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Abstract

Despite their success, unsupervised domain adaptation methods for semantic seg-
mentation primarily focus on adaptation between image domains and do not utilize
other abundant visual modalities like depth, infrared and event. This limitation
hinders their performance and restricts their application in real-world multimodal
scenarios. To address this issue, we propose Modality Adaptation with text-to-
image Diffusion Models (MADM) for semantic segmentation task which utilizes
text-to-image diffusion models pre-trained on extensive image-text pairs to enhance
the model’s cross-modality capabilities. Specifically, MADM comprises two key
complementary components to tackle major challenges. First, due to the large
modality gap, using one modal data to generate pseudo labels for another modal-
ity suffers from a significant drop in accuracy. To address this, MADM designs
diffusion-based pseudo-label generation which adds latent noise to stabilize pseudo-
labels and enhance label accuracy. Second, to overcome the limitations of latent
low-resolution features in diffusion models, MADM introduces the label palette
and latent regression which converts one-hot encoded labels into the RGB form by
palette and regresses them in the latent space, thus ensuring the pre-trained decoder
for up-sampling to obtain fine-grained features. Extensive experimental results
demonstrate that MADM achieves state-of-the-art adaptation performance across
various modality tasks, including images to depth, infrared, and event modalities.
We open-source our code and models at https://github.com/XiaRho/MADM.

1 Introduction

Unsupervised Domain Adaptation for Semantic Segmentation (UDASS) involves a source domain
with image-label pairs and a target domain with only unlabeled samples [9–11], and has achieved
promising segmentation results in the image modality. Currently, most existing UDASS methods are
restricted to transferring knowledge between similar image domains, such as from virtual scene [2, 12]
to real scene [13], or from daytime scene [13] to nighttime scene [3, 4]. However, these approaches
do not account for the wide range of visual modalities present in real-world scenarios, such as depth,
infrared, and event modalities, which are valuable in nighttime perception [14–16] but often lack
sufficient and high-quality labels for supervising segmentation training. Hence, in this paper, we
are particularly interested in extending UDASS to Unsupervised Modality Adaptation for Semantic
Segmentation (UMASS) across different visual modalities, i.e., the adaptation of a model from a
labeled source image modality to an unlabeled target modality.

Differences across images arise from the objects, lighting, camera parameters, etc, while there are
fundamental disparities in imaging principles across modalities that lead to greater variability. This
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Figure 1: (1) On the left, we leverage the multi-modality model ImageBind [1] to quantify the simi-
larity of images and modalities across datasets, i.e., GTA5-Synthetic [2], Dark Zurich-Nighttime [3],
ACDC-Snow [4], DELIVER-Depth [5], FMB-Infrared [6], and DSEC-Event [7]. Specifically, we
randomly select 500 samples from each dataset, and compute the average cosine similarity of the
output vectors within the dataset (right side of the text) and between the datasets (on the arrows). (2)
On the right, we compare the quantitative results with the state-of-the-art (SoTA) method Rein [8] on
three different modalities.

is illustrated by Figure 1 which shows that the similarity among various image domains tends to be
higher than between different modalities. These significant modality discrepancies poses significant
challenges to existing UDASS methods [17, 18] on multimodal segmentation due to their limited
pre-trained knowledge. Specifically, the backbone [19] used in current SoTA UDASS methods is
pre-trained on the ImageNet-1K dataset [20] which contains one million images categorized into
1,000 distinct classes, providing the network with a foundational level of semantic understanding.
While this backbone achieves promising results in UDASS, its insufficient pre-trained knowledge
limits generalization to other visual modalities.

