
Adaptive Normalization for Non-stationary Time
Series Forecasting: A Temporal Slice Perspective

Zhiding Liu1,2, Mingyue Cheng1,2, Zhi Li3, Zhenya Huang1,2, Qi Liu1,2,
Yanhu Xie4, Enhong Chen1,2∗

1Anhui Province Key Laboratory of Big Data Analysis and Application,
University of Science and Technology of China
2State Key Laboratory of Cognitive Intelligence

3Shenzhen International Graduate School, Tsinghua University
4The First Affiliated Hospital of University of Science and Technology of China

zhiding@mail.ustc.edu.cn,{mycheng,huangzhy,qiliuql,cheneh}@ustc.edu.cn
zhilizl@sz.tsinghua.edu.cn, xyh200701@sina.cn

Abstract

Deep learning models have progressively advanced time series forecasting due to
their powerful capacity in capturing sequence dependence. Nevertheless, it is still
challenging to make accurate predictions due to the existence of non-stationarity
in real-world data, denoting the data distribution rapidly changes over time. To
mitigate such a dilemma, several efforts have been conducted by reducing the
non-stationarity with normalization operation. However, these methods typically
overlook the distribution discrepancy between the input series and the horizon
series, and assume that all time points within the same instance share the same
statistical properties, which is too ideal and may lead to suboptimal relative im-
provements. To this end, we propose a novel slice-level adaptive normalization,
referred to SAN, which is a novel scheme for empowering time series forecasting
with more flexible normalization and denormalization. SAN includes two crucial
designs. First, SAN tries to eliminate the non-stationarity of time series in units
of a local temporal slice (i.e., sub-series) rather than a global instance. Second,
SAN employs a slight network module to independently model the evolving trends
of statistical properties of raw time series. Consequently, SAN could serve as a
general model-agnostic plugin and better alleviate the impact of the non-stationary
nature of time series data. We instantiate the proposed SAN on four widely used
forecasting models and test their prediction results on benchmark datasets to evalu-
ate its effectiveness. Also, we report some insightful findings to deeply analyze
and understand our proposed SAN. We make our codes publicly available2.

1 Introduction

Time series forecasting is becoming increasingly prevalent in real-world scenarios. Various applica-
tions have been facilitated by the advancement of forecasting, such as energy consumption planning
[33], clinical healthcare analysis [16], financial risk assessment [15] and cloud resource allocation
[2]. Recently, deep learning-based methods have largely advanced forecasting and other tasks due to
their powerful capacity to capture sequence dependence [23, 27, 3, 42].

Nevertheless, it is still challenging to make accurate predictions for time series forecasting due to
the rapid evolution of time series points over time (a.k.a. non-stationarity of time series) [31]. Such

∗Enhong Chen is the corresponding author.
2https://github.com/icantnamemyself/SAN

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



non-stationarity can lead to discrepancies between different time spans and hinder the generalization
of deep learning models. To alleviate the impact of the non-stationary nature, removing these dynamic
factors from the original data through normalization has been proposed as a feasible solution [28].

Recently, some pioneering efforts have been devoted to this research topic [17, 25, 10]. Al-
though these normalization approaches have significantly improved the prediction performance,
we identify two limitations in existing solutions. On the one hand, most existing methods over-
look the distribution discrepancy between the input series and the horizon series, and simply
adopt the statistical properties of the input series to denormalize the output results. Furthermore,
previous studies assume that all time points within the same instance share the same statistical
properties during the normalization processing, and a global instance normalization is widely ap-
plied. Such coarse-grained settings are not appropriate since time series points rapidly change
over time [6, 20], particularly in long-term forecasting scenarios where both input and horizon
series may span a considerable duration. For example, there may be sudden changes in data
distribution due to events like holidays or temperature spikes for electricity consumption data.

Input Series’ Mean

Horizon Series’ Mean

Sliced
Distribution

Shift

Figure 1: An illustration of a forecasting instance in
energy consumption along with its daily mean (Mean-
ByDay). We also plot the input series’ mean and the
horizon series’ mean in the figure.

We plot a forecasting sample in Fig. 1 to
better illustrate our opinion. Though tem-
porally related, the input series’ mean dif-
fers from the horizon’s significantly (from
0.75 to 1.5), indicating a potentially uni-
versal distribution discrepancy. Moreover,
such a distribution shift can happen rapidly
at a more fine-grained slice level, violating
the basic assumption of existing normaliza-
tion methods. Therefore, these approaches
risk damaging instinct patterns of each slice
of the input sequence by normalizing with
improper statistics while also causing a pre-
diction shift in final forecasting results due
to poor estimation of future statistics.

To overcome these limitations, we propose
a general normalization framework for non-
stationary time series forecasting named
Slicing Adaptive Normalization (SAN).
SAN models the non-stationarity in the
fine-grained temporal slices, or patches[26], which are more informative than single data points
and can be regarded as fundamental units of the time series data[4, 14]. To be specific, the input
sequence is first split into non-overlap equally-sized slices, which are then normalized according
to their statistics and fed into the forecasting model. Meanwhile, we use a statistics prediction
module to predict the distributions of future slices based on the statistics of the input. Finally, the
non-stationary information is restored to the output of the forecasting model with well-estimated
statistics. By modeling the slice-level characteristic, SAN is able to remove the non-stationarity in
a local region. Besides, with the statistics prediction module independently modeling the evolving
trends of statistical properties, SAN adopts more precise statistics for adaptive denormalization.
Consequently, the non-stationary forecasting task is actually simplified by being split into statistic
prediction and stationary forecasting. Moreover, SAN is a model-agnostic framework and can be
applied to arbitrary forecasting models. Sufficient experiments have been conducted in a widely used
benchmark dataset. The results demonstrate that SAN surpasses advanced normalization approaches
by boosting the performance of various kinds of mainstream forecasting models by a large margin.

In summary, our main contributions are as follows:

• We propose SAN, a general normalization framework for non-stationary time series fore-
casting tasks which distinguishes by modeling the non-stationary nature from a temporal
slice perspective. In this way, SAN can better remove the non-stationary factors in input
sequences while keeping their distinct patterns.

2



• We design a flexible statistics prediction module for SAN which independently models the
evolving trends of statistical properties. By explicitly learning to estimate future distributions,
SAN can simplify the non-stationary forecasting task through divide and conquer.

• We conduct sufficient experiments on nine real-world datasets. Results show that SAN can
be applied to various mainstream forecasting models and boost the performance by a large
margin. Moreover, the comparison between SAN and state-of-the-art normalization methods
demonstrates the superiority of our proposed framework.

2 Related Works

2.1 Time Series Forecasting

Time series forecasting has been extensively studied in recent decades. Originally, ARIMA [1, 40]
builds an auto-regressive model and forecasts in a moving average fashion. Though theoretical
guarantees are achieved, such traditional methods usually require data with ideal properties, which is
inconsistent with the real-world scenario. With the increasing data availability and computing power,
numerous deep-learning-based models have emerged, which always follow a sequence-to-sequence
paradigm. Recurrent neural networks (RNNs) are first utilized to capture the temporal dependence by
summarizing the past information in time series [30, 32, 37]. Such architectures naturally suffer from
a limited reception field and an error accumulation issue caused by the recursive inference schema[43],
both dragging down forecasting precision. To further boost the performance of the final prediction,
many advanced architectures have been introduced to capture the long-range dependencies, such
as the self-attention mechanism and the convolutional networks [19, 21, 24]. Besides, to leverage
the characteristics of the time series data, recent works also integrate traditional analysis methods
like trend-seasonal decomposition and time-frequency conversion into neural networks [36, 44].
In addition, a recent study points out that a simple linear network enhanced with decomposition
also achieves competitive performance[39]. Furthermore, slice-based methods demonstrate superior
accuracy in the long time series forecasting tasks [26, 41].

2.2 Non-stationary Time Series Forecasting

Most time series forecasting methods prioritize designing powerful architectures that can effectively
capture temporal dependencies, but often overlook the non-stationary nature of the data. Considering
the basic assumption of deep-learning-based models that the data in both training and test sets follow
the same distribution, such a discrepancy will definitely drag down the precision of the model for
future time prediction. Moreover, the distribution differences among instances in the training set may
introduce noise, making the learning task harder to converge. To address these challenges, various
stationarization methods have been explored.

In detail, DDG-DA[22] predicts the evolving data distribution in a domain adaptation fashion. Du
et al.[8] propose an adaptive RNN to alleviate the impact of non-stationary factors by distribution
characterization and distribution matching. Besides, normalization-based approaches have also gained
popularity as they aim to remove non-stationary factors from original data and normalize all data
to a consistent distribution. DAIN [28] introduces a non-linear network to learn how to normalize
each input instance adaptively and ST-norm [7] proposes two normalization modules from both
temporal and spatial perspectives. Later researchers point out that non-stationary factors are essential
in accurate forecasting and simply removing them may result in poor prediction. Therefore, they
propose RevIN [17], a symmetric normalization method that first normalizes the input sequences and
then denormalizes the model output sequences through instance normalization [34]. Based on the
similar structure, Non-stationary Transformers [25] presents de-stationary attention that incorporates
the non-stationary factors in self-attention, resulting in significant improvements over Transformer-
based models. Moreover, a recent study [10] identifies the intra- and inter-space distribution shift in
time series, and proposes to relieve these issues by learning the distribution coefficients.

Despite the effectiveness of existing normalization methods, they inappropriately assume that all
time points within the same instance share the same statistical properties during the normalization
processing. Different from them, our proposed approach focuses on further thinking of the nature of
the data, i.e., the distribution is inconsistent across compact time slices and such inconsistency is not
just on a per-instance basis.

