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ABSTRACT

Large Language Models (LLMs) with a billion or more parameters are prime tar-
gets for network pruning, which aims to reduce a portion of the network weights
without compromising performance. Prior approaches such as Weights Magni-
tude, SparseGPT, and Wanda, either concentrated solely on weights or integrated
weights with activations for sparsity. However, they overlooked the informa-
tive gradients derived from pretrained large language models. In this paper, we
present a novel sparsity-centric pruning method for pretrained LLMs, termed
Gradient-based Language Model Pruner (GBLM-Pruner). GBLM-Pruner
leverages the first-order term of the Taylor expansion, operating in a training-
free manner by harnessing properly normalized gradients from a few calibra-
tion samples to determine the importance pruning score, and substantially out-
performs competitive counterparts like SparseGPT and Wanda in multiple bench-
marks. Intriguing, after incorporating gradients, the unstructured pruning method
tends to reveal some structural patterns post-pruning, which mirrors the geomet-
ric interdependence inherent in the LLMs’ parameter structure. Additionally,
GBLM-Pruner functions without any subsequent retraining or weight updates to
maintain its simplicity as other counterparts. Extensive evaluations on LLaMA-
1 and LLaMA-2 across various language benchmarks and perplexity show that
GBLM-Pruner surpasses magnitude pruning, Wanda (weights+activations) and
SparseGPT (weights+activations+weight update) by significant margins. We fur-
ther extend the proposed approach to the ViT model to demonstrate its broad ap-
plicability. Our code and models will be publicly available.

1 INTRODUCTION

Large Language Models (LLMs) like OpenAI’s GPT series (Radford et al., 2018; 2019; Brown
et al., 2020a; OpenAI, 2023), BERT (Devlin et al., 2018), LLaMA-1/2 (Touvron et al., 2023a;b)
and others have made significant strides in recent years, leading to a paradigm shift in various do-
mains of artificial intelligence and especially in natural language processing (OpenAI, 2023; Anil
et al., 2023; Touvron et al., 2023b) and multimodal learning (Alayrac et al., 2022; Li et al., 2023).
Many industries have integrated LLMs into their workflow, such as in chatbots (OpenAI, 2023),
content generation (Anil et al., 2023), code completion tools (e.g., GitHub Copilot) (Chen et al.,
2021), gaming narratives (Todd et al., 2023), and assistive technologies (Zdravkova et al., 2022),
etc. While enjoying the powerful and capable of impressive generalization, LLMs come with a
set of challenges and disadvantages. The presence of an abundance of parameters, large memory
consumption, and the resultant high computational cost during inference present several concerns
in real-world applications. Previous literature proposed multiple solutions to address these disad-
vantages, such as model distillation (Hinton et al., 2015), quantization (Jacob et al., 2018), model
pruning (Han et al., 2016), hardware acceleration (Chen et al., 2020), etc.

Among them, pruning refers to the removal of certain weights or even whole neurons/layers from
an LLM based on specified criteria, such as the smallest weights. A pruned model can maintain
similar performance with fewer parameters, resulting in a reduction in storage and computational
requirements. Inducing nonstructural sparsity in pruning is a widely embraced method aimed at
minimizing the memory requirements of neural networks with only a minimal sacrifice in accuracy.
Pruning methods stand out as notably simple and efficient mechanisms for model compression,
serving to eliminate weights contingent on their significance. Reduced models are not only more
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conveniently dispatched to edge devices like mobile phones but also exhibit substantially lower
energy consumption, a sizable portion of energy is expended in transferring model parameters from
a device’s long-term storage to its memory (Dao et al., 2022).

However, given the constraints of training-free conditions, existing solutions for pruning LLMs
primarily employ either weight magnitude pruning (Han et al., 2015a; 2016) or a combination of
magnitude and activation pruning (Frantar & Alistarh, 2023; Sun et al., 2023). While these methods
are substantiated with empirical ablations and experiments, they are, to a degree, either too complex
to use like SparseGPT by computing matrix inverses and updating weights, or heuristic and lack
profound theoretical depth and justification like Wanda regarding the efficacy, especially concerning
the application to the recently developed, highly advanced large language models.

In this study, we tackle the aforementioned complexity and interpretability challenges in LLM prun-
ing methods by presenting a simple yet effective approach named GBLM-Pruner (Gradient-Based
Language Model Pruner) that can be well explained in theory using the adapted optimal brain sur-
geon (OBS) (Hassibi et al., 1993b). This method proficiently prunes LLMs to significant levels
of sparsity, eliminating the necessity to alter the residual weights. Specifically, we employ nor-
malization of gradients across various samples to formulate an indicator matrix. This matrix can
serve as activations and can either replace or supplement them. This method maintains simplicity
over SparseGPT (Frantar & Alistarh, 2023) while showcasing enhanced robustness and improved
interpretation than Wanda (Sun et al., 2023) on large language models compared to both magnitude
pruning and magnitude + activation pruning. Furthermore, it is notable that although we employ
gradients in our approach, there is no necessity for retraining or any updates to parameters.

Difference to Previous Gradient-based Methods. Although the use of gradients has been studied
in the context of pruning, earlier methods (Molchanov et al., 2016b; Sanh et al., 2020a) used gradi-
ents in the context of transfer learning to obtain a pruned model that preserves the accuracy of the
downstream task. This work is the first attempt to study the use of gradients for one-shot pruning of
language models with billions of parameter while maintaining the zero-shot generalization capabili-
ties of the language models to diverse downstream tasks. Additionally our proposed method does not
require weight update, which makes our proposed method computationally efficient and applicable
for large language models with billions of parameters like LLaMA-1-30B and LLaMA-2-70B.

