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A B B E FCC DD

Acton Sequence: “ABCDBCDEF”

Figure 1: We present a self-supervised technique for discovering recurring temporal patterns, called actons,
in long kinematic sequences like human dance. From a collection of such videos without any annotations, we
extract a set of actons and use this lexicon to segment and model motion sequences as shown above (skeleton
sequence temporally downsampled by 10×).

ABSTRACT

For human action understanding, a popular research direction is to analyze short
video clips with unambiguous semantic content, such as jumping and drinking.
However, methods for understanding short semantic actions cannot be directly
translated to long kinematic sequences such as dancing, where it becomes chal-
lenging even to semantically label the human movements. To promote analysis
of long videos of complex human motions, we propose a self-supervised method
for learning a representation of such motion sequences that is similar to words
in a sentence, where videos are segmented and clustered into recurring temporal
patterns, called actons. Our approach first obtains a frame-wise representation
by contrasting two augmented views of video frames conditioned on their tem-
poral context. The frame-wise representations across a collection of videos are
then clustered by K-means. Actons are then automatically extracted by forming
a continuous motion sequence from frames within the same cluster. We eval-
uate the self-supervised representation by temporal alignment metrics, and the
clustering results by normalized mutual information and language entropy. We
also study an application of this tokenization by using it to classify dance genres.
On the AIST++ and PKU-MMD datasets, actons are shown to bring significant
performance improvements compared to several baselines.

1 INTRODUCTION

In the past decade, computer vision research owes much of its its success to the construction of large
labeled datasets. The labels in the datasets provide semantics that associate visual data with natural
language descriptions. For human action understanding, the data is crowd-sourced with semantic
descriptions that cover single-person movement, multi-person movement, as well as person-object
interactions (Goyal et al., 2017; Kay et al., 2017; Abu-El-Haija et al., 2016). Labeling human actions
by semantic descriptions, however, limits the scope of the action space, as not all human actions can
be clearly and unambiguously defined by language.

Long and complex human actions in videos are difficult to depict by semantic language descriptions.
We consider dance in this work, but this also applies to many other domains such as sports and
opera. Though there exist a few iconic movements that are associated with a clear label, such as
“the moonwalk” by Michael Jackson, a majority of dance movements are best conveyed by showing
examples. Due to this complexity, a written transcription of dance uses a figure-based notation system
called Labanotation (Hutchinson et al., 1977) to record human motions.

In this work, we raise the question of how to learn meaningful representations of a long human dance
without any supervision. We observe that, though complex over a long time period, human dances
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Figure 2: Overview of our acton discovery framework. First, a novel Temporal Alignment Network (TAN)
through self-supervised contrastive learning is used to extract frame-wise, context-aware and temporally aligned
features. Then, frame-wise K-means is used to cluster and segment long human dances into actons.

often exhibit recurring temporal patterns. We thus propose an atomic representation called actons as a
mid-level representation for modeling long human action videos. Given this mid-level representation,
human dances could be represented by a sequence of acton tokens, similar to words of a lexicon in a
sentence. Building this acton dictionary may facilitate further applications such as action retrieval,
dance translation, and motion stylization.

We propose a two-step self-supervised approach for clustering and segmenting long human dances
into actons. An overview is illustrated in Figure 2. First, we obtain a frame-level representation
by training a Temporal Alignment Network (TAN) through contrastive learning (Chen et al., 2020).
Given a 3D skeleton sequence, we augment the sequence into two views by considering rotation,
translation and speed augmentations. Frames in one view are mapped to corresponding frames in the
other view as positives. Contrastive learning then discriminates between positive and negative pairs
at the frame level using a Transformer backbone. TAN is discussed in Section 3.

With the pretrained TAN, the embeddings can be used to retrieve frames in a similar action context.
We therefore propose a simple way to discover actons, by jointly clustering all frames in a video
dataset by K-means. Actons are then automatically segmented from the long actions by finding
continuous sequences within the same cluster assignment. Unsupervised lexicon building is discussed
in Section 4.