3



3 Proposed Method

We propose a general model-agnostic normalization framework for time series forecasting called
Slicing Adaptive Normalization (SAN) to address the inconsistency mentioned above. Considering
an input set of time series X = {xi}Ni=1 and their horizon series Y = {yi}Ni=1, SAN is expected
to remove the non-stationary factors and assist the forecasting models to predict more accurately
based on the observed input series. In this section, we will present the detailed workflow of the entire
framework and explain how it works with non-stationary time series data. To provide better clarity,
we summarize the key notations in Table 1 and the whole framework can be referred to in Fig. 2.

Table 1: The Key Mathematical Notations.

Notation Description

N the number of instances
V the number of variables
T the given slicing time span

Lin,Lout the sequence length of input/target sequence
M,K the number of slices of input/target sequence, M = Lin

T ,K = Lout

T
xi,yi the i-th input/target series for the whole framework
x̄i, ȳi the i-th input/target series for forecasting models
∗ij the property of j-th slice in the i-th series, determined by *
µ, σ the mean and the standard deviation value
∗̂ the predicted value, determined by *

3.1 Normalization

Similar to existing normalization methods for non-stationary time series forecasting [17], SAN first
normalizes the input sequence to remove the non-stationary factors and later restores them to the
output sequence by denormalization. Differently, SAN applies such operation on a per-slice basis
instead of the whole input sequence. Such a localized operation can better maintain the instinct
pattern of each slice than global instance normalization. The framework first splits the input xi into
M non-overlapping slices {xi

j}Mj=1 based on T . Then the mean and standard deviation for each slice
is computed as:

µi
j =

1

T

T∑
t=1

xi
j,t, (σ

i
j)

2 =
1

T

T∑
t=1

(xi
j,t − µi

j)
2, (1)

where µi
j , σ

i
j ∈ RV ∗1 and xi

j,t is the value of slice xi
j at t-th time step. Later, SAN normalizes every

slice of the original input sequence by their individual statistics as:

x̄i
j =

1

σi
j + ϵ

· (xi
j − µi

j). (2)

Here we use · to denote the element-wise product and ϵ is a small constant. Finally, SAN restores all
the slices in their original chronological order and lets the processed series without non-stationary
factors x̄i be the new input of the forecasting models.

3.2 Statistics Prediction

As illustrated in Fig. 2, SAN introduces a unique statistics prediction module, fϕ(∗), to better estimate
future distributions in addition to the backbone forecasting model, gθ(∗). Unlike existing works that
denormalize the entire output of backbone models with the statistics of original input sequences, SAN
faces a natural challenge of per-slice normalization: how to estimate the evolving distributions for
each future slice. To simplify and improve efficiency, we use a two-layer perceptron network with
an appropriate activation function (e.g., Relu() for standard deviation to ensure non-negativity) that
learns to predict future distributions based on input statistics and stationarized sequence.

The quality of statistics predictions determines the overall performance of SAN since we depend on
an accurate estimation of future distribution to restore the non-stationary nature of each instance. In

4



Normalization

Slicing

Input 𝒙𝑖

Forecasting model

Statistics prediction 

module

𝝁𝑖 , 𝝈𝑖

Slicing & Denormalization

ෝ𝝁𝑖 , ෝ𝝈𝑖

Output ෝ𝒚𝑖

Normalization

Forecasting

&

Statistics Prediction Denormalization

𝑓𝜙(∗)

𝑔𝜃(∗)

stop-gradient

Horizon 𝒚𝑖

𝑙𝑓𝑐

𝑙𝑠𝑝

ഥ𝒚𝒊ഥ𝒙𝒊

Figure 2: The illustration of the proposed SAN framework. SAN is a model-agnostic symmetrical
normalization framework that removes and restores the non-stationary factors in the time series data
from the perspective of slicing. SAN trains in a two-stage manner. It first optimizes the statistics
prediction module into convergence (lsp), which learns to predict future statistics based on sliced
input mean µi and standard deviation σi. The second stage is the traditional procedure of training
forecasting models (lfc), where the statistics prediction module is frozen and functions as a plugin.

our modeling of distribution, the mean determines the approximate scale of a given slice and the
standard deviation represents the degree of dispersion, where the scale of a small slice may be more
important in the task of forecasting. Therefore, we aim to further refine the modeling approach for
the mean component on the basis of analyzing its properties.

In detail, we believe that the overall mean of the input sequence ρi = 1
Lin

∑Lin

1 xi ∈ RV ∗1 is a

maximum likelihood estimation of the target sequence’s mean ρ̂i = 1
Lout

∑Lout

1 yi ∈ RV ∗1 since
they are temporally related. That is, ρi ≈ ρ̂i. Such property is widely accepted in existing works
[17, 25] as they denormalize the output using the statistics of the whole input sequence. Based
on the above assumption, we introduce a residual learning [13] technique in our method, letting
the module learn the difference between the future slice mean µ̂i and the overall input mean ρi,
instead of predicting the specific values. This approach reduces the difficulty in modeling means
with prior knowledge about future trends. Additionally, to account for different variables exhibiting
distinct patterns in scale changes, we further use two learnable vectors W1,W2 ∈ RV initialized as
ones-vector to present the individual preference weights for each variable, making the prediction
computed in a weighted-sum manner. The statistics prediction procedure can be formulated as:

µ̂i = W1 ∗ MLP(µi − ρi, x̄i − ρi) +W2 ∗ ρi, σ̂i = MLP(σi, x̄i). (3)

Here µi = [µi
1, µ

i
2...µ

i
M ] ∈ RV ∗M denotes all the mean values of M slices of the input, and

µ̂i ∈ RV ∗K stands for the predicted mean of future K slices. The same notation works for the
standard deviation. The mean squared error (MSE) between predicted statistics and ground truth is
utilized as the loss function (lsp) to train the network through backpropagation.

In this work, we mainly focus on proposing and modeling the non-stationary nature of time series
from a slicing perspective. The challenge of how to design powerful deep models for statistics
prediction is left for future explorations.

3.3 Denormalization

Simultaneous with statistic prediction, SAN feeds the normalized sequence into the forecasting model,
which is responsible for producing internal output ȳi. Finally, SAN denormalizes the output given by
the backbone, restoring the non-stationary factors for an accurate forecasting result.

5



Symmetrically, SAN performs on a per-slice basis as illustrated in Fig. 2. For the internal output ȳi,
we first split it into K non-overlapping slices {ȳi

j}Kj=1. Then the denormalization operation for an
arbitrary slice based on our predicted statistics can be defined as the following formula:

ŷi
j = ȳi

j ∗ (σ̂i
j + ϵ) + µ̂i

j . (4)

Finally, by restoring all the slices in their chronological order, we can get the final prediction ŷi of the
whole framework, which will be later used for loss computation (lfc) and performance evaluation.

3.4 Two-stage Training Schema

Though the overall framework is simple and clear, we find that the training process needs to be
carefully deliberated. Since the normalization flow of SAN functions as a constraint to the backbone
model, the overall learning procedure is actually a bi-level optimization problem [12]. The goal of
the upper level is the performance of time series forecasting while the goal of the lower level is the
distribution similarity between denormalized output and ground truth. Formally, the original overall
training process can be described as:

argmin
θ

∑
(xi,yi)

lfc(θ, ϕ
∗, (xi,yi)),

s.t.ϕ∗ = argmin
ϕ

∑
(xi,yi)

lsp(θ, ϕ, (x
i,yi)).

(5)

Here we omit the transformation process of the data and only keep the original input required for the
calculation for brevity.

We propose a two-stage training paradigm for SAN by simplifying the lower-level optimization
objective so that it can focus on estimating the future distribution, instead of reducing the distribution
discrepancy between the denormalized output of a certain model and the ground truth. Specifically, we
optimize ϕ∗ = argminϕ

∑
(xi,yi) lsp(ϕ, (x

i,yi)) using stochastic gradient descent. This decouples
the original non-stationary forecasting task into a statistic prediction task and a stationary forecasting
task. In practice, the statistics prediction module is first trained into convergence, which is then
frozen and treated as a plugin during the second stage of training the forecasting model. The training
algorithm is provided in the Appendix C.2.

Such a solution has some desirable qualities: The first is simplicity. The two-stage schema allows for
a concise and easy-to-follow design of the model architecture and training process. The second is
effectiveness. The statistics prediction module is expected to produce reliable predictions on future
distribution since it is optimized on the whole training set into convergence. Therefore the forecasting
model can handle the simpler task of learning the scale-free pattern in the normalized data. These
two advantages greatly meet our ultimate goal of designing a concise yet effective framework for
non-stationary time series forecasting tasks. The third and the most important is flexibility. Though
there exist many advanced methods for the bi-level optimization problem [5, 11], their upper and
lower objectives are always highly related. In contrast, our proposal completely decouples these
parts, making SAN a model-agnostic framework that can migrate to various scenarios without special
design and further tuning.

4 Experiments

In this section, we conduct sufficient experiments within a widely used benchmark dataset compared
to state-of-the-art methods to evidence the effectiveness of our proposed SAN framework.

