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Abstract

We study the problem of properly learning linear threshold functions (LTFs) in
the learning from label proportions (LLP) framework. In this, the learning is on a
collection of bags of feature-vectors with only the proportion of labels available
for each bag.
First, we provide an algorithm that, given a collection of such bags each of size at
most two whose label proportions are consistent with (i.e., the bags are satisfied by)
an unknown LTF, efficiently produces an LTF that satisfies at least (2/5)-fraction
of the bags. If all the bags are non-monochromatic (i.e., bags of size two with
differently labeled feature-vectors) the algorithm satisfies at least (1/2)-fraction of
them. For the special case of OR over the d-dimensional boolean vectors, we give
an algorithm which computes an LTF achieving an additional Ω(1/d) in accuracy
for the two cases.
Our main result provides evidence that these algorithmic bounds cannot be signifi-
cantly improved, even for learning monotone ORs using LTFs. We prove that it
is NP-hard, given a collection of non-monochromatic bags which are all satisfied
by some monotone OR, to compute any function of constantly many LTFs that
satisfies (1/2 + ε)-fraction of the bags for any constant ε > 0. This bound is tight
for the non-monochromatic bags case.
The above is in contrast to the usual supervised learning setup (i.e., unit-sized
bags) in which LTFs are efficiently learnable to arbitrary accuracy using linear
programming, and even a trivial algorithm (any LTF or its complement) achieves
an accuracy of 1/2. These techniques however, fail in the LLP setting. Indeed, we
show that the LLP learning of LTFs (even for the special case of monotone ORs)
using LTFs dramatically increases in complexity as soon as bags of size two are
allowed. Our work gives the first inapproximability for LLP learning LTFs, and a
strong complexity separation between LLP and traditional supervised learning.

1 Introduction

A linear threshold function (LTF) over the d-dimensional feature-vectors x is given by pos(g(x)) for
some linear function g(x1, . . . , xd) =

∑d
i=1 cixi + cd+1, where pos(z) := 1{z>0}. Also known as

linear classifiers or halfspaces, LTFs are one of the most fundamental classes studied in computational
learning and lie at the core of several machine learning algorithms such as Perceptron [25, 21] and
SVM [7]. It is known [4] that LTFs are properly learnable in the supervised learning setup: given a
training set of labeled feature-vectors which are consistent with some LTF, using polynomial-time
linear programming one can efficiently find one such LTF.

In this work we initiate an investigation into the proper learnability of LTFs in the framework of
learning from label proportions (LLP). In this, instead of labels for each feature-vector, the training
data consists of bags (subsets) of feature-vectors along with the proportion of labels in each bag.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Given a collection of bags with their respective label proportions which are consistent with (i.e, are
satisfied by) some unknown feature-vector level classifier, the goal is to find a classifier (from the
same concept class for proper learning) satisfying the most number of bags. Such a model was
formalized by Yu et. al [30] who showed bounds on the generalization error for predicting the label
proportion on unseen bags.

When all bags are unit-sized this becomes the usual supervised learning in which as we noted above
LTFs are efficiently properly learnable. A natural question is whether this remains true even when
larger bag sizes are allowed. In particular, we consider the simplest setting with bags of size at
most two and study the following question: Given a collection of bags, all of size at most two and
guaranteed to be satisfied by some unknown LTF, what is the maximum fraction of bags that can be
satisfied using an efficiently computable LTF?

There naturally are two types of bags: monochromatic bags whose feature vectors have the same label,
and the non-monochromatic ones whose feature-vectors have different labels and are necessarily of
size two. Clearly, the monochromatic bags determine the labels of their constituent feature-vectors.
Therefore, for a collection of bags consistent with some LTF, one can efficiently find an LTF using
linear programming to satisfy all the monochromatic bags. However, such an algorithm is not
guaranteed to satisfy any non-monochromatic bag.

In traditional supervised learning of LTFs, the trivial algorithms of taking the best of any LTF or its
complement, or a random homogeneous LTF, both achieve an accuracy of half. Unfortunately, these
algorithms provide no such guarantees in the LLP setting, even for bags of size at most two. At a
high level, in LLP the objective is given by comparing the predicted labels of a bag’s feature-vectors
with each other, unlike supervised learning where they are only compared with observed ones. This
seems to qualitatively change the nature of the problem in terms of the applicable techniques.

We first provide an algorithm that satisfies (in expectation) at least half of the non-monochromatic
bags and one-fourths of the monochromatic ones. This can be combined with the linear programming
algorithm which satisfies all monochromatic bags (and possibly none of the non-monochromatic ones)
to obtain an algorithm which outputs an LTF satisfying (2/5)-fraction of the bags. We also show that
for the special case of the feature vectors being d-dimensional boolean and the bags being consistent
with an OR (boolean disjunction) the algorithmic guarantees improve by an Ω(1/d) additional factor.

1.1 Previous Work on LLP

The LLP problem naturally arises in many real world scenarios where the labels are not available
individually but only as proportions for bags of feature-vectors due to privacy [28] and legal [26]
reasons, high label supervision cost [6] or technical limitations of labeling mechanisms [9]. Some of
the earlier works [8, 16, 22, 26] applied supervised learning methods such as MCMC, clustering, and
linear classifiers to the LLP problem. The work of [24] assumed an exponential generative model
and proved performance bounds under assumptions on the distribution of the bags, and was further
generalized by [23] while the work of [29] proposed novel proportional SVM based algorithms.
Subsequently, approaches based on deep neural nets for large-scale and multi-class data [18, 10, 19],
as well as bag pre-processing techniques [27] have been developed for LLP.