We conducted extensive empirical evaluations of GBLM-Pruner on LLaMA-1 and 2 (Tou-
vron et al., 2023a;b), among the most influential families of open-sourced LLMs. The find-
ings crossing various language benchmarks and perplexity from our investigation highlight that
GBLM-Pruner is proficient in identifying effective sparse networks directly from pretrained LLMs,
eliminating the need for retraining or weight updates. Notably, GBLM-Pruner substantially sur-
passes magnitude pruning and the recently introduced methods designed by weights+activations
or weights+activations+weight update. Our contributions in this work form a foundational basis
for ensuing advancements in this domain. Furthermore, we advocate for continued exploration
aimed at unraveling the complexities of sparsity within LLMs through underexplored gradients,
and highlighting that this is the first attempt to understand the importance of gradient information
both theoretically and empirically, and introduce a simple gradient-based solution for LLMs prun-
ing in a training-free manner. Finally, we further extend our approach to the other domain of Vision
Transformer (Dosovitskiy et al., 2020) to demonstrate its effectiveness.

2 APPROACH

2.1 PRIOR SOLUTIONS

Weights Magnitude. Magnitude pruning, which retains weights of significant absolute values, is the
predominant approach for weight pruning. This approach usually generates an unstructured sparsity
and has been employed across various architectures spanning computer vision (Han et al., 2015a;
2016) and language processing (Gale et al., 2019b). Furthermore, it has recently become integral to
the lottery ticket hypothesis (Frankle & Carbin, 2018).

Weights and Activations. SparseGPT (Frantar & Alistarh, 2023) conceptualizes the problem of
pruning large language models by addressing a local, layer-wise reconstruction problem. The ap-
proach for determining pruning metrics and the process for updating weights in SparseGPT draws
inspiration from the Optimal Brain Surgeon (OBS) (Hassibi et al., 1993b) approach. The pruning
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Figure 1: Illustration of the proposed method GBLM-Pruner. Given a weight matrix, W, a gradi-
ent matrix, G, and an input feature activation, X, the computation of weight importance is executed
through an elementwise multiplication of the magnitude of weight and the ℓ1 or ℓ2 norm of the
gradients across multiple samples, denoted as ∥G∥p · |W|, optionally, it is promotable to add the
multiplication of weight and the ℓ2 norm of input activations, denoted as |W| · ∥X∥2.

metric employed within SparseGPT is defined as follows:

Wm[i, j] =
|W[i, j]|2

diag
(
H−1

)
[j, j]

(1)

where H =
(
XTX+ λI

)
is the Hessian matrix, and H−1 is the inverse Hessian matrix. Wm is the

pruning importance metric for a given weight W, and [i, j] is the element at index i, j of the matrix.

Wanda (Sun et al., 2023) suggests assessing the significance of each individual weight by calculating
the product of its magnitude and the norm of the corresponding input feature. More precisely, the
score for a given weight, W[i, j], is determined as follows:

Wm[i, j] = |W[i, j]| · ∥X[:, j]∥2 (2)

where the elementwise product between the weight magnitude and the norm of input activations is
performed within each row in W.

2.2 GRADIENTS MATTER

Gradients. According to Optimal Brain Damage (LeCun et al., 1989) and Optimal Brain Sur-
geon (Hassibi et al., 1993b), gradients and higher order derivatives are naturally correlated to the
importance of weights for LLM pruning, which is the theoretical basis of our approach. However,
they ignore the gradients in their pruning framework under the assumption that gradients of the fully
trained network are small and do not provide any additional information when the higher-order terms
are considered. Our work shows that gradients are still crucial and provide non-trivial information.

Previous gradient-based structured pruning methods, such as feature map pruning (Molchanov et al.,
2016a), channel pruning (Yang et al., 2022), and head pruning (Michel et al., 2019) utilize the first-
order Taylor approximation of the loss L around activation z = 0 or weight w = 0 as the importance
score, the formulation is:

Wm = Ex∼X

∣∣∣∣∂L(x)∂A
A
∣∣∣∣ (3)

where X is the sampled data distribution and A is either activation matrix Z or weight matrix W .
Most of these structured pruning methods are proposed for transfer learning to a particular task and
require significant finetuning on the specific task to maintain the model performance. In contrast,
our work proposes how to leverage gradient information to do unstructured and N:M semi-structured
pruning without any subsequent weight update. Additionally, we illustrate the integration of activa-
tions into our pruning metric through the use of a scaling factor for best performance. Furthermore,
our pruned model is task-agnostic and generalizable to any downstream task as showcased by the
Zero-shot evaluation on several tasks included in the Etheuther AI lm-evaluation harness bench-
mark (Gao et al., 2021).
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Algorithm 1 The GBLM-Pruner algorithm

W← weight matrix ∈ (dout,din)
X← activation matrix ∈ (N ×L,din)
G← gradient matrix ∈ (N ,dout,din)
p← sparsity ratio ∈ (0, 1)
Wm ← pruning metric ∈ (dout,din)
M← pruning mask ∈ (dout,din)

for i ∈ (1,dout) do
for j ∈ (1,din) do

Wm[i, j] = (|W[i, j]| · ∥G[:, i, j]∥p +

|W[i, j]|·∥X[:, j]∥2)
end for

end for

for i ∈ (1,dout) do
M[i, :] = mask of p% weights with smallest

Wm[i, :]
end for

W[M] = 0

Pruning Metric. As illustrated in Algorithm 1,
consider a layer in LLMs characterized by the
weight W, possessing a shape of (dout,din). In
the context of Transformer models, this layer
has the gradient G, exhibiting the same shape
of weight W. We propose evaluating the im-
portance of each individual weight by normal-
izing the corresponding gradients across differ-
ent samples and then computing the product
of its magnitude with the weights. More pre-
cisely, the importance score attributed to a spe-
cific weight, W[i, j], is determined as follows:

Wm[i, j] = |W[i, j]| · ∥G[:, i, j]∥p (4)
While competitive results can be achieved with
gradients solely, we can combine feature acti-
vations to get better performance, which form
our final pruning metric as shown in Equation
5:
Wm[i, j] = |W[i, j]|·

(
α · ∥G[:, i, j]∥p + ∥X[:, j]∥2

)
(5)

where α is the scaling factor used to account
for the small magnitude of gradients, which makes the contribution of gradient balanced to the large
magnitude of activations.

