ±11.0 8.9±3.2 56.0±8.5 3.5±0.5

DisCo (CAVG) (Xu et al., 2024) Diffusion 57.5± 2.5 9.0± 1.4 / / 55.0± 5.9 11.6± 2.9

HSpectre (Bergmeister et al., 2024) Diffusion 67.5 3.0 82.5 2.1 75.0 10.5
GruM (CAVG) (Jo et al., 2024) Diffusion 74.4±5.15 3.2±0.4 52.5±3.2 2.4±0.7 73.5±6.7 2.6±0.6

Cometh (CAVG) (Siraudin et al., 2024) Diffusion 80.5± 5.79 3.0± 0.6 84.5± 7.8 2.0± 0.4 77.5± 5.7 4.7± 0.6

DeFoG (CAVG) (Qin et al., 2024) Flow 77.5±8.37 3.5±1.7 83.5±10.8 1.9±0.4 85.0±7.1 3.4±0.4

BWFlow (CAVG) Flow 84.8±6.44 2.4±0.9 81.5±4.9 1.3±0.2 84.5±8.0 2.3±0.5

Dataset Interpolation Metrics
µ V.U.N(%) Mol.Stab. Atom.Stab. Connected(%) Charge(10−2) Atom(10−2) Angles(○)

QM9
(with h)

MiDi 1.01 93.13 93.98 99.60 99.21 0.2 3.7 2.21
FlowMol 1.01 87.53 88.45 99.13 99.09 0.4 4.2 2.72
BWFlow 1.01 96.45 97.84 99.84 99.24 0.1 2.3 1.96

GEOM
(with h)

Midi 1.34 78.23 32.42 89.61 79.15 0.6 11.2 9.6
FlowMol 1.34 82.20 36.90 94.60 59.98 0.4 8.8 6.5
BWFlow 1.20 87.75 46.80 95.08 73.53 0.1 6.5 3.96

Table 2: Quantitative experimental results on 3D Molecule Generation with explicit hydrogen.

Molecule generation. Table 2 gives the results on the 3D molecule generation task with explicit
hydrogen, where we ignore the bond type but just view the adjacency matrix as a binary one for
validating the power of generating graph structures. Interestingly, the empirical results show that even
without edge type, the models already can capture the molecule data distribution. And our BWFlow
significantly outperforms the SOTA models, including MiDi Vignac et al. (2023b) and FlowMol Dunn
& Koes (2024). We believe a promising future direction is to incorporate the processing of multiple
bond types into our framework, which would potentially raise the performance by a margin.

4.3 BEHAVIOR ANALYSIS

Table 3: Model performance in small sam-
pling steps. DeFoG-1 and DeFoG 2 are with-
out and with path manipulation respectively.

Planar SBM

Model V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓
Cometh 17.0± 4.5 7.5± 2.7 43.0± 7.5 3.3± 0.9

DeFoG-1 24.5±6.5 6.6±0.9 32.5±8.8 7.9±0.7

DeFoG-2 72.0±7.4 6.3±1.9 47.5±2.0 3.1±0.9

BWFlow 77.0±3.7 4.1±1.0 52.0±5.1 2.6±0.9

BWFlow provides smooth velocity in probability
paths. To illustrate how BWFlow models the smooth
evolution of graphs, we compute the A.Ratio on SBM
datasets (the figures for the others are in Fig. 6) be-
tween generated graph interpolants and test data for
t ∈ [0,1], as shown in Fig. 3a. In contrast to the linear
(arithmetic) interpolation, BW interpolation initially
exposes the model to more out-of-distribution sam-
ples with increased A.Ratio. After this early explo-
ration, the A.Ratio monotonously converges, yielding
a smooth interpolation between the reference graphs
and the data points. This behavior enhances both
the model robustness and velocity estimation, which helps in covering the convergence gap in the
generation stage as in Fig. 1c. In comparison, harmonic and geometric interpolations step outside the
valid graph domain, making the learning ill-posed.

The impact of interpolation methods on the model performance. Fig. 3b illustrated a bar plot
that compares interpolation methods on the ability of generating valid plain graphs measured by
V.U.N., which shows the superiority of BW interpolation in capturing graph distributions (full results
in Table 7). Fig. 3c illustrated an example (in planar graph generation) of the convergence curve
at the training stage, which suggests that BWFlow can bring a faster convergence speed compared
to FM methods constructed with linear (arithmetic) interpolations. Additionally, we test when the
sampling step size is only 3% of the original one (30 vs 1k), and report the results in Table 3. The
results show that BWFlow significantly succeeds in generating high-quality graphs when sampling
steps are small.
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(a) The evolution of graph statistics ra-
tio along the probability path.
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(b) The impact of interpolation
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(c) Convergence analysis of BW-Flow
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Figure 3: Ablation studies for Bures-Wasserstein Flow Matching.

5 DISCUSSION AND FUTURE WORK

In this paper, we introduce BWFlow, a flow matching model that intergrates the non-Euclidean
and interconnected properties of graphs for graph generation. While we show BWFlow exhibits
outstanding performance in various graph generation tasks, there still remains a few solid future
work.

Extension to multiple relation types. As our framework is built upon the interpolation parameterized
by the Graph Laplacian, it is not easily generalizable to the graph generation with multiple edge types.
We made preliminary attempts in App. F.5 but a comprehensive design is still required.

Efficient Probability Path Construction. Our BW interpolation induces an extra O(N3) linear algebra
operations (noted not reflecting the model complexity) in path construction. When scaled up to large
but sparse graphs, the complexity can be reduced to O(TN2) (with T the iteration steps) through
iterative solving such as least-squares with QR factorization. We conduct a preliminary experiment
for this in App. F.4 and leave further development as future work.

The generality of GMRF. As discussed in App. A.3, GMRF enhances algorithm’s ability in modelling
graphs with narrow spectral spread while does not improve on graphs with wide spectral spread.
Thus, adapting GMRF to graphs with more complex spectral patterns remains a promising direction.
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A GRAPH MARKOV RANDOM FIELDS: BACKGROUND AND THEORY

A.1 BACKGROUND OF MARKOV RANDOM FIELDS

Markov random fields (MRFs) were originally developed to describe the dynamics of interconnected
physical systems such as molecules and proteins (Weigt et al., 2009; Bach et al., 2020). MRFs are
energy-based models that have the following probability density:

p(X) = 1

Z
∏
c

ϕc (xc) =
1

Z
e−U(X)/kT , (15)

where the energy U(X) is used to describe the whole connected system. For instance, in the molecule
system that consists of atoms and bonds, the overall energy is decomposed into the atom-wise
potential φ1(v),∀v ∈ V and bond-wise potential φ2(u, v), ∀euv ∈ E . MRFs serve as a natural and
elegant way to describe general graph systems.

The energy-based models have an intrinsic relationship with generative models. As an example, Song
et al. (2021) derived the relationship between diffusion models and the Langevin dynamics, which
is used to describe the evolution of an energy-based model. It is shown that the diffusion models
are trying to approximate the score function ∇X log p(X). In the energy-based models, the score
function is just the gradient of energy, ∇X log p(X) = −∇XU(X), and the Langevin dynamics
becomes transiting between states with different energies.

The idea of our paper originated from the two facts: MRFs are energy-based model describing con-
nected systems, and the energy-based models have their intrinsic relationship with the diffusion/flow
models. Thus, if a model is required to describe the evolution of the whole graph system, we believe
it is natural to consider constructing a probability path for two graph distributions with MRFs as the
backbone.

A.2 DERIVATION OF GRAPH MARKOV RANDOM FIELDS

The hierarchical graphical model for GraphMRF is visualized in Fig. 4. With such a modelling, the
following decomposition holds:

p(G ∣G) = p(X ,E ∣X,W )
= p(X ∣ E ,X,W )p(E ∣X,W )
= p(X ∣X,W )p(E ∣W )

where the node features and graph structure are interconnected through latent variables X and
W .The first step follows the chain rule, and the second steps utilize the properties of the Markov
Random Fields, i.e 1) the graph structure serves as a prior and is generated first, and 2) the node
features are emitted based on that structure. This makes W alone governs the structural prior, i.e.
p(E ∣W ,X) = p(E ∣W ). For notation clarity, we distinguish the dependency along same hierarchy
in the graphical model by using p(⋅ ∣ ⋅) with the difference hierarchies as p(⋅; ⋅) (‘∣’ v.s. ‘;’).

We then show the derivation of Definition 2, which is restated here:

Definition 3 (Graph Markov Random Fields). GraphMRF statistically describes graphs as,

p(G;G) = p(X ,E ;X,W ) = p(X ;X,W ) ⋅ p(E ;W ) where E ∼ δ(W ) and

vec(X) ∼ N (X,Λ†) , with X = vec(V †µ),Λ = (νI +L) ⊗V ⊺V .
(16)

The ⊗ is the Kronecker product, vec(⋅) is the vectorization operator and I is the identity matrix.

Derivation:

We start from
p(X ;X,W ) ∝∏

v

exp{−(ν + dv)∥V xv −µv∥2}∏
u,v

exp{wuv [(V xu −µu)⊺(V xv −µv)]} .

(17)
We assume that the linear transformation matrix has dimension V ∈ RK′

×K given that xv ∈ RK and
define a transformed variable

hv ≡ V xv −µv ∈ RK′

, stacking asH ∈ R∣V∣×K
′

. (18)
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𝑿
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𝑾

Figure 4: The graphical model for GraphMRF.

The probability becomes

P (H;X,W ) ∝∏
v

exp{−(ν + dv)∥hv∥2}∏
u,v

exp{wuv h
⊺
uhv}. (19)

Then, the terms inside the exponent in Eq. (19) become
−∑

v

(ν + dv)∥hv∥2 +∑
u,v

wuv h
⊺
uhv = −∑

v

(ν + dv)h⊺vhv +∑
u,v

wuv h
⊺
uhv

= −∑
u,v

h⊺u[(ν + du)δuv −wuv]hv,

where the Kronecker delta δuv = 1 if u = v and 0 else. We define a squared matrix Λ′ to arrange the
inner term, which can be written as,

Λ′ = νI +L with Λ′uv = (ν + du)δuv −wuv. (20)
I is the identity matrix. Thus, the exponent in compact matrix form gives

−1
2
Tr(H⊺Λ′H), whereH =

⎛
⎜⎜
⎝

h1
h2
⋮

h∣V∣

⎞
⎟⎟
⎠
. (21)

It is possible to rearrange the exponent as
Tr(H⊺Λ′H) = vec(H)⊺(Λ⊗ I)vec(H), (22)

where ⊗ denotes the Kronecker product. This is exactly in the form of a multivariate colored Gaussian.
Thus, the joint distribution of vec(H) (of dimension ∣V∣K ′) is given by

vec(H) ∼ N(0, (νI +L))−1 ⊗ IK′), (23)

Recall that hv = V xv −µv , we obtain
vec(H) = (I ⊗V ) vec(X) − vec(µ). (24)

Since the transformation is linear, the distribution over X remains Gaussian. By the properties of
linear transformations of Gaussians, if

vec(H) ∼ N(vec(µ), Σh),vec(X) = (I ⊗V †) vec(H), (25)
then

vec(X) ∼ N((I ⊗V †) vec(µ), (In ⊗V †)ΣH (In ⊗V †)⊺). (26)

Thus, using the mixed-product property of the Kronecker product,
(I ⊗V †)((νI +L)−1 ⊗ I)(In ⊗V †)⊺ = (L + νI)−1 ⊗ (V †V †⊺) (27)

Finally, the joint distribution over X is
vec(X) ∼ N(X,Σ),

with X = (I ⊗V †) vec(µ) = vec(V †µ)
and Σ = (νI +L)−1 ⊗ (V †V †⊺) ,

(28)

We use the following lemma:
Lemma 1. Given two invertible matrices A and B, their Kronecker product satisfies (A⊗B)−1 =
A−1 ⊗B−1.