4.1 Experimental Setup

Datasets We use nine datasets in our experiment and here are brief descriptions of them. (1) ETT3

[43] records the oil temperature and load features of the electricity transformers from July 2016
to July 2018. It is made up of 4 sub datasets where ETThs are sampled per hour and ETTms are

3https://github.com/zhouhaoyi/ETDataset

6



sampled every 15 minutes. (2) Electricity4 contains the electricity consumption data of 321 clients
from July 2016 to July 2019. (3) Exchange5 [19] collects the daily exchange rates of 8 countries
from 1990 to 2016. (4) Traffic6 includes the hourly traffic load of San Francisco freeways recorded
by 862 sensors from 2015 to 2016. (5) Weather7 is made up of 21 indicators of weather, including
air temperature and humidity collected every 10 minutes in 2021. (6) ILI8 records the weekly ratio
of influenza-like illness patients versus the total patients by the Centers for Disease Control and
Prevention of the United States from 2002 to 2021. The detailed information about these datasets are
listed in the Table. 2. We also report the ADF test (Augmented Dickey-Fuller Test) [9] results in the
table, which evaluate the stationarity of a time series. Following the standard protocol, we split each
dataset into training, validation and testing sets according to the chronological order. The split ratio is
6:2:2 for ETT dataset and 7:1:2 for the other datasets [38]. Also, we apply a z-score normalization on
them based on the statistics of training data as preprocessing to measure different variables on the
same scale. Note that z-score normalization is unable to handle non-stationary time series since the
statistics are fixed during normalization [28].

Table 2: The Statistics of Each Dataset.

Dataset Variables Sampling Frequency Length Slicing Length ADF∗

Electricity 321 1 Hour 26,304 24 -8.44
Exchange 8 1 Day 7,588 6 -1.90

Traffic 862 1 Hour 17,544 24 -15.02
Weather 21 10 Minutes 52,696 12 -26.68

ILI 7 1 Week 966 6 -5.33
ETTh1&ETTh2 7 1 Hour 17,420 24 -5.91&-4.13

ETTm1&ETTm2 7 15 Minutes 69,680 12 -14.98&-5.66
∗A smaller ADF test result indicates a more stationary time series data

Backbone models SAN is a model-agnostic framework that can be applied to arbitrary time series
forecasting models. To evidence the effectiveness of the framework, we select some mainstream
models based on different architectures and evaluate their performance under both multivariate and
univariate settings: Linear model based DLinear [39], Transformer based Autoformer [38] and
FEDformer [45], and dilated convolution based SCINet [24]. We follow the implementation and
settings provided in the official code of DLinear9 and SCINet10 to implement these models.

Experiments details We use ADAM [18] as the default optimizer across all the experiments and
report the mean squared error (MSE) and mean absolute error (MAE) as the evaluation metrics. A
lower MSE/MAE indicates a better performance. For the statistics prediction module in SAN, we
use a simple two-layer perceptron network with a hidden size the same as the embedding size of
the backbone model for simplicity. The detailed implementation of the statistics prediction module
can be referred to in Appendix C.1. All the experiments are implemented by PyTorch [29] and are
conducted for three runs with a fixed random seed on a single NVIDIA RTX 3090 24GB GPU.

Slicing length Regarding the selection of slicing length for each dataset, we adopt a heuristic idea
that real-world time series data exhibit similar changing patterns within artificially defined or actual
periods (daily, weekly, etc.). Combing the frequencies of benchmark datasets, we establish a range of
{6, 12, 24, 48} as slicing lengths such that most settings cover a meaningful time span. For example,
we selected a slicing length of 24 for datasets such as ETTh1, Electricity and Traffic with a frequency
of 1 hour. This ensures that each time slice contained data within a day and guarantees optimal
performance among candidates. Here we admit that one limitation of our method is that the current
design cannot handle indivisible length such that we set the slicing length to 6 which approximately
represents a weekly period instead of 7 in the Exchange dataset. We present the ablation study on the
effect of slicing length in Appendix B.5.

4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5https://github.com/laiguokun/multivariate-time-series-data
6http://pems.dot.ca.gov
7https://www.bgc-jena.mpg.de/wetter/
8https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
9https://github.com/cure-lab/LTSF-Linear

10https://github.com/cure-lab/SCINet

7



Table 3: Forecasting errors under the multivariate setting. The bold values indicate better perfor-
mance.

Methods Dlinear + SAN FEDformer + SAN Autoformer + SAN SCINet + SAN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.140 0.237 0.137 0.234 0.185 0.300 0.164 0.272 0.195 0.309 0.172 0.281 0.213 0.316 0.152 0.256

192 0.153 0.250 0.151 0.247 0.196 0.310 0.179 0.286 0.215 0.325 0.195 0.300 0.224 0.329 0.163 0.266
336 0.168 0.267 0.166 0.264 0.215 0.330 0.191 0.299 0.237 0.344 0.211 0.316 0.230 0.334 0.178 0.283
720 0.203 0.301 0.201 0.295 0.244 0.352 0.230 0.334 0.292 0.375 0.236 0.335 0.260 0.356 0.206 0.307

E
xc

ha
ng

e 96 0.086 0.213 0.085 0.214 0.152 0.281 0.079 0.205 0.152 0.283 0.082 0.208 0.126 0.269 0.082 0.200
192 0.161 0.297 0.177 0.317 0.273 0.380 0.156 0.295 0.369 0.437 0.157 0.296 0.266 0.392 0.169 0.293
336 0.338 0.437 0.294 0.407 0.452 0.498 0.260 0.384 0.534 0.544 0.262 0.385 0.574 0.541 0.320 0.409
720 0.999 0.755 0.726 0.649 1.151 0.830 0.697 0.633 1.222 0.848 0.689 0.629 1.136 0.818 0.892 0.712

Tr
af

fic

96 0.411 0.283 0.412 0.288 0.579 0.363 0.536 0.330 0.654 0.403 0.569 0.350 0.626 0.393 0.542 0.344
192 0.423 0.289 0.429 0.297 0.608 0.376 0.565 0.345 0.654 0.410 0.594 0.364 0.613 0.396 0.545 0.358
336 0.437 0.297 0.445 0.306 0.620 0.385 0.580 0.354 0.629 0.391 0.591 0.363 0.625 0.398 0.563 0.369
720 0.467 0.316 0.474 0.319 0.630 0.387 0.607 0.367 0.657 0.402 0.623 0.380 0.639 0.409 0.607 0.381

W
ea

th
er

96 0.175 0.237 0.152 0.210 0.246 0.328 0.179 0.239 0.247 0.320 0.194 0.256 0.181 0.260 0.169 0.232
192 0.217 0.275 0.196 0.254 0.281 0.341 0.234 0.296 0.302 0.361 0.258 0.316 0.239 0.311 0.215 0.275
336 0.263 0.314 0.246 0.294 0.337 0.376 0.304 0.348 0.362 0.394 0.329 0.367 0.293 0.348 0.267 0.314
720 0.325 0.366 0.315 0.346 0.414 0.426 0.400 0.404 0.427 0.433 0.440 0.438 0.345 0.380 0.338 0.365

IL
I

24 2.297 1.055 2.122 1.001 3.205 1.255 2.614 1.119 3.309 1.270 2.777 1.157 7.467 2.039 2.776 1.163
36 2.323 1.070 2.029 0.978 3.148 1.288 2.537 1.079 3.207 1.216 2.649 1.104 7.035 1.948 2.411 1.026
48 2.262 1.065 2.041 0.971 2.913 1.168 2.416 1.032 3.166 1.198 2.420 1.029 7.225 1.955 2.295 1.004
60 2.443 1.124 2.089 0.973 2.853 1.161 2.299 1.003 2.947 1.159 2.401 1.021 7.335 1.957 2.487 1.063

E
T

T
h2

96 0.292 0.356 0.277 0.338 0.341 0.382 0.300 0.355 0.384 0.420 0.316 0.366 0.690 0.625 0.294 0.347
192 0.383 0.418 0.340 0.378 0.426 0.436 0.392 0.413 0.457 0.454 0.413 0.426 0.991 0.742 0.374 0.398
336 0.473 0.477 0.356 0.398 0.481 0.479 0.459 0.462 0.468 0.473 0.446 0.457 1.028 0.759 0.412 0.430
720 0.708 0.599 0.396 0.435 0.458 0.477 0.462 0.472 0.473 0.485 0.471 0.474 1.363 0.885 0.437 0.461

Table 4: Comparison between SAN and existing normalization approaches. The best results are
highlighted in bold.

Methods
FEDformer Autoformer

+SAN +RevIN +NST +Dish-TS IMP(%) +SAN +RevIN +NST +Dish-TS IMP(%)

Electricity 0.191 0.200 0.198 0.203 3.54 0.204 0.219 0.213 0.231 4.23
Exchange 0.298 0.474 0.480 0.704 37.13 0.297 0.495 0.494 1.008 39.88

Traffic 0.572 0.647 0.649 0.652 11.59 0.594 0.666 0.664 0.677 10.54
Weather 0.279 0.268 0.267 0.398 -4.49 0.305 0.290 0.290 0.433 -5.17

ILI 2.467 2.962 3.084 2.846 13.32 2.562 3.151 3.235 3.180 18.69
ETTh1 0.447 0.463 0.456 0.461 1.97 0.518 0.519 0.521 0.521 0.19
ETTh2 0.404 0.465 0.481 1.004 13.12 0.411 0.489 0.465 1.175 11.61
ETTm1 0.377 0.415 0.411 0.422 8.27 0.406 0.562 0.535 0.567 24.11
ETTm2 0.287 0.310 0.315 0.759 7.42 0.311 0.325 0.331 0.894 4.31

4.2 Main Results

We report the multivariate forecasting results in Table 3. The ILI dataset has a forecasting horizon of
Lout ∈ {24, 36, 48, 60} while the others have a forecasting horizon of Lout ∈ {96, 192, 336, 720}.
As for the input sequence length, we follow the traditional protocol and fix Lin = 96 for Autoformer,
FEDformer and SCINet with respect to all datasets (Lin = 36 for ILI dataset) and extend it to 336
(96 for ILI dataset) for DLinear. Full benchmarks of ETT datasets and univariate results are provided
in the Appendix.