Pruning Granularity. The granularity of pruning is pivotal in unstructured pruning, owing to the
fact that varying granularities yield disparate pruning patterns. Previously, unstructured magnitude
pruning approaches have leveraged both layer-wise and global pruning. In these methods, weights
are contrasted either within the same layer or throughout the entirety of the model. Through a
comprehensive study, we observe that the highest accuracy is achieved when weights are analyzed
on a column-wise basis. This is because each column serves as a constituent component in output
activation. This insight is consistent with the findings presented in Sun et al. (2023).

2.3 A THEORETICAL ANALYSIS

In this section, we have revisited and refined the Optimal Brain Surgeon (OBS) framework (Hassibi
et al., 1993b) framework by incorporating considerations of the gradient, i.e., the first-order term in
Taylor approximation. The closed-form solution of the increase in error for removing a weight from
the model, given by this analysis serves as the fundamental basis for our novel gradient-based prun-
ing metric. For the sake of simplicity, we will consider weights and gradients as one-dimensional
vectors denoted by w and g respectively in our analysis.

The optimization problem for network pruning using both the first and second-order terms can be
depicted in Equation 6. Here, E is the error or loss function, w is the weight vector for the neural
network, and δw is the change in the weight vector. Additionally, Im is the unit vector in weight
space corresponding to the pruned weight wm, H = ∂2E

∂w2 denotes the Hessian Matrix, and the
superscript ⊤ signifies vector transpose.

min
m

{
min
δw

((
∂E

∂w

)⊤

· δw +
1

2
δw⊤ ·H · δw

)∣∣∣I⊤m · δw + wm = 0

}
(6)

By solving the optimization problem, we obtain the optimal change in error, δEm, for removing
weight wm as shown in Equation 7. We have provided a detail analysis in Appendix G.

δEm =
w2

m

2
(
H−1

)
mm

−
wm

(
g⊤ ·H−1 · Im

)(
H−1

)
mm

+

(
I⊤m ·H−1 · g

)2
2
(
H−1

)
mm

− 1

2
g⊤ ·H−1 · g (7)

For the error, δEm, since the gradients are already small, we can consider the quadratic or square
term of the gradient to be insignificant. Thus, ignoring the third and fourth terms, we have:

δEm =
w2

m

2
(
H−1

)
mm

−
wm

(
g⊤ ·H−1 · Im

)(
H−1

)
mm

(8)
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To compute the Hessian matrix, we draw upon the Optimal Brain Compression method introduced
in the work by Frantar & Alistarh (2022). This method optimizes Hessian computation by break-
ing down the global compression task into layer-specific sub-problems. This approach results in a
closed-form solution for the Hessian, as expressed in Equation H = 2X⊤X .

Following Optimal Brain Damage (LeCun et al., 1989), we introduce a simplifying assumption
wherein we restrict our focus to the diagonal elements of the Hessian matrix. This results in H = 2∗
diag

({
∥xj∥22 , 1 ≤ j ≤ n

})
. Here xj is the tensor corresponding to component j of the activation

tensor across samples, and the variable n represents the total number of components within the
activation tensor for the respective layer. So, the first term of Equation 8 transforms into:

w2
m

2
(
H−1

)
mm

= w2
m ∥xm∥22 (9)

Since we are considering only the diagonal elements of Hessian H. The second term in Equation 8
transforms as follows:

−
wm

(
g⊤ ·H−1 · Im

)(
H−1

)
mm

= −
wmgm

(
H−1

)
mm(

H−1
)
mm

= wm(−gm) (10)

Thus, the final solution for the optimization problem in Equation 6 can be expressed as:

δEm = (wm ∥xm∥2)
2
+ wm (−gm) (11)

Building upon the solution outlined in Equation 11, we conduct a series of experiments with different
formulations of pruning metric in Section 3.4. Our investigation reveals that the pruning metric
(wm · ∥xm∥2 + |wm| · gm) yields the most favorable results. Here gm is the gradient magnitude
obtain by either the l1 or l2 normalization across samples.

3 EXPERIMENTS

3.1 IMPLEMENTATION AND SETUP DETAILS

We conduct all our experiments using PyTorch (Paszke et al., 2017) for GBLM-Pruner. Exper-
iments are performed with six models from the LLaMA-1 series (7B, 13B, 30B) (Touvron et al.,
2023a) and the LLaMA-2 series (7B, 13B, 70B) (Touvron et al., 2023b). The Huggingface trans-
former library is used (Wolf et al., 2019) for handling models. The experiments are conducted on
NVIDIA A100 GPUs with 40/80GB of memory. GBLM-Pruner requires calibration data for the
computation of gradients and activations. Following previous works (Frantar et al., 2022; Frantar &
Alistarh, 2023; Sun et al., 2023), we use 128 sequences with 2048-tokens randomly sampled from
the first shard of the C4 (Raffel et al., 2019) training data as our calibration data. The gradients are
computed with language modeling on the input sequence as the objective function. This represents
the pretraining objective of the language models and remains agnostic to the downstream task the
language models are used for. For scaling factor α, we use a value of 100 after careful calibration
ablation, as shown in Section 3.4.

Baseline Approaches. We compare our proposed method against three baselines: (1) magnitude
pruning, (2) SparseGPT (Frantar & Alistarh, 2023), and (3) Wanda (Sun et al., 2023). Following
Gale et al. (2019a) and Sanh et al. (2020b), we conduct a layer-wise comparison of model weights for
magnitude pruning, subsequently removing those with smaller magnitudes. For both SparseGPT1

and Wanda2, we utilize their respective code implementation to obtain the pruned models.