So that we get
vec(X) ∼ N (X,Λ†) , with X = vec(V †µ),Λ = (νI +L) ⊗V ⊺V . (29)

which ends the derivation.
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A.3 THE APPLICABILITY OF GRAPH MARKOV RANDOM FIELDS

In the experiments, we realize that our BWFlow does not achieve satisfactory results in tree dataset.
This evokes us to investigate why this happened, and what properties tree graphs preserve that Graph
Markov random fields fail to capture. In what follows, we will provide a comprehensive analysis on
the GMRF and show why GMRF achieves a slightly worse performance in trees. We summarize the
finding as,

Take-home Message: Modelling Graphs with GMRF enhance algorithm’s ability in capturing
the global properties encoded in the low-frequency components of the spectra, while retaining
a similar capacity in capturing the high frequency components that encodes the fine-grained
structures. With such a behavior, graphs with narrow spectral spread are more suitable to
be modelled by GraphMRF. In datasets requiring less global modeling ability, BWFlow still
preserves comparable capacity to the SOTA models.

We now formally analyze GMRF. Given that our GMRF have an explicit form to constrain the graph
distribution, it inherits certain inductive biases and we have to properly understand their generality,
i.e., when we could use GraphMRF to model the distribution.

Plain graph Markov random fields. To understand the scenarios which we can utilize MRF to
model graphs, we first consider the simplest case when V is rectangular orthogonal (semi-orthogonal)
matrix such that V ⊺V = I and the mean µ = 0, the probability density becomes,

P (X,L) ∝ exp(−X⊺(L + νI)X) = exp(− ∑
{u,v}∈E

Wuv(xu − xv)2 − ν∑
u

x2
u) (30)

As ν → 0, the exponent term inside becomes

S(X,L) = − ∑
{u,v}∈E

Wuv(xu −xv)2 = trace(X⊺LX), (31)

where we name S(X,L) as the smoothness of the graph features. The smoothness measures how
similar the neighbors connected are. For instance, if there exists an edge between node u and v
weighted as Wuv , the likelihood will be higher if xu and xv be similar, so that ∥xu −xv∥2 are small.
This suggests that the probability will be higher if the S(X,L) is small.

With this pattern, it can be already shown that GMRF can capture the graphs with high smoothness.
In the literature of spectral graph theory, the smooth graphs are commonly preserve highly dense
low-frequencey components, which are mainly responsible for representing the global properties.
Such a pattern can model the homophily, smoothness, planarity, and clustering of graphs, which
suggest why BWFlow excels in modeling distributions such as SBM and planar graphs.

Graph Markov random fields with embeddings. Now we move one step further to consider the
graphs with linear transformer matrix V . we can consider alinear transformer from xv to hv, i.e.,
giving hv = V xv −µ which gives the probability density as,

P (H,L) ∝ exp(− trace(H⊺(L + νI)H)) = exp(−wuv∥hu − hv∥2 − ν∑
u

∥hu∥2F) (32)

where,H = [h1, . . . hv, . . . hN ]⊺.
Linear transformation provides a map from the feature space to the latent space, which can be
considered as an embedding method to empower the models with better expressiveness. As a simple
example, when the V provides a negative projection, the mapping can capture the heterophily
relationships, which means the nodes connected are dissimilar.

Coincidently, this aligns well with the famous embedding method Node2Vec as in Grover & Leskovec
(2016), where the edge weights are proportional to the negative distance, or the inner product of the
embeddings. i.e.,

Wuv ∝ exp(−∥V xu −V xv∥2F) (33)
In Jiang et al. (2025) it is derived that learning the parameters of MRFs is intrinsically equivalent
to learning embeddings similar to Node2Vec. As such, the expressiveness of MRFs are as good as
Node2Vec, which grants its usage to molecule graphs, protein interaction networks, social networks,
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and knowledge graphs. In our paper we make the assumption is that the linear mapping from
X the observation is shared. This requirement translates to that the two graphs should have the
same embedding space and feature space, which is practical if the reference distribution and data
distributions share the same space.

Graphs without features. We wish to emphasize that even though the GraphMRF is constructed
under the assumption that graph features exist, it is capable of modeling the non-attributed graphs,
such as planar and SBM graphs. To do so, we consider the optimization over the Rayleigh function:
It is shown that, if v1, . . . , vk−1 are orthonormal eigenvectors for λ1, . . . , λk−1, then the eigenvalues
satisfy,

λk = min
x≠0

x⊥v1,...,vk−1

R(x), with R(x) = xTLx

xTx
(34)

In such a scenario, the graphs are no longer related to the actual node features, but instead, the
eigenvectors vk serve as an intrinsic graph feature. It is noted that R(x) is the normalized form
of the smoothness as in Eq. (30). This means that if the graphs are smooth (the spectrum of the
graph Laplacian focuses on the low-frequency components), the MRF model would give a higher
probability compared to the graphs with wider spectral spread. This pattern emphasizes the low-
frequency components when building the graph interpolations, which makes the whole algorithm
succeed in modelling the graph distributions of most plain graph datasets, such as Planar, SBM,
TLS, COMM20 datasets. There is no surprise that our algorithm gives better training and sampling
dynamics in those datasets.

It is also worth pointing out that there exists exceptions that GraphMRF is less capable of modelling.
Tree graphs are an example of graphs with wider spectral spread. They are acyclic and minimally
connected, lacking local clustering and cycles that would result in a highly concentrated spectrum.
For this type of graphs, BWFlow will not have a significant benefit in modelling capacity. However,
graphs with wider spectral concentration are relatively rare and most are artificial, such as scale-free
and expander graphs. In contrast, real-world graphs, such as social networks, citation graphs, traffic
networks, and molecular graphs, often contain cycles and densely connected subgraphs. They exhibit
strong community structure, local regularity and high redundancy. These characteristics contribute to
a highly concentrated Laplacian spectrum, with most eigenvalues clustered together, which aligns
well with the GraphMRF prior. Thus, we believe using GMRF and BWFlow to solve graph generation
is in general a valuable method.

Connection to Latent Generative Models. Although BWFlow is not directly formulated as a
latent diffusion/flow model, it shares a strong conceptual connection with this family of generative
approaches. Latent diffusion typically aims to 1) improve computational efficiency and 2) map data
into a smoother space where modeling becomes easier. BWFlow does not perform dimensionality
reduction, but it is motivated by a similar principle: transforming graphs into a smoother domain
can stabilize training and improve sampling efficiency. In BWFlow, this domain is the MRF space,
which is manually constructed rather than learned, but exhibits properties desirable in latent diffusion.
As discussed previously, transforming a graph into the MRF representation amplifies low-frequency
(global) components, paralleling observations in latent diffusion where early latent representations
retain a larger proportion of low-frequency information—an effect known to benefit generative
modeling Park et al. (2023). This perspective provides an alternative interpretation of why BWFlow
yields robust and efficient generation dynamics.

Furthermore, this viewpoint suggests a promising direction for simplifying our current design. In
the present implementation, the MRF representation is mapped back to the graph domain before
learning the velocity field via a graph transformer. From a latent-diffusion standpoint, an alternative
would be to directly parameterize the velocity in the MRF space and train via KL divergence between
colored Gaussian distributions, potentially improving efficiency. We leave this direction for future
exploration.
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B PROOFS

B.1 WASSERSTEIN DISTANCE BETWEEN TWO COLORED GAUSSIAN DISTRIBUTIONS

We first prove the lemma that captures the Wasserstein distance between two colored Gaussians,
which will be used in deriving our Bures-Wasserstein distances in graph generations.

Lemma 2. Consider two measures η0 ∼ N (µ0,Σ0) and η1 ∼ N (µ1,Σ1), describing two
colored Gaussian distributions with mean µ0,µ1 and covariance matrices Σ0,Σ1. Then the
Wasserstein distance between these probability distributions is given by

(W2 (η0, η1))2 = ∥µ0 −µ1∥2 +Tr(Σ0 +Σ1 − 2 (Σ1/2
0 Σ1Σ

1/2
0 )

1/2
) .

Proof. We first state the following proposition.
Proposition 4. (Translation Invariance of the 2-Wasserstein Distance for Gaussian Measures)
Consider two measures η0 ∼ N (µ0,Σ0) and η1 ∼ N (µ1,Σ1) and their centered measure as
η̃0 = N (0,Σ0) and η̃1 = N (0,Σ1), the squared Wasserstein distance decomposes as

W2
2 (η0, η1) = ∥µ0 −µ1∥22 +W

2
2 (η̃0, η̃1)

Proof :

Consider two random vectors X ,Y distributed as η0, η1,

X = µ0 + X̃ ,Y = µ1 + Ỹ, with X̃ ∼ η̃0, Ỹ ∼ η̃1.
For any coupling (X ,Y), we consider the expected squared Euclidean distance,

EX ,Y∥X − Y∥2 = EX ,Y ∥µ0 −µ1 + (X̃ − Ỹ)∥
2
.

= ∥µ0 −µ1∥2 + 2 ⟨µ0 − µ1, X̃ − Ỹ⟩ +EX̃ ,Ỹ∥X̃ − Ỹ∥
2

(35)

Since X̃ and Ỹ both have zero mean, we have E[X̃ − Ỹ] = 0 so the cross-term vanishes. Thus,

E∥X − Y∥2 = ∥µ0 −µ1∥2 +E∥X̃ − Ỹ∥2 (36)

Take the definition of 2-Wasserstein distance, the infimum over all couplings directly yields

(W2(η0, η1))2 = inf
π∈Π(η0,η1)

∫ ∥X − Y∥2 dπ(X ,Y).

= ∥µ0 −µ1∥2 +W2
2 (η̃0, η̃1)

(37)

This completes the proof of Proposition 4.

Now we prove the flowing proposition, which will give us our lemma.
Proposition 5. Given two centered measures as η̃0 = N (0,Σ0) and η̃1 = N (0,Σ1)

W2
2 (η̃0, η̃1) = Tr(Σ0 +Σ1 − 2 (Σ1/2

1 Σ0Σ
1/2
1 )

1/2
) . (38)

proof. The coupling π of η̃0 and η̃1 is a joint Gaussian measure with zero mean and covariance matrix

Σc = (
Σ0 C
CT Σ1

) ⪰ 0, (39)

where C is the cross-covariance and ⪰ means the matrix is positive semi-definitive (PSD). The
expected squared distance between the two random vectors (X ,Y) drawn from π is then described
as,

E∥X − Y∥2 = Tr(E[(X − Y)(X − Y)⊺])
= Tr(Σ0) +Tr(Σ1) − 2 Tr(C). (40)

The definition of Wasserstein distance gives,

Wc(η0, η1) = inf
π∈Π(η0,η1)

E∥X − Y∥2 (41)
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Thus, minimizing the Wasserstein distance is equivalent to maximizing Tr(C) over all C subject
to the joint covariance is positive semi-definite (PSD). It turns out (see Dowson & Landau (1982);
Olkin & Pukelsheim (1982); Takatsu (2010) ) that the condition in Eq. (39) is equivalent to,

Σ1 −C⊺Σ−10 C ⪰ 0↔ Σ
−1/2
0 CΣ

−1/2
1 has operator norm ≤ 1 (42)

So we denote K ∶= Σ−1/20 CΣ
−1/2
1 with ∥K∥op ≤ 1. Then

Tr(C) = Tr (Σ1/2
0 KΣ

1/2
1 ) = Tr (KΣ

1/2
1 Σ

1/2
0 ) .