In contrast to the long line above of application focused research in LLP, the theoretical study of
algorithmic and complexity issues in LLP has been rather limited. On the complexity side, [13]
studied a one-bag version of this problem where the observed global label proportion is given over
all the feature-vectors and the goal is to find a classifier to minimize the deviation from this. They
showed, among other results that common concept classes such as monotone-ORs cannot be learnt in
their model to arbitrary accuracy.

The LLP model which we study – of predicting the bag label proportions – was first formalized in the
work of [30] who also bounded the generalization error when taking the (bag, label-proportion)-pairs
as instances sampled iid from some distribution. Their bound has the same dependence on the feature-
vector classifier’s VC-dimension as in supervised learning, with an additional logarithmic dependence
on the bag size. While the loss function they consider is slightly different, their bound can be applied
to minimizing the number of unsatisfied bags of size two (see Appendix E of the supplemental). In
the rest of this section we define the problem of learning LTFs from label proportions, describe our
results and the previous related work along with an informal description of our methods and proof
techniques.
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1.2 Problem Definition

Let X = {x1, . . . ,xn} ⊆ Rd be the set of feature-vectors, and bags B = {B1, . . . , Bm} ⊆
(
X
1

)
∪
(
X
2

)
,

i.e. each bag is of size at most 2. The label set is binary i.e., {0, 1}, and for each bag Bk there is a
proportion σk which is the average of the labels of the vectors in the bag, satisfying σk ∈ {0, 1} if
|Bk| = 1 and σk ∈ {0, 0.5, 1} if |Bk| = 2. If σk 6= 0.5 then Bk is said to be monochromatic i.e.,
bags which have same labels for their feature-vectors. The remaining bags Bk necessarily of size 2
having σk = 0.5 are called non-monochromatic.

A bag Bk ∈ B is satisfied by some f : X→ {0, 1} if
(∑

x∈Bk
f(x)

)
/ |Bk| = σk.

An instance of LLP-LTF is given (X,B = {Bk}mk=1, {σk}mk=1). It is said to be satisfiable if there
exists an LTF that satisfies all the bags. The goal is to find an LTF that satisfies the most bags.

We denote by LLP-OR the special case when X has boolean vectors and the guaranteed LTF for
satisfiable instances is an OR. A further special case is when the guaranteed OR is monotone i.e., it
has no negated variables.

1.3 Our Results

We provide the following algorithmic guarantees for LLP-LTF on bags of size at most 2.

Theorem 1.1. There is a polynomial time algorithm which given a satisfiable instance of LLP-LTF
on bags of size at most 2, computes an LTF that satisfies at least (2/5)-fraction of the bags. If
all bags are non-monochromatic this satisfies at least half of the bags. For satisfiable LLP-OR
on bags of size at most 2 with d-dimensional boolean feature-vectors, there is a polynomial-time
algorithm computing an LTF satisfying at least (2/5 + γ0/d)-fraction of the bags in general, and
(1/2 + γ0/d)-fraction if all bags are non-monochromatic, for some absolute constant γ0 > 0.

The above theorem for LLP-LTF is proved in Sec. 2 with the proof for LLP-OR provided in Sec.
2.1. The algorithms use random hyperplane rounding of vectors, so the above guarantees are in
expectation. They can however be derandomized by the sophisticated procedure given in [20] and we
provide an explanation in Appendix A of the supplemental.

Our result on the intractability of LLP-OR (an thereby of LLP-LTF) is stated below.

Theorem 1.2. Given a satisfiable instance of LLP-OR consisting only of non-monochromatic bags
each of size 2 s.t. there is a monotone OR that satisfies all bags, it is NP-hard to find any function of
` LTFs that satisfies (1/2 + δ)-fraction of the bags, for any constants ` ∈ Z+, δ > 0.

The proof follows via a reduction from a variant of the Label Cover problem. We include the
guarantees of the hardness reduction as Theorem 3.3 which directly implies Theorem 1.2. However,
due to lack of space we defer the formal proof of Theorem 3.3 to Appendices C and D of the
supplemental, while including an informal description in Sec. 1.5. We note that Theorem 1.2 shows
the optimality of the approximation factor obtained in Theorem 1.1 for non-monochromatic bags.

Previous Related Work. As mentioned earlier, the proper supervised-learnability of LTFs [4] is well
known without any distributional assumptions. In the presence of adverserial label noise however, the
problem was shown to be NP-hard [17] and the works of [1, 2, 5] proved stronger inapproximability
bounds with the optimal (1/2 + ε)-factor hardness obtained independently by [11] and [15], further
generalized by [3] to apply for constant degree polynomial thresholds as hypotheses. Subsequently,
[12] showed that this also holds for the special case of learning OR with an LTF which was recently
strengthened by [14] to also rule out functions of constantly many LTFs as hypotheses.