Evaluation. We assess the performance of the pruned models using two distinct metrics: (1) Per-
plexity and (2) Zero-shot Evaluation on the Harness Benchmark (Gao et al., 2021). Perplexity is a
well-established metric (Dettmers & Zettlemoyer, 2022; Yao et al., 2022; Frantar & Alistarh, 2022;
Sun et al., 2023; Frantar & Alistarh, 2023) and provides stable and reliable results. The Zero-shot
Harness evaluation, although known to be relatively noisy, offers a more readily interpretable as-
sessment of model performance.

1https://github.com/IST-DASLab/sparsegpt
2https://github.com/locuslab/wanda
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Table 1: Pruning granularity for GBLM-Pruner.
Pruning Granularity Perplexity
layer 7.45
input,1 10.16
input,128 7.64
output,1 6.86
output,128 7.47

Sparsity and Pruning Granularity. Follow-
ing recent methods (Frantar & Alistarh, 2023;
Sanh et al., 2020b), GBLM-Pruner prunes
the linear layers of LLMs uniformly except for
the embedding layer and the final classifica-
tion head. In addition to unstructured pruning,
we also position GBLM-Pruner in compari-
son to other baselines, exploring more rigorous
yet hardware-accommodating 2:4 and 4:8 semi-structured sparsity patterns. We experiment with five
different pruning configurations, as shown in Table 1. Our findings indicate that the (output,1)
configuration yields the most favorable results, prompting its adoption as the standard for all our
experiments.

3.2 PERPLEXITY EVALUATION

For all the methods under consideration, we report the perplexity evaluated on WikiText (Mer-
ity et al., 2016) validation data for both unstructured and semi-structured N:M sparsity pruning in
Table 2. For unstructured pruning, GBLM-Pruner with ℓ1 norm outperforms both Wanda and
reconstruction-based SparseGPT significantly across both LLaMA-1 and LLaMA-2 models.

However, the N:M sparsity pruning is restrictive by definition, especially 2:4 sparsity, which im-
poses greater constraints and results in a noticeable decrease in perplexity compared to unstruc-
tured pruning. As shown in Table 2, we can observe SparseGPT seems to perform better than both
GBLM-Pruner and Wanda in the case of 2:4 sparsity pruning. Conversely, for 4:8 sparsity pruning,
GBLM-Pruner outperforms other baselines for most of models, especially for the larger models.

Table 2: WikiText perplexity of pruning methods for LLaMA 1 and LLaMA 2 family of models.
LLaMA-2 LLaMA-1

Method Sparsity 7B 13B 70B 7B 13B 30B
None 0 5.47 4.88 3.32 5.68 5.09 4.10
Magnitude 0.5 16.03 6.83 5.36 17.29 20.21 7.54
SparseGPT 0.5 7.00 6.03 4.25 7.22 6.19 5.32
Wanda 0.5 6.92 5.97 4.22 7.26 6.15 5.24
GBLM-Prunerℓ1 0.5 6.86 5.88 4.17 7.15 6.11 5.18
Magnitude 2:4 37.77 8.89 6.76 42.54 18.36 9.11
SparseGPT 2:4 10.82 8.75 5.68 10.88 9.06 7.12
Wanda 2:4 12.11 9.00 5.48 11.53 9.59 6.90
GBLM-Prunerℓ1 2:4 11.91 8.80 5.47 11.33 9.16 6.87
Magnitude 4:8 15.91 7.32 5.89 16.83 13.87 7.62
SparseGPT 4:8 8.46 7.01 4.91 8.45 7.44 6.18
Wanda 4:8 8.60 7.00 4.77 8.57 7.41 5.97
GBLM-Prunerℓ1 4:8 8.63 6.90 4.72 8.48 7.26 5.89

3.3 ZERO-SHOT TASKS

In addition to our perplexity evaluations, we further assess the performance of our method across
six Zero-shot common-sense tasks included in the Eleuther AI lm-evaluation-harness benchmark
(Gao et al., 2021): BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2019), ARC-easy (Clark et al., 2018), and OBQA (Mihaylov
et al., 2018). As noted by earlier work (Dettmers & Zettlemoyer, 2022; Frantar & Alistarh, 2023),
zero-shot evaluation on these tasks is known to be noisy but aggregate performance across multiple
tasks enhances interpretability.

Our comprehensive results for these tasks are presented in Table 3, where models are pruned to 50%
unstructured sparsity. Notably, while our proposed GBLM-Pruner outperforms both Wanda and
SparseGPT in terms of perplexity, a consistent trend is not observed across all the individual tasks,
which aligns with existing literature (Frantar & Alistarh, 2023; Dettmers & Zettlemoyer, 2022).
However, the mean accuracy across all six tasks surpasses the performance of both SparseGPT
and Wanda for most of the models. This observation aligns with our findings from the perplexity
evaluation, suggesting the robustness and effectiveness of our approach.
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Table 3: Zero-Shot harness evaluation on 50% unstructured sparsity pruned models.
Models Method BoolQ RTE HellaSwag WinoGrande ARC-e OBQA Mean

LLaMA-1-7B

Dense 75.11 66.43 76.21 69.85 72.81 44.40 67.47
Mag 54.65 54.15 60.90 59.43 54.38 35.20 53.12
SparseGPT 72.87 53.07 69.77 67.88 66.46 40.60 61.77
Wanda 71.25 54.87 70.12 66.06 65.11 39.60 61.17
Ours 73.43 59.93 70.29 67.40 65.99 41.40 63.07

LLaMA-1-13B

Dense 77.98 70.40 79.07 72.77 74.75 44.80 69.96
Mag 54.95 50.90 59.69 63.54 54.25 39.80 53.86
SparseGPT 76.67 63.18 74.09 71.59 68.48 43.60 66.27
Wanda 76.02 63.18 74.80 71.90 69.82 43.00 66.45
Ours 76.61 63.18 74.90 71.67 70.37 43.20 66.65

LLaMA-1-30B

Dense 82.72 66.79 82.62 75.77 78.91 48.20 72.50
Mag 64.25 49.82 67.29 66.61 70.71 41.20 59.98
SparseGPT 82.91 55.96 79.31 74.27 77.53 46.00 69.33
Wanda 81.71 65.34 79.91 73.56 78.11 46.40 70.84
Ours 82.69 67.15 80.23 73.95 76.98 46.00 71.17

3.4 ABLATION STUDY

Importance of Gradient. To emphasize the role of gradient, we perform an ablation experiment
as shown in Table 4, wherein we only consider the Gradient-Weight term of the GBLM-Pruner
pruning metric.