We conduct experiments on AIST++ and PKU-MMD datasets (Tsuchida et al., 2019; Li et al., 2021;
Liu et al., 2017), which provide 3D skeletons from multi-view reconstruction. AIST++ dataset
contains dances of 10 genres with basic motions and advanced complex motions; PKU-MMD is
an action detection dataset contains 1076 long video sequences. Alignment quality is measured by
Kendall’s Tau (Kendall, 1938; Dwibedi et al., 2019), and clustering performance is evaluated by
normalized mutual information and language entropy. We also present two applications of the acton
representation, genre classification and action detection. Extensive experimental results demonstrate
the effectiveness of the method against established baselines, TCN and TCC (Dwibedi et al., 2019;
Sermanet et al., 2018). We summarize the contributions of this work as follows:

• This work raises a novel question of how to discover meaningful elementary representations
from a long human action sequence without any supervision, namely, unsupervised acton
discovery. Analogous to words in a language, the discovered actons can serve as words
in a body language, which then can be further used for action assessment, translation and
composition. This is valuable to domain specialists like choreographers, athletes and so on.
To our knowledge, this is the first time that this interesting, important and challenging task
has been presented, discussed, explored and evaluated in depth.

• We believe the biggest technical challenges of this task lie in learning strong frame-wise,
context-aware and temporally aligned features. To this end, we propose a novel Tempo-
ral Alignment Network (TAN) together with effective speed augmentation and negative
sampling techniques to address the above issues.

• Extensive experiments, including ablation studies on the augmentation and negative sampling
strategies, as well as comparison with the state-of-the-art self-supervised sequence learning
methods Time-Contrastive Networks (TCN) (Dwibedi et al., 2019) and Temporal Cycle-
Consistency (TCC) (Sermanet et al., 2018), demonstrate the effectiveness of the proposed
method.

• We use the discovered actons as tokenized features and apply them to the application of
genre classification, action detection and choreography based on random acton composition.
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2 RELATED WORKS

Self-Supervised Learning for Action Recognition An effective representation for action recog-
nition should capture the temporal order of human movement, the speed of movement, as well as
the detailed motions. For self-supervised learning, pretext tasks which encode such representations
include learning the arrow of time (Wei et al., 2018), shuffle and learn (Misra et al., 2016; Lee et al.,
2017), and learning the temporal speed (Benaim et al., 2020). Recent advances on contrastive learning
for image representation learning (Wu et al., 2018; Chen et al., 2020) also show promising results on
videos. Research along this direction has achieved the state-of-the-art by contrasting on the temporal
dimension (Gordon et al., 2020; Sermanet et al., 2018), distilling motion representations (Han et al.,
2020), and designing better video augmentations (Qian et al., 2020).

The Kinetics human action video dataset (Kay et al., 2017) is the most popular dataset for pretraining
action representations. However, the dataset is curated since each video is trimmed to temporally
focus on the underlying action. The holistic representations for action recognition learned from
Kinetics cannot be scaled to long kinematic videos that describe a series of complex motions.

Video Alignment In contrast to holistic representations, a frame-level action representation may
effectively capture temporal action progressions. For example, the act of pouring may consist of
sub-action phases such as grabbing a bottle, tilting it to allow liquid to flow out, and putting down
the bottle. The transformation which maps the frames of one video to another can be learned by
CCA (Andrew et al., 2013) and Gaussian mixture (Sener & Yao, 2018; Swetha et al., 2021) losses.
Self-supervised approaches to alignment include cycle consistency (Dwibedi et al., 2019) and time-
contrastive networks (Sermanet et al., 2018). The video alignment task assumes that all data in the
same action category are loosely aligned. Our task is much more challenging because the training
data is uncurated, spanning multiple categories of actions.

Unsupervised Pattern Discovery from Sequences Natural sensory signals, of audio, vision or
text, often come in the form of long sequences. An important research topic (Oates, 2002) is
to discover recurring patterns in the sequences. Early works (De Marcken, 1996; Park & Glass,
2007) show that it is possible to extract words and linguistic entities from audio data without any
supervision. Further research (Myers & Rabiner, 1981) uses recurring words for connected word
recognition. Recently, a zero resource speech challenge (Nguyen et al., 2020) has demonstrated
that neural language models can be successfully learned from speech recordings. Pattern discovery
models have also been applied to discover meaningful patterns in music (Dannenberg & Hu, 2003).
Research on bioinformatics (Brazma et al., 1998; Rigoutsos & Floratos, 1998) has found structurally
important gene patterns (motifs) in DNA sequences. The key method for pattern discovery is to
perform sequence to sequence alignment, e.g. using dynamic time warping (Sakoe & Chiba, 1978),
and aggregate aligned sequences into clusters.