To address this issue, inspired by Text-to-Image Diffusion Models (TIDMs) [21], which are trained
with internet-scale image-text pairs [22], we recognize that extensive pre-training data unifies samples
with different distributions but similar semantic properties through texts, significantly enhancing
the model’s semantic understanding and generalization. Although TIDMs are not trained on other
visual modalities, their large-scale samples and unification through texts enable them to adapt to
a broader distribution of domains. Also, the extensive pretraining provides TIDMs with a robust
understanding of high-level visual concepts, enabling their application to various domains, such as
semantic matching [23], depth estimation [24], and 3D awareness [25]. This strong prior motivates
us to utilize TIDMs as a robust backbone for solving UMA. Therefore, we present MADM: Modality
Adaptation with text-to-image Diffusion Models, which takes full advantage of the generalization
of pre-trained diffusion models and facilitates robust adaptation for accurate semantic segmentation
in other visual modalities. Specifically, TIDM is used to extract robust features for segmentation
and is trained in a self-training manner [17] which takes unlabeled target samples as input and
generates pseudo-labels for training TIDM itself. Building upon TIDMs [21] and self-training [17],
our MADM incorporates two innovative components: Diffusion-based Pseudo-Label Generation
(DPLG) and Label Palette and Latent Regression (LPLR), which address the challenges of unstable
pseudo-labeling and lack of fine-grained features extraction, respectively.

First, significant modality discrepancies hinder robust and high-quality pseudo-label generation,
which is crucial for further training and enhancing the model. Directly using these unstable labels
to train the model can lead to serious biases in the target modality. Thus, we propose DPLG which
adds latent noise to target samples before generating pseudo-labels where the noise level gradually
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decreases as training stabilizes. These pseudo-labels then supervise the noise-free target modality
predictions. The mechanism behind DPLG leverages the denoising property of diffusion models,
making the target modality more consistent with pre-trained inputs, thus improving accuracy. Unlike
previous supervised diffusion-based semantic segmentation methods [26–28] which adopt a single-
step forward and remove the diffusion process, we find that a proper diffusion process can stabilize
the generation of pseudo-labels and adapt more successfully to the target modality.

Second, TIDMs [21] encode images into the latent space using a pre-trained Variational AutoEncoder
(VAE) for diffusion and denoising, and then up-sample the latent output to the original resolution
using the VAE decoder. When adopting TIDMs as a backbone, the resolution of the features is
too low, resulting in a loss of details. To address this, we propose LPLR to convert pixel-level
classification into regression in RGB form, utilizing the up-sampling capability of the pre-trained
VAE decoder in a recycling manner. Specifically, we use a palette to convert one-hot encoded labels
into RGB form and encode these RGB labels into latent representations. Then, the model is trained
with a regression loss to fit the latent labels, obtaining high-resolution fine-grained features via the
VAE decoder. Different from previous diffusion-based semantic segmentation methods [26–28] that
directly extract multi-scale features from the denoising UNet network, we take inspiration from depth
estimation with TIDMs [24] and propose LPLR to extract high-resolution features. Our contributions
are summarized as follows:

• We propose MADM, extending traditional UDASS to UMASS with a pre-trained TIDM
backbone for generalizing across various visual modalities.

• We design Diffusion-based Pseudo-Label Generation (DPLG) to provide more robust pseudo-
labels by adding annealed latent noise to target samples for stable modality adaptation.

• We introduce Label Palette and Latent Regression (LPLR) to convert semantic segmentation
into regression for learning details, thereby repeatedly utilizing pre-trained VAE decoders
for high-resolution feature extraction.

• We demonstrate the effectiveness of our MADM through extensive experiments on three
different modalities: Image [13] → Depth [5], Infrared [6], and Event [7].

2 Related Works

2.1 Unsupervised Domain Adaptation Semantic Segmentation

UDASS can be broadly categorized into two primary methods: adversarial and self-training methods.
Adversarial approaches aim to align the distributions of the source and target domains at the level of
images [29, 30] or features [31, 32] or outputs [33, 34], thereby facilitating the transfer of knowledge.
On the other hand, self-training methods [9, 35] operate on the paradigm of pseudo-labeling, where
the model’s predictions on the target domain act as ground truth during training, iteratively refining
the segmentation. Recently, the field has witnessed the development from CNN-based methods [30]
to Transformer-based methods [17, 18, 36], leveraging the self-attention mechanism to capture
long-range dependencies and enhance cross-domain feature representation.

However, most of these methods have predominantly focused on adaptation between different image
domains, such as from synthetic [2, 12] to real-world images or across varying environmental
conditions [4]. They will fail when adapting to other visual modalities, such as depth, infrared, or
event, which have distinct data distribution. Thus, we propose MADM to address the limitation
of UDASS for adapting to other unexplored visual modalities. Besides, different from multi/cross-
modality domain adaptation [37, 38] which has paired two modalities in both domains, our modalities
are different in source and target.