Table 4: Gradient-Weight based pruning metric.
Method Sparsity 7B 13B
Magnitude 0.5 16.03 6.83
SparseGPT 0.5 7.00 6.03
Wanda 0.5 6.92 5.97
|W| · ∥G∥1 (Ours) 0.5 7.17 6.15
|W| · ∥G∥2 (Ours) 0.5 7.09 5.96

Our experiments show a substantial enhance-
ment over magnitude-based pruning when uti-
lizing gradients solely with weights, evident in
both LLaMA-2 7B and 13B models. Addi-
tionally, the performance of our metric closely
aligns with that of Wanda and SparseGPT for
LLaMA-2 13B model.

Pruning Metric. In Section 2.3, we revisited the OBS framework by incorporating the first order
gradient which yields δEm = (wm ∥xm∥2)

2
+wm (−gm) as the pruning metric. To start with, we

experiment with different ways of estimating the gradient magnitude from the calibration samples.
We evaluated three methods: gradient accumulation, ℓ1 norm and ℓ2 norm applied to the gradient
across calibration samples. For this experiment, we only utilize the pruning metric based on gra-
dient alone with weight for better interpretability. From our experiment, we observe that gradient
accumulation yields the least favorable results as depicted in Table 5. For deeper understanding,
we compared the pruning pattern of gradient accumulation with ℓ1 and ℓ2 norm which shows that
gradient accumulation gives a noisy estimate of the gradient magnitude while ℓ1 and ℓ2 norm reveals
more structured patterns. A comparison between gradient accumulation and ℓ1 norm-based aggre-
gation is shown in Figure 4. Based on this, we adopt ℓ1 and ℓ2 norm-based gradient estimation for
subsequent analysis.

Table 5: Pruning metric on weight, gradient, activation.
Method Sparsity Perplexity
|W| · |Gacc| 0.5 119.72
|W| · ∥G∥1 0.5 7.17
|W| · ∥G∥2 0.5 7.09
(|W| · ∥X∥2)2 + α · |W| · ∥G∥1 0.5 6.90
(|W| · ∥X∥2)2 + α · |W| · ∥G∥2 0.5 6.88
(|W| · ∥X∥2)2 - α · |W| · ∥G∥1 0.5 9743.65
(|W| · ∥X∥2)2 - α · |W| · ∥G∥2 0.5 9377.00
|W| · ∥X∥2 + α · |W| · ∥G∥1 0.5 6.86
|W| · ∥X∥2 + α · |W| · ∥G∥2 0.5 6.89

Subsequently, based on our theoretical
pruning metric δEm, we experiment with
two different ways of coupling the ac-
tivations and gradients as shown in Ta-
ble 5. We observe that in the case of
(|W| · ∥X∥2)2 − |W| · ∥G∥p the prun-
ing metric is completely disrupted. While
for (|W| · ∥X∥2)2 + |W| · ∥G∥p gradient
and activations complements each other
and brings out the best performance. But,
upon closer examination, we observe that
the square of the first activation term sig-
nificantly outweighs the contribution of the second term involving gradients. Consequently, we
remove the square factor from the first term and add a scaling factor denoted as α to the sec-
ond gradient term, resulting in the formulation of our final pruning metric as |W| · ∥X∥2 +
α · |W| · ∥G∥p. This pruning metric with ℓ1 norm-based gradient aggregation gives the best re-
sult for unstructured pruning across all models. We also conduct experiments to calibrate the scal-
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ing factor α as shown in Table 6. We vary the scaling factor and examine how the LLaMA-2-7B
pruned model perplexity changes. For a scaling factor is equal to 100, we get the best perplexity.
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Figure 2: Sparsity variation results for a large and a small model where we compare the performance
of our method against other baseline methods.

Table 6: Ablation of scaling factor.
Scaling Factor, (α) Perplexity
0.001 6.920
0.01 6.919
0.1 6.921
1 6.912
10 6.890
100 6.858
1000 6.902
10000 6.926
100000 6.952

Sparsity Variation. The objective of this ablation is to assess
the robustness of our method across varying sparsity. For this,
we compare the perplexity of the unstructured pruned model
obtained by GBLM-Pruner to that of Wanda, SparseGPT,
and magnitude pruning. We consider two distinct model
sizes: a smaller LLaMA-2 13B model and a larger LLaMA-
1 30B model, each is subjected to different degrees of spar-
sity. The results are shown in Figure 2. From the figure,
it is evident that GBLM-Pruner exhibits a similar trend to
SparseGPT and Wanda, showing a decline in performance
as sparsity increases. However, GBLM-Pruner consistently
outperforms all other baseline methods across various levels
of sparsity for both models.
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Figure 3: Robustness to calibration
samples.

Dependence on Calibration Sample. GBLM-Pruner
uses a set of calibration samples to calculate gradients and
activations for the pruning metric. To understand the ro-
bustness of the pruned model to the calibration set, we
conduct two ablations:

(1) Robustness to calibration set: For this ablation, we
randomly sampled 5 different calibration sample sets with
128 samples each and pruned the LLaMA-2 7B model to
0.5 sparsity using GBLM-Pruner. The resultant pruned
models have perplexities: 6.86, 6.87, 6.89, 6.86, and 6.87
respectively. The average perplexity is 6.87 which is close to our reported perplexity in Table 2.