For applications of unsupervised pattern discovery on videos, topic models such as latent Dirichlet
allocation are applied to surveillance videos to discover recurrent activities on crossroads (Emonet
et al., 2011; Hospedales et al., 2009; Emonet et al., 2013; Varadarajan et al., 2013). The alignment
between short video clips is measured by the similarity of features, which often use histograms of
optical flow vectors. Instead of traffic activities, the goal of our work is to analyze human motions,
which are of significantly greater complexity.

Atomic Actions In contrast to action classification, the study of atomic actions aims to provide
a detailed representation of complex action sequences. With its combinatorial structure, such a
representation can also be used to reduce the complexity of recognition systems. In pursuit of this,
Breakfast (Kuehne et al., 2014) and MPII-Cooking 2 (Rohrbach et al., 2016) annotate 48 and 67 acton
classes, respectively, over various cooking activities. FineGym (Shao et al., 2020) provides a fine-
grained temporal annotation for gymnastic actions with up to 530 acton classes, which are organized
into three semantic and two temporal hierarchies. Methods have been proposed for unsupervised
segmentation of complex activities (Sener & Yao, 2018; Swetha et al., 2021), but they presume
knowledge of acton classes and canonical orders. There has been an effort to collect actons in a
semi-supervised manner (Zhu et al., 2013), which is driven by the goal of action classification, while
our actons are learned in a task-agnostic manner and may be used in a broad range of applications.

3



Under review as a conference paper at ICLR 2022

Despite the expense to annotate them, acton classes are generally not shared between activities,
e.g., between cooking and gymnastics. Therefore, a method for simultaneous self-supervised acton
discovery and segmentation is needed to facilitate analysis of complex human actions.

3 TEMPORAL ALIGNMENT NETWORK

We observe that recurring temporal patterns, i.e. actons, occur in dance collections across multiple
dancers and genres. Though the repeated patterns are essentially the same actions, they may vary in
speed, rotation, range of motion, as well as other properties not intrinsic to the action itself. Therefore,
we first seek to learn, in a self-supervised fashion, a representation that is effective for clustering
actons.

Inspired from prior works that discover motifs in the discrete domain for bioinformatics (Brazma
et al., 1998; Rigoutsos & Floratos, 1998) and in the continuous domain for audio (De Marcken, 1996;
Nguyen et al., 2020; Dannenberg & Hu, 2003; Park & Glass, 2007), the task of acton discovery
uniquely calls for the following properties in representation learning:

• Frame-wise features. Unlike action recognition where features in the temporal dimension
are usually globally pooled for an overall representation, the features in this task should be
at the local frame level since the boundaries of actons have yet to be determined.

• Context-aware. However, the feature of a frame should still represent pose status in the
context of a particular motion. For example, the same pose that appears in different motions
should have different feature representations.

• Temporal alignment. An acton can generally be performed at different speeds, so the learned
feature is expected to help identify the same acton regardless of speed. The feature distance
of the same frame at different motion speeds should be close to facilitate temporal alignment.

• Intra-compactness and Inter-separability. A key to effective clustering is to learn discrimina-
tive features that enlarge the decision margins between clusters while reducing the variations
within each cluster (Liu et al., 2016). Intra-class compactness and inter-class separability
between learned features should therefore be encouraged.

• Temporal continuity. The frames of an acton should be continuous in time. To facilitate
acton segmentation, the noise among frames within a potential acton should be suppressed
by drawing the features of adjacent frames closer together.

Formally, given a long kinematic video x ∈ RT×3J , our goal is to learn a neural network encoder
f(·) that extracts representation vectors z ∈ RT×F from x,

z = f(x). (1)

Here, T and J are the number of video frames and human joints respectively and F is the dimension
of latent feature vectors. For encoding the representation network f(·) of pose sequences in our task,
we adopt the Transformer encoder network (Vaswani et al., 2017) for its superior performance on
recent vision applications (Girdhar et al., 2019; Lohit et al., 2019; Plizzari et al., 2020; Carion et al.,
2020; Zou et al., 2021). Please see Appendix A for more implementation details.