2.2 Text-to-Image Diffusion Models

Diffusion denoising probabilistic models [39] have set new benchmarks in the quality and controlla-
bility of generative tasks. These models are distinguished by their two-phase paradigm: the diffusion
process that progressively adds noise to the sample, and the denoising process that learns to denoise
the corrupted sample by a network. Utilizing the MSE loss between the residual noise and the predic-
tion as a training objective, diffusion models have demonstrated greater training stability compared
to generative adversarial networks [40] and VAEs [41]. To achieve high-quality controllable image
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Figure 2: Our framework is divided into three parts. (1) Self-Training: Supervised loss in the source
modality Ls and pseudo-labeled loss Lt in the target modality are used to train the network. (2)
Diffusion-based Pseudo-Label Generation (DPLG): In the early stage of training, we add noise on
the latent representation zt to stabilize the pseudo-label generation. (3) Label Palette and Latent
Regression (LPLR): The one-hot encoded labels ys/ŷt are converted to RGB form by palette and
then encoded to the latent space to supervise the UNet output os/t.

generation with reduced computational demands, Rombach et al. [21] proposed the latent diffusion
model that leverages cross-attention layers and confines the diffusion process to a low-resolution
latent space, which has emerged as a widely recognized TIDM.

In recent advancements beyond the generative tasks, the exceptional semantic comprehension capabil-
ities of TIDMs have been harnessed to enhance performance in many downstream applications. Xu et
al. [27] presented a novel framework that integrates a pretrained TIDM with a discriminative model to
address the challenges of open-vocabulary segmentation. Similarly, Zhao et al. [26] demonstrated the
versatility of TIDMs by fine-tuning it to deal with various visual perception tasks, including semantic
segmentation, referring image segmentation, and depth estimation. Gong et al. [28] introduced
innovative scene prompts and a prompt randomization strategy on TIDMs, achieving new milestones
in domain generalization and test-time domain adaptation. Their works highlight the potential of
TIDMs to generalize across diverse domains and adapt to new ones with minimal additional training.
It’s worth noting that the aforementioned methods necessitate only a single-step forward pass through
the denoising UNet, significantly streamlining the inference process.

The successful and diverse applications of TIDMs inspire our exploration into the generalization of
TIDMs to more challenging visual modalities. However, we observe that the latent diffusion property
within TIDMs leads to the lower-resolution feature extraction. To address this limitation, we propose
the LPLR that converts semantic segmentation into latent regression to obtain fine-grained features.

3 Method

3.1 Overview

In UMASS, given the labeled source RGB modality {(xs, ys)} and the unlabeled target modality
{(xt)}, our objective is to train a network which accepts xt as input and outputs the corresponding
semantic segmentation results pt. As shown in Sec. 1, the primary challenge in this task stems from
the significant disparities between the two modalities. To address this challenge, we propose to
leverage the TIDM [21] as our backbone which is pre-trained on a vast array of image-text pairs [22]
to enhance its generalization and can robustly extract features across modalities. Next, to overcome
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the inaccurate pseudo-labels due to large modality gaps, we propose Diffusion-based Pseudo-Label
Generation (DPLG), which stabilizes pseudo-label generation by injecting noise to the target modality.
Moreover, TIDMs can only extract low-resolution features within the latent space, leading to a loss
of semantic detail. To address this, we propose the Label Palette and Latent Regression (LPLR),
which transforms pixel-wise classification into the regression, thereby allowing us to harness the
fine-grained features upsampled by the pre-trained VAE Decoder. Our framework is illustrated in
Figure 2. Next, we will introduce the our proposed DPLG and LPLR in detail.

3.2 Diffusion-based Pseudo-Label Generation

As shown in Figure 2, in MADM, we employ the TIDM to perform a single-step diffusion to
extract multi-scale features from the intermediate output of the denoising UNet, following the
approach in [26, 27]. First, samples from source and target modalities xs, xt are encoded to the
latent representation zs/t = E(xs/t) by the pretrained VAE encoder E . Without any additional
noise, we feed them to the denoising UNet and obtain multi-scale features fs/t = UNet(zs/t, c),
where c is a learnable conditioned embedding instead of a textual description. Then, these features
are subsequently fed into a segmentation head to generate the semantic segmentation prediction
ps/t = Seg(fs/t).