Using von Neumann trace inequality, its trace inner-product with K is maximized by choosing
K = I on the support.

max
∥K∥op≤1

Tr(KA) = Tr (M1/2) , M =
√
AA⊺ = Σ1/2

1 Σ0Σ
1/2
1

Hence the optimal value of Tr(C) is

Tr(C∗) = Tr [(Σ1/2
1 Σ0Σ

1/2
1 )

1/2
]

Substituting this optimal value into the expression of Wasserstein distance, we obtain

W2
2 (η̃0, η̃1) = Tr(Σ0) +Tr(Σ1) − 2 Tr [(Σ1/2

1 Σ0Σ
1/2
1 )

1/2
] . (43)

This completes the proof of proposition 5. Taking Proposition 4 and Proposition 5 together, we
proved Lemma 2.

B.2 DERIVATION OF THE GRAPH WASSERSTEIN DISTANCE UNDER MRF

We then prove the Bures-Wasserstein distance for two graph distributions. We restate Proposition 1,

Proposition 6 (Bures-Wasserstein Distance). Consider two same-sized graphs G0 ∼ p (X0,E0)
and G1 ∼ p (X1,E1) with V shared for two graphs, described by the distribution in Definition 2.
When the graphs are equipped with graph Laplacian matrices L0 and L1 satisfying 1) is
Positive Semi-Definite (PSD) and 2) has only one zero eigenvalue. The Bures-Wasserstein
distance between these two random graph distributions is given by

dBW(G0,G1) = ∥X0 −X1∥2F + βTr(L
†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2
) , (44)

as ν → 0 and β is a constant related to the norm of V .

Specifically, Definition 2 uses graph Markov random fields to describe a graph as

p(G;G) = p(X ,E ;X,W ) = p(X ;X,W ) ⋅ p(E ;W ) where E ∼ δ(W ) and

vec(X) ∼ N (X,Λ†) , with X = vec(V †µ),Λ = (νI +L) ⊗V ⊺V .
(45)

With the graph Wasserstein distance defined as,

(Graph Wasserstein Distance) dBW(G0,G1) ∶= Wc (ηG0 , ηG1) = Wc(ηX0 , ηX1) +Wc(ηE0 , ηE1).

We first consider calculatingWc(ηX0 , ηX1). Specifically, this is the distance between two colored
Gaussian measures where

ηi ∼ N(µ′i,Σi), i = 0,1,

where µ′i = Vi ⊗µi and Σ−1i = Λi = (νI +Li) ⊗ (V ⊺i Vi).
(46)

where we first assume that these two Gaussians are emitted from different linear transformation
matrices V0 and V1. This will bring us the most general and flexible form that could be universally
applicable, and potentially can bring more insights to future work. Next, we will inject a few
assumptions to arrive at a more practical form for building the flow matching models.
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An important property of Kronecker product: Given two invertible matrices A and B, their Kronecker
product satisfies (A⊗B)−1 =A−1 ⊗B−1. Using such a property, in the limit as ν → 0, we have

Λi → Li ⊗ (V ⊺i Vi) Ô⇒ Σi = L−1i ⊗ (V ⊺i Vi)−1. (47)

According to Lemma 2, the squared 2-Wasserstein distance between two Gaussian measures is given
by

W2
2(η0, η1) = ∥µ′0 −µ′1∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mean term

+Tr(Σ0 +Σ1 − 2(Σ1/2
0 Σ1Σ

1/2
0 )

1/2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Covariance Term

. (48)

Mean Term. Since µ′i = V ⊗µi, the mean difference becomes

∥µ′0 −µ′1∥2 = ∥V0µ0 −V1µ1∥2F = ∥X0 −X1∥2F (49)

Covariance term. Using the property of the Kronecker product, the square root of Eq. (47) factors
in as

Σ
1/2
i = L−1/2i ⊗ (V ⊺i Vi)−1/2. (50)

and
Σ

1/2
0 Σ1Σ

1/2
0 = (L−1/20 L−11 L

−1/2
0 ) ⊗ ((V ⊺0 V0)−1/2(V ⊺1 V1)−1(V ⊺0 V0)−1/2) (51)

We first look into the term related to V0 and V1, which is,

Tr((V ⊺0 V0)−1/2(V ⊺1 V1)−1(V ⊺0 V0)−1/2) = Tr((V ⊺1 V1)−1(V ⊺0 V0)−1/2(V ⊺0 V0)−1/2)

= Tr((V ⊺1 V1)−1(V ⊺0 V0)−1)
(52)

As Tr(A +B) = Tr(A) +Tr(B) the covariance term becomes

Covariance Term

= Tr(Σ0 +Σ1 − 2(Σ1/2
0 Σ1Σ

1/2
0 )

1/2

)

= Tr(Σ0) +Tr(Σ1) − 2Tr ((Σ1/2
0 Σ1Σ

1/2
0 )1/2)

= Tr(L−10 ⊗ (V ⊺0 V0)−1 +L−11 ⊗ (V ⊺1 V1)−1 − 2 (L−1/20 L−11 L
−1/2
0 )

1/2

⊗ (V ⊺1 V1)−1/2(V ⊺0 V0)−1/2)
(53)

Given that Tr(A ⊗B) = Tr(A)Tr(B) and Tr(V ⊺V ) = ∥V ∥2F for any real-valued matrix V , we
can further derive,

Covariance Term = Tr[(V ⊺0 V0)−1]Tr(L†
0) +Tr[(V ⊺1 V1)−1]Tr(L†

1)

− 2Tr(L†/2
0 L†

1L
†/2
0 )

1/2

⋅Tr[(V ⊺1 V1)−1/2(V ⊺0 V0)−1/2].
(54)

Unfortunately, to simplify this equation, we have to make the two gram matrix, (V ⊺0 V0)−1 and
(V ⊺1 V1)−1 agree, i.e., (V ⊺1 V1)−1 = (V ⊺0 V0)−1. This will be satisfied if and only if there exists an
orthogonal matrix Q such that

V †
1 = V

†
0 Q.

Thus, to further process, we simply consider the case when V1 and V0 are exactly the same, i.e.,
V1 = V0 = V (we have already discussed how realistic this assumption is in Section A.3). So that we
work under the assumptions that ∥V †

0 ∥2F = ∥V
†
1 ∥2F = β, which simplify the trace as

Covariance Term = β ⋅Tr(L†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2

). (55)

Combining the mean term and the covariance term, we obtain the Wasserstein distance of
Wc(ηX0 , ηX1)
For calculatingWc(ηE0 , ηE1), we have the freedom to choose the cost function when obtaining the
Wasserstein distance. Note that W serves as the prior for the Gaussian covariance matrix Σ, where

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

the covariance has to be positive-semi definite. Thus, according to Bhatia et al. (2019), a proper
distance between two positive semi-definite matrices is measured by

W(ηE0 , ηE1) = ∥Σ
1/2
0 −Σ1/2

1 ∥
2

F
. (56)

Coincidently, this is another usage case when the Bures-Wasserstein metric is utilized. Putting
everything together, the Wasserstein distance in the limit ν → 0 is

dBW(G0,G1) = ∥V0µ0 −V1µ1∥2F + (β + 1) ⋅Tr(L†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2

).

= ∥X0 −X1∥2F
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dX(X0,X1)

+(β + 1) ⋅Tr(L†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dL(L0,L1)

. (57)

This expression separates the contribution of the mean difference (transformed by V ) and the
discrepancy between the covariance structures (encoded in L0 and L1). This could be further used to
derive BW interpolation, which we will show in Section C.1. In the main body, constant β actually
corresponds to β + 1 here. This complete our derivation in Proposition 1.

C DERIVATION OF BURES-WASSERSTEIN FLOW MATCHING

In order to build the flow matching framework, we need to derive the optimal interpolation and
the corresponding velocities for the probability path p(Gt ∣ G0,G1). This is achieved via the OT
displacement between two graph distributions.

C.1 THE BURES-WASSERSTEIN GRAPH INTERPOLATION

We aim to recover the proposition stated as follows.

Proposition 7 (Bures-Wasserstein interpolation). The graph minimizer of Eq. (10), Gt =
{V,Et,Xt}, have its node features following a colored Gaussian distribution, Xt ∼ N(Xt,Λ

†
t)

with Λt = (νI +Lt) ⊗V ⊺V and edges following Et ∼ δ(Wt), specifically,

L†
t = L

1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)
2

L
1/2
0 , Xt = (1 − t)X0 + tX1 (58)

The interpolation is an extension of the concept of mean, where in the optimal transport world, the
Wasserstein barycenter (mean) of measures η0, . . . ηm−1 under weights λ0, . . . λm−1 can be derived
over the following optimization problem:

η̄ = argmin
η

m−1

∑
j=0

λj (W2 (η, ηj))2 (59)

When m = 2, based on the Bures-Wasserstein (BW) distance, we can define the OT displacement
minimization problem on graphs described as,

Gt = argmin
G̃

(1 − t)dBW(G0, G̃) + tdBW(G̃,G1). (60)

where dBW(G0,G1) is described in Proposition 1. The optimal graph interpolation is the solution to
the problem.

In the setting of graph, this becomes a two-variable optimization problem, where

Xt,Et = argmin
X̃ ,Ẽ

(1 − t)dBW(G0, G̃) + tdBW(G̃,G1). (61)

Fortunately, recall in Eq. (57) that our distance measurement dBW(G0,G1) is decomposed into
dX(X0,X1) and dL(L0,L1), then the optimization over node and edges are disentangleable into
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solving the two sub optimization problem,
Sub-question 1: X̄t = argmin

X̃

(1 − t)∥X0 − X̃∥2F + t∥X̃ −X1∥2F

Sub-question 2: L̄t = argmin
L̃

(1 − t)dL(L0, L̃) + tdL(L1, L̃)
(62)

This two problems are completely disentangled thus we can solve them separately.

Sub-question 1 For the first problem, we simply set the derivate to 0 and get,
(1 − t)(X̃ −X0) + t(X̃ −X1) = 0→Xt = (1 − t)X0 + t(X1) (63)

Subquestion 2 The second subproblem is equivalent in deriving the covariance of Bures-
Wasserstein interpolation between two Gaussian measures, η0 ∼ N (0,L†

0) and η1 ∼ N (0,L†
1).

This problem has been properly addressed in Haasler & Frossard (2024) and here we just verbose
their results. For more details we refer the reader to Haasler & Frossard (2024) for a further
discussion.