1.4 Overview of Algorithmic Results

Algorithm for LLP-LTF. Given a satisfiable instance of LLP-LTF we can first assume by slightly
translating the constant part of the unknown satisfying LTF that it classifies all the feature-vectors of
the instance with a non-zero margin. Next, we observe that there are strict quadratic constraints (over
the coefficients of the LTF) that distinguish the monochromatic from the non-monochromatic bags.
Indeed, consider the unknown LTF pos(〈c∗,x〉) (WLOG by appending a last coordinate with value 1
to all feature-vectors x of the instance) that satisfies all bags. Then, 〈c∗,xi〉〈c∗,xj〉 is positive for
monochromatic bags and negative for the non-monochromatic ones whose constituent vectors are xi
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and xj . Taking C = c∗c
T
∗ we obtain the same conditions for xT

i Cxj , which are constraints linear in
the entries of positive semi-definite (psd) C, and can be efficiently solved for C using a semi-definite
program (SDP). Using the psd decomposition C = LTL we map xi to the vector zi := Lxi so that
〈zi, zj〉 = xT

i Cxj . From here, the random hyperplane rounding of zi to 〈g, zi〉 (g ← N(0, 1)d)
yields an LTF pos(h(xi)) = pos(〈g, zi〉) that separates (in expectation) the vectors of at least half
of the non-monochromatic bags and at most half of the monochromatic ones. Taking the better of
pos(h(x)) and pos(−h(x)) satisfies in expectation at least half of the non-monochromatic bags and
at least one-fourths of the monochromatic ones. Combining this with the known linear programming
algorithm that satisfies all the monochromatic bags we obtain the desired (2/5)-approximation.

Algorithm LLP-OR. Given a satisfying OR we can write an equivalent LTF with a margin property –
the thresholded linear form has value either (−1/2) if the OR evaluates to 0, and otherwise takes
values in the range [1/2, d]. This allows us to add margin terms in the SDP constraints corresponding
to the bags. The rest of the algorithm mapping xi to zi remains the same, while the strengthened
constraints imply an extra Ω(1/d) in the probabilities that the random hyperplane rounding separates
the vectors of non-monochromatic bags and does not separate those of monochromatic bags, yielding
a corresponding improvement in the fraction of satisfied bags.

1.5 Overview of Hardness Result

For this exposition of the proof techniques we focus only on a weaker version of Theorem 1.2 for
one LTF rather than functions of constantly many LTFs as hypothesis. The proof is obtained via a
reduction from a variant of the (by now standard) Label Cover problem. This consists of a bi-regular
bipartite graph (V,U,E) where vertices in V and U have to be assigned labels from [M ] and [m]
respectively for some M > m. Each edge e = (v, u) ∈ V × U is a constraint with a projection
πv,u : [M ]→ [m] and is satisfied by the labels lv and lu for v and u respectively if πv,u(lv) = lu. It
is NP-hard to distinguish whether a Label Cover instance is completely satisfiable (“Yes” case) , or
any labeling satisfies only an o(1)-fraction of edges (“No” case).

The goal of the reduction is to transform a Label Cover instance L to an LLP-OR instance of only
non-monochromatic 2-sized bags s.t. (i) if L is a Yes instance there is an OR satisfying all the bags,
(ii) if L is a No instance then there is no LTF satisfying more than (1/2 + o(1))-fraction of the bags.

The above template of reduction from Label Cover and its variants has been widely used to prove
hardness results, including in computational learning by the previous works mentioned in this section.
The main technical ingredient for such reductions is a dictatorship test tailored to transform a specific
local collection of variables/constraints of L into a sub-instance of the target problem. This is done by
defining a coordinate in the feature-space for each variable of L and its label, and then constructing
the feature-vectors and bags of the sub-instances in this space - zeroing out coordinates corresponding
to variables not in the local collection. Taking the union the sub-instances for all local collections
yields the hard instance of the target problem, in our case LLP-OR.

Our dictatorship test needs to satisfy the following meta-properties, (i) completeness: any labeling
satisfying the local collection of Label Cover constraints yields a good solution to the sub-instance i.e.,
an OR that satisfies all its bags, and (ii) soundness: any good enough solution to the sub-instances i.e.,
an LTF satisfying more than half the bags on average over the sub-instances, should be independently
decodable into a labeling satisfying the local constraints. This notion of decodability is crucial, it
depends on the fact (by design) that the good solution LTF will have coefficients on the disjoint
sets of coordinates corresponding to each Label Cover variable. An independent decoding is any
randomized procedure selecting a label for each variable considering only the LTF coefficients of the
coordinates corresponding to that variable. In the next few paragraphs we motivate the design of our
dictatorship test and provide an overview of its completeness and soundness analyses.

1.5.1 Dictatorship test construction

We fix as our local collection any two vertices v, w ∈ V which are neighbors of some u ∈ U in L
with πv,u and πw,u being the respective projections. Making sure that completeness holds is usually
straightforward. For the soundness we want to ensure that if the LLP-OR sub-instances have an LTF
satisfying more (1/2 + δ)-fraction of the bags (on an average over the local collections) then there
should be independent decodings of v and w assigning labels lv and lw s.t. πv,u(lv) = πw,u(lw)
with significant probability depending on δ. We call such lv and lw consistent labels. To begin, we
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provide a first cut approach and illustrate its shortcomings to provide the insights for developing the
actual dictatorship test used in our reduction.