Our training method is anchored on the self-training DAFormer [17] prevalent in UDASS. The
training objective is a composite of supervised loss from the source modality and pseudo-labeled loss
from the target modality. For the labeled source modality, we use a cross-entropy loss between the
prediction ps and the ground truth labels ys:

Ls = LCE(ps, ys).

For the unlabeled target modality, we adopt a student-teacher paradigm in self-training [17]. Here,
the existing network acts as the student, and through the Exponential Moving Average (EMA), we
derive a teacher network [42]. The teacher network generates pseudo-labels ŷt, which then supervise
the student network’s output on A(xt), where A(·) represents the strong data augmentation [43].

However, the data distribution varies greatly between modalities. The teacher network is unable to
provide accurate pseudo-labels for self-training, resulting in an unstable modality adaptation to the
target modality. We observe that more robust pseudo-labels can be generated by injecting appropriate
noise in the latent space and therefore propose the Diffusion-based Pseudo-Label Generation (DPLG).
The proposed DPLG exploits the denoising property (perception of noise) of diffusion models to
improve the robustness of semantic understanding on target samples.

Specifically, given a target sample xt, we first encode it into the latent representation zt = E(xt) and
then apply a diffusion process that adds noise ϵ to zt to obtain a noisy latent representation:

z′t =
√
ᾱkzt + (1−

√
ᾱk)ϵ, ϵ ∼ N (0, I), k = β ·max(0, 1− i/γ).

Tr
ai
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ng
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m

e

Event Pseudo Label w/ DPLG
Figure 3: We visualize the pseudo-labels for event modality at the iter-
ation of 1250, 1750, and 2250. The introduction of DPLG effectively
improves the quality of pseudo-labels.

Here, ᾱk is a predetermined schedule that con-
trols the amount of noise added at each step [39].
k is the diffusion step that controls the propor-
tion of noise based on the initial diffusion step β
and noise addition period γ, and i is the current
iteration count.

This noisy representation z′t is then used to gener-
ate pseudo-labels ŷt = Seg(UNet(z′t, c)). In the
pre-training of TIDMs [21], the objective is to
estimate noise from latent inputs containing vari-
ous noise levels. By injecting noise into the latent
code, we effectively simulate this noisy distribu-
tion. This simulation aligns the latent space more
closely with the data distribution encountered
during the pre-training phase. Such alignment
fosters a more robust and accurate semantic inter-
pretation, which, in turn, enhances the quality of
the pseudo labels generated. This shares similar
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spirits in other applications of diffusion models, such as the text-to-3D [44] where injecting extra
noise into data can improve the denoising quality of image and yields better pseudo labels. As
shown in Figure 3, our DPLG can generate more accurate pseudo-labels compared to the noise-free
addition. By strategically incorporating noise in the pseudo-label generation, DPLG enhances the
model’s adaptability to the target domain and mitigates the bias of semantic understanding. Then, the
pseudo-labeled loss is formulated as:

Lt = LCE(pt, ŷt) · q.

Here, q is the confidence value calculated by the softmax probability of pt [17, 18, 43]. The
consistency regularization of xt between the teacher and student networks promotes adaptation to the
target modality. It encourages the student network to match the teacher’s predictions, even under the
perturbations introduced by strong data augmentation.

3.3 Label Palette and Latent Regression

TIDMs compress the sample into a latent space with an 8x down-sampling factor, which leads to a
serious loss of semantic detail. Specifically, for the input sample with a resolution of 512× 512, it
is reduced to 64× 64 after embedded via E . Then, within the denoising UNet decoder, multi-scale
features are extracted fs/t after the 5th, 8th, and 11th blocks: 64× 64, 32× 32, and 16× 16.

For diffusion-based depth estimation [24], leveraging the VAE decoder D to upsample the denoised
latent representation back to the original resolution is a natural fit, which recovers the fine-grained
scene details. However, the above method is not applicable to semantic segmentation due to the
inherent difference between regression and classification. Therefore, to address the problem of
semantic detail loss, we propose the Label Palette and Latent Regression (LPLR) module which
converts semantic segmentation into regression and utilizes the VAE Decoder D to obtain high-
resolution semantic features.