(2) Number of samples in the calibration set: In this experiment, we want to assess the influence of
the calibration set size on the performance of GBLM-Pruner. For this, we prune the LLaMA-2 7B
model using various calibration sets with the number of samples ranging from 1 to 512. The results
are reported in Figure 3. From the figure, we can observe that in contrast to SparseGPT, our method
exhibits a relatively lower sensitivity to variations in the number of calibration samples.

3.5 VISUALIZATION OF PRUNED PATTERN

Figure 4: Illustration of learned pruning pattern.

The visualization of learned pruning pattern
is illustrated in Figure 4. To elaborate, on
the left is the mask that is acquired by elim-
inating 50% of gradient from the summation-
aggregated gradient tensor of the first layer’s
key projection, on the right is the mask that is
derived by discarding 50% of the gradient from
the ℓ1-norm-aggregated gradient tensor of the
same layer’s key projection. Within each subfigure, the x-axis represents the input dimension and
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the y-axis symbolizes the output dimension. The mask derived from the summation-accumulated
gradient tensor tends to be noisy, in contrast, the one obtained through the ℓ1 norm accumulated gra-
dient tensor appears to be more refined and distinct. After the integration of gradients, the method of
unstructured pruning tends to unveil certain structural patterns following the pruning process. This
reflects the inherent geometric interdependence found in the parameter structure of the LLMs, which
is highly aligned with the structure of gradients.

3.6 VISION TRANSFORMERS

Table 7: ViT-B model pruning.
Sparsity Wanda Magnitude Ours ℓ1 Ours ℓ2

0 75.40 75.40 75.40 75.40
0.5 64.54 59.48 64.64 64.86
0.6 43.65 29.98 44.15 44.23
0.7 7.92 1.88 8.89 8.02
0.8 0.20 0.18 0.32 0.24

To assess the generalizability of our
method across models with different in-
put modalities, we conduct experiments
on the ViT-B model. We compare the
performance of the pruned model ob-
tained using GBLM-Pruner with those
obtained through magnitude pruning and
the Wanda method. We use 4,096 random
samples from ImageNet-1k training set as our calibration data, and subsequently, we evaluate the
pruned models on the standard ImageNet-1k classification task. The results of these evaluations
are presented in Table 7. From the table, it is evident that our model outperforms both the Wanda
method and magnitude pruning, particularly when dealing with higher levels of sparsity.

4 RELATED WORK

Large Language Models (LLMs) based on transformer architecture (Vaswani et al., 2017) have ush-
ered in a transformative era in the realm of natural language processing, achieving outstanding suc-
cess. Their consistent and remarkable performance spans a wide array of tasks (Brown et al., 2020b;
Chung et al., 2022; Touvron et al., 2023a;b; Rozière et al., 2023; OpenAI, 2023; Anil et al., 2023).
For a long time, pruning has been identified as a powerful technique for reducing the size or com-
plexity of a model by removing unnecessary or redundant components (LeCun et al., 1989; Hassibi
et al., 1993a). Pruning can be divided into structured and unstructured pruning. Structured pruning
targets at removing a set of weights from a network at once such as channels or layers to reduce
the model size and complexity while maintaining the network structure intact. In the realm of prun-
ing LLMs for sparsity, several studies (Frantar & Alistarh, 2022; 2023; Sun et al., 2023) have been
undertaken in this area. Our work also provides a unique angle from gradient along this direction.

5 CONCLUSION

We have presented a gradient-based pruning approach GBLM-Pruner for large language models
(LLMs). Our approach performs in a training-free manner and applies gradient-based statistical
magnitude to discern and selectively prune the model’s parameters, maintaining unstructured spar-
sity throughout the model, thus enabling substantial reductions in model size while preserving the
model’s predictive accuracy. The proposed approach has surpassed all previous LLM pruning meth-
ods in terms of perplexity, zero-shot performance and interpretability, marking a pivotal advance-
ment in the field. We also provided theoretical analyses on how gradients help identify the impor-
tance of weights in LLMs. The superior accuracy achieved by this approach not only highlights
gradients’ effectiveness that is supplemental to weights and activations but also establishes it as a
benchmark in the realm of model pruning methods for LLMs. We hope the proposed approach could
potentially facilitate the development of more efficient, scalable, and accessible language models,
paving the way for new opportunities and applications across various domains leveraging gradients.
The notable performance of this approach is indicative of the significant strides being made in opti-
mizing LLMs and highlights the possibilities that lie ahead in the journey towards more sustainable
and efficient language processing tasks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provided our source code as a part of our supplemen-
tary submission. Further information on our experimental setup including details of datasets used
and computational requirements in Section 3.1 and the appendix.
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APPENDIX

A BASELINES

We compare our proposed method against three pruning baselines:

• Magnitude pruning: Magnitude pruning (Han et al., 2015b) is a simple and scalable pruning
method where the importance of LLM weights is decided based on the absolute value of their
magnitude. Following Gale et al. (2019a) and Sanh et al. (2020b), we conduct a layer-wise
comparison of model weights, subsequently removing those with smaller magnitudes.

• SparseGPT: SparseGPT (Frantar & Alistarh, 2023) is based on the second-order Optimal Brain
Surgeon framework (Hassibi et al., 1993a). It optimizes the accurate Optimal Brain Surgeon
framework and introduces the first accurate one-shot pruning method that works efficiently at
the scale of billions of parameters.

• Wanda: Wanda (Sun et al., 2023) proposed a simple pruning metric and showed the importance
of activations in addition to weight magnitude while selecting weights for pruning. Unlike
previous algorithms, it does not require any weight update of the remaining weights.