The optimal transport geodesic between η0 ∼ N (0,L†
0) and η1 ∼ N (0,L†

1) is defined by ηt =
((1 − t)I + tT )#η0, where the symbol “#” denotes the push-forward of a measure by a mapping, T
is a linear map that satisfies TL†

0T = L
†
1.

We define a new matrix M and do normalization, which leads to,

T = L1/2
0 ML

1/2
0 (64)

Plug in gives,

TL†
0T
⊺ = L1/2

0 ML
1/2
0 L†

0 (L
1/2
0 ML

1/2
0 )

⊺

= L1/2
0 MM⊺L

1/2
0 .

(65)

So that we obtain
L†

1 = L
1/2
0 MM⊺L

1/2
0 →M = (L†/2

0 L†
1L

†/2
0 )1/2 (66)

Replace T and we get,

T = L1/2
0 (L

†/2
0 L†

1L
†/2
0 )

1/2
L

1/2
0 (67)

Given that the geodesic ηt = ((1− t)I + tT )#η0 which also has a Gaussian form ηt ∼ N (0,Σt), We
can then write the covariance matrix and obtain
L†

t = Σt = ((1 − t)I + tT )L†
0((1 − t)I + tT )

= L1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)L1/2

0 L†
0L

1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)L1/2

0

= L1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)
2

L
1/2
0

(68)
Which ends the derivation.

Remark 1: Even though the GraphMRF in Definition 2 does rely on an implicit linear emission
matrices V , the BW interpolation in Proposition 2 can be obtained without explicitly accessing
to the V matrices. The property was attractive as in practice we can construct the probability
path without explicitly fitting a V beforehand.

C.2 DERIVING THE VELOCITY OF BW INTERPOLATION

We first show the general form of the velocity term for the Gaussian and Dirac measures.

Gaussian measure. For a time-parametrized Gaussian density pt(x) = N (x;µt,Σt), the velocity
field vt(x) satisfies the continuity equation

∂tpt +∇ ⋅ (ptvt) = 0,
is an affine function of x. And the instantaneous velocity field follows,

vt(X) = µ̇t +
1

2
Σ̇tΣ

−1
t (X −µt) .
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Dirac measure. When the measure is a Dirac function,

pt(x) = δ (⋅,µt) .

We can just consider it as the limited case of the Gaussian measure, when Σt → 0. So that the velocity
at simply takes

vt(x) = µ̇t.

We then move to prove the following proposition for Bures-wasserstein velocity.

Proposition 8 (Bures-Wasserstein velocity). For the graph Gt following BW interpolation
in Proposition 2, the conditional velocity at time t with observation Gt is given as,

vt(Et ∣ G0,G1) = Ẇt = diag(L̇t) − L̇t, vt(Xt ∣ G0,G1) =
1

1 − t(X1 −Xt)

with L̇t = 2Lt − TLt −LtT and T = L1/2
0 (L

†/2
0 L†

1L
†/2
0 )1/2L

1/2
0

(69)

where Wt =Dt −Lt and Lt defined in Eq. (11).

Proof:

The graph structure velocity. As we assume the edges, Et ∼ δ(⋅,Wt), following a dirac distribu-
tion, the velocity is defined as

vt(Et) = Ẇt.

Given that, Ẇt = diag(L̇t) − L̇t, we transit fo deriving the derivative of the Laplacian matrix, L̇t.
Using the fact that,

d

dt
(A−1) = −A−1 dA

dt
A−1

we obtain the derivate of Laplacian matrix,

L̇t =
d(Σ†

t)
dt

= Σ†
t

dΣt

dt
Σ†

t = Lt
dΣt

dt
Lt (70)

According to Eq. (68) and Eq. (67), the covariance matrix is defined through the interpolation,

Σt = ((1 − t)I + tT )L†
0((1 − t)I + tT ) ∶=RtL

†
0Rt (71)

where Rt = (1 − t)I + tT . Taking the derivative, we get,

Σ̇t =
d

dt
(RtΣ0Rt) =R′tΣ0Rt +RtΣ0R

′
t = (T − I)Σ0Rt +RtΣ0(T − I) (72)

Using the fact that Σ0Rt =RtΣ0 = Σt, we obtain the covariance gradient

Σ̇t = (T − I)Σt +Σt(T − I) (73)

So that,

−L̇t =
d(Σ†

t)
dt

= Σ†
t

dΣt

dt
Σ†

t = Lt
dΣt

dt
Lt

= Lt((T − I)L†
t +L†

t(T − I))Lt

= Lt(T − I) + (T − I)Lt

= LtT + TLt − 2Lt

(74)

Thus, L̇t = 2Lt −LtT − TLt.

Given that Lt =Dt−Wt so that Wt = diag(Lt)−Lt, taking the derivative gives Ẇt = diag(L̇t)−L̇t.
As we assume the edges, Et ∼ δ(⋅,Wt), the derivate directly yields the velocity,

vt(Et ∣ G0,G1) = Ẇt = diag(L̇t) − L̇t.
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The node feature velocity. The instantaneous velocity field follows,

vt(X ∣ G0,G1) = µ̇t +
1

2
Σ̇tΣ

−1
t (X −µt) .

The mean gradient interpolating η0 and η1 can be written as µ̇t =X1−X0 and Xt = (1−t)X0+tX1.
So that the velocity leads to,

vt(X ∣ G0,G1) =X1 −X0 +
1

2
L̇†

tLt (X −Xt) .

However, in practice, we do not need such a complicated velocity term. We wish to avoid the
estimation of complex gradient-inverse term so that we can escape from the complicated computation.
Under the assumption that the amplitude of covariance is much smaller than the mean difference,
we can omit the second term and just keep the mean difference. Hence the instantaneous velocity is
simply described as

vt(Xt ∣ G0,G1) =X1 −X0 =X1 −X0 =
1

1 − t(X1 −Xt) (75)

D DISCRETE BURES-WASSERSTEIN FLOW MATCHING FOR GRAPH
GENERATION

D.1 PROBABILITY PATH CONSTRUCTION FOR DISCRETE BURES-WASSERSTEIN FLOW
MATCHING

The discrete probability path. We design the probability path as discrete distributions,

pt(xv ∣ G0,G1) = Categorical([Xt]v), pt(euv ∣ G0,G1) = Bernoulli([Wt]uv)
s.t. p0(G) = δ(G0, ⋅), p1(G) = δ(G1, ⋅)

(76)

where Wt = Dt − Lt with Xt and Lt defined the same in Eq. (11). We consider the fact that
the Dirac distribution is a special case when the Categorical/Bernoulli distribution has probability
1 or 0, so the boundary condition p0(G) = δ(G0, ⋅), p1(G) = δ(G1, ⋅) holds. As such, Xt =
(1 − t)X0 + tX1 ∈ [0,1]∣V∣×K . Since the boundary condition for each entry, [X0]v and [X1]v are
two one-hot embeddings, [Xt]v = t[X0]v + (1− t)[X1]v would sum to one, which works as a valid
probability vector. Thus, Categorical([Xt]v) is a K-class categorical distribution.

For the edge distribution, we just consider euv is conditionally independent of the other given [Wt]uv .
One thing to emphasize is that, given the nature of Bures-Wasserstein interpolation, the yielded Wt

is not always bounded by [0,1] thus we have to hard-clip the boundary.

D.2 APPROXIMATING WASSERSTEIN DISTANCE IN BERNOULLI DISTRIBUTIONS

To make sure that the individual nodes are structured and developed jointly while doing flow matching,
we assume that the vec(X) still maintains a covariance matrix similar to Eq. (8), which gives
Λ = (νI+L)⊗V ⊺V given thatX is emitted from a latent variableH through an affine transformation
and the latent variable has a covariance matrix (νI +L)−1. Different from the Gaussian case, the
latent variable would still be a discrete distribution, so that the affine transformation carries the
covariance matrix out.

Unfortunately, the Wasserstein distance between two discrete graph distributions that follow Eq. (13)
does not have a closed-form solution given the complex interwined nature. However, it is possible
to use the central limit theorem applied to X so that we can approximate the Wasserstein distance
of two Bernoulli distributions with the Gaussian counterpart. This approximation works when we
are in high-dimensional case (high dimension means ∣V∣d is moderately large.), and the OT-distance
between two such Bernoulli distributions is well-captured by the corresponding Gaussian formula,
which we already introduced in Eq. (57).

With such nature, even though we are not sampling from Gaussian distributions anymore, it is possible
to approximate the Wasserstein distance between two multivariate discrete distributions with the
Gaussian counterpart, so the conclusions, such as optimal transport displacements, still hold. And we
can similarly derive the Bures-Wasserstein velocity as in the next section.
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D.3 VELOCITY FOR DISCRETE BURES-WASSERSTEIN FLOW MATCHING

Node velocity. For node-wise, the path of node features Xt can be re-written as pt(X) = (1 −
t)δ(⋅,X0) + tδ(⋅,X1) so the conditional velocity can be accessed through vt(Xt ∣ G0,G1) =
[δ(⋅,X1) − δ(⋅,Xt)]/(1 − t) similar as the derivation in Gat et al. (2024).

Edge velocity. For edge-wise, we look into each entry of the adjacency matrix W , and consider a
time-dependent Bernoulli distribution, the probability density function is:

pt(euv) = [Wt]euv
uv (1 − [Wt]uv)1−euv , euv ∈ {0,1}. (77)

To properly define a velocity v(x, t), it should follow the continuity equation

∂

∂t
pt(euv) + ∇ ⋅ (pv)t(euv) = 0. (78)

We use x and y to denote two states of euv (p(euv = x) ∶= p(x), p(euv = y) ∶= p(y)), then the
divergence term is

∇ ⋅ (pv)(euv = x) = ∑
y≠x

[pt(y) vt(y → x) − pt(x) vt(x→ y)]. (79)

As we are working on a Bernoulli distribution, then the forward equations become

{∂tp(0) = p(1) vt(1→ 0) − p(0) vt(0→ 1),
∂tp(1) = p(0) vt(0→ 1) − p(1) vt(1→ 0). (80)

Since pt(1) = [Wt]uv,, we have ∂tp(1) = [Ẇt]uv and ∂tp(0) = −[Ẇt]uv . Hence

p(0) vt(0→ 1) − p(1) vt(1→ 0) = [Ẇt]uv.
There are many solutions to the above equation. We chose a symmetric solution so that the transition
of euv → 1 − euv with

vt(0→ 1) = [Ẇt]uv
1 − [Wt]uv

, vt(1→ 0) = −[Ẇt]uv
[Wt]uv

.

Finally for concise, we can write write it as a velocity field on states euv ∈ {0,1}, note 1 − 2euv is +1
at euv = 0 and −1 at euv = 1. Thus, we have

v(euv, t) = (1 − 2euv)
[Ẇt]uv

[Wt]uv (1 −Wt]uv)
, euv ∈ {0,1},

which in matrix form gives

vt(Et ∣ G1,G0) = (1 − 2Et)
Ẇt

Wt ○ (1 −Wt)
. (81)

Combine the node velocity and the edge velocity, we can now introduce the Discrete Bures-
Wasserstein Flow matching algorithm, with the training and inference part respectively introduced
in Algorithm 3 and Algorithm 4.