Initially, the one-hot encoded labels ys and ŷt are transformed into a perceptually meaningful RGB
space with a pre-defined palette. These RGB representations are then encoded back into the latent
space and supervise the UNet’s output os/t = UNet(zs/t, c) in a regression form:

Lreg
s/t = |E(Palette(ys/ŷt))− os/t|.

With this supervision, we are able to utilize the VAE decoder D to obtain a high-resolution semantic
regression feature D(os/t). This feature, combined with the multi-scale features, is then fed to the
segmentation head ps/t = Seg(fs/t,D(os/t)).

By employing LPLR, we effectively convert the semantic segmentation into a regression problem that
can be tackled by the VAE decoder’s upsampling capabilities, which retain the fine-grained details
necessary for accurate segmentation. Finally, the total training objective is a sum of these losses:

L = Ls + Lt + λreg(Lreg
s + Lreg

t ).

4 Experiments

4.1 Implementation Details

In our work, we utilize the Stable Diffusion v1-4 model [21], which has been pre-trained on the
LAION-5B [22] dataset, as our TIDM. For the segmentation head, we instantiate it with the de-
coder from DAFormer [17]. We train our MADM for 10k iterations with a batch size of 2 and
an image resolution of 512×512. The optimization is instantiated with AdamW [45] with a
learning rate of 5e-6. For hyperparameters β, γ, and λreg in DPLG and LPLR, we set them to
{5000,60,1.0}/{8000,50,1.0}/{8000,50,10.0} for depth/infrared/event modalities, respectively. In our
experiments, we adopt the Cityscapes-Image [13] dataset as the source modality and the DELIVER-
Depth [5], FMB-Infrared [6], and DSEC-Event [7] datasets as the target modalities. Since the
semantic classes in these datasets are not identical, we merge some semantically similar classes
during training. Experiments are conducted on a NVIDIA H800 GPU, occupying about 57G memory.
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Table 1: Semantic segmentation results evaluated with MIoU (%) on three modalities. Bold numbers
are the best, underscored second best.

(a) Cityscapes [13] → DELIVER-Depth [5].

Method Sky Build. Fence Person Pole Road S.walk Veg. Vehi. Wall Tr.S. MIoU (avg)

DAFormer [17] 82.28 43.35 11.82 56.03 13.90 80.10 15.44 60.08 72.67 0.18 44.20 43.64
MIC [18] 85.10 77.78 7.30 33.41 21.14 77.04 27.24 67.07 57.25 0.00 43.92 45.21
PiPa [46] 76.90 79.65 15.61 60.21 18.76 77.71 35.30 59.76 84.54 0.00 31.04 49.04
Rein [8] 92.00 78.78 27.75 43.88 32.34 78.81 27.50 58.06 76.45 0.34 36.68 50.23
MADM 95.52 86.70 12.48 41.88 18.99 93.97 54.12 67.12 84.29 0.00 33.34 53.49

(b) Cityscapes [13] → FMB-Infrared [6].

Method Sky Build. Person Pole Road S.walk Veg. Vehi. Tr.S. MIoU (avg)

DAFormer [17] 36.97 66.78 51.42 18.91 41.23 28.81 43.88 69.44 12.71 41.13
PiPa [46] 25.42 71.60 63.62 16.40 39.53 31.64 45.21 70.25 41.38 45.01
MIC [18] 38.11 71.63 57.89 17.59 40.68 33.93 49.49 70.26 29.85 45.49
Rein [8] 84.07 72.84 67.10 26.40 85.92 30.50 72.61 84.51 21.95 60.65
MADM 88.79 71.52 70.51 22.30 89.08 19.88 69.83 77.10 51.08 62.23

(c) Cityscapes [13] → DSEC-Event [7].