B EVALUATION METRIC

Perplexity and Zero-shot Evaluation on Harness are two well-established metric for evaluating com-
pressed models:

• Perplexity: Following previous work on model compression both in case of quantization
(Dettmers & Zettlemoyer, 2022; Yao et al., 2022) and pruning (Frantar & Alistarh, 2022; Sun
et al., 2023; Frantar & Alistarh, 2023) we used perplexity as an evaluation metric to compare the
pruned models. Perplexity is a stable, robust and challenging metric that is suited for evaluating
the accuracy of compression methods. We used the WikiText (Merity et al., 2016) validation
set for computing perplexity.

• Zero-Shot Evaluation on Harness Benchmarks: To complement perplexity, we provided
the evaluation of the pruned model on the publicly available Eleuther AI LM Harness bench-
mark (Gao et al., 2021) for additional interpretability. We conducted evaluations on five stan-
dard common-sense reasoning tasks, including RTE (Wang et al., 2018), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2019), ARC-easy (Clark et al., 2018), OBQA
(Mihaylov et al., 2018) and the BoolQ (Clark et al., 2019) reading comprehension task. Our
evaluation primarily centers on assessing the pruned models’ accuracy in comparison to the
dense baseline, rather than emphasizing absolute numerical values.

C PRUNING GRANULARITY

Pruning Granularity plays a pivotal role even in unstructured pruning. For GBLM-Pruner, we have
experimented with 5 different pruning granularity:

• Layer-wise: With layer-wise pruning, weights within same layer are compared for puning.

• (input, 1): For (input,1), weights connected within an input channel are grouped together
for comparison.

• (output, 1): Similarly in this approach, weights connected within an output channel are
grouped together for comparison.

• (input, 128): This pruning granularity involves forming blocks of 128 input channels, and
weights within each block are compared for pruning.

• (input, 128): Similar to (input,128), here blocks of 128 channels are formed along the
output dimension for pruning.

14
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D LLAMA-CHAT MODELS

The LLaMA-2 series of models also includes fine-tuned chat versions. We sought to assess the
generalization of our method to these chat models, specifically focusing on LLaMA-2-chat-7B and
LLaMA-2-chat-13B as representative models. Similar to the pretrained LLaMA-2 series, our cal-
ibration data consisted of 128 samples, each comprising 2048 tokens from the C4 dataset. For
evaluation purposes, we employed the Wiki-Text validation set.

Our approach to pruning was consistent with that applied to the pretrained LLaMA-2 models. We
uniformly pruned every linear layer, except for the initial embedding layer and the final classification
layer. We compare every weight of the linear layer on per output basis where pruning metric is
compared within the output neuron.

The results are presented in Table 8. Examining the table, we can discern that our method consis-
tently delivers superior performance, particularly evident in unstructured pruning. When it comes
to N:M sparsity pruning, although SparseGPT achieves the lowest perplexity, our pruning metric
significantly outperforms Wanda by a substantial margin.

Table 8: WikiText validation perplexity of different pruning methods for LLaMA 2 chat models.
Method Sparsity LLaMA-2-7B-chat LLaMA-13B-chat
None 0 7.08 6.11
Magnitude 0.5 22.82 8.49
Sparsegpt 0.5 8.66 7.26
Wanda 0.5 8.78 7.50
GBLM-Prunerℓ2 0.5 8.52 7.27
GBLM-Prunerℓ1 0.5 8.40 7.10
Magnitude 2:4 45.95 11.14
Sparsegpt 2:4 12.19 9.37
Wanda 2:4 14.45 10.25
GBLM-Prunerℓ2 2:4 13.74 9.85
GBLM-Prunerℓ1 2:4 13.92 9.66
Magnitude 4:8 22.57 9.80
Sparsegpt 4:8 10.02 8.01
Wanda 4:8 10.86 8.56
GBLM-Prunerℓ2 4:8 10.45 8.26
GBLM-Prunerℓ1 4:8 10.46 8.10

E OBS WEIGHT UPDATE

In this study, our objective was to assess whether the OBS (Optimal Brain Surgeon) weight update
method enhances the performance of our pruned model. We implemented the OBS weight update
using the efficient approach proposed by SparseGPT (Frantar & Alistarh, 2023).

The results, presented in Table 9, indicate that the OBS weight update does not lead to an improve-
ment in the performance of our pruned model

Table 9: OBS weight update.
Weight Update

Method Datasplit no yes

Magnitude Calib 18.14 12.93
Valid 17.29 12.55

Wanda Calib 7.52 7.61
Valid 7.26 7.36

Ours Calib 7.54 7.64
Valid 7.26 7.39
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F CORRELATIONS OF WEIGHTS, ACTIVATIONS AND GRADIENTS.

This section discusses an intuitive explanation of why gradient is essential. Weights are parameters
in LLMs that are learned during the training process to minimize the loss function. They are fun-
damental in determining the strength of the connection between two neurons and subsequently the
output of the network. Gradients of the loss with respect to weights, computed using an optimization
algorithm like SGD (Ruder, 2016), are central to the learning process as they guide the updates made
to the weights during training. On the otherhand, activations are the outputs of the neurons, typically
computed as a weighted sum of inputs passed through an activation function. The activations are
intrinsically impacted by the weights thus weight augmented with activation serves as a redundant
indicator of weight importance. However, gradient being the guiding signal for the learning process
serves as a valuable indicator by signalling the sensitivity of the loss to weight change and thus the
importance of the weight in the pruning process.

G OPTIMAL BRAIN SURGEON CONSIDERING GRADIENT

As a part of the theoretical justification for our proposed gradient-based metric, we revisited and
redefined the OBS framework by incorporating considerations of the gradient information. The
complete derivation of this process is meticulously presented within this section.