E DESIGN SPACE FOR BURES WASSERSTEIN INTERPOLATION AND VELOCITY

In the introduction part, we have already compared different probability paths and how they are
impacting the inference time sampling. While the Bures-Wasserstein flow path is shown to produce a
better probability path for the model to learn, as we illustrated in Fig. 1a, we have to point out that
linear interpolation and the corresponding probability path can still converge to the data distribution
with sufficiently large flow steps. As if we conduct sampling with infinite flow steps during the
later stage of flow, the samples are still able to arrive at the target distributions. A similar pattern
exists in diffusion models when they are considered as a Monte-Carlo Markov Chain, and they need
sufficiently large steps to converge. We emphasize that the convergence gap in Fig. 1c would be
slowly recovered as the number of flow steps increases.
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Algorithm 3: Discrete BWFlow Training
Input: Ref. dist p0 and dataset D ∼ p1.
Output: Trained model fθ(Gt, t).

1 Initialize model fθ(Gt, t);
2 while fθ not converged do

/* Sample Boundary Graphs
*/

3 Sample batched {G0} ∼ p0, {G1} ∼ D;
/* Prob.path Construction

*/
4 Sample t ∼ U(0,1);
5 Calculate the BW interpolation to obtain

Xt,Wt via Eq. (11);
6 Sample Gt ∼ p(Gt ∣ G0,G1) according

to Eq. (13);
/* Denoising --

x-prediction */
7 pθ1∣t(⋅ ∣ Gt) ← fθ(Gt, t);
8 Loss calculation via Eq. (4);
9 optimizer.step();

Algorithm 4: Discrete BWFlow Sampling
Input: Reference distribution p0, Trained

Model fθ(Gt, t), Small time step dt,
Output: Generated Graphs {Ĝ1}.

1 Initialize samples {Ĝ0} ∼ p0;
2 Initialize the model pθ1∣t(⋅ ∣ Gt) ← fθ(Gt, t)

for t← 0 to 1 − dt by dt do
/* Denoising -

x-prediction */

3 Predict G̃1 ← pθ1∣t(⋅ ∣ Gt);
/* Velocity calculation */

4 Calculate vθ(Ĝt ∣ Ĝ0, G̃1) via Eq. (14);
/* Numerical Sampling */

5 Sample Ĝt+dt ∼ Ĝt + vθ(Ĝt)dt

Given that different sampling algorithms can all bring the samples to the data distributions under
certain conditions, we wish to understand the huge design space of Bures Wasserstein interpolation.
We list the advantages and disadvantages in different techniques and discuss further when each
techniques should be used.

In general, we consider two important steps to construct the flow matching for graph generation,
specifically, training and sampling. In training, the main challenge is to obtain a valid real velocity
u(Gt) to be regressed to, so we listed a few strategies that can help us with that. In sampling, the
challenge becomes how to reconstruct the probability path through the velocity estimated.

E.1 THE TRAINING DESIGN

In general, the learning objective in flow matching depends on regressing the velocity term. There
are several way to obtain the velocity.

1. Exact velocity estimation. Use Eq. (3) as the parameterization and learn pθ(G1 ∣ Gt)
2. Numerical approximation. In the implementation of Stärk et al. (2024), the derivative

is calculated through numerical approximation. To achieve better efficiency in calculating
velocity, we simply consider a numerical estimation as in Stärk et al. (2024), where the
velocity term is obtained as, L̇t = (Lt+∆t −Lt)/∆t. Regressing on the numerical difference
can provide an estimation for the velocity.

3. AutoDiff. In Chen & Lipman (2024), the derivative of the probability path is evaluated
through Pytorch AutoDiff. However, in practice we find this method unstable.

We summarized the training stage model parameterization in Table 4

Continuous Flow Matching Discrete Flow Matching

x-prediction vθt (Gt) = 1
1−t
[G̃θ

t (Gt) −Gt] vθt (Gt) = 1
1−t
[pθ1∣t (G1 ∣ Gt) − δ (⋅,Gt)]

Numerical Approximation vθt (Gt) ≈ Gt+dt −Gt vθt (Gt) ≈ p(Gt+dt ∣ G0,G1) − p(Gt ∣ G0,G1)
AutoDiff vθt (Gt) ≈ Ġt Discrete velocity introduced in Eq. (14)

Table 4: The model parameterization for flow matching in training stage
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E.2 THE SAMPLING DESIGN

As we described in the Eq. (3), in our training framework, we actually train a denoised pθ(G1 ∣ Gt).
With such a parameterization and taking discrete flow matching as an example, the sampling can be
done through one of the following design choices:

1. Velocity sampling with x-prediction. The velocity is designed as,

vθ(Gt) =
1

1 − t(pθ(G1 ∣ Gt) − δ(Gt, ⋅)).

This design directly moves the current point Gt towards the direction pointing to the
predicted G1. The target-guided velocity is guaranteed to converge to the data distribution,
but the interpolant might lie outside the valid graph domain.

2. BW velocity sampling. We use Eq. (14) to directly estimate the velocity and flow the
Bures-Wasserstein probability path to generate new data points. This path is smooth in the
sense of graph domain. However, this path requires more computational cost.

3. Probability path reconstruction. The third option is directly reconstructing the probability
path, i.e., we first obtain an estimated point,

G̃1 ∼ pθ(G1 ∣ Gt)
and then construct the data point at t + dt, which gives

Gt+dt ∼ p(Gt ∣ G̃1,G0)
through Eq. (12). This is the most computationally costly method, which is obtained through
the diffusion models. But this method also provide accurate probability path reconstruction.

In Section 4, we show BW velocity follows a path that minimizes the Wasserstein distance thus
provides better performance, but sampling following linear velocity also provides convergence with
much lower computational cost. So it is a trade-off to be considered in the real-world application.

Continuous Flow Matching Discrete Flow Matching

BW Velocity Eq. (12) Eq. (14)
Target-guided Velocity vθ(Gt) = 1

1−t
(G̃1 −Gt) vθ(Gt) = 1

1−t
(pθ(G1 ∣ Gt) − δ(Gt, ⋅))

Path Reconstruction Gt+dt = δ(Gt+dt ∣ G̃1,G0) Gt+dt ∼ p(Gt+dt ∣ G̃1,G0)

Table 5: Reconstructing probability path choices in flow matching during inference

F DISCUSSION AND LIMITATIONS

F.1 THE IMPLICIT MANIPULATION OF PROBABILITY PATH

Though not explicitly mentioned, Qin et al. (2024) makes huge efforts to manipulate the probability
path for better velocity estimation by extensively searching the design space, and their finding aligns
well with the statement that the velocity should be smooth and consistently directing to the data points:
1) Time distortion: (The oragne line in Fig. 5b) the polynomial distortion of training and sampling
focus on the later stage of the probability trajectory, providing better velocity estimation in this area.
This uneven sampling strategy is equivalent to pushing the probability path left to make it smooth.
2) Target guidance: (The green line in Fig. 5b) the target guidance directly estimate the direction
from a point along the path towards the termination graph, so that the manipulated probability could
smoothly pointing to the data distribution. and 3) Stochasticity injection: Stochasticity explores the
points aside from the path, which avoid the path to be stuck in the platform area.

F.2 POTENTIAL EXTENSION TO DIFFUSION MODELS

The probability path construction can be denoted as

Gt ∼ p(⋅ ∣ G0,G1) = αtG1 + σtG0 (82)
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Ideal 
Velocity

Estimated
velocity

(a) Linear training path (b) Training path with manipulation

Figure 5: Techniques for manipulating probability path.

At the scenario of flow matching, αt = κt and σt = 1 − κt. The optimal transport flow matching
simply use αt = t and σt = 1 − t
on the other hand, variance-preserving diffusion models constructed the noisy input through a
scheduled process, which can be described as,

Gt =
√
ᾱtG1 +

√
1 − ᾱtG0 (83)

However, existing diffusion models are still based on the local interpolation, i.e. an element-wise
interpolation. This will not compensate the “late convergence” scenario thus we still suffer from the
same problem.

Under such an understanding that diffusion is also based on stochastic interpolation, we can easily
extend our method to diffusion models by interpolating on the whole graph systems instead of doing
so locally. In order to extend the flow matching algorithms with diffusion models, one important
thing is to convert the pair-conditioned probability path and velocity to single boundary conditions.
For instance, the probability path in flow matching has the form p(Gt ∣ G1,G0) and the velocity
follows v(Gt ∣ G1,G0). As suggested in Siraudin et al. (2024); Campbell et al. (2022); Xu et al.
(2024), the discrete graph diffusion models require a velocity (which is equivalent to a ratio matrix)
to perturb the data distribution conditioned on the data points, which we denote as v(Gt ∣ G1). As
long as the unilateral conditional velocity has a tractable form, one can first sample a G1 and get Gt

through iteratively doing to:

Gt−dt = Gt − v(Gt ∣ G1)dt

starting from G1. So that one can easily construct the probability path p(Gt ∣ G1) to fit into the
diffusion model framework. In practice, given that we know the explicit form of v(Gt ∣ G1,Gt′)
(just replace G0 in the expression), the unilateral conditional velocity can be obtained through taking
the limitation,

v(Gt ∣ G1) = v(Gt ∣ G1,Gt) = lim
t′→t

v(Gt ∣ G1,Gt′).

Both linear interpolation and our Bures-Wasserstein interpolation can achieve this easily. We just
provide a discussion here and will leave this as future work as this paper does not focus on diffusion
models but on flow matching models.

F.3 PERMUTATION INVARIANCE

The Bures-Wasserstein distance between two graph distributions is not permutation invariant, and the
minimal value is obtained through the graph alignment. So ideally, to achieve optimal transport, graph
alignment and mini-batch matching could provide a better probability path. However, permutation
invariance is not always a desired property since we only want to find a path that better transforms
from the reference distribution to the data distributions. As an illustration, the widely used linear
interpolation to construct graph flow (Qin et al., 2024) does not guarantee permutation invariance
as well. And it is proved that, if the measurement is based on Wasserstein distance between two
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Gaussian distributions.
dBW(ηG0 , ηG1) ≤ dArithmetic(ηG0 , ηG1)

with dBW(ηG0 , ηG1) = ∥X0 −X1∥2F + β trace(L
†
0 +L

†
1 − 2 (L

†/2
0 (P ⊺L1P )†L†/2

0 )
1/2
) ,

and dArithmetic(ηG0 , ηG1) = ∥X0 −X1∥2F + β∥L0 −P ⊺L1P ∥2,∀P ∈ potential permutation set
(84)

F.4 MITIGATING THE COMPUTATION COMPLEXITY

When constructing the path, our BW interpolation induces an extra O(N3) linear algebra operations
in calculating the matrix inverse of graph Laplacian. We wish to emphasize that this is the basic
linear algebra operations in matrix multiplication and does not reflect the model complexity, i.e., the
forward/backward propagation and gradient calculation.

Though this computation does not always improve the training clock-time, as we illustrated in Table 9,
we feel it valuable to further reduce the computational complexity as the matrix inverse is not properly
supported by current GPU design. When the graph size scales up, it also becomes problematic. In
order to improve the efficiency, we propose two promising direction:

1. Disentangle the probability path construction from the training and move it to pre-training
stage.

2. Approximate the matrix inverse calculation through iterative solving methods.

We provided a preliminary experiment for the second point via solving the inverse by least-squares
with QR factorization (LSQR).