Method Sky Build. Fence Person Pole Road S.walk Veg. Vehi. Wall Tr.S. MIoU (avg)

DAFormer [17] 81.14 51.43 1.15 0.03 10.59 72.49 26.45 61.14 39.79 0.00 24.84 33.55
PiPa [46] 91.38 76.30 6.41 0.71 18.15 83.97 33.22 77.88 55.61 0.00 32.49 43.28
MIC [18] 92.36 79.20 6.69 32.80 19.30 79.75 31.46 68.17 58.35 0.01 39.30 46.13
Rein [8] 85.40 73.34 9.49 32.28 18.71 90.64 53.88 75.42 79.44 12.77 39.13 51.86
MADM 92.60 78.21 26.51 29.08 22.78 92.20 62.90 81.70 75.11 23.92 34.43 56.31

4.2 Datasets Setting

Cityscapes–Image. Cityscapes [13] is the source dataset in our experiments, which constitutes a
real-world collection of street-view images captured across 50 distinct urban environments. The
dataset is split into 2,975 training images and 500 validation images with a resolution of 2048×1024.
It provides comprehensive semantic labeling at the pixel-level with 19 distinct semantic classes.

DELIVER–Depth. DELIVER [5] is a synthetic dataset containing five environmental conditions
created by the CARLA simulator [47]. The dataset contains 25 semantic classes and 3,983/2,005/1,897
samples for training/validation/testing with a resolution of 1024×1024.

FMB–Infrared. FMB [6] is an urban street dataset with 1,500 RGB-Infrared pairs at a resolution of
800×600 with 14 semantic classes. It contains a wide range of real driving scenes under different
lighting and weather conditions.

DSEC–Event. DSEC [7] is a stereo event camera dataset for driving scenarios. Driving data are
recorded for 3,193 seconds in diverse illumination conditions and urban/rural environments. Event
data have a resolution of 640×480 with 11 semantic classes and we aggregate them into the edge
form in a recurrent manner [48].

4.3 Comparison with State of the Art Methods

Table 1 presents the comparison with existing SoTA methods DAFormer [17], MIC [18], PiPa [46],
and Rein [8] across three modalities: Depth, Infrared, and Event. The comparison is based on the
Mean Intersection over Union (MIoU) over all classes, a standard measure of segmentation accuracy.

Our MADM demonstrates a strong performance, achieving the MIoU of 53.49%, 62.23%, and 56.31%
on the depth, infrared, and event modalities, respectively. It showcases a significant improvement
over the SoTA method Rein [8] by +3.26%, +1.58%, +4.45%, which underscores the robustness and
effectiveness of MADM in handling the other visual modalities. Also, it is worth noting that the
self-training loss in our MADM is built upon DAFormer [17], exceeding it average of +17.9%.

Figure 4 offers a intuitive comparison of the semantic segmentation results. MIC [18] leverages the
SegFormer backbone [19] that is pre-trained on the ImageNet-1k dataset [20], enabling it to capture
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Figure 4: Qualitative semantic segmentation results generated by SoTA methods MIC [18], Rein [8], and our
proposed MADM on three modalities.

more details within scenes, such as "pole". However, it exhibits weaker modality understanding,
leading to frequent mis-segmentation, such as incorrectly classifying the "sky" as the "road". In
contrast, Rein [8] is built upon the DINOv2 backbone that is pre-trained on extensive, curated datasets
without explicit supervision [49]. This results in an improved semantic understanding of modalities
compared to MIC [18]. Nonetheless, Rein still encounters issues with mis-segmentation and instances
of under-segmentation.

Our MADM stands out for its exceptional ability to output precise segmentation results that closely
mirror the ground truth. The incorporation of TIDM significantly enhances the generalization of
our approach, providing an enhanced comprehension of diverse visual modalities and substantially
mitigating the mis-segmentation.

4.4 Ablation Studies Table 2: Ablation of DPLG and LPLR in depth, infrared,
and event modalities.

Modality Baseline w/ DPLG w/ LPLR MADM

Depth 50.61 51.65 52.91 53.17±0.26
Infrared 56.28 61.86 58.75 62.14±0.18
Event 52.27 52.84 53.05 56.12±0.20

Average 53.05 +2.40 +1.85 +4.09

Table 2 presents the complete ablation studies
that quantify the performance gains achieved by
incorporating our proposed DPLG and LPLR
into the baseline. The "Baseline" column in-
dicates the performance of the MADM model
without DPLG and LPLR. It serves as a refer-
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Figure 5: At the 1,250th iteration, we present a visual analysis of diffusion step k in DPLG.

ence point but achieves performance on par with the SoTA methods in Table 1, which demonstrates
the strong generalization of TIDMs.