3.1 FRAME-WISE TEMPORAL CONTRASTIVE LEARNING

As illustrated in Figure 3, we follow the framework of SimCLR (Chen et al., 2020), which learns
representations by maximizing agreement between augmented views of the same instance via a
contrastive loss. All frame representations (for example, z(i) for the i-th frame) are transformed by
an MLP projection head h(·) to a latent vector v(i) on a F -dim L2 unit sphere,

v(i) =
h(z(i))

‖h(z(i))‖
. (2)

As we seek here to learn frame-wise representations, we consider a frame conditioned on its temporal
action context as an individual instance. Given a minibatch of N video clips {xn}, denote the i-th
frame in the video xn as xn(i). We augment the sequence into two views by the same family of
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Figure 3: Illustration of Temporal Alignment Network (TAN), the first part of our system. Two separate
augmentations are sampled from the an augmentation family T (speed, rotation and translation) to obtain two
correlated views probably of different lengths. Ground-truth correspondence between frames of the two views is
calculated. All frames are projected into a common embedding space, where a frame-wise contrastive loss is
minimized.

augmentations, T , composed of random translation, rotation around the gravity direction, and speed
change. In order to preserve temporal smoothness, the random augmentations are applied consistently
throughout a video. As a result, the frame xn(i) is augmented into x′n(i) and x′′n(i) in the two views.
We use v′n(i) and v′′n(i) to denote the latent embeddings for the two frames. Then, the contrastive
loss function for a positive pair of frame examples is formally defined as:

Li
n = −log

exp(v′n(i) · v′′n(i))/τ)
exp(v′n(i) · v′′n(i)/τ) +

∑
xk(j)∈Di

n

exp(v′n(i) · vk(j)/τ)
, (3)

where τ is the temperature parameter. It is worth noting that our contrastive instance (zn(i) =
f(xn)[i]) differs from those in standard image or video based contrastive methods whose features are
learned either from a single image (zn(i) = f(xn[i])) (Chen et al., 2020) or to represent the entire
video (zn = f(xn)) (Feichtenhofer et al., 2021).

Due to random augmentations, some of the frames in one view may no longer have correspondences
in the other view, such as when speed augmentation changes the sequence length. We simply neglect
these frames during contrastive learning. The notation Di

n is used to denote the set of negative
samples for the frame instance xn(i). We symmetrize the loss in Eq. 3 by swapping x′n(i) and x′′n(i)

to compute L̃i
n. The overall contrastive loss is formulated as:

LTAN =
1

2NT

N∑
n=1

T∑
i=1

(Li
n + L̃i

n). (4)

Negative Samples For typical instance discrimination, all instances other than the reference are
considered as negatives. However, for frame-wise representation learning, frames that are temporally
close or in the same video may not be appropriate choices as negatives. We consider the following
alternatives for negative pair selection.

• All frames in batch: all frames from every video in one batch other than the reference
frame are considered negatives. In this case, Di

n = {xk(j) | k 6= n or j 6= i}. This is a
straightforward extension of instance discrimination to frame-level representation learning.

• Excluding close frames: ignore negative samples within the same video clip. In this case,
Di

n = {xk(j) | k 6= n}. Frames within a video are usually highly correlated with one
another. Ignoring them as negatives may help to learn a smooth representation over time.

3.2 EVALUATION METRICS

To evaluate the performance of the learned representations for temporal alignment, we use the
Kendall’s Tau (Kendall, 1938; Dwibedi et al., 2019) metric, which is a statistical measure to determine
how aligned in time two sequences are in a representation space. Given a pair of sequences that
perform the same action in different dance recordings with possibly different motion speed, Kendall’s
Tau is calculated over every pair (ui, uj) of frames with i < j in the first video. For all these pairs,
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we retrieve their nearest frames (vp, vq) in the second video with respect to the learned representation
space. A pair is called concordant if p < q, and otherwise it is discordant. Kendall’s Tau is defined
over all pairs of frames in the first video as:

τ =
# concordant pairs - # discordant pairs

n(n− 1)/2
. (5)

The metric ranges from −1 to 1, indicating completely reversed and aligned, respectively.

4 UNSUPERVISED LEXICON BUILDING

The second step for acton discovery is lexicon building, which involves two correlated task: segmen-
tation and clustering of unlabeled video sequences.

Earlier methods (De Marcken, 1996; Park & Glass, 2007) mainly seek part-coverage, which dis-
covers isolated segments in sequences and excludes many background frames. In another problem
formulation, namely full-coverage, entire sequences are segmented and clustered into word-like
units (Kamper et al., 2016; 2017b). In this setting, these two tasks can be treated as a joint minimiza-
tion problem of the sum of distance of each segment to their corresponding cluster center. In speech
processing, there is a similar problem called unsupervised word discovery (Nguyen et al., 2020) and
often addressed using probabilistic Bayesian models (Kamper et al., 2017a;b). Recently, K-Means
has been incorporated into these Bayesian models to ease the computational burden (Kamper et al.,
2017a; Nguyen et al., 2020).