First Cut Approach. For v and w we have a separate set of [M ] boolean coordinates denoted by
the boolean variables {Xv,i}Mi=1 and {Xw,i}Mi=1. Let us construct a distribution that samples bags
with two feature-vectors X(1) and X(2), the former supported only on {Xv,i}Mi=1 and the latter other
only on {Xw,i}Mi=1, such that the OR formula (Xv,lv ∨Xw,lw) for any consistent labels lv and lw
evaluates to 1 exactly on one of them. One way to do this is as follows. Sample a random set Jv by
choosing each j ∈ [m] w.p. 1/2 and let Jw := [m] \ Jv. Then, (i) for each j ∈ Jv set X(1)

v,i = 1

for all i ∈ π−1v,u(j) and X(2)
w,i = 0 for all i ∈ π−1w,u(j), and (ii) for each j ∈ Jw set X(1)

v,i = 0 for all

i ∈ π−1v,u(j) and X(2)
w,i = 1 for all i ∈ π−1w,u(j); with the undefined coordinates in X(1) and X(2) set

to 0. This distribution – call it D0 – then outputs a non-monochromatic bag B containing X(1) and
X(2). It is easy to verify that exactly one of (X

(1)
v,lv
∨X(1)

w,lw
) = X

(1)
v,lv

and (X
(2)
v,lv
∨X(2)

w,lw
) = X

(2)
w,lw

evaluate to 1 for any consistent labels lv and lw. Therefore, this dictatorship test given by D0 satisfies
the completeness property. Unfortunately however, it does not have the soundness property. To see
this, suppose that the pre-images of the two projections are all of the same size d i.e,

∣∣π−1v,u(j)
∣∣ = d

and
∣∣π−1v,u(j)

∣∣ = d for all j ∈ [m], implying M = md. Then, the linear threshold pos(h(X)) where
h(X) :=

∑m
i=1 (Xv,i +Xw,i)−M/2, evaluates to 1 exactly on one of X(1) and X(2) w.p. 1 when

m is odd and w.p. 1−O(1/
√
m) if m is even. Thus, pos(h) which is a majority-threshold is a good

solution. However, h has equal weight on each of its {Xv,i}Mi=1 and {Xw,i}Mi=1 coordinates, so any
independent decoding of v and w using the corresponding coefficients of h will yield consistent
labels with probability only around O(1/M), much lower than desired.

Final Dictatorship Test. The problem with D0 is that the total number of 1s in X(1) and X(2)

together is exactly M and therefore the majority threshold works. If the coordinates were real-valued
this could be mitigated by choosing the non-zero coordinates from some range of values randomly,
introducing enough variability in the sum to fool the majority threshold. While this of course is not
possible in the boolean case, we employ the following trick to achieve a similar effect: replace each
original coordinate with some large number of new coordinates. When the original coordinate was
set to zero set all the corresponding new ones to zero, and when the original was set to 1, sample the
new ones from some distribution such that (i) at least one of the new coordinates is always 1, and
(ii) the number of 1s sampled has a large variation. In particular, we replace Xv,i (i ∈ [M ]) with
{Xv,i,b,q | b ∈ {0, 1}, q ∈ [Q]} for some large Q. The vector X(1) is constructed as follows. For all
i s.t. πv,u(i) ∈ Jv independently, we first sample b = (1 − a) ∈ {0, 1} u.a.r. then set exactly one
u.a.r. chosen value from {X(1)

v,i,b,r}
Q
r=1, to 1 and rest to zero. Further, after choosing Jv, a random

subset Jvε ⊆ Jv is chosen by including every j ∈ Jv with probability ε. For those i s.t. πv,u(i) ∈ Jvε
the variables {X(1)

v,i,a,r}
Q
r=1 are sampled iid unbiased {0, 1}-Bernoulli. We can think of Jvε be those

blocks of coordinates which introduce the variability in the number of 1s due the fact that while a
given j ∈ Jv is included in Jvε with probability only ε, once it is then roughly half of the coordinates
in X(1) corresponding to i ∈ π−1v,u(j) are sampled (as iid Bernoulli) to be 1, rather than ∼ 1/Q
fraction. For a choice ε > 0 letting Q to be sufficiently larger than 1/ε yields the desired variation.

The coordinates Xw,i (i ∈ [M ]) are analogously replaced with {Xw,i,b,q | b ∈ {0, 1}, q ∈ [Q]}, and
a similar process using Jwε ⊆ Jw is followed to sample the new variables for the point X(2).

With the above transformations, D0 is replaced by the distribution D which samples vectors X(1) and
X(2) now over the extended coordinate sets corresponding to v and w respectively. Since we maintain
the property that if the original coordinate Xv,i was 1 then at least one of {Xv,i,0,r, Xv,i,1,r}Qr=1 is
set to 1, and when the former was 0 then the latter are all 0 as well (similarly for Xw,i), we still

have that
(∨

b∈{0,1}
∨Q
q=1Xv,lv,b,q

)
∨
(∨

b∈{0,1}
∨Q
q=1Xw,lw,b,q

)
for consistent labels lv and lw,

satisfies all the bags sampled from D. On the other hand, the soundness analysis for D is quite
lengthy and technical, and we provide below an informal description of the main steps involved and
the techniques used for them, using some convenient simplified notation.

Consider a linear form h on the above set of coordinates and a candidate solution pos(h(X)) to the
dictatorship test. For simplicity let us assume that it does not have any constant term. If cv and cw
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are the coefficient vectors of h restricted to the coordinates corresponding to v and w separately,
then pos(h(X(1)) = pos(〈cv,X(1)〉) and pos(h(X(2)) = pos(〈cw,X(2)〉). For v let the weight of
its label i be given by ‖cv,i‖22 =

∑
b,q c

2
v,i,b,q with the total weight of cv being ‖cv‖22 normalized to

1. Using the notion of critical index with small parameter τ > 0 we partition [M ] into subsets regv
of regular coordinates which all have weight at most τ , topv of the top-K (for some large enough
K) non-regular coordinates in terms of their weight, and torsov of the rest of the coordinates. Let
hv, hvtop, hvreg and hvtor be the linear forms on X(1) given by the restrictions of cv to coordinates in
[M ], topv , regv and torsov respectively. Similarly we obtain for w the subsets topw, torsow, regw of
coordinates and the restrictions hw, hwtop, hwreg and hwtor.