As shown in the table, we clearly find that our proposed SAN framework can boost these models by a
large margin in most cases of the benchmark dataset. We attribute this improvement to two aspects.
Firstly, SAN mitigates the impact of non-stationary factors, as demonstrated by the performance on
three typical non-stationary datasets (Exchange, ILI and ETTh2, determined by ADF test results).
Specifically, under all experimental forecasting lengths with DLinear, SAN achieves an average
MSE reduction of 7.67% in the Exchange dataset, 11.13% in the ILI dataset and 21.29% in the
ETTh2 dataset. This conclusion applies to other backbone models as well and the enhancement
is even more pronounced. Secondly, even in long-term forecasting scenarios where the difficulty
of forecasting increases significantly with the length of the forecast, SAN imposes constraints on

8



backbone models to produce more reliable results using a novel statistical prediction module. For
instance, when predicting for a length of 720 time steps, SCINet accompanied by SAN achieves a
70.37% reduction in MSE on the ETTh2 dataset and a 20.77% reduction on the Electricity dataset.
These improvements make SCINet comparable to other forecasting models and suggest that SAN can
help stabilize outputs in long-term forecasting scenarios.

(a) SAN (b) RevIN (c) NST (d) Dish-TS

Figure 3: Visualization of long-term forecasting results of a sample of ETTm2 dataset given by
FEDformer enhanced with different normalization methods.

4.3 Comparison With Normalization Methods

In this section, we compare SAN with three state-of-the-art normalization methods for non-stationary
time series forecasting: RevIN [17], Non-Stationary Transformers (NST) [25] and Dish-TS [10].
Following the same experimental settings in Section 4.2, we report the average MSE evaluation
of Autoformer and FEDformer over all the forecasting lengths for each dataset and the relative
improvements in Table 4. Other models are not as involved backbone since NST can only suit
Transformer-based models, while the rest methods are much more flexible to be applied for arbitrary
forecasting models on the contrary.

It can be concluded that SAN achieves the best performance among existing normalization methods.
The improvement is significant with an average MSE decrease of 10.71% by FEDformer. SAN
consistently performs better than baseline models except for Weather and the improvement is more
pronounced in typical non-stationary datasets like Exchange and ILI (determined by the ADF test).
The comparison reveals that SAN may be more effective at removing non-stationary factors from
a time-slicing perspective rather than considering the entire instance. Additionally, the proposed
two-stage training schema is crucial as it enables SAN to outperform Dish-TS by a large margin,
which ignores the bi-level optimization nature. However, this exceptional ability of SAN may lead to
an over-stationarization problem [25], resulting in decreased performance on the Weather dataset.
The detailed results of all cases and further discussions are provided in Appendix B.6.

4.4 Qualitative Evaluation

The quality of prediction results in time series forecasting is crucial, in addition to the accuracy of
metrics. Figure 3 displays a sample forecast on the ETTm2 dataset using FEDformer as the backbone
with SAN, RevIN, NST or Dish-TS enhancements. The input length is 96 and the forecasting length
is set to 336. It’s evident that SAN produces more realistic predictions while its counterparts even fail
to capture the scale of future data. We guess the poor quality of RevIN and NST is caused by their
coarse way of denormalizing. Although the mean value of an input sequence can be considered a
maximum likelihood estimation for future data, it’s likely that non-stationary datasets’ distribution
will change significantly in comparison to inputs. Therefore, simply denormalizing output from
backbone models with input sequence statistics may lead to mismatches like those seen in RevIN
and NST forecasts where both scales are similar. As for Dish-TS, though the method tries to learn
future distribution, it ignores the bi-level optimization nature and its entangled learning schema limits
the estimation accuracy of statistics and finally leads to poor performance. On the opposite, SAN
models the dynamic nature of time series from a slicing perspective and introduces an independent
statistics prediction module to learn to predict the future distribution for denormalizing by a two-stage
training schema. In this way, we adaptively adjust the scale and bias of forecasting results based on
the statistic predictions, capturing the tendency of future data. As a result, though the average value
of the input is rather low, SAN still produces higher predictions that are consistent with ground truth.

9



5 Conclusion

In this study, we focused on alleviating the non-stationary property of time series data using a
novel slice view. We proposed the SAN framework for time series forecasting, which is a model-
agnostic approach that normalizes the input by removing non-stationary factors and restores them
to the output through denormalization on a per-slice basis. Additionally, with the help of a novel
statistics prediction module, SAN simplifies non-stationary forecasting by dividing it into two
subtasks to improve forecasting model performance. To demonstrate the superiority of SAN, we
conducted experiments on a widely used benchmark dataset and found that SAN significantly
improves mainstream forecasting models and outperforms state-of-the-art normalization methods.
We hope that SAN can serve as a foundation component for time series forecasting, and stimulate
further research on modeling time series from a slice perspective.

6 Acknowledgement

This research was partially supported by grants from the National Natural Science Foundation of
China (Grant No. U20A20229). This work also thanked to the support of funding MAI2022C007.
We furthermore thanked the anonymous reviewers for their constructive comments.

References
[1] George EP Box and Gwilym M Jenkins. 1968. Some recent advances in forecasting and control. Journal

of the Royal Statistical Society. Series C (Applied Statistics) 17, 2 (1968), 91–109.

[2] Hongjie Chen, Ryan A Rossi, Kanak Mahadik, Sungchul Kim, and Hoda Eldardiry. 2021. Graph deep
factors for forecasting with applications to cloud resource allocation. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 106–116.

[3] Mingyue Cheng, Qi Liu, Zhiding Liu, Zhi Li, Yucong Luo, and Enhong Chen. 2023. FormerTime:
Hierarchical Multi-Scale Representations for Multivariate Time Series Classification. In Proceedings of
the ACM Web Conference 2023. 1437–1445.

[4] Mingyue Cheng, Qi Liu, Zhiding Liu, Hao Zhang, Rujiao Zhang, and Enhong Chen. 2023. TimeMAE:
Self-Supervised Representations of Time Series with Decoupled Masked Autoencoders. arXiv preprint
arXiv:2303.00320 (2023).

[5] Benoît Colson, Patrice Marcotte, and Gilles Savard. 2007. An overview of bilevel optimization. Annals of
operations research 153, 1 (2007), 235–256.

[6] Shohreh Deldari, Daniel V Smith, Hao Xue, and Flora D Salim. 2021. Time series change point detection
with self-supervised contrastive predictive coding. In Proceedings of the Web Conference 2021. 3124–3135.

[7] Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W Tsang. 2021. St-norm: Spatial and
temporal normalization for multi-variate time series forecasting. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining. 269–278.

[8] Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun Wang. 2021.
Adarnn: Adaptive learning and forecasting of time series. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 402–411.

[9] Graham Elliott, Thomas J Rothenberg, and James H Stock. 1992. Efficient tests for an autoregressive unit
root.

[10] Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu. 2023. Dish-
TS: A General Paradigm for Alleviating Distribution Shift in Time Series Forecasting. arXiv preprint
arXiv:2302.14829 (2023).

[11] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. 2018. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference on Machine
Learning. PMLR, 1568–1577.

[12] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. 2016. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447 (2016).

10



[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.

[14] Wenqiang He, Mingyue Cheng, Qi Liu, and Zhi Li. 2023. ShapeWordNet: An Interpretable Shapelet
Neural Network for Physiological Signal Classification. In International Conference on Database Systems
for Advanced Applications. Springer, 353–369.

[15] Min Hou, Chang Xu, Zhi Li, Yang Liu, Weiqing Liu, Enhong Chen, and Jiang Bian. 2022. Multi-
Granularity Residual Learning with Confidence Estimation for Time Series Prediction. In Proceedings of
the ACM Web Conference 2022. 112–121.

[16] Shruti Kaushik, Abhinav Choudhury, Pankaj Kumar Sheron, Nataraj Dasgupta, Sayee Natarajan, Larry A
Pickett, and Varun Dutt. 2020. AI in healthcare: time-series forecasting using statistical, neural, and
ensemble architectures. Frontiers in big data 3 (2020), 4.

[17] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. 2021. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In International
Conference on Learning Representations.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[19] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on research
& development in information retrieval. 95–104.

[20] Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. 2021. Revisiting time
series outlier detection: Definitions and benchmarks. In Thirty-fifth conference on neural information
processing systems datasets and benchmarks track (round 1).

[21] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. 2019.
Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting.
Advances in neural information processing systems 32 (2019).

[22] Wendi Li, Xiao Yang, Weiqing Liu, Yingce Xia, and Jiang Bian. 2022. DDG-DA: Data Distribution
Generation for Predictable Concept Drift Adaptation. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 4092–4100.

[23] Bryan Lim and Stefan Zohren. 2021. Time-series forecasting with deep learning: a survey. Philosophical
Transactions of the Royal Society A 379, 2194 (2021), 20200209.

[24] Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. 2022. SCINet:
Time Series Modeling and Forecasting with Sample Convolution and Interaction. Thirty-sixth Conference
on Neural Information Processing Systems (NeurIPS), 2022 (2022).

[25] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Non-stationary Transformers: Rethinking
the Stationarity in Time Series Forecasting. arXiv preprint arXiv:2205.14415 (2022).