4.1 ACTON SEGMENTATION AND CLUSTERING

After representation learning, we apply K-Means clustering on the output Transformer backbone.
The clustering is performed over all the output features at every time step of all the videos in a given
training set, following (Nguyen et al., 2020). The number of actons in the lexicon is determined by
the number of clusters in K-Means. For inference, a nearest neighbour search is conducted among
the K cluster centers.

After a lexicon is built, we consider the task of segmenting long video sequences. A simplistic
method is to consider a segment as a group of consecutive frames that share the same acton cluster, as
shown in Figure 1. We find that our feature representation works well with this simple segmentation
method. We note that ignoring negative samples within the same video clip plays a vital role in
forming smooth and clean segments.

4.2 EVALUATION METRICS

Normalized Mutual Information (NMI) is a widely used metric for estimating the quality of
clustering (Witten & Frank, 2002). Let Y be a random variable that describes the event of a testing
data sample being one of the ground truth actons, while C is another random variable that describes
the event of a sample belonging to one of the clusters. Mutual Information measures how much
knowing one of the variables reduces uncertainty about the other. For example, if knowing that a
sample belongs to a cluster determines its ground truth label (H(Y |C) = 0, where H(·) denotes the
entropy of a variable), then all information conveyed by C is shared with Y ; the Mutual Information
is the same as the uncertainty contained in Y . On the other hand, if C and Y are independent, namely
knowing that C does not give any information about Y (H(Y |C) = H(Y )), then Mutual Information
is zero. Formally,

NMI(Y,C) =
2(H(Y )− H(Y |C))

H(Y ) + H(C)
. (6)

The NMI is normalized by the sum of entropy in Y and C, ranging from 0 to 1. A higher NMI value
indicates better clustering results.

Language Entropy is a statistical measurement on the average uncertainty (conditional entropy)
of the next letter (in our case, acton), when the preceding N-1 letters are known. Specifically, let WN

represent a block of contiguous actons (w1, w2, ..., wN ) andWN represent all possible progressions
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Table 1: Comparison of different augmentation approaches (left) and negative samples (right) on AIST++.

Aug. Method τ ↑ NMI ↑ F2 ↓
full aug. 0.80 0.79 0.81
w/o speed aug. 0.77 0.74 0.90
w/o rotation aug. 0.72 0.58 1.66
w/o translation aug. 0.76 0.76 0.82

Negative Samples NMI ↑ F2 ↓
All frames in batch 0.35 2.29
Excluding close frames 0.79 0.81

of WN in the given sequences. The entropy KN and the conditional entropy FN in N contiguous
actons are defined as:

KN = −
∑

WN∈WN

p(WN ) log p(WN ) (7)

FN = KN − KN−1 = −
∑

WN∈WN

p(WN ) log p(wN |WN−1). (8)

Finally, the language entropy in (Shannon, 1951) is defined as H = lim
N→∞

FN .

We evaluate language entropy on testing sequences of basic choreography in the dataset, where each
sequence forms only a single handcrafted labanotation token but recurs several times. Hence, the
language entropy for these sequences is expected to be low. In the experiment, lower language entropy
indicates better results under this setting. We observe consistent results between methods when
N →∞, so we use 2-gram evaluation F2 instead of H in the experiments to simplify computation.

5 EXPERIMENTS

5.1 DATASETS

AIST++ For our experiments, we use AIST++ Dance Motion Dataset (Li et al., 2021)1, which
contains 3D human keypoint annotations estimated for the AIST Dance Video Database (Tsuchida
et al., 2019). AIST++ contains 1,362 sequences with 3D skeletons2, evenly distributed across 10
dance genres. For each genre, ∼85% of the sequences are of basic choreography and ∼15% of them
are of advanced choreography. Basic choreographies are repetitive while advanced choreographies
are longer and more complicated dances improvised by the professional dancers. Advanced videos
range from 27.4 seconds (1644 frames) to 46.7 seconds (2802 frames).

PKU-MMD PKU-MMD is a large-scale action detection dataset with 1,076 videos, which last 3
to 4 minutes and contain about 20 action instances each. There are 51 action classes, e.g. drinking,
waving hand. Among other modalities, only 3D skeletons are used for our experiment. We adopted
the Cross-Subject Evaluation split and report mean average precision of different actions (mAPa) on
the testing set with IOU threshold θ = 0.3.