For the soundness analysis of D we assume that h does not admit a consistent independent decoding
of v and w, and based on this wish to show that the distributions pos(h(X(1))) and pos(h(X(2))) are
independent of each other. We do this through the following arguments.

Truncation: hvtor(X
(1)), hwtor(X

(2)) are too small to affect the value of pos(h(X(1)) and pos(h(X(2))
respectively, with any significant probability. This uses an anti-concentration result of [14] applied to
hvtop and hwtop.

Non-Intersection. πv,u(topv) ∩ πw,u(topw) = ∅. Further, the total weights of coordinates in
regv ∩ π−1v,u (πw,u(topw)) and those in regw ∩ π−1w,u (πv,u(topv)) are tiny. If not, one could select a
label for v from either w.p. 1/2 choosing randomly from topv , or w.p. 1/2/ sampling one from regv
with probability proportional to its weight, and do a similar independent decoding for w, yielding a
consistent labeling with significant probability, thereby contradicting our assumption above.

Decoupling the regular parts. We show that with high probability over the choice of Jv, the
distribution of hvreg(X(1)) is close to a fixed Gaussian random variable. This is via an application of
the Berry-Esseen theorem after a series of estimates on the conditional (on choice of Jv) mean and
variance of hvreg(X(1)). We obtain the same for Jw and hwreg.

Using the truncation argument, one can ignore the contribution of hvtor and hwtor. From the
non-intersection and decoupling arguments we obtain that pos(hvreg(X(1)) + hvtop(X(1)) and
pos(hwreg(X(2)) + hwtop(X(w)) are independent of each other. A short argument averaging over
all pairs of neighbors v, w of a given u shows that the fraction of bags satisfied (on an average over
the choice of v and w) is at most 1/2 + o(1).

In several steps of the above arguments we are aided by the smoothness property of the the Label
Cover variant (see Sec. 3) which allows us to assume that in any pre-image π−1v,u(j) there is at most
one coordinate either from topv or of weight greater than 1/poly(d), where d is the pre-image size of
the Label Cover projections. Overall, our analysis follows (at a high level) the analytical approach of
[12] and [14], though our decoupling step is more involved as it requires sharper as well as conditional
bounds to obtain invariance as a high probability statement over the choice of Jv .

Finally, extending our analysis to rule out functions of constantly many LTFs considerably complicates
the above arguments. In particular, we apply the multi-dimensional version of the Berry-Esseen
theorem to do the decoupling step. For this, we add additional noise to the hreg parts to lower bound
the smallest eigenvalue of a correlation matrix which determines the error bounds when applying the
multi-dimensional version of this theorem.

2 Approximation for LLP-LTF on bags of size 2

Let I = (X,B = {B1, . . . , Bm}, {σk}mk=1) be a satisfiable instance of LLP-LTF. We begin with the
following simple lemma which implies that the existence of an LTF satisfying all the bags of I while
classifying each point of the instance with non-zero margin.
Lemma 2.1. There is an LTF pos(f(x)) that satisfies all the bags of I, along with |f(x)| > 0 for all
x ∈ ∪mj=1Bj .

Proof. By definition there is an LTF pos(g(x)) that satisfies all the bags of I. Since pos(z) = 1{z>0}
and the total number of feature vectors in the bags is finite, the quantity κ given by

κ := min
{
g(x) | x ∈ ∪mj=1Bj , pos(g(x)) = 1

}
(1)
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Algorithm A. Input: satisfiable instance I of LLP-LTF.
1. For each x ∈ Rd define x̃ := (x1, . . . , xd, 1) ∈ Rd+1.

2. Solve the following SDP for psd matrix C ∈ R(d+1)×(d+1):

x̃T
i Cx̃j ≤ 0 ∀{xi,xj} = Bk s.t. |Bk| = 2, σk = 0.5 (2)

x̃T
i Cx̃j ≥ 0 ∀{xi,xj} = Bk s.t. |Bk| = 2, σk 6= 0.5 (3)

x̃T
i Cx̃i > 0 ∀xi ∈ ∪mj=1Bj . (4)

3. Let C = LTL be its psd decomposition.
4. Sample g u.a.r from N(0, 1)d+1.
5. Define the linear form h(x) := 〈Lx̃,g〉.
6. Let h∗ ∈ {h,−h} such that pos(h∗(.)) satisfies more bags of I. Output pos(h∗(.)).

Figure 1: Algorithm A for LLP-LTF.

satisfies κ > 0. Thus, we obtain the desired linear form f by decreasing the constant term of g
by exactly κ/2, ensuring that f(x) ≥ κ/2 if g(x) > 0, and f(x) ≤ −κ/2 if g(x) ≤ 0, ∀x ∈
∪mj=1Bj .

We first provide in Fig. 1 a SDP based algorithm A and prove the following lemma.
Lemma 2.2. Algorithm A (Fig. 1) satisfies in expectation half of the non-monochromatic bags and
one-fourth of the monochromatic bags.