[26] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2022. A Time Series is Worth 64
Words: Long-term Forecasting with Transformers. In The Eleventh International Conference on Learning
Representations.

[27] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. N-BEATS: Neural
basis expansion analysis for interpretable time series forecasting. In International Conference on Learning
Representations.

[28] Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. 2019.
Deep adaptive input normalization for time series forecasting. IEEE transactions on neural networks and
learning systems 31, 9 (2019), 3760–3765.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems 32 (2019).

[30] Gábor Petneházi. 2019. Recurrent neural networks for time series forecasting. arXiv preprint
arXiv:1901.00069 (2019).

[31] Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K Barrow,
Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan, et al. 2022.
Forecasting: theory and practice. International Journal of Forecasting (2022).

11



[32] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020. DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting 36, 3 (2020),
1181–1191.

[33] Arunesh Kumar Singh, S Khatoon Ibraheem, Md Muazzam, and DK Chaturvedi. 2013. An overview of
electricity demand forecasting techniques. Network and complex systems 3, 3 (2013), 38–48.

[34] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016).

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing
systems 30 (2017).

[36] Qingsong Wen, Zhe Zhang, Yan Li, and Liang Sun. 2020. Fast RobustSTL: Efficient and robust seasonal-
trend decomposition for time series with complex patterns. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2203–2213.

[37] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. 2017. A multi-horizon
quantile recurrent forecaster. arXiv preprint arXiv:1711.11053 (2017).

[38] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer: Decomposition transform-
ers with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems 34 (2021), 22419–22430.

[39] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are Transformers Effective for Time Series
Forecasting? Proceedings of the AAAI Conference on Artificial Intelligence.

[40] G Peter Zhang. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neuro-
computing 50 (2003), 159–175.

[41] Yunhao Zhang and Junchi Yan. 2022. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In The Eleventh International Conference on Learning Representa-
tions.

[42] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. 2014. Time series classification using
multi-channels deep convolutional neural networks. In International conference on web-age information
management. Springer, 298–310.

[43] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 2021.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 11106–11115.

[44] Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. 2022. Film:
Frequency improved legendre memory model for long-term time series forecasting. Advances in Neural
Information Processing Systems 35 (2022), 12677–12690.

[45] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International Conference
on Machine Learning (ICML 2022) (Baltimore, Maryland).

12



A Effects of SAN on Non-stationary Time Series Forecasting

A.1 Discussions

As illustrated in the main paper, our proposed SAN is a compact plug-and-play framework. We will
first give a brief discussion in this section on how SAN can be effective.

It is of utmost importance that SAN can well alleviate the impact of the non-stationary nature of time
series data. Forecasting models may encounter a non-i.i.d problem with non-stationary data, that is,
the marginal distribution of each input instance can be different, which may lead to a huge difference
between the distribution of the training set and the test set. Thus the models can not generalize well
in future predictions. However, SAN will normalize all the input instances into a standard normal
distribution and force the mean and variance of the training and test data distributions to be identical.
In this way, all the data instances are from the same distribution, therefore the forecasting task is
simplified as the models can get rid of the noises caused by non-stationary factors and only focus
on mining the time-invariant patterns. Moreover, compared to existing normalization methods for
forecasting, our modeling of the non-stationary property in a time slice view is more in-depth and
realistic, so SAN can better remove the non-stationary factors in input sequences while keeping their
instinct information in the normalization phase. Hence, SAN is theoretically expected to perform
better in non-stationary time series forecasting.

Another part that contributes to the effectiveness of SAN is the statistics prediction module and the
two-stage training schema. With the statistics prediction module independently modeling the evolving
trends of statistical properties, SAN adopts more precise statistics for adaptive denormalization
than existing solutions. Moreover, the proposed two-stage strategy actually simplifies the original
forecasting task by divide and conquer: In the first stage we try to learn the general direction and
dispersion of the future data, which is easy to fit and is conducted by the light statistics prediction
module. Next, we utilize the powerful backbone model to discover the scale-free periodic-like
features to estimate future values under the guidance of the well-trained statistics prediction module.
Therefore, backbone models in SAN are actually responsible for an easier subtask. Considering that
SAN can usually give reliable estimations on future distributions, SAN is expected to perform well
on non-stationary time series forecasting by splitting the task into two simpler subtasks.

A.2 Theoretical Analysis

Using the same notation in the paper, we prove that all the inputs after SAN’s normalization follow
a standard normal distribution, validating SAN’s capability to remove the non-stationary factors
theoretically.

In detail, for arbitrary input sequence xi, SAN first split it into M non-overlapping slices {xi
j}Mj=1

and normalizes them according to their statistics. Therefore we will get:

∀i, j E[x̄i
j ] = 0, V ar[x̄i

j ] = I (6)

And as for the statistics of normalized input x̄i, it satisfies the following equations:

E[x̄i] = Ej [E[x̄i
j ]]

= Ej [0]

= 0

(7)

V ar[x̄i] =

∑Lin

t=0(x̄
i
:,t − E[x̄i])2

Lin

=

∑Lin

t=0(x̄
i
:,t)

2

MT

=
1

M
∗ (

∑T
t=0(x̄

i
:,t)

2

T
+

∑2T
t=T (x̄

i
:,t)

2

T
+, . . . ,

∑MT
t=(M−1)T (x̄

i
:,t)

2

T
)

= Ej [V ar[x̄i
j ]]

= I

(8)

13



Here x̄i
:,t ∈ RV ∗1 denotes all the normalized variables in time step t. From the above equations,

we can learn that any input sequence follows a standard normal distribution after the normalization
operation of SAN, which meets our expectations.

B Supplementary Experiments

B.1 Full Benchmark on the ETT Dataset

Table 5: Multivariate forecasting results on full ETT dataset.

Methods DLinear + SAN FEDformer + SAN Autoformer + SAN SCINet + SAN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.377 0.399 0.383 0.399 0.371 0.411 0.383 0.409 0.458 0.448 0.488 0.464 0.470 0.479 0.391 0.405
192 0.417 0.426 0.419 0.419 0.420 0.443 0.431 0.438 0.481 0.474 0.498 0.472 0.541 0.520 0.438 0.433
336 0.464 0.461 0.437 0.432 0.446 0.459 0.471 0.456 0.508 0.485 0.530 0.498 0.643 0.587 0.477 0.451
720 0.493 0.505 0.446 0.459 0.482 0.495 0.504 0.488 0.525 0.516 0.555 0.514 0.774 0.669 0.489 0.474

E
T

T
h2

96 0.292 0.356 0.277 0.338 0.341 0.382 0.300 0.355 0.384 0.420 0.316 0.366 0.690 0.625 0.294 0.347
192 0.383 0.418 0.340 0.378 0.426 0.436 0.392 0.413 0.457 0.454 0.413 0.426 0.991 0.742 0.374 0.398
336 0.473 0.477 0.356 0.398 0.481 0.479 0.459 0.462 0.468 0.473 0.446 0.457 1.028 0.759 0.412 0.430
720 0.708 0.599 0.396 0.435 0.458 0.477 0.462 0.472 0.473 0.485 0.471 0.474 1.363 0.885 0.437 0.461

E
T

T
m

1

96 0.301 0.344 0.288 0.342 0.362 0.408 0.311 0.355 0.493 0.470 0.343 0.378 0.444 0.464 0.321 0.360
192 0.335 0.366 0.323 0.363 0.395 0.427 0.351 0.383 0.546 0.498 0.390 0.400 0.491 0.500 0.347 0.380
336 0.370 0.387 0.357 0.384 0.441 0.454 0.390 0.407 0.658 0.543 0.415 0.418 0.572 0.556 0.385 0.403
720 0.425 0.421 0.409 0.415 0.488 0.481 0.456 0.444 0.626 0.532 0.476 0.453 0.728 0.654 0.450 0.441

E
T

T
m

2

96 0.169 0.263 0.166 0.258 0.191 0.283 0.175 0.266 0.261 0.329 0.236 0.317 0.303 0.404 0.176 0.267
192 0.232 0.310 0.223 0.302 0.261 0.326 0.246 0.315 0.282 0.339 0.260 0.329 0.568 0.569 0.240 0.311
336 0.303 0.361 0.272 0.330 0.327 0.365 0.315 0.362 0.350 0.378 0.330 0.376 0.793 0.689 0.300 0.351
720 0.403 0.424 0.360 0.384 0.428 0.423 0.412 0.422 0.438 0.428 0.417 0.428 1.200 0.851 0.391 0.405

We provide the full multivariate forecasting results on the ETT dataset in Table 5, which includes
the hourly datasets ETTh1&ETTh2 and the 15-minutes datasets ETTm1&ETTm2. It is obvious that
SAN also achieves significant improvements on these datasets on various backbone models.

B.2 Univariate Forecasting Results

Following the same settings of our main experiment, we provide the univariate forecasting results
in Table 6. Similar to the results of multivariate forecasting, SAN can boost the performance of
mainstream forecasting models in most cases. On average of all the benchmark settings, DLinear
enhanced by SAN reduces MSE by 6.04% (from 0.230 to 0.214). The improvements for FEDformer,
Autoformer and SCINet are 15.40%, 29.27% and 36.29% respectively.

B.3 Validation on Various Input Lengths

The input length plays an essential role in time series forecasting tasks as it determines how much
historical temporal information the model can mine. One may hope that for powerful deep models,
the longer the input length, the better the forecasting results. However, a recent study on this question
reveals that deep Transformer-based models are not capable of capturing temporal dependencies in
the long-term input sequences [39]. That is, the performance of these deep models stays stable or
even degrades when the input length increases.