5.2 ABLATION STUDIES

At the stage of representation learning, we evaluate by Kendall’s Tau. For each of some randomly
chosen basic choreographies, we sample two videos of different tempos and crop the first complete
actions that are found in common. When using 3D skeleton joint coordinates to retrieve the nearest
frame by L2 distance, we obtain a τ = 0.44, significantly lower than using trained representations
from Temporal Alignment Network. We start from our final setting and ablate different augmentation
components. Results are shown in Table 1, from which the necessity of all three augmentations can
be seen.

At the stage of lexicon building, we evaluate by NMI and language entropy averaged across 10
genres and 15 different K values from 10 to 150 with an interval of 10. We use the choreography
label of each video as the ground-truth frame label for NMI calculation. After this inference, we get a
reorganized text corpus, on which language entropy (approximated by F2) is calculated.

1Annotations licensed by Google LLC under CC BY 4.0 license.
2Counted after removing sequences deemed to be poorly reconstructed by the AIST++ authors.
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In Table 1, we observe again that all three augmentation methods are indispensable, corroborating
our conclusion at the representation learning stage based on Kendall’s Tau. To the right, We can see
that excluding a specific part of the negative samples is beneficial to TAN.

5.3 APPLICATIONS

Figure 4: Mean and standard deviation over 6
trials of genre classification, plotted against raw
skeleton method.

Table 2: Comparison with baseline method BLSTM (Liu
et al., 2017) on PKU-MMD on mAPa with varying θ.

θ 0.1 0.3 0.5 0.7

BLSTM 0.479 0.325 0.130 0.014
TAN (ours) 0.490 0.328 0.132 0.015

Acton discovery provides us with a discrete intermediate representation to support higher-level tasks
on long kinematic videos. To demonstrate the utility of our tokenization for long kinematic video
recognition, we conduct experiments to classify advanced choreography videos in AIST++ into 10
genres and do action detection on PKU-MMD. More experimental details are in the Appendix.

Genre Classification For acton sequence input, we use the LSTM (Hochreiter & Schmidhuber,
1997) text classification model with learnable and randomly-initialized word embeddings. Test set
accuracy across different lexicon sizes (K value) are presented in Figure 4. We observe that the
tokenization consistently aids classification for a reasonably large K, likely because the combinatorial
structure reduces requirements on recognition system capability.

Action Detection After TAN pre-training and lexicon building, we learn a segmentation model.
Our performance is compared with the best-performing method BLSTM (Liu et al., 2017) in Table 2.
It shows that our method is superior to BLSTM, especially with a less strict localization requirement
(smaller θ).

Action Composition In order to use the built lexicon to guide choreography (the art of designing
novel motions), we present a two-stage method. First, we generate a random list of words by
thresholding the L2 distance between the last frame of the preceding word and the first frame of
the successive word. Then we randomly instantiate each word by choosing one sequence from its
cluster and splice these sequences with linear interpolation. Please check the demonstration video
in Supplementary Material.

5.4 COMPARISON

We compare our model with three baseline methods, two of which are prototypical methods for
self-supervised sequence representation learning. We first briefly introduce them for completeness.

Raw Skeleton Coordinates (N/A) For this method, we use 3D skeletons directly as input for
clustering. To simulate the L2 distance in the frame embedding space, we calculate the L2 skeleton
distance after spatially normalizing the body center to the origin.

Time-Constrastive Networks (TCN) (Sermanet et al., 2018) TCN works by first sampling a
certain number of anchor frames. For each of them, one positive frame within a preset time interval
and one negative frame outside a larger time interval are sampled. For each motion, two augmented
views are used to simulate the multi-view TC loss, where the anchor and positive frames come from
the same view while negatives come from the other. After feature extraction, a triplet margin loss
(Balntas et al., 2016) is used to push positive features closer to the anchor feature while pushing away
negative features.

Temporal Cycle-Consistency (TCC) (Dwibedi et al., 2019) TCC is a self-supervised representa-
tion learning method based on the task of temporal alignment between videos. Compared to TCC,
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Table 3: Comparison with baseline methods. Accuracy refers to genre classification accuracy on AIST++ in
Section 5.3 with K=100, averaged over 6 trials. mAPa refers to action detection score on PKU-MMD.