LSQR algorithm, When given a large, sparse matrix L, directly computing L−1 yields O(N3)
linear algebra operations. As a remedy, we do not compute the matrix L−1 itself, but rather solve it
via the linear system:

Lx = b
The solution to this system, x = L−1b, provides the desired result without forming the inverse matrix.
In order to solve the problem, we formalize the objective as

min
x
∥Lx − b∥2

and conduct least squared minimization for the above problem. The minimization of the above
objective can replace the original inverse matrix calculation. THis method is especially useful when
L is large, sparse, and potentially ill-conditioned.

LSQR’s effectiveness stemas from the factor that the algorithm does not require access to the
individual elements of L. Instead, it only requires computing the matrix-vector products Lx. For a
sparse matrix with E non-zero elements (exactly the edge number), these products are typically in
O(E) time, as opposed to O(N2) for a dense matrix.

We can use LSQR to find the j-th column, cj , of L−1, we solve the linear system:

Lcj = ej
where ej is the j-th standard basis vector (a vector of all zeros with a 1 in the j-th position).

ej = [0, . . . ,0,1,0, . . . ,0]T

The resulting solution vector will be the j-th column of L−1. To construct the full inverse, we repeat
N times.

When scaled up to large but sparse graphs, the complexity can be reduced to O(TNE) (the previous
methods are O(N2)) through iterative solving such as LSQR.

Newton-Schulz Iteration. It is also possible to utilize Newton-Schulz Iteration to solve the problem,
where the complexity if O(TN2).
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Table 6: Model performance using LSQR to
approximate the graph Laplacian inverse

Planar Tree

Model V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓
BWFlow-LSQR 85.0± 5.0 2.7± 1.4 80.1 ± 9.0 1.32± 0.3

BWFlow 84.8± 6.44 2.4± 0.9 81.5 ± 4.9 1.3± 0.2

Preliminary experiment with LSQR .To show
that LSQR does not negatively impact the perfor-
mance, we conduct preliminary experiments with
LSQR instead of the exact pseudo-inverse calculation
of the Laplacian matrix. Results clearly show that we
could achieve a lower complexity without impacting
the quality of the generative model.

F.5 EXTENSION TO MULTI-RELATIONAL
GRAPHS

A limitation of our method is that it cannot easily capture the generation of graphs with multiple
relation types, which we name heterogeneous graphs. Even though we utilize an intuitive solution in
the experiment to produce Table 14: we first sample the pure graph structure without edge types to
produce the graph backbone, and then sample the edge types via liner interpolated probability on top
of the backbone. The solution provides preliminary results for the graph generation in multi-relational
graphs, but still requires improvements. Fortunately, there exists a few ways to extend the GraphMRF
to heterogeneous graphs (Jiang et al., 2025). An interesting future work can be generalizing our
model to heterogeneous graphs by considering GraphMRF variants, such as the H2MN proposed
in Jiang et al. (2025).

G RELATED WORKS

G.1 DIFFUSION AND FLOW MODELS

Among contemporary generative models, diffusion (Ho et al., 2020) and flow models (Lipman et al.,
2023) have emerged as two compelling approaches for their superior performance in generating text
and images. In particular, these generative models can be unified under the framework of stochastic
interpolation (Albergo & Vanden-Eijnden, 2023), which consists of four procedures (Lipman et al.,
2024) as we introduced in Section 1. These contemporary generative models rely on constructing
a probability path between data points of an easy-to-sample reference distribution and of the data
distribution, and training a machine learning model to simulate the process (Lipman et al., 2024).
So that one can sample from the reference (a.k.a source) distribution and iteratively transform it to
approximate data samples from the target distribution. Diffusion models construct the probability
path with a unilateral path conditioned on the data distribution, where one start sampling from a
data point X1 and construct the path p(Xt ∣ X1). While flow models can condition on either two
boundary conditions, {X1,X0} or just one-side boundary condition X1.

Depending on the space that the algorithm operates on, both models can be categorized into continuous
or discrete models. The continuous generative models assume the data distributions are themself
lying in continuous space (such as Gaussian) and build models, with examples in diffusion (Ho et al.,
2020; Song et al., 2021; Wang et al., 2024) and flow (Lipman et al., 2023; Liu et al., 2023b). The
discrete generateive models assume the data follows a discrete distribution, for instance categorical or
Bernoulli distributions. Examples include discrete diffusion (Campbell et al., 2022; Sun et al., 2023)
and discrete flow models (Campbell et al., 2024; Gat et al., 2024; Minello et al., 2025).

Under the stochastic interpolation framework, the interpolation methods are commonly selected
through optimal transport (OT) displacement interpolant (Liu et al., 2023b; Albergo & Vanden-
Eijnden, 2023; McCann, 1997). Optimal transport is a classical topic in mathematics that was
originally used in economics and operations research (Villani & Society, 2003), and has now become
a popular tool in generative models. OT aims for finding the best transport plan between two proba-
bility measures with the smallest associated transportation cost. It has been shown that generative
models can be combined with technologies such as iterative matching (Tong et al., 2024) and mini
batching (Pooladian et al., 2023) to approximate the OT cost, and get a significant boost in their
performance in generative modeling.

Another relevant work is Haviv et al. (2024), where the authors explore the flow matching technolo-
gies between two Gaussian measures, there they try to interpolate between two Gaussian measures.
Our work focuses on a different task of graph generation.
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G.2 GRAPH GENERATION MODELS

Thanks to the capability of graphs in representing complex relationships, graph generation (Zhu et al.,
2022; Liu et al., 2023a) has become an essential task in various fields such as protein design (In-
graham et al., 2019), drug discovery (Bilodeau et al., 2022), and social network analysis (Li et al.,
2023). The initial attempt at graph generation is formalized through autoregression. For instance,
GraphRNN (You et al., 2018) organizes the node interactions into a series of connection events
and conducts autoregressive prediction for generation. Later, one shot generation methods such as
Variational Graph Auto-Encoder were proposed (Kipf & Welling, 2016; Cao & Kipf, 2018).

Among various generative models, diffusion models and flow-based models have emerged as two
compelling approaches for their ability to achieve state-of-the-art performance in graph generation
tasks (Niu et al., 2020; Vignac et al., 2023a; Eijkelboom et al., 2024; Qin et al., 2024; Hou et al.,
2024). In the early stage, continuous diffusion models were first extended to the task of graph
generation (Niu et al., 2020), where they just view the adjacency matrix as a special signal living
on the R∣V∣×∣V∣ domain. However, these methods fail to capture the natural discreteness of graphs,
and Vignac et al. (2023a) first brings discrete diffusion into graph generation. After that, more
work (Siraudin et al., 2024; Xu et al., 2024) starts to focus on designing better discrete diffusion
models for graph generation.

On the other hands, with the development of flow matching techniques, a few works have been
developed to utilize flow models for graph generation and they have achieved huge success. Eijkel-
boom et al. (2024) utilizes variational flow matching to process categorical data and Qin et al. (2024)
developed discrete flow matching for graph generation tasks.

In parallel, there are a number of work that have managed to respect the intrinsic nature of graphs,
such as global patterns. For instance, Jo et al. (2024) brings a mixture of graph technique to enhance
the performance by explicitly learning final graph structures; Yu & Zhan (2025) mitigates exposure
bias and reverse-start bias in graph generation; Hou et al. (2024) improves graph generation through
optimal transport flow matching techniques but they still assume the independence between nodes
and edges and use hamming distance to measure the transport cost; and Li et al. (2023) gives the
large-scale attributed graph generation framework through batching edges.

However, there remain a core challenge: constructing the probability path pt. Existing text and image
generative models, operating either in the continuous (Ho et al., 2020; Song et al., 2021; Lipman et al.,
2023; Liu et al., 2023b) or discrete (Campbell et al., 2022; Sun et al., 2023; Campbell et al., 2024;
Gat et al., 2024; Minello et al., 2025) space, typically rely on linear interpolation between source and
target distributions to construct the path. Graph generation models, including diffusion (Niu et al.,
2020; Vignac et al., 2023a; Haefeli et al., 2022; Xu et al., 2024; Siraudin et al., 2024) and flow-based
models (Eijkelboom et al., 2024; Qin et al., 2024; Hou et al., 2024), inherit this design by modeling
every single node and edge independently and linearly build paths in the disjoint space. However,
this approach is inefficient because it neglects the strong interactions and relational structure inherent
in graphs, i.e., the significance of a node heavily depends on the configuration of its neighbors.
While empirical success have been achieved via fine-grained searching on the training and sampling
design (Qin et al., 2024) such as target guidance and time distortion, we argue that there remains a
fundamental issue of the linear probability path construction, and these strategies only mitigate the
problem by manipulating the probability path.

H COMPARISON WITH OTHER INTERPOLATION METHODS

In the experimental part, we compare our methods with arithmetic (linear) interpolation, geometric
interpolation and harmonic interpolation. We state the equation of them respectively as follows.

We consider the boundary graph G0 and G1 with X0,X1 ∈ R∣V∣×d and W0,W1 ∈ R∣V∣×∣V∣. Let
t ∈ [0,1], we fixed the feature interpolation as,

Xt = (1 − t)X0 + tX1,

the graph structure interpolation can be expressed as,

Linear interpolation:
Wt = (1 − t)W0 + tW1.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Dataset FM type Interpolation V.U.N metrics Spectral Metrics
Novelty Uniqueness Validity Orbit Spec Clustering Degree Wavelet Avg. Ratio

Planar Discrete

DeFog 100 100 78.25 8.98 1.45 2.09 2.65 2.38 3.51
Linear 100 100 73.25 10.83 1.33 1.74 2.24 2.39 3.70

harmonic 100 100 0.00 4519.63 2.57 17.01 25.10 42.41 921.35
Geometric 100 100 23.25 655.66 1.61 10.17 13.25 6.68 137.47

BW 100 100 84.75 5.14 1.27 1.69 1.78 2.02 2.38

Tree Discrete

Defog 100 100 61.53 / 1.17 / 1.27 1.51 1.32
Linear 100 100 56.91 / 1.16 / 1.04 1.45 1.22

harmonic 100 100 0.53 / 2.32 / 1.93 3.31 2.52
Geometric 100 100 48.38 / 1.62 / 2.13 2.10 1.94

BW 100 100 51.45 / 1.58 / 2.56 2.13 2.09

SBM Discrete

Linear 100 100 44.63 2.57 1.40 1.46 15.55 7.88 5.77
harmonic 100 100 9.73 3.10 10.23 1.59 172.10 103.04 58.10
Geometric 100 100 0.0 3.11 4.45 1.80 150.41 60.60 54.65

BW 100 100 58.70 2.03 1.50 1.50 9.04 8.41 4.51

Table 7: Ablation study on interpolation methods when probability path manipulation techniques
are all disabled. The clustering and orbit ratios in tree graphs are omitted, given that in the training
set, the corresponding statistics are 0. The results go over exponential moving average (decay 0.999)
for the last 5 checkpoints. The table is produced with Marginal boundary distributions, without time
distortion.

Table 8: Comparison of interpolation methods on 3D Molecule generation with explicit hydrogen in
QM9 dataset.