Proof. Let pos(f(x)) be the LTF given by Lemma 2.1 satisfying all the bags of I. Letting x̃ as
defined in Step 1 of A along with the non-zero margin of pos(f(x)) implies that there is some
c∗ ∈ Rd+1 such that:

〈c∗, x̃i〉〈c∗, x̃j〉 = x̃T
i

(
c∗c

T
∗
)
x̃j ≤ 0 ∀{xi,xj} = Bk s.t. |Bk| = 2, σk = 0.5 (5)

〈c∗, x̃i〉〈c∗, x̃j〉 = x̃T
i

(
c∗c

T
∗
)
x̃j ≥ 0 ∀{xi,xj} = Bk s.t. |Bk| = 2, σk 6= 0.5 (6)

〈c∗, x̃i〉〈c∗, x̃i〉 = x̃T
i

(
c∗c

T
∗
)
x̃i > 0 ∀xi ∈ ∪mj=1Bj . (7)

Thus, C = c∗c
T
∗ satisfies (2), (3) and (4). and the SDP solved by A is feasible. Let C = LTL

denote a solution and its psd decomposition. For each i ∈ [n] consider the vector zi ∈ Rd+1 given
by zi := Lx̃i ∈ Rd+1. Observe that 〈zi, zj〉 = 〈Lx̃i,Lx̃j〉 = x̃T

i L
TLx̃j = x̃T

i Cx̃j , for i, j ∈ [n].
This, along with (2), (3), and (4) yields,

〈zi, zj〉 ≤ 0 ∀{xi,xj} = Bk s.t. |Bk| = 2, σk = 0.5 (8)
〈zi, zj〉 ≥ 0 ∀{xi,xj} = Bk s.t. |Bk| = 2, σk 6= 0.5 (9)
‖zi‖ > 0 ∀xi ∈ ∪mj=1Bj (10)

Let g be as in the algorithm and note that as defined in Step 4 of A, h(xi) = 〈Lx̃i,g〉 = 〈zi,g〉. Thus,
{pos(h(xi))}ni=1 is a random hyperplane rounding of the vectors {zi}ni=1. Using this observation
along with (8), (9) and standard geometric facts (see Appendix A of the supplemental) we obtain:

Pr [pos(h(xi)) 6= pos(h(xj))] ≥ 1/2 ∀{xi,xj} = Bk s.t. |Bk| = 2, σk = 0.5 (11)
Pr [pos(h(xi)) = pos(h(xj))] ≥ 1/2 ∀{xi,xj} = Bk s.t. |Bk| = 2, σk 6= 0.5 (12)
Pr [pos(h(xi)) = pos(h(xi))] = 1 ∀{xi} = Bk (13)

where the last equation for bags of size 1 is trivially true. Further, (10) implies that over the choice
of g the values of all the h(xi) occurring in the above three equations are non-zero almost surely
i.e., with probability 1. This implies that pos(h(x)) = 1 − pos(−h(x)) for all x ∈ ∪mj=1Bj , with
probability 1. Thus, it can be seen that both pos(h) and pos(−h) satisfy all the non-monochromatic
bags B = {xi,xj} such that pos(h(xi)) 6= pos(h(xj)). Furthermore, at least one of pos(h) and
pos(−h) satisfy half of the monochromatic bags B which have vectors xi,xj (xi = xj if |B| = 1)
for which pos(h(xi)) = pos(h(xj)). This implies that pos(h∗) returned by A satisfies in expectation
at least half of the non-monochromatic bags and one-fourth of the monochromatic bags.
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Proof. (of Theorem 1.1 for LLP-LTF) We use A in combination with the linear programming method
A that is guaranteed to satisfy all monochromatic bags. If the fraction of monochromatic bags q is
at least 2/5 of the total bags, then A finds an LTF to satisfy all of them. Otherwise, A finds one to
satisfy (in expectation) q/4 + 1/2(1− q) = 1/2− q/4 ≥ 1/2− 2/20 = 2/5 fraction of the bags. If
q = 0 i.e., all bags are non-monochromatic the LTF satisfies 1/2-fraction of the bags.

2.1 Special Case: LLP-OR

Let I be a satisfiable instance of LLP-OR. We have xi ∈ {0, 1}d (i ∈ [n]) and there is boolean OR
function f of the form:

f(x) =
∨
s∈Sf

1

xs +
∨
s∈Sf

0

¬xs, x ∈ {0, 1}d, (14)

for disjoint subsets Sf1 , S
f
0 ⊆ [d] such that f satisfies each bag of the instance I. Observe that for any

x ∈ {0, 1}df(x) = 1⇔
∑
s∈Sf

1

xs +
∑
s∈Sf

0

(1− xs) ≥ 1

 ,
f(x) = 0⇔

∑
s∈Sf

1

xs +
∑
s∈Sf

0

(1− xs) = 0

 (15)

Let us define cf = (cf1 , . . . , c
f
d , c

f
d+1) ∈ Rd+1 as cfs = 1 if s ∈ Sf1 , else cfs = −1 if s ∈ Sf0 , else

cfs =
∣∣∣Sf0 ∣∣∣ − 1/2 if s = d + 1, and cfs = 0 otherwise. Then, letting x̃ = (x1, . . . , xd, 1), (15) is

transformed to[
f(x) = 1 ⇔ 〈cf , x̃〉 ∈ [1/2, d− 1/2]

]
,
[
f(x) = 0 ⇔ 〈cf , x̃〉 = −1/2

]
(16)

Given the above it can be seen that

〈cf , x̃i〉〈cf , x̃j〉 ≤
−1

4d

(
〈cf , x̃i〉2 + 〈cf , x̃j〉2

)
∀{xi,xj} = Bk s.t. |Bk| = 2, σk = 0.5

〈cf , x̃i〉〈cf , x̃j〉 ≥
1

4d

(
〈cf , x̃i〉2 + 〈cf , x̃j〉2

)
∀{xi,xj} = Bk s.t. |Bk| = 2, σk 6= 0.5

Thus, one modifies the algorithm in Fig. 1 to obtain A′ by replacing (2) and (3) with

x̃T
i Cx̃j ≤

−1

4d

(
x̃T
i Cx̃i + x̃T

jCx̃j
)