(1) When DGLP is employed, the MIoU is improved by an average of +2.40%, highlighting the
effectiveness of generating robust pseudo-labels. Especially in the infrared modality, it achieves
a +5.58% relative improvement over the baseline. The quantitative results of the pseudo-labels
enhancement are shown in Figure 3. (2) The application of LPLR contributes to an average gain
of +1.85%, emphasizing the importance of high-resolution features for segmentation tasks. (3)
By employing both DGLP and LPLR, we observe a significant enhancement in +4.09% over the
baseline, which underscores the synergistic benefits of combining robust pseudo-labels generation
with fine-grained feature extraction.

4.5 Diffusion-based Pseudo-Label Generation

Table 3: Ablation of β and γ in DPLG on the
depth modality.

β
γ 2,000 5,000 8,000 Average

40 51.62 52.46 52.52 52.20
60 51.30 53.49 52.55 52.45
80 52.01 52.85 48.63 51.16

Average 51.64 52.93 51.23 -

We analyze the pivotal roles of β and γ in our proposed
DPLG, particularly within the depth modality. These two
parameters control the diffusion step k on zt, which is
central to the stability and quality of pseudo-labels.

Table 3 provides a detailed presentation of the impact of
β and γ. For instance, when γ is set to 5,000, an increase
in β from 40 to 60 leads to a noticeable improvement in
performance, with the model achieving its peak score of
53.49%. However, further increasing β to 80 results in a
decline in performance, indicating the existence of an optimal balance between these parameters.

In Figure 5, we offer an illustration of how the diffusion step k influences the generation of pseudo-
labels. With noise-free addition (k = 0), the model encounters difficulties in accurately segmenting
the "car" and "person" classes. Upon introducing a moderate quantity of noise (k = 10 ∼ 50), the
segmentation is noticeably enhanced, yielding more robust segmentation. Conversely, an excessive
amount of noise (k = 200) leads to a significant degradation in segmentation.

4.6 Label Palette and Latent Regression

Table 4: Ablation of λreg in LPLR on event modality.

λreg 1.0 3.0 5.0 10.0 15.0

MIoU 53.31 54.40 55.84 56.31 55.31

Table 4 analyzes the loss weight λreg within
the proposed LPLR, which regulates the con-
tribution of the regression losses. A minimal
λreg of 1.0 and 3.0 yields MIoU of 53.31% and
54.40%, respectively, indicating the initial bene-
fits of incorporating regression losses. Increasing λreg to 10.0 achieves the optimal MIoU of 56.31%,
signifying the most effective balance between the segmentation and regression losses.

Event w/o LPLR w/ LPLR Label
Figure 6: Qualitative Visualization on the event modality w/o and w/
our proposed LPLR. The prediction with LPLR shows more accurate
fine-grained segmentation.

In Figure 6, we offer an illustration of the impact
of LPLR. It can be seen that the utilization of
LPLR results in a more fine-grained segmenta-
tion, e.g., "person" and "vegetation" in the left
yellow box, "road" and "sidewalk" in the right
yellow box, which greatly improves the perfor-
mance of our MADM.
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4.7 Benefits of MADM in Nighttime Datasets

As mentioned in Section 1, we indicate that other visual modalities present in real-world scenarios are
valuable in nighttime perception. In this section, experiments are conducted on the infrared modality
to prove this. The FMB-Infrared dataset [6] includes both image and infrared modalities on daytime
and nighttime scenes. We adapt from cityscapes [13] with daytime RGB images to the nighttime
image modality and infrared modality by our proposed MADA, respectively. Figure 7 and Table 5
show that the infrared modality has a clear advantage in the "Person" class due to obvious thermal
differences and a good suppression of light interference.

Table 5: Semantic segmentation results of RGB and infrared modalities evaluated with MIoU (%) on
FMB dataset [6].