Flow Type Interpolation Metrics

µ V.U.N(%) Mol Stable Atom Stable Connected(%) Charge(10−2) Atom(10−2) Angles(○)

Discrete

MiDi 1.01 93.13 93.98 99.60 99.21 0.2 3.7 2.21
Linear 1.01 87.53 88.45 99.13 99.09 0.4 4.2 2.72

harmonic 1.01 94.91 94.54 99.65 99.03 0.6 6.4 2.21
Geometric 1.01 91.26 91.29 99.42 98.42 0.1 4.4 3.63

BW 1.01 96.45 97.84 99.84 99.24 0.1 2.3 1.96

Continuous

Linear 2.15 25.45 10.23 76.85 28.82 0.7 5.6 14.47
harmonic 1.01 11.38 11.64 73.48 99.65 1.2 17.2 15.04
Geometric 1.00 42.07 46.08 91.13 99.87 1.0 12.7 8.03

BW 1.02 62.02 61.76 95.99 97.72 0.6 8.7 7.80
∗ Clearly, continuous flow matching models are not as comparative as discrete flow matching models.

Geometric interpolation:

Wt =W 1/2
0 (W −1/2

0 W1W
−1/2
0 )tW 1/2

0 ,

Harmonic interpolation:

Wt = ((1 − t)W −1
0 + tW −1

1 )
−1

.

Each interpolation methods actually handle each special manifold assumption, which should be
designed under a comprehensive understanding of the task. In our experimental part, we conduct
intensive analysis on the impact of interpolation methods to the graph generation quality.

H.1 EMPIRICAL COMPARISON

In Table 7, we illustrate the numerical results for comparing the interpolation methods in plain graph
generation without node features. It is clear that BWFlow outperforms other methods in planar and
SBM graphs. But the performance was not good in tree graph generations. In Table 8 we compare
the interpolation methods in molecule generation.

I ADDITIONAL EXPERIMENT RESULTS

I.1 EXPERIMENT SETUPS AND COMPUTATIONAL COST

The training and sampling computation time are provided in Table 9. The experiments were run on a
single NVIDIA A100-SXM4-80GB GPU. The hyperparameter configuration in producing Tables 1,
2 and 14 is reported in Table 10.
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Table 9: Training and sampling time on each dataset. TG means using target-guided velocity; BW
means using BW velocity.

Dataset Min Nodes Max Nodes Training Time (h) Graphs Sampled Sampling Time (h)

Planar 64 64 45 (1.55x) 40 0.07(TG); 0.13 (BW)
Tree 64 64 10 (1.25x) 40 0.07(TG);0.14(BW)
SBM 44 187 74 (0.98x) 40 0.07(TG) 0.14(BW)

Moses 8 27 35 (0.76x) 25000 5(TG); 6(BW)
Guacamol 2 88 251 (1.8x ) 10000 7(TG); 21(BW)

QM9 3 29 15 25000 5(TG) 6(BW)
GEOM / 181 141 10000 7(TG) 14(BW)

Table 10: Best Configuration for Training and Sampling when producing Tables 1, 2 and 14.

Training Sampling

Dataset Initial Distribution Train Distortion Sample Distortion Sampling steps Stochasticity

Planar Marginal Identity Identity 1000 50
Tree Marginal Polydec Polydec 1000 0
SBM Absorbing Identity Identity 1000 0

MOSES Marginal Identity Identity 500 200
GUACAMOL Marginal Identity Identity 500 300

QM9 Marginal Identity Identity 500 0
GEOM Marginal Identity Identity 500 0

I.2 BEST CHECKPOINT RESULTS IN PLAIN GRAPH GENERATION

We present the best checkpoint results in plain graph generation in Table 11.

I.3 FULL EXPERIMENT RESULTS FOR PLAIN GRAPH GENERATION

We provide the full experiment results in Table 12, with exisitng graph generation models’ perfor-
mance reported. Most of the results are taken from Qin et al. (2024). We reported the detailed ratios
for each model that we reproduced in Table 13.

I.4 ADDITIONAL RESULTS FOR 2D MOLECULE GENERATION

We wish to note that the 2D molecule generation task is relatively simple and are near saturated with
most state-of-the-art models.

Setup. In 2D molecular generation, two scenarios with and without bond types information are
considered to better evaluate the ability of generating graph structures.

Metrics: In addition to the novelty and uniqueness of moecules, we also utilize the relaxed stability
of atoms (Atom.Stab.), the relaxed molecule stability (Mol.Stab.) and the validity of a molecule,
are used for 2D molecule generation. In addition to these metrics, distribution metrics are also
used for 2D molecules, which includes 1) Fréchet ChemNet Distance (FCD): whichMeasures the
distance between the statistical distributions of generated and real molecules, and Similarity to
Nearest Neighbor (SNN), which measures the average similarity (e.g., Tanimoto) of each generated
molecule to its closest neighbor in a reference dataset. Also, practicality & diversity metrics,
including Filters Percentage of molecules passing medicinal chemistry filters (e.g., drug-likeness,
synthetic accessibility), andScaffold Diversity (Scaf) that measures the diversity of the core molecular
frameworks (scaffolds), indicating structural variety.

Model peformance. The model performance is illustrated in Table 14. In both datasets, BWFlow
can achieve competitive results near the state-of-the-art (SOTA) flow matching models (Qin et al.,
2024), and outperforms the diffusion models. Given that MOSES and GUACAMOL benchmarks are
approaching saturation, the fact that BWFlow achieves results on par with the SOTA models serves
as strong evidence of its effectiveness.
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Table 11: The best-checkpoint plain graph generation Performance. Results are obtained through
tuning the probability path manipulation techniques. The remaining values are obtained from Qin
et al. (2024).

Planar Dataset

Model Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

Train set 1.0 100 100 0.0 0.0

GRAN (Liao et al., 2019) 2.0 97.5 85.0 2.5 0.0
SPECTRE (Martinkus et al., 2022) 3.0 25.0 100 100 25.0
DiGress (Vignac et al., 2023a) 5.1 77.5 100 100 77.5
EDGE (Chen et al., 2023) 431.4 0.0 100 100 0.0
BwR Diamant et al. (2023) 251.9 0.0 100 100 0.0
BiGG (Dai et al., 2020) 16.0 62.5 85.0 42.5 5.0
GraphGen Goyal et al. (2020) 210.3 7.5 100 100 7.5
HSpectre (one-shot) (Bergmeister et al., 2024) 1.7 67.5 100 100 67.5
HSpectre Bergmeister et al. (2024) 2.1 95.0 100 100 95.0
GruM (Jo et al., 2024) 1.8 — — — 90.0
CatFlow (Eijkelboom et al., 2024) — — — — 80.0
DisCo (Xu et al., 2024) — 83.6 ±2.1 100.0 ±0.0 100.0 ±0.0 83.6 ±2.1
Cometh - PC (Siraudin et al., 2024) — 99.5 ±0.9 100.0 ±0.0 100.0 ±0.0 99.5 ±0.9
DeFoG 1.6 ±0.4 99.5 ±1.0 100.0 ±0.0 100.0 ±0.0 99.5 ±1.0

BWFlow 1.3 ±0.4 97.5 ±2.5 100.0 ±0.0 100.0 ±0.0 97.5±2.5

Tree Dataset

Train set 1.0 100 100 0.0 0.0

GRAN (Liao et al., 2019) 607.0 0.0 100 100 0.0
DiGress (Vignac et al., 2023a) 1.6 90.0 100 100 90.0
EDGE (Chen et al., 2023) 850.7 0.0 7.5 100 0.0
BwR (Diamant et al., 2023) 11.4 0.0 100 100 0.0
BiGG (Dai et al., 2020) 5.2 100 87.5 50.0 75.0
GraphGen (Goyal et al., 2020) 33.2 95.0 100 100 95.0
HSpectre (one-shot) (Bergmeister et al., 2024) 2.1 82.5 100 100 82.5
HSpectre (Bergmeister et al., 2024) 4.0 100 100 100 100
Cometh (Siraudin et al., 2024) — 75.0 ±3.7 100.0 ±0.0 100.0 ±0.0 75.0 ±3.7
DeFoG 1.6 ±0.4 96.5 ±2.6 100.0 ±0.0 100.0 ±0.0 96.5 ±2.6

BWFlow 1.4±0.3 95.5 ±2.4 100.0±0 100.0±0 95.5±2.4

Stochastic Block Model (nmax = 187, navg = 104)

Model Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

Training set 1.0 85.9 100 0.0 0.0

GraphRNN (You et al., 2018) 14.7 5.0 100 100 5.0
GRAN (Liao et al., 2019) 9.7 25.0 100 100 25.0
SPECTRE (Martinkus et al., 2022) 2.2 52.5 100 100 52.5
DiGress (Vignac et al., 2023a) 1.7 60.0 100 100 60.0
EDGE (Chen et al., 2023) 51.4 0.0 100 100 0.0
BwR (Diamant et al., 2023) 38.6 7.5 100 100 7.5
BiGG (Dai et al., 2020) 11.9 10.0 100 100 10.0
GraphGen (Goyal et al., 2020) 48.8 5.0 100 100 5.0
HSpectre (one-shot) (Bergmeister et al., 2024) 10.5 75.0 100 100 75.0
HSpectre (Bergmeister et al., 2024) 10.2 45.0 100 100 45.0
GruM (Jo et al., 2024) 1.1 — — — 85.0
CatFlow (Eijkelboom et al., 2024) — — — — 85.0
DisCo (Xu et al., 2024) — 66.2 ±1.4 100.0 ±0.0 100.0 ±0.0 66.2 ±1.4
Cometh (Siraudin et al., 2024) — 75.0 ±3.7 100.0 ±0.0 100.0 ±0.0 75.0 ±3.7
DeFoG 4.9 ±1.3 90.0 ±5.1 100.0 ±0.0 100.0 ±0.0 90.0 ±5.1

BWFlow 3.8±0.9 92.5 ±4.0 100.0 ±0.0 100.0 ±0.0 92.5 ±4.0

I.5 ADDITIONAL RESULTS FOR THE TRAINING PATHS

We elaborate on the detailed experimental setting for training path comparison. Fig. 1a and 3a are
generated using a representative plain graph dataset, SBM. At each time step t, we compute the
average maximum mean discrepancy ratio (A.Ratio) between the interpolants and the real data graphs
over multiple graph statistics, including orbit, clustering, spectral, wavelet, and degree ratios. The
“ideal velocity” (green curve) in Fig. 1a is a synthetic reference path used purely for conceptual
illustration.