∀{xi,xj} = Bk s.t. |Bk| = 2, σk = 0.5 (17)

x̃T
i Cx̃j ≥

1

4d

(
x̃T
i Cx̃i + x̃T

jCx̃j
)

∀{xi,xj} = Bk s.t. |Bk| = 2, σk 6= 0.5 (18)

Following the same analysis as in the LTF case, noting that ‖zi‖2 = x̃T
i Cx̃i > 0 for any i ∈ [m] (by

(10)), and using the AM-GM inquality we obtain that:

〈zi, zj〉
‖zi‖‖zj‖

≤ −1

4d

(
‖zi‖2 + ‖zj‖2

‖zi‖‖zj‖

)
≤ −1

2d
∀{xi,xj} = Bk s.t. |Bk| = 2, σk = 0.5 (19)

〈zi, zj〉
‖zi‖‖zj‖

≥ 1

4d

(
‖zi‖2 + ‖zj‖2

‖zi‖‖zj‖

)
≥ 1

2d
∀{xi,xj} = Bk s.t. |Bk| = 2, σk 6= 0.5 (20)

Therefore, from standard geometric facts (see Appendix A of the supplemental), the random hyper-
plane rounding of the {zi}ni=1 yields probabilities 1/2 + Ω(1/d) instead of 1/2 in (11) and (12).
Following the rest of the arguments as in the LLP-LTF case we obtain the following lemma.
Lemma 2.3. The algorithm A′ described above satisfies at least (1/2 + α0/d)-fraction of the non-
monochromatic bags and (1/4 + α0/2d)-fraction of the monochromatic bags in expectation, for
some positive constant α0 ∈ (0, 1].

Proof. (of Theorem 1.1 for LLP-OR) The guarantee of the linear programming algorithm A satisfying
all monochromatic bags case holds for LLP-OR as well. Thus, if the fraction of monochromatic bags
x is greater than 2/5 + α0/(8d) then A obtains an LTF that satisfies all the monochromatic bags.
Otherwise, A′ from Lemma 2.3 finds one to satisfy (1/2 +α0/d)(1− x) + x(1/4 +α0/2d) fraction
of the bags which is at least (1/2 + α0/d) − (2/5 + α0/(8d))(1/4 + α0/2d) ≥ (2/5 + α0/(4d))
since α0 ∈ (0, 1] and d ≥ 1. If x = 0 i.e., all bags are non-monochromatic the LTF satisfies
(1/2 + α0/d)-fraction of the bags.
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2.2 Experimental Evaluation

We evaluate Algorithm A (Fig. 1) on synthetically generated satisfiable LLP-LTF instances over
dimension d ∈ {10, 40, 100} and number of bagsm ∈ {50, 100, 200}. For each (d,m) the algorithm
solves 100 independently generated instances - each by choosing a random satisfying linear form f
(with iid N(0, 1) coefficients) and m bags independently, for each bag sampling two points iid from
N(0, 1)d with their label proportions given by pos(f(x)). Note that the bags and their constituent
points are not correlated with f .

For each instance the SDP in (2)-(4) is solved and the best h∗ chosen using 100 independent
Gaussians g. With m0 and m1 denoting the number of monochromatic and non-monochromatic
bags respectively, the theoretical performance threshold is given by t := (m0/4 +m1/2) (Lemma
2.2). We measure s as the number of bags satisfied by pos(h∗) and the average and minimum values
of (s/t) over the 100 instances per (d,m), both of which are quite a bit larger than 1, showing
that the algorithm performs much better than than the theoretical guarantee on such instances. We
also compute r as the number of bags satisfied by the best {pos(h′), pos(−h′)} out of 100 random
linear forms h′, and the average value of (r/s). The latter is below 1 in all cases indicating that our
algorithm performs better on average than the random linear threshold with the gap being higher
when d is smaller. The results are presented in Table 1.

In the previous evaluation, for larger d we observe only small gap between the performance of A
and the random linear threshold. Our next experiment shows that this is not the case on instances
with bags/points that are correlated to f . Here we choose f passing through origin and random
monochromatic bags having two points on the unit sphere which are nearly diametrically opposite and
random non-monochromatic bags having two points on the unit sphere very close to each other. We
reduce the number of trials to 5: taking the output of A from best of 5 samples of g as pos(h∗), and the
best {pos(h′), pos(−h′)} out of 5 random linear forms h′. The results are in Table 2. Unsurprisingly,
due to this geometry of points, the performance of the random linear thresholds (avg r, avg (r/s)) is
much worse than before. On the other hand h∗ given by A performs better than before as the SDP is
more discriminative and its solution C is highly correlated to f .