The Taylor Series expansion of the error with respect to weight is:

δE =

(
∂E

∂w

)⊤

· δw +
1

2
δw⊤ ·H · δw +O(||δw||3) (12)

where E is the error or loss function and w is the weight vector for the neural network. The symbol
H = ∂2E

∂w2 denotes the Hessian Matrix, and the superscript ⊤ signifies vector transpose. Based on
this we formulate the optimization problem for network pruning using both the first and second-
order terms as depicted in Equation 13. Here, wm is the pruned weight, δw is the change in weight
magnitude for wm and Im is the unit vector in weight space corresponding to weight wm.

min
q

{
min
δw

((
∂E

∂w

)⊤

· δw +
1

2
δw⊤ ·H · δw

)∣∣∣I⊤m · δw + wm = 0

}
(13)

The Lagrangian formulation of the optimization problem is:

L = g⊤ · δw +
1

2
δw⊤ ·H · δw + λ

(
I⊤m · δw + wm

)
(14)

Now, differentiating Equation 14 w.r.t λ

I⊤m · δw + wm = 0 (15)

Differentiating w.r.t δw

g + H · δw + λIm = 0

⇒δw = −H−1 · (λIm + g)
(16)

From 15 and 16, we have

I⊤m
(
−H−1 · (λIm + g)

)
+ wm = 0

⇒ −λ
(
H−1

)
mm
− I⊤m ·H−1 · g + wm = 0

⇒ λ =
wm − I⊤m ·H−1 · g(

H−1
)
qq

(17)
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From 16 and 17, we get the optimal weight change δw as:

δw = −H−1 ·

(
wm − I⊤m ·H−1 · g(

H−1
)
mm

· Im + g

)

= − wm(
H−1

)
mm

H−1 · Im +
I⊤m ·H−1 · g(

H−1
)
mm

H−1 · Im −H−1 · g
(18)

The increase in error on changing weight wm by δw is:

δEm = g⊤ · δw +
1

2
δw⊤ ·H · δw (19)

Substituting the optimal value of δw in Equation 19 gives:

δEm =
w2

m

2
(
H−1

)
mm

−
wm

(
g⊤ ·H−1 · Im

)(
H−1

)
mm

+

(
I⊤q ·H−1 · g

)2
2
(
H−1

)
mm

− 1

2
g⊤ ·H−1 · g (20)

H DIFFERENT PRUNING METRIC

In the ablation Section 3.4, we present an analysis of our pruning metric. Table 10 enumerates all
the pruning metrics we explored and serves as a comprehensive consolidation of our study.

Table 10: Pruning metric.
Method Sparsity Perplexity Method Sparsity Perplexity
|W| · |Gacc| 0.5 119.72 (|W| · ∥X∥2)2 + α ·W ·Gacc 0.5 7.04
|W| · ∥G∥1 0.5 7.17 (|W| · ∥X∥2)2 + α ·W · ∥G∥1 0.5 180490.19
|W| · ∥G∥2 0.5 7.09 (|W| · ∥X∥2)2 + α ·W · ∥G∥2 0.5 91781.49
|W| · ∥X∥2 · |Gacc| 0.5 69.59 (|W| · ∥X∥2)2 - α ·W ·Gacc 0.5 7.14
|W| · ∥X∥2 · ∥G∥1 0.5 7.31 (|W| · ∥X∥2)2 - α ·W · ∥G∥1 0.5 246846.28
|W| · ∥X∥2 · ∥G∥2 0.5 7.31 (|W| · ∥X∥2)2 - α ·W · ∥G∥2 0.5 283620.75
|W| · ∥X∥2 + α · |W| · |Gacc| 0.5 6.92 (|W| · ∥X∥2)2 + α · |W| · |Gacc| 0.5 6.91
|W| · ∥X∥2 + α · |W| · ∥G∥1 0.5 6.86 (|W| · ∥X∥2)2 + α · |W| · ∥G∥1 0.5 6.90
|W| · ∥X∥2 + α · |W| · ∥G∥2 0.5 6.89 (|W| · ∥X∥2)2 + α · |W| · ∥G∥2 0.5 6.88
|W| · ∥X∥2 - α · |W| · |Gacc| 0.5 6.92 (|W| · ∥X∥2)2 - α · |W| · |Gacc| 0.5 6.94
|W| · ∥X∥2 - α · |W| · ∥G∥1 0.5 1180.67 (|W| · ∥X∥2)2 - α · |W| · ∥G∥1 0.5 9743.65
|W| · ∥X∥2 - α · |W| · ∥G∥2 0.5 7.10 (|W| · ∥X∥2)2 - α · |W| · ∥G∥2 0.5 9377.00

I ZERO-SHORT HARNESS EVALUATION ON LLAMA-2 MODELS

We have also conducted Zero-shot Harness evaluation on the LLaMA-2 series of model and the
results are reported in Table 11.

Table 11: Zero-Shot harness evaluation on 50% unstructured sparsity pruned models.
Models Method BoolQ RTE HellaSwag WinoGrande ARC-e OBQA Mean

LLaMA-2-13B

Dense 80.55 65.34 79.38 72.22 77.44 45.20 70.02
Mag 57.65 55.96 73.02 65.35 67.17 40.80 59.99
SparseGPT 81.25 62.82 75.34 70.48 71.34 44.00 67.54
Wanda 81.07 60.65 76.08 71.67 71.63 44.60 67.62
Ours 80.89 60.65 76.03 71.82 72.26 44.80 67.74

LLaMA-2-70B

Dense 83.70 67.87 83.80 77.98 80.98 48.80 73.86
Mag 71.11 60.65 79.31 73.56 74.71 44.20 67.25
SparseGPT 85.26 70.76 81.43 78.30 79.84 48.40 74.00
Wanda 83.27 71.84 81.49 77.35 78.62 47.60 73.36
Ours 83.73 71.48 81.64 77.11 78.28 47.40 73.27
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