Fig. 6 gives the training probability path construction for planar graphs and tree graphs. While planar
graphs have a similar pattern as the SBM datasets as in Fig. 3a, the probability path constructed for
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Table 12: Plain Graph generation performance. Given that the synthetic datasets are usually unstable
in evaluation, we applied an exponential moving average to stabilize the results and sampled 5 times
(each run generates 40 graphs) to calculate the mean and standard deviation. The experiment settings
are in Table 10. The full version with explicit ratio numbers can be found in Table 11

Planar Tree SBM

Model Class V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓
Train set — 100 1.0 100 1.0 85.9 1.0

DiGress (EMA) (Vignac et al., 2023a) Diffusion 61.5±10.1 9.9 ±3.3 56.0 ±11.0 8.9±3.2 56.0±8.5 3.5±0.5

DisCo (CAVG) (Xu et al., 2024) Diffusion 57.5± 2.5 9.0± 1.41 / / 55.0± 5.9 11.6± 2.9

HSpectre (Bergmeister et al., 2024) Diffusion 67.5 3.0 82.5 2.1 75.0 10.5
GruM (EMA) (Jo et al., 2024) Diffusion 74.4±5.15 3.2±0.4 52.5±3.2 2.4±0.7 73.5±6.7 2.6±0.6

Cometh (EMA) (Siraudin et al., 2024) Diffusion 80.5± 5.79 3.0± 0.6 84.5± 7.8 2.0± 0.4 77.5± 5.7 4.7± 0.6

DeFoG (EMA) (Qin et al., 2024) Flow 77.5±8.37 3.5±1.7 83.5±10.8 1.9±0.4 85.0±7.1 3.4±0.4

BWFlow (EMA) Flow 84.8±6.44 2.4±0.9 81.5±4.9 1.3±0.2 84.5±8.0 2.3±0.5

Dataset Model Validity Metrics Spectral Metrics Avg. Ratio
V.U.N Orbit Spec Clustering Degree Wavelet

Planar

Training set 100 0.0005 0.0038 0.0310 0.0002 0.0012 1

Digress 61.50 0.0126 (25.20) 0.0100 (2.63) 0.1204 (3.88) 0.0031 (15.50) 0.0031 (2.55) 9.95
Hspectra (One-shot) 67.5 / / / / / 3.0
GruM 74.39 0.00445 (8.90) 0.00755 (1.99) 0.00428 (0.14) 0.00075 (3.75) 0.00258 (2.15) 3.20
Cometh 80.50 0.0038 (7.60) 0.0080 (2.09) 0.0334 (1.08) 0.000224 (1.12) 0.0036 (2.97) 3.00
DeFog 77.50 0.0045 (8.98) 0.0055 (1.45) 0.0648 (2.09) 0.0005 (2.65) 0.0029 (2.38) 3.51
BWFlow 84.75 0.0026 (5.14) 0.0048 (1.27) 0.0524 (1.69) 0.0004 (1.78) 0.0024 (2.02) 2.38

Tree

Training set 100 0.0000 0.0075 0.00000 0.0001 0.0030 1

Digress 56.00 0.0002 (/) 0.0126 (1.68) 0.0025 (/) 0.0018 (17.80) 0.0088 (7.30) 8.90
Hspectra (One-shot) 82.50 / / / / / 2.10
GruM 52.50 0.0001(0.00) 0.0045 (1.18) 0.0000(/) 0.0004 (2.15) 0.0047(3.91) 2.41
Cometh 86.50 0.0000 (/) 0.0102(1.36) 0.0000 (/) 0.0003 (3.20) 0.0044(1.46) 2.00
DeFog 83.50 0.0001 (/) 0.0126 (1.68) 0.0000 (/) 0.0002 (1.87) 0.0066 (2.21) 1.92
BWFlow 81.50 0.0000 (0.00) 0.0094 (1.17) 0.0000 (0.00) 0.0001 (1.27) 0.0046(1.51) 1.31

SBM

Training set 85.90 0.0255 0.0027 0.0332 0.0008 0.0007 1

Digress 56.00 0.0748 (2.93) 0.0061 (2.26) 0.0584 (1.76) 0.0018 (2.25) 0.0048 (6.86) 3.51
Hspectra (One-shot) 75.00 / / / / / 10.50
GruM 73.50 0.0412 (1.62) 0.0068 (2.52) 0.0495 (1.49) 0.0028 (3.50) 0.0017 (2.43) 2.60
Cometh 77.50 0.076 (2.98) 0.0114 (4.22) 0.052 (1.56) 0.0063 (7.88) 0.0048 (6.86) 4.70
DeFog 85.00 0.0426 (1.67) 0.0045 (1.65) 0.0501 (1.51) 0.0062 (7.71) 0.0030 (4.33) 3.39
BWFlow 84.50 0.0515 (2.02) 0.0030 (1.10) 0.0478 (1.44) 0.0028 (3.50) 0.0025 (3.52) 2.32

Table 13: We reported the detailed ratios in three plain graph generation datasets. We omit the orbit
and clustering ratio calculation in tree datasets as the training set values are close to 0 which makes
the calculation unreliable.

tree graphs does not follow a similar pattern. We attribute this to the different geometry of tree graphs
that reside in hyperbolic space (Yang et al., 2022), and different statistics evolution pattern as we
discussed in Section A.3.

I.6 MORE EXPERIMENTS ON PLAIN GRAPH GENERATIONS

Additional results for sampling paths. We then give the sampling path construction in Fig. 7. To
better illustrate the advantage of BWFlow, we fix the sampling steps to be as small as 50. It is clear
that in planar and SBM dataset, the BW velocity can still provide a smooth probability and stable
convergence towards the data distribution. While the linear velocity does not give a good probability
path and fails to converge to the optimal value, especially when the sampling size is small.

The maximum mean discrepancy (MMD) of four graph statistics between the set of generated graphs
and the test set is measured, including degree (Deg.), clustering coefficient (Clus.), count of orbits
with 4 nodes (Orbit), the eigenvalues of the graph Laplacian (Spec.), wavelet ratio (Wavelet.). To
verify that the model learns to generate graphs with valid topology, we gives the percentage of valid,
unique, and novel (V.U.N.) graphs for where a valid graph satisfies the corresponding property of
each dataset (Planar, Tree, SBM, etc.).

Full results for plain graph generation. Table 11 gives the full results with other generative
models aside from the diffusion and flow models. Table 16 gives the results on smaller datasets, i.e.,
comm20
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Table 14: Large molecule generation results. Only diffusion and flow models are reported. Table 15
gives further experiments with binary edge types.

Guacamol MOSES

Model Val. ↑ V.U. ↑ V.U.N.↑ FCD ↑ Val. ↑ Unique. ↑ Novelty ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set 100.0 100.0 0.0 92.8 100.0 100.0 0.0 100.0 0.01 0.64 99.1

DiGress (Vignac et al., 2023a) 85.2 85.2 85.1 68.0 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) 86.6 86.6 86.5 59.7 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) 98.9 98.9 97.6 72.7 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG Qin et al. (2024) 99.0 99.0 97.9 73.8 92.8 99.9 92.1 98.9 1.95 0.55 14.4
BWFlow (Ours) 98.8 98.9 97.4 69.2 92.0 100.0 94.5 98.4 1.32 0.56 15.3

Table 15: Large molecule generation results. Only comparing the representative diffusion and flow
models. B.E. is the scenario that only considers binary edge types. The results are almost saturated,
thus not very informative.

Guacamol MOSES

Model Val. ↑ V.U. ↑ V.U.N.↑ Val. ↑ Unique. ↑ Novelty ↑
Digress (B.E.) 96.0 98.9 97.4 96.1 100 100
Defog (B.E.) 98.4 98.4 97.9 99.3 100 100
BWFlow (B.E.) 98.0 98.0 97.7 99.6 100 100

(a) Training-time Probability Path for Planar Graphs (b) Training-time Tree Graph Probability Path

(c) Training-time QM9 Molecule Probability Path. We
use negative validity for clear comparison.

Figure 6: Training-time probability path comparisons for planar, tree and QM9.

I.7 3D MOLECULE GENERATION: QM9 WITHOUT EXPLICIT HYDROGEN

In Table 17 we report the results of QM9 without explicit hydrogen. This task is relatively easy
compared to the generation task with explicit hydrogen, and both Midi and our BWFlow have
achieved near-saturated performance with validity near to 100%.
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C
onvergence G

ap

(a) Sampling path comparision on Planar dataset (b) Sampling path comparision on SBM dataset

Figure 7: The probability path reconstruction in the sampling stage on a) Planar graphs and b) SBM
graphs.

(a) QM9 with explicit hydrogen (b) Planar

Figure 8: Training curves on QM9 and planar datasets with explicit hydrogen.

I.8 CONVERGENCE ANALYSIS

Fig. 8 are the training convergence analysis on Planar and QM9 dataset, showing that BWFlow
provides a fast convergence speed than others.

J USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model to assist with writing and editing this manuscript, primarily for
grammar, style, and clarity. The authors are fully responsible for the content and scientific integrity
of the work.

FM type Interpolation comm-20
Deg. Clus. Orbit.

Discrete

Linear 0.071 0.115 0.037
Harmonic 0.011 0.036 0.027
Geometric 0.047 0.083 0.02

BW 0.009 0.013 0.017

Table 16: Quantitative experimental results on COMM20
(smaller dataset).
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Dataset Interpolation Metrics

µ V.U.N(%) Connected(%) Charges(10−2) Atom(10−2) Angles(○)

QM9
(w/o h)

MiDi 1.00 98.0 100.0 0.4 5.1 1.49
Linear Flow 1.60 79.33 52.3 0.7 14.0 8.77

BWFlow 1.02 99.8 100.0 0.4 4.8 1.53

Table 17: Quantitative experimental results on QM9 datasets without explicit hydrogen in 3D
molecule generation.

Symbol Meaning

General flow matching

S State space of variables (e.g., X ∈ S)
X / X / X (with X ∼ p(X ;X)) Random variable / realization / latent parameters
p0, p1 Source and target distributions over X
pt(X) = [ψtp0](X) Time–continuous probability path between p0 and p1
ψt Time–dependent flow map (CNF flow)
ut True velocity field generating pt
vθt Parameterized velocity field
η0, η1 Probability measures on S in OT formulation
Π(η0, η1) Set of couplings between η0 and η1
π ∈ Π(η0, η1) Transport plan (joint measure on S × S)
c(X,Y ) Transport cost between X and Y
Wc(η0, η1) Wasserstein distance associated with cost c

Graphs and Graph Markov Random Fields

G = {V,E ,X} Random graph (nodes, edges, node features)
G = {V,E,X} Realization of G, with nodes, edges and node features
V = {v},E = {euv},X = {xv} Random node set, edge set, and feature set
W ∈ R∣V∣×∣V∣ Weighted adjacency matrix of the graph distribution
X = [x1, . . . ,x∣V∣]⊺ Node feature matrix of the graph distribution
D = diag(W1) Degree matrix (1: all-one vector) of the graph distribution
L =D −W Graph Laplacian matrix of the graph distribution
φ1(v), φ2(u, v) Node-wise and pair-wise MRF potentials
µv Node-specific latent mean for V xv
Λ Covariance Matrix

Bures-Wasserstein Flow Matching

ηGj , ηXj , ηEj Measure over graphs (factorized as node and edge measure)
dBW(G0,G1) Bures–Wasserstein distance between two graph distributions
Gt = {V,Et,Xt} Intermediate random graph along BW interpolation
p(Gt ∣ G0,G1) Conditional probability path induced by BW interpolation
vt(Gt ∣ G0,G1) Conditional velocity at graph state Gt

vt(Et ∣ G0,G1) Conditional edge velocity
vt(Xt ∣ G0,G1) Conditional node-feature velocity
vθt (Gt) Parameterized velocity used in training / sampling
Categorical([Xt]v) Categorical distribution over node feature states at node v
Bernoulli([Wt]uv) Bernoulli edge distribution between nodes u and v
δ(Gi, ⋅) Dirac distribution concentrated at graph Gi (i = 0,1)

Table 18: Notation Table.
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