Table 1: Results on random 2-sized bags with iid points uncorrelated with satisfying linear form f .
100 instances per (d,m) row.

d m avg m0 avg m1 avg t avg s avg
(s
t

)
min

(s
t

)
avg r avg

(r
s

)
10 50 27.20 22.80 18.20 39.24 2.162 1.714 33.09 0.847
10 100 52.98 47.02 36.76 85.26 2.325 1.949 64.12 0.754
10 200 105.83 94.17 73.54 181.95 2.479 2.217 125.04 0.688
40 50 25.94 24.06 18.52 29.12 1.574 1.405 28.83 0.993
40 100 50.59 49.41 37.35 54.59 1.462 1.316 53.26 0.978
40 200 101.43 98.57 74.64 104.96 1.406 1.265 100.70 0.961

100 50 24.97 25.03 18.76 28.74 1.533 1.317 28.28 0.987
100 100 50.06 49.94 37.48 52.08 1.390 1.266 51.49 0.990
100 200 100.04 99.96 74.99 97.24 1.297 1.216 96.58 0.994

Table 2: Results on random 2-sized bags with points highly correlated with satisfying linear form f .
100 instances per (d,m) row.

d m avg m0 avg m1 avg t avg s avg
(s
t

)
min

(s
t

)
avg r avg

(r
s

)
10 50 25.73 24.27 18.57 48.74 2.632 1.200 2.37 0.049
10 100 49.94 50.06 37.52 98.17 2.619 2.222 5.19 0.053
10 200 98.58 101.42 75.36 199.61 2.650 2.500 8.86 0.044
40 50 24.81 25.19 18.80 47.19 2.517 1.639 2.54 0.055
40 100 49.36 50.64 37.66 96.77 2.574 1.176 4.36 0.045
40 200 99.26 100.74 75.18 195.42 2.601 2.135 8.59 0.044

100 50 24.92 25.08 18.77 46.05 2.460 1.105 2.62 0.060
100 100 50.70 49.30 37.33 93.20 2.498 1.139 4.21 0.046
100 200 99.26 100.74 75.18 189.85 2.527 1.462 8.69 0.046
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3 Smooth Label Cover and Statement of Hardness Reduction

The Smooth-Label-Cover problem is defined as follows.

Definition 3.1. A Smooth-Label-Cover instance L((VL, UL, EL ⊆ VL ×
UL),M,m, {πv,u}(v,u)∈EL

) consists of a bi-regular connected bipartite graph with vertex
sets VL, UL, a directed edge set EL, and a set of projections {πv,u : [M ] 7→ [m]}(v,u)∈EL

. A
labeling σ := (σV , σU ) s.t. σV : VL 7→ [M ] and σU : UL 7→ [m] is said to satisfy an edge (v, u) if
πv,u(σV (v)) = σU (u).

The hardness of Smooth-Label-Cover is given by the following theorem (see Appendix B.2 of the
supplemental).

Theorem 3.2. There exists an absolute constant κ0 > 0 such that for all integer parameters z and J ,
it is NP-Hard to distinguish whether an instance L of Smooth-Label-Cover with M = 7(J+1)z and
m = 2z7Jz , satisfies,

• YES: There exists a labeling σ := (σV , σU ) which satisfies all the edges.
• NO: There is no labeling σ which satisfies more than 2−κ0z-fraction of the edges.

Additionally, L satisfies the following properties:

• (Smoothness) For every vertex v ∈ V and for a randomly sampled edge (v, u) incident on v,
Pru∼v [πv,u(i) = πv,u(j)] ≤ 1

J , for any fixed pair of distinct labels i, j ∈ [M ].
• For any edge (v, u), and any label j ∈ [m], |π−1v,u(j)| ≤ d, where d = 4z .

The hardness reduction from the above to LLP-OR is given below:

Theorem 3.3. For any constants δ > 0 and ` ∈ Z+, there is a polynomial time reduction from an
instance L of Smooth-Label-Cover given by Theorem 3.2 with J and z depending only on δ and `,
to an instance I of LLP-OR with only non-monochromatic 2-sized bags such that:

• (Completeness) If L is a YES instance then there is a monotone OR that satisfies all the bags of I.
• (Soundness) If L is a NO instance then there is no function of at most ` LTFs that satisfies more

than 1/2 + δ fraction of the bags of I

Due to lack of space, the proof of the above theorem is omitted and appears in Appendices C and D
of the supplemental.

4 Conclusions and Future Work

We present in this work the first study of the proper learnability of LTFs from label proportions,
on bags of size at most two. Defining this formally as the LLP-LTF problem and the special case
of learning OR using LTFs as LLP-OR (in Section 1.2) we give efficient algorithms to compute
an LTF satisfying (2/5)-fraction of the bags of a satisfiable LLP-LTF instance, and (1/2)-fraction
of them if all bags are non-monochromatic. For satisfiable LLP-OR over d-dimensional boolean
vectors we improve these factors to (2/5 + Ω(1/d)) and (1/2 + Ω(1/d)) respectively. In our main
(and most technically challenging) result we prove the NP-hardness of satisfying using any function
of constantly many LTFs more than (1/2 + o(1))-fraction of bags of an instance of LLP-OR with
only non-monochromatic 2-sized bags all guaranteed to be satisfiable by some monotone-OR, thus
establishing the optimality of our algorithms for the non-monochromatic bags case.

While the above we feel, is notable progress in understanding the complexity of LLP-LTF, there are
many interesting related directions for future work. First is resolving the gap between the (2/5)-factor
algorithm and the (1/2 + o(1))-factor hardness. Obtaining efficient proper learning algorithms for
larger bag sizes is a natural followup problem. Whether using more complicated hypotheses – like
polynomial-threshold functions (PTFs) – allows us to obtain better bounds for LLP learning LTFs is
another important question. Proving NP-hardness results ruling PTFs out as good classifiers seems
challenging – and is open even for agnostically learning noisy ORs in supervised-learning. All these
questions can also be studied for other classes such as DNF-formulas. We hope that our work along
with this rich landscape of open questions generates further interest in the study of learnability of
common concept classes from label proportions.
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