Apart from the design of these deep models, we hold that such a phenomenon can be raised by
the non-stationary property of time series. As the input length increases, the variance among input
sequences grows larger and ultimately makes it harder for deep models to discover the time-invariant
patterns. Therefore, by removing the non-stationary factors in the input by SAN, deep models are
expected to exhibit a steady decline in metrics with longer input lengths.

To evidence our thoughts, we conduct long-term forecasting experiments, i.e., Lout = 720, with vari-
ous input lengths Lin ∈ {24, 48, 72, 96, 120, 144, 168, 192, 336, 504, 672, 720} on the Transformer-
based models. Here we choose Transformer [35], Informer [43], Autoformer [38] and FEDformer
[45] as the backbone models. The MSE evaluations are plotted in Fig. 4. Note that we omit large
values in the line chart to better demonstrate the trend of the overall results. From the figure, we can
see that with the assistance of SAN, the performance of deep models with long sequence input is

14



Table 6: Univariate forecasting results. The bold values indicate better performance.

Methods DLinear + SAN FEDformer + SAN Autoformer + SAN SCINet + SAN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.203 0.315 0.204 0.317 0.302 0.413 0.248 0.363 0.442 0.490 0.283 0.386 0.364 0.435 0.321 0.412

192 0.233 0.336 0.238 0.341 0.377 0.459 0.278 0.379 0.555 0.550 0.296 0.393 0.345 0.419 0.328 0.412
336 0.268 0.363 0.278 0.371 0.673 0.636 0.324 0.411 0.617 0.620 0.359 0.440 0.368 0.435 0.363 0.436
720 0.330 0.425 0.325 0.420 0.575 0.575 0.502 0.514 0.645 0.624 0.443 0.503 0.420 0.478 0.410 0.477

E
xc

ha
ng

e 96 0.108 0.254 0.138 0.288 0.134 0.272 0.113 0.252 0.155 0.305 0.097 0.233 0.167 0.332 0.090 0.226
192 0.193 0.350 0.287 0.436 0.290 0.418 0.307 0.404 0.405 0.495 0.208 0.358 0.486 0.552 0.185 0.335
336 0.428 0.511 0.416 0.523 0.490 0.542 0.431 0.501 0.874 0.728 0.401 0.495 0.579 0.608 0.396 0.484
720 1.137 0.848 0.859 0.719 1.302 0.883 1.188 0.835 1.193 0.845 1.071 0.787 0.853 0.740 1.106 0.797

Tr
af

fic

96 0.124 0.197 0.123 0.199 0.179 0.282 0.144 0.236 0.265 0.375 0.172 0.273 0.352 0.430 0.267 0.364
192 0.125 0.200 0.124 0.200 0.211 0.316 0.141 0.232 0.266 0.372 0.211 0.316 0.291 0.377 0.240 0.338
336 0.126 0.206 0.228 0.269 0.369 0.458 0.207 0.318 0.284 0.371 0.164 0.259 0.298 0.387 0.347 0.396
720 0.141 0.226 0.138 0.223 0.300 0.407 0.477 0.526 0.260 0.369 0.179 0.286 0.339 0.417 0.311 0.384

W
ea

th
er

96 0.004 0.047 0.002 0.032 0.002 0.037 0.003 0.042 0.004 0.047 0.002 0.038 0.005 0.060 0.003 0.039
192 0.005 0.057 0.002 0.037 0.005 0.058 0.004 0.049 0.003 0.045 0.003 0.047 0.006 0.065 0.002 0.036
336 0.006 0.068 0.003 0.047 0.003 0.045 0.004 0.052 0.008 0.068 0.003 0.046 0.007 0.068 0.004 0.049
720 0.007 0.070 0.004 0.050 0.011 0.080 0.004 0.048 0.058 0.176 0.004 0.049 0.007 0.070 0.003 0.045

IL
I

24 0.741 0.681 0.663 0.626 0.910 0.825 0.798 0.688 0.865 0.800 0.765 0.721 6.336 2.130 0.707 0.665
36 0.570 0.634 0.552 0.599 0.873 0.823 0.697 0.691 0.984 0.855 0.660 0.693 6.159 1.998 0.743 0.706
48 0.740 0.742 0.647 0.669 1.027 0.904 0.820 0.761 1.105 0.925 0.753 0.752 6.597 2.082 0.783 0.744
60 0.911 0.848 0.765 0.743 1.221 1.002 0.981 0.839 1.222 0.982 1.024 0.904 7.556 2.418 0.902 0.801

E
T

T
h1

96 0.058 0.180 0.056 0.181 0.097 0.241 0.067 0.195 0.093 0.241 0.062 0.188 0.110 0.262 0.057 0.180
192 0.078 0.216 0.076 0.212 0.109 0.257 0.081 0.215 0.121 0.290 0.082 0.216 0.152 0.312 0.075 0.209
336 0.099 0.246 0.092 0.240 0.103 0.251 0.098 0.240 0.115 0.271 0.089 0.232 0.183 0.350 0.093 0.238
720 0.158 0.322 0.092 0.240 0.130 0.290 0.103 0.248 0.108 0.259 0.106 0.249 0.252 0.432 0.096 0.245

E
T

T
h2

96 0.132 0.280 0.133 0.281 0.145 0.301 0.141 0.286 0.181 0.332 0.141 0.288 0.149 0.306 0.129 0.274
192 0.177 0.330 0.174 0.327 0.188 0.339 0.184 0.331 0.213 0.371 0.196 0.350 0.187 0.340 0.178 0.326
336 0.207 0.366 0.200 0.359 0.220 0.380 0.224 0.371 0.232 0.391 0.221 0.370 0.236 0.385 0.222 0.374
720 0.301 0.447 0.237 0.391 0.279 0.427 0.257 0.407 0.267 0.417 0.289 0.431 0.326 0.468 0.272 0.421

E
T

T
m

1

96 0.027 0.123 0.026 0.123 0.060 0.193 0.028 0.125 0.059 0.193 0.027 0.125 0.065 0.204 0.032 0.135
192 0.045 0.156 0.040 0.151 0.065 0.202 0.044 0.159 0.083 0.231 0.042 0.155 0.198 0.342 0.049 0.168
336 0.059 0.178 0.055 0.176 0.066 0.199 0.059 0.189 0.069 0.205 0.057 0.181 0.221 0.382 0.068 0.199
720 0.081 0.212 0.077 0.208 0.084 0.230 0.098 0.234 0.095 0.243 0.081 0.213 0.303 0.466 0.093 0.231

E
T

T
m

2

96 0.063 0.183 0.063 0.186 0.097 0.244 0.060 0.183 0.128 0.278 0.068 0.195 0.073 0.200 0.069 0.193
192 0.093 0.229 0.093 0.230 0.129 0.281 0.093 0.233 0.145 0.298 0.099 0.240 0.107 0.248 0.103 0.240
336 0.120 0.263 0.119 0.264 0.174 0.326 0.129 0.276 0.148 0.303 0.123 0.269 0.163 0.314 0.135 0.281
720 0.173 0.318 0.171 0.319 0.201 0.354 0.193 0.337 0.208 0.359 0.174 0.320 0.325 0.441 0.191 0.337

0.18

0.23

0.28

0.33

0.38

0.43

24 48 72 96 120 144 168 192 336 504 672 720

Transformer Transformer+SAN Autoformer Autoformer+SAN FEDformer FEDformer+SAN Informer Informer+SAN

(a) 720 steps-Electricity 

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

24 48 72 96 120 144 168 192 336 504 672 720

(b) 720 steps-Weather 

Figure 4: The long-term forecasting MSE evaluations of different Transformer-based models under
various input lengths. Large values are discarded to illustrate the overall trend better.

15



largely improved. When the input length is set to 720 on the Electricity dataset, the performance of
Informer has been boosted by 77.83% (from 0.9426 to 0.2090), and the average improvement on
four backbones under the same setting is 52.55%. Moreover, all of the backbones enhanced by SAN
tend to produce more accurate forecasting as the length increases. To be specific, on the Weather
dataset, Transformer achieves a reduction on MSE of 29.40% when prolonging input from 24 steps
to 720 steps, and the average improvement on four backbones is 33.11%. These results greatly meet
our expectations and also validate the effectiveness of SAN on various input lengths.

B.4 Additional Prediction Showcases

We provide the additional comparison between SAN and other normalization methods in Fig. 5 with
FEDformer [45] on various datasets. Clearly, SAN can better estimate the future distribution so as to
help the backbone model to achieve superior performance, where the forecasting results are better
aligned with the groundtruth.

(a) SAN (b) RevIN (c) NST (d) Dish-TS

IL
I

E
T

T
h
2

E
x
ch

a
n
g
e

Figure 5: Illustration of the additional prediction showcases comparing SAN and baseline models.
The experiment is conducted on the ILI, ETTh2, and Exchange dataset. Following the same input
sequence length setting in our main experiments, the target sequence length is set to 24, 192, and 336
respectively.

B.5 Ablation Study

Statistic Prediction Module In this section, we aim to analyze the effectiveness of our designs in
the statistic prediction module. We instantiate our method and its variants on Autoformer and test
their performance on two typical non-stationary datasets: Exchange and ETTh2. Similarly, we repeat
the experiments three times with fixed seed and report the evaluations with standard deviation in
Table 7.