AIST++ PKU-MMD

NMI ↑ F2 ↓ Acc. ↑ NMI ↑ F2 ↓ mAPa ↑
N/A 0.48 1.84 0.36 0.36 3.61 0.302
TCN 0.41 1.92 0.42 0.42 3.60 0.317
TCC 0.62 1.34 0.39 0.39 3.59 0.303

TAN 0.79 0.81 0.46 0.46 3.50 0.328

our method does not assume that the same event is occurring in all the videos in a dataset. We thus
modify the loss by cycling between two augmented views of one sequence. For a frame a in the first
view, we first find its (soft) nearest neighbour in the second view b, then force the nearest neighbour
of b in the first view to be a via a cross entropy loss.

To compare different representation learning methods, we perform experiments by applying the same
lexicon building algorithm on representations learnt from TCN, TCC, as well as using raw skeleton
coordinates. For both metrics on both datasets, learnt features give better results than using raw
skeleton coordinates, which justifies the use of temporal information in the representation for lexicon
building. It can be seen in Table 3 that the lexicon built from our method shows better results on
both clustering evaluation metrics and genre classification accuracy than the baselines. This might
be attributed to the fact that these other methods do not utilize ground-truth frame correspondence
between two augmented views.

5.5 QUALITATIVE RESULTS

Under the real-world setting in Section 5.3, we visualize the acton instances (short skeleton se-
quences) clustered into actons in Figure 5. More qualitative results can be found in Appendix F and
Supplementary Material.

A B

C D

E F

Figure 5: Visualization of discovered actons from advanced videos. For each acton, four instances are shown
side to side, with temporally earlier poses fading away. At the bottom left, an acton E with large intra-cluster
variance is shown; to its right are four acton instances facing different directions but underpinned by the same
motion.

6 CONCLUSION

In this work, we assert the importance of self-supervised acton discovery for long kinematic videos.
We then proposed a non-trivial pipeline composed of Temporal Alignment Network (TAN) and a
Lexicon Building algorithm, and discuss some of the design choices via proposed evaluation metrics,
NMI and language entropy. In the end, we successfully extract actons on completely unannotated
action datasets, AIST++ and PKU-MMD, and reorganize them into a text corpus. Among many, two
directions may be especially worth pursuing in the future: discovering textual motifs in a corpus to
build a hierarchical lexicon (Shao et al., 2020) and building a multi-channel lexicon by decomposing
the human body into parts (Hutchinson et al., 1977; Li et al., 2020).
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APPENDIX

A TRANSFORMER BACKBONE DETAILS

For encoding the representation network f(·) of pose sequences in our task, we adopt the Trans-
former encoder network (Vaswani et al., 2017) for its superior performance on recent vision appli-
cations (Girdhar et al., 2019; Lohit et al., 2019; Plizzari et al., 2020; Carion et al., 2020; Zou et al.,
2021). Transformer builds layers of a representation by leveraging a global attention mechanism,
and thus it is capable of learning frame-wise representations while encoding rich contextual informa-
tion. Particularly, the self-attention mechanism tends to identify the context and aggregates related
information in the entire sequence to represent the current frame. This long-range property perfectly
meets our need for context modeling.

An encoder layer of the standard transformer architecture consists of a multi-head self-attention
module and a feed-forward network (FFN) (Vaswani et al., 2017). Our transformer backbone network
is built by stacking three encoder layers. Similar to word embedding in NLP tasks (Collobert &
Weston, 2008; Pennington et al., 2014; Bojanowski et al., 2017), a 3D skeleton sequence is simply
flattened in the spatial dimension and embedded into a 512-dimensional hidden space using a two-
layer MLP network. Due to the permutation invariance of the transformer architecture, standard
positional encodings (Vaswani et al., 2017) using sine and cosine functions of various frequencies are
added to the input embeddings to make them sensitive to relative position in the sequence.

Note that there exists more sophisticated and potentially more effective spatial modeling architectures
like GCN (Yan et al., 2018), SRNet (Zeng et al., 2020) and Spatial Transformer (Plizzari et al., 2020)
to model the highly structured skeleton data together with rich prior information. However, examining
them and comparing their performance is not the focus of this work.