Method Sky Build. Person Pole Road S.walk Veg. Vehi. Tr.S. MIoU (avg)

RGB 88.85 68.14 64.79 25.80 89.09 32.43 70.32 84.13 7.27 58.98
Infrared 87.94 82.40 82.69 21.50 76.21 26.50 76.61 83.80 16.69 61.59

RGB RGB Output Infrared Infrared Output Label

Figure 7: Visualization of daytime RGB images in Cityscapes dataset [13] → nighttime RGB and
Infrared modalities in FMB dataset [6]

5 Conclusion

In this paper, we present MADM. With the powerful generalization of TIDMs, we extend domain
adaptation to modality adaptation, aiming to segment other unexplored visual modalities in the
real-world. Meanwhile, we propose DPLG and LPLR to solve the problems of pseudo-labeling
instability and low-resolution features extraction within TIDMs. We hope our method can motivate
further research on visual modalities other than RGB images. Limitations: However, despite using
only a single-step forward for the diffusion model, the computation far exceeds existing UDASS
networks. Future work could focus on distilling the knowledge of TIDMs into lightweight models
when adapting. Broader Impacts: Our work pushes the boundary of semantic segmentation for
other visual modalities, which will benefit several applications like multimodal fusion. To the best of
our ability, MADM has little to no negative social impact.
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A Appendix

A.1 Visualization of LPLR

We visualize LPLR under different iteration steps in Figure 8. "Regression" and "Classification" in
Figure 8 denote the output of the VAE decoder and segmentation head, respectively. Our proposed
LPLR leverages the up-sampling capability of a pre-trained VAE decoder in a recycling manner. As
the model converges, the regression results transform from blurry to progressively clearer states,
presenting more details compared to the classification results. This assists the segmentation head in
producing more accurate semantic segmentation results.

Source RGB Regression Target Event
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Figure 8: Visualization of the output of VAE decoder (Regression) and segmentation head (Classifi-
cation).

A.2 Influence of Different Data Volumes

Table 6: Influence on different data volumes testing on the DSEC dataset [7].

Method Baseline-100% MADM-10% MADM-25% MADM-50% MADM-100%

MIoU 52.27 53.21 53.69 54.55 56.31

We train our method with 10%, 25%, and 50% of the total target samples in the event modality.
Here, the “Baseline-100%” column indicates the performance of the MADM model without DPLG
and LPLR and trained on the whole target samples. The results in Table indicate that our proposed
MADM consistently outperforms the baseline across all tested data volumes. Additionally, our
MADM is robust and effective even when the dataset size is relatively small.

A.3 Parameters and Costs

Table 7 presents a detailed comparison of training timeper iteration, number of iterations, total training
time, parameters, and performance across various methods in the DSEC event modality [7], including
our MADM and its distilled variant.

While MADM does exhibit a higher training time per iteration, the advanced visual prior derived
from TIDMs necessitates fewer iteration for adaptation, presenting a minimum total training time.
Moreover, MADM achieves a substantial performance improvement, with an MIoU of 57.34%,
surpassing other methods. Recognizing the trade-off in parameter count, we have leveraged our
MADM model as a teacher to perform a secondary self-training. This approach has enabled us to
distill the knowledge embedded in MADM into a more compact DAFormer model [17], MADM
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Table 7: Comparison of parameters and costs.

Method Training/Iter. Iteration Total training Params MIoU(seconds) (hours) (million)

DAFormer [17] 0.36 40k 4.0 85 33.55
PiPa [46] 1.12 60k 18.7 85 43.28
MIC [18] 0.48 40k 5.3 85 46.13
Rein [8] 1.25 40k 13.9 328 51.86
MADM 1.38 10k 3.8 949 56.31

MADM (Distilled) 0.46 10k 1.3 85 54.03

(Distilled), which retains a highMIoU of 54.03% while significantly reducing parameters to 85M and
only increasing the training time by 1.3 hours. Our distilled model demonstrates that it is possible
to maintain high performance with reduced computational costs, addressing the concerns raised
regarding the parameters and efficiency of MADM.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of the paper provide a clear and concise overview
of the research’s main contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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are not attained by the paper.
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• The answer NA means that the paper has no limitation while the answer No means that
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will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
Answer: [NA]
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Justification: Our work does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail our work in the Methods section and describe implementation details
in the Experiments section.

Guidelines: The paper thoroughly details all the necessary components for reproducing the
main experimental results.

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will release the code as soon as our work is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in the implementation details section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars with overall run with given experimental conditions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computer resources in the implementation details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts our work in the conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credite the creator and cite the original paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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