Obviously, with the proposed two techniques combined, the statistic prediction module can achieve
the best accuracy, leading to optimal forecasting performance. Besides, both residual learning
and individual preference contribute positive effects and the former one is much more important,
without which SAN can even bring negative effects to the backbone model. These results validate
the rationality of our thoughts about the characteristics of the mean value and also reveal the
importance of accurate modeling of future statistics to SAN. Besides, SAN without individual

16



Table 7: Forecasting errors under the multivariant setting with respect to variants of SAN. The best
performance are highlighted in bold.

Variants SAN w/o individual w/o residual w/o SAN
Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.082±0.001 0.208±0.001 0.089±0.005 0.209±0.007 0.135±0.003 0.264±0.001 0.152±0.006 0.283±0.007
192 0.157±0.001 0.296±0.003 0.184±0.009 0.306±0.010 0.331±0.044 0.416±0.025 0.369±0.055 0.437±0.033
336 0.262±0.004 0.385±0.002 0.340±0.001 0.422±0.001 0.658±0.044 0.593±0.024 0.534±0.130 0.544±0.066
720 0.689±0.043 0.629±0.020 0.982±0.001 0.753±0.002 1.456±0.011 0.882±0.009 1.222±0.099 0.848±0.021

E
T

T
h2

96 0.316±0.001 0.366±0.001 0.321±0.013 0.367±0.008 0.383±0.020 0.413±0.012 0.384±0.021 0.420±0.013
192 0.413±0.013 0.426±0.007 0.414±0.023 0.422±0.012 0.463±0.030 0.469±0.020 0.457±0.020 0.454±0.014
336 0.446±0.004 0.457±0.003 0.448±0.003 0.453±0.001 0.586±0.025 0.541±0.009 0.468±0.010 0.473±0.005
720 0.471±0.009 0.474±0.005 0.483±0.012 0.477±0.005 0.889±0.007 0.682±0.001 0.473±0.005 0.485±0.005

modeling performs well on the ETT2 dataset but performs poorly on the Exchange dataset. Such a
phenomenon reveals that the evolving trends of different scenarios vary, and it is required to model the
complex relationships among multiple variables individually. Moreover, since we only incorporate
the properties of mean values into a simple MLP network, how to design a proper mechanism or
network architecture for statistics modeling is a promising direction for optimizing our method, and
we leave such explorations for future work.

Slicing Length The slicing length is a key parameter of SAN. We aim to study the effect of different
slicing lengths on our method. Ablation experiments are conducted by using SCINet as the backbone
model under the long-term forecasting setting (Lout = 60 for the ILI dataset and Lout = 720 for the
rest datasets). Each experiment is conducted three times with a fixed random seed. The forecasting
errors and the corresponding standard deviation are presented in Table 8.

Table 8: Forecasting errors under the multivariant setting with respect to different slicing lengths.
The best performance are highlighted in bold.

Slicing Length 6 12 24 48
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.210±0.002 0.305±0.002 0.207±0.002 0.305±0.002 0.206±0.004 0.307±0.003 0.208±0.002 0.307±0.001
Exchange 0.892±0.028 0.712±0.013 0.895±0.037 0.712±0.017 0.901±0.005 0.715±0.002 0.898±0.037 0.714±0.015

Traffic 0.612±0.001 0.376±0.001 0.608±0.002 0.373±0.001 0.607±0.001 0.381±0.001 0.611±0.002 0.382±0.002
Weather 0.338±0.002 0.366±0.002 0.338±0.001 0.365±0.002 0.340±0.001 0.367±0.001 0.339±0.001 0.366±0.001

ILI 2.487±0.034 1.063±0.008 2.680±0.055 1.118±0.015 n/a n/a n/a n/a
ETTh1 0.491±0.002 0.475±0.001 0.488±0.001 0.474±0.001 0.489±0.004 0.473±0.001 0.492±0.004 0.474±0.002
ETTh2 0.440±0.001 0.465±0.001 0.435±0.002 0.460±0.002 0.437±0.007 0.459±0.006 0.443±0.007 0.462±0.004
ETTm1 0.495±0.043 0.469±0.024 0.450±0.001 0.441±0.001 0.611±0.218 0.503±0.084 0.463±0.006 0.448±0.003
ETTm2 0.391±0.001 0.406±0.001 0.391±0.001 0.405±0.001 0.392±0.001 0.405±0.001 0.403±0.009 0.415±0.006

Our heuristic selection of slicing length appears to be effective among the candidates, indicating that
both artificially defined and actual periods are useful in selecting the optimal setting. Additionally,
there were no significant performance differences observed under various settings, suggesting that
SAN is resilient to changes in slicing length.

B.6 Detailed Results of the Comparison between SAN and Normalization Methods

In Table 9, we provide the detailed experimental results of the comparison between SAN and state-of-
the-art normalization methods for non-stationary time series forecasting: RevIN [17], NST [25] and
Dish-TS [10]. We re-implement the former two methods and Dish-TS is implemented by its official
code11.

The table clearly shows that SAN outperforms existing approaches in most cases, except for the
Weather dataset. Considering that the Weather dataset is the most stationary dataset, the results
suggest that SAN can better remove the non-stationary factors in the raw data, even leading to an
over-stationary issue that degrades the performance.

11https://github.com/weifantt/Dish-TS

17



Besides, Dish-TS performs poorly in the benchmark. While it addresses the distribution shift between
input and horizon series, it fails to optimize both the coefficient network and backbone network for
overlooking the intrinsic bi-level optimization target of distribution estimation and forecasting tasks.
By adopting a joint training schema, Dish-TS disturbs both networks and results in poor performance
in certain cases. On the opposite, SAN benefits from the proposed two-stage schema which decouples
the two tasks. This allows for proper optimization of each component and leads to improved overall
performance.

Table 9: Detailed results of the comparison between SAN and normalization methods. The best
results are highlighted in bold.

Methods
FEDformer Autoformer

+ SAN + RevIN + NST +Dish-TS + SAN + RevIN + NST +Dish-TS
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.164 0.272 0.172 0.278 0.172 0.279 0.175 0.284 0.172 0.281 0.179 0.286 0.179 0.285 0.179 0.290

192 0.179 0.286 0.185 0.289 0.187 0.291 0.188 0.296 0.195 0.300 0.216 0.316 0.209 0.309 0.215 0.318
336 0.191 0.299 0.200 0.304 0.202 0.307 0.209 0.319 0.211 0.316 0.233 0.331 0.246 0.335 0.244 0.343
720 0.230 0.334 0.243 0.337 0.230 0.326 0.239 0.343 0.236 0.335 0.246 0.341 0.252 0.345 0.286 0.370

E
xc

ha
ng

e 96 0.079 0.205 0.148 0.279 0.145 0.275 0.131 0.263 0.082 0.208 0.166 0.295 0.177 0.304 0.225 0.341
192 0.156 0.295 0.266 0.377 0.274 0.383 0.538 0.523 0.157 0.296 0.299 0.404 0.275 0.385 0.760 0.610
336 0.260 0.384 0.428 0.484 0.437 0.488 0.667 0.591 0.262 0.385 0.448 0.496 0.442 0.490 0.707 0.628
720 0.697 0.633 1.056 0.789 1.064 0.787 1.480 0.954 0.689 0.629 1.068 0.791 1.049 0.784 2.341 1.063

Tr
af

fic

96 0.536 0.330 0.613 0.347 0.612 0.348 0.613 0.350 0.569 0.350 0.643 0.354 0.645 0.354 0.652 0.363
192 0.565 0.345 0.637 0.356 0.641 0.357 0.644 0.362 0.594 0.364 0.659 0.373 0.643 0.367 0.669 0.374
336 0.580 0.354 0.652 0.363 0.654 0.363 0.659 0.370 0.591 0.363 0.662 0.371 0.665 0.363 0.683 0.376
720 0.607 0.367 0.686 0.382 0.688 0.380 0.693 0.388 0.623 0.380 0.700 0.384 0.667 0.373 0.703 0.392

W
ea

th
er

96 0.179 0.239 0.187 0.234 0.187 0.234 0.244 0.317 0.194 0.256 0.212 0.257 0.211 0.254 0.268 0.338
192 0.234 0.296 0.235 0.272 0.235 0.272 0.320 0.380 0.258 0.316 0.264 0.300 0.265 0.301 0.376 0.421
336 0.304 0.348 0.287 0.307 0.289 0.308 0.424 0.452 0.329 0.367 0.309 0.329 0.303 0.324 0.476 0.486
720 0.400 0.404 0.361 0.353 0.359 0.352 0.604 0.553 0.440 0.438 0.377 0.367 0.366 0.357 0.612 0.560

IL
I

24 2.614 1.119 3.218 1.172 3.302 1.281 2.883 1.102 2.777 1.157 3.780 1.270 3.482 1.207 3.636 1.249
36 2.537 1.079 3.055 1.135 3.193 1.240 2.865 1.077 2.649 1.104 3.114 1.157 3.423 1.289 3.284 1.178
48 2.416 1.032 2.734 1.055 2.936 1.171 2.759 1.033 2.420 1.029 2.865 1.099 3.163 1.217 2.942 1.086
60 2.299 1.003 2.841 1.095 2.904 1.173 2.878 1.075 2.401 1.021 2.846 1.104 2.871 1.140 2.856 1.083

E
T

T
h1

96 0.383 0.409 0.392 0.413 0.394 0.414 0.390 0.424 0.522 0.474 0.491 0.463 0.550 0.503 0.456 0.454
192 0.431 0.438 0.443 0.444 0.441 0.442 0.441 0.458 0.498 0.472 0.513 0.478 0.530 0.492 0.495 0.480
336 0.471 0.456 0.495 0.467 0.485 0.466 0.495 0.486 0.571 0.509 0.528 0.485 0.524 0.484 0.539 0.496
720 0.504 0.488 0.520 0.498 0.505 0.496 0.519 0.509 0.555 0.514 0.543 0.510 0.510 0.491 0.563 0.522

E
T

T
h2

96 0.300 0.355 0.380 0.402 0.381 0.403 0.806 0.589 0.316 0.366 0.411 0.410 0.394 0.398 1.100 0.670
192 0.392 0.413 0.457 0.443 0.478 0.453 0.936 0.659 0.413 0.426 0.478 0.450 0.473 0.450 0.976 0.672
336 0.459 0.462 0.515 0.479 0.561 0.499 1.039 0.702 0.446 0.457 0.545 0.493 0.528 0.490 1.521 0.783
720 0.462 0.472 0.507 0.487 0.502 0.481 1.237 0.759 0.471 0.474 0.523 0.490 0.524 0.498 1.105 0.745

E
T

T
m

1

96 0.311 0.355 0.340 0.385 0.336 0.382 0.348 0.397 0.343 0.378 0.458 0.446 0.468 0.448 0.477 0.460
192 0.351 0.383 0.390 0.411 0.386 0.409 0.406 0.428 0.390 0.400 0.560 0.491 0.526 0.468 0.545 0.488
336 0.390 0.407 0.432 0.436 0.438 0.441 0.438 0.450 0.415 0.418 0.607 0.508 0.786 0.559 0.650 0.533
720 0.456 0.444 0.497 0.466 0.483 0.460 0.497 0.481 0.476 0.453 0.623 0.526 0.564 0.501 0.595 0.518

E
T

T
m

2

96 0.175 0.266 0.192 0.272 0.191 0.272 0.394 0.395 0.236 0.317 0.233 0.307 0.253 0.323 0.976 0.572
192 0.246 0.315 0.270 0.320 0.270 0.321 0.552 0.472 0.260 0.329 0.288 0.337 0.289 0.335 0.532 0.485
336 0.315 0.362 0.348 0.367 0.353 0.371 0.808 0.601 0.330 0.376 0.345 0.370 0.339 0.365 0.795 0.592
720 0.412 0.422 0.430 0.415 0.445 0.422 1.282 0.771 0.417 0.428 0.434 0.419 0.426 0.432 1.271 0.768

B.7 SAN for Slice-based Forecasting Methods

In this section, we turn to investigate the generalizability of SAN towards recently emerged slice-
based forecasting methods: PatchTST [26] and Crossformer [41]. We build forecasting models using
their official codes and hyper-parameter settings (if available) 1213. For PatchTST, we replace the
RevIN[17] layer with our SAN. We report the experimental results on 5 datasets in Table 10.

The results demonstrate that SAN can improve the forecasting performance of both PatchTST and
CrossFormer to some extent in most cases. The improvement for PatchTST is not significant due
to two main reasons: 1) RevIN has already been introduced in the model to mitigate the impact of

12https://github.com/yuqinie98/PatchTST
13https://github.com/Thinklab-SJTU/Crossformer

18



Table 10: Forecasting accuracy of SAN applied to slice-based forecasters. The bold values indicate
better performance.

Methods PatchTST + SAN Crossformer + SAN
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity

96 0.138 0.233 0.136 0.234 0.150 0.258 0.143 0.246
192 0.153 0.247 0.150 0.247 0.175 0.284 0.162 0.265
336 0.170 0.263 0.165 0.264 0.218 0.325 0.177 0.280
720 0.206 0.296 0.200 0.296 0.226 0.324 0.221 0.318

Exchange

96 0.094 0.216 0.087 0.218 0.283 0.393 0.087 0.219
192 0.191 0.311 0.181 0.323 1.087 0.804 0.171 0.313
336 0.343 0.427 0.305 0.418 1.367 0.905 0.286 0.401
720 0.888 0.706 0.659 0.620 1.546 0.987 0.749 0.653

Weather

96 0.147 0.197 0.150 0.205 0.148 0.214 0.151 0.210
192 0.191 0.240 0.194 0.252 0.201 0.270 0.198 0.253
336 0.244 0.282 0.243 0.290 0.248 0.311 0.248 0.294
720 0.320 0.334 0.311 0.343 0.366 0.395 0.322 0.350

ETTh1

96 0.382 0.403 0.375 0.398 0.390 0.417 0.387 0.402
192 0.416 0.423 0.413 0.422 0.424 0.448 0.413 0.425
336 0.441 0.440 0.428 0.434 0.486 0.492 0.436 0.431
720 0.470 0.475 0.445 0.461 0.507 0.519 0.467 0.474

ETTm2

96 0.174 0.261 0.167 0.260 0.330 0.401 0.170 0.262
192 0.238 0.307 0.222 0.298 0.623 0.543 0.224 0.301
336 0.293 0.346 0.276 0.334 0.887 0.637 0.274 0.333
720 0.373 0.401 0.366 0.393 0.844 0.640 0.366 0.390

non-stationary time series; 2) Since both are slice-based methods that split series into slices (non-
overlapping slices for SAN and overlapping patches for PatchTST), the parameter settings may have
a greater impact on performance and how to determine proper settings require further explorations.
Besides, The official code of CrossFormer provides parameter settings for Electricity, Weather,
and ETTh1 datasets. For Exchange and ETTm2 datasets, we extracted common and reasonable
settings. Without SAN, CrossFormer performs poorly compared to PatchTST on these latter two
datasets due to unsuitable parameters. However, when enhanced with SAN under the same setting,
CrossFormer achieves competitive or even superior performance. This phenomenon reveals that
SAN can potentially reduce reliance on parameter settings for backbone models while also
reducing costs associated with parameter adjustment in real-world forecasting applications,
further validating our attempt to divide complex non-stationary forecasting task into two easier
subtasks through the two-stage training schema.

C Implementation Details

C.1 Architecture of Statistic Prediction Module

The computation of MLP(x1, x2) in our paper can be summarized as follows:

x1 = act1(W1 ∗ x1)

x2 = act1(W2 ∗ x2)

x = [x1;x2]

output = act2(W3 ∗ x)

(9)

Here, the symbol [*;*] represents the concatenate operation. We set act1(), act2() = Relu(), Relu()
for standard deviation and the activate function of the mean is set to Tanh(), Identity() respectively.
W1,W2,W3 are learnable transformation matrices with hidden sizes of {512,512,1024}.

C.2 Algorithm of The Two-stage Training Schema

To apply SAN to backbone forecasting models, we propose a two-stage training schema to tackle
the challenge of the bi-level optimization target. The statistics prediction module is first trained into

19



convergence, which is then frozen and treated as a plugin during the second stage of training the
forecasting model. We provide the pseudo-code of such a procedure in Alg. 1.

Algorithm 1 Two-stage Training Schema.
Require: Input series X = {xi}Ni=1; Horizon series Y = {yi}Ni=1; Slicing length T

1: Initialize parameters ϕ, θ
2: while not converge do
3: for all input xi ∈ X , horizon yi ∈ Y do
4: Compute input statistics µi

j , σ
i
j by Eq. 1 with T

5: Predict future statistics µ̂i, σ̂i by Eq. 3 using fϕ(∗)
6: Update ϕ using loss function lsp
7: end for
8: end while ▷ Training of the statistics prediction module
9:

10: while not converge do
11: for all input xi ∈ X , horizon yi ∈ Y do
12: Compute input statistics µi

j , σ
i
j by Eq. 1 with T

13: Normalize input series to x̄i by Eq. 2
14: Forecast ȳi = gθ(x̄

i)
15: Predict future statistics µ̂i, σ̂i by Eq. 3 using fϕ(∗)
16: µ̂i.detach(), σ̂i.detach() ▷ Stop-gradient, freeze the statistics prediction module
17: Denormalize ȳi to ŷi by Eq. 4
18: Update θ using loss function lfc
19: end for
20: end while ▷ Training of the forecasting model

D Limitations

Though SAN shows promising performance on the benchmark dataset, there are still some limitations
of this method. First is that we mainly select the slicing length heuristically or search in predefined
candidates and the current design cannot handle indivisible length or the multi-period characteristic of
time series. Such a solution works for the experiments but lacks generality in real-world applications.
Second is that SAN may lead to an over-stationary issue, leading to sub-optimal performance.
Moreover, when applied to similar slice-based methods (especially overlapping-slice-based ones),
determining how to adjust SAN’s parameters for them is not a straightforward task. Therefore, a
more flexible solution with automatic slicing length selection and normalization intensity control will
be our exploring direction.

20


	Introduction
	Related Works
	Time Series Forecasting
	Non-stationary Time Series Forecasting

	Proposed Method
	Normalization
	Statistics Prediction
	Denormalization
	Two-stage Training Schema

	Experiments
	Experimental Setup
	Main Results
	Comparison With Normalization Methods
	Qualitative Evaluation

	Conclusion
	Acknowledgement
	Effects of SAN on Non-stationary Time Series Forecasting
	Discussions
	Theoretical Analysis

	Supplementary Experiments
	Full Benchmark on the ETT Dataset
	Univariate Forecasting Results
	Validation on Various Input Lengths
	Additional Prediction Showcases
	Ablation Study
	Detailed Results of the Comparison between SAN and Normalization Methods
	SAN for Slice-based Forecasting Methods

	Implementation Details
	Architecture of Statistic Prediction Module
	Algorithm of The Two-stage Training Schema

	Limitations