B EXPERIMENT DETAILS

For AIST++, note that for each sequence of basic choreography, dancers are asked to dance six times
with different BPMs (Beats Per Minute). Each basic choreography thus naturally forms a class. This
is leveraged in part of our experiments. For each genre, we extract 20 motion sequences to form a
validation set. Unless otherwise stated, representation learning is conducted on all advanced videos to
prevent the system from abusing repetitive patterns in basic videos; the lexicon is built on the training
split of basic videos; inference and metric calculation are done on the validation split of basic videos.

We present the values of the hyper-parameters in Table 4. The representation learning experiments
are conducted on 4 Nvidia V100 GPUs.

C AUGMENTATION DETAILS

In Table 5, we show the hyper-parameters of different data augmentations. For translation augmenta-
tion and rotation augmentation, the probability of different values used are uniform, while for speed
augmentation, we first uniformly sample a number between 1 and the highest speed, then give a 50%
chance of using its reciprocal.

D IMPLEMENTATION DETAILS OF APPLICATIONS

Genre Classification For our genre classification method, we create a new split of advanced
choreographies with a larger test set in relation to the development set. Representation learning
and lexicon building is carried out on the development set. After lexicon building, we do nearest
neighbour inference on the test set to obtain tokenizations of the test videos.

We use the LSTM (Hochreiter & Schmidhuber, 1997) text classification model with learnable
and randomly-initialized word embeddings. We use a 2-layer unidirectional LSTM (Hochreiter &
Schmidhuber, 1997) for sequence modeling. For tokenized input (ours), we use a learnable word
embedding, while for the baseline, we use a linear layer for mapping 3D human skeleton input into a
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Table 4: Different hyper-parameters.

Hyper-parameter Value

Shared

Batch Size 32

Number of frames 64

Optimizer Adam
Peak Learning Rate 2.5× 10−5

Weight Decay 1.0× 10−6

Gradient Clip by Norm 0.5

Number of epochs 500

Number of warmup epochs 50

Learning rate Scheduler Linear Warmup
Cosine Annealing

Frames per second 60/30 (default to AIST++/PKU-MMD)

Specific to TCN

Anchor Number 16

Positive Window Size 2

Negative Multiplier 4

Triplet Loss Margin 2

Table 5: Hyper-parameters of the standard augmentations.

Hyper-parameter Value

Translation range ±0.2m
Rotation range ±18◦
Speed range 1

2 ∼ 2

hidden space of the same dimension (Li et al., 2018). Hyperparameters can be found in Table 6. Note
the significant discrepancy in input sequence lengths due to tokenization.

Action Segmentation After TAN pre-training and lexicon building, we learn a classifier by assign-
ing each acton class to one of the 51 action classes defined in the PKU-MMD dataset according
to maximum agreement in the training set. Using this classifier, we densely evaluate the sliding
windows in different time scales across the test video, then select high confidence local windows
using the Non-Maximum Suppression (NMS) algorithm as our final action detection results.

Model Selection For both variants, we further split the AIST++ development split into a training
split and a validation split by a ratio of 4 : 1. Sizes of sets can be found in Table 6. We use the
best-performing model on this validation split for testing. Results on the test split are reported.

E MORE ON PROPOSED METRICS

Here, we provide a proof that the conditional entropy sequence {FN} defined in Section 4.2 converges.
Intuitively, the more characters that are conditioned on, the less uncertainty there is in predicting the
next character.

Proposition 1. The sequence FN converges.

Proof. Since FN is a conditional entropy sequence, we know FN ≥ 0. We only need to prove
FN+1 ≥ FN for any N ∈ N+.
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Table 6: Hyper-parameters used for long kinematic video recognition experiment

Hyper-parameter Value

Batch Size 50

Optimizer Adam
Peak Learning Rate 1.0× 10−4

Weight Decay 1.0× 10−4

Gradient Clip by Norm 0.1

Number of epochs 200

Hidden Space Dimension 256

Train set size 109

Validation set size 28

Test set size 61

Class number 10 (default to AIST++)

FN − FN+1 = −
∑
WN

p(WN ) log p(wN |WN−1) +
∑
WN+1

p(WN+1) log p(wN+1|WN )

=
∑
WN−1

 ∑
wN ,wN+1

p(WN+1) log p(wN+1|WN−1, wN )−
∑
wN

p(WN ) log p(wN |WN−1)


≥

∑
WN−1

 ∑
wN ,wN+1

p(WN+1) log p(wN+1|WN−1)−
∑
wN

p(WN ) log p(wN |WN−1)


=

∑
WN−1

 ∑
wN+1

p(WN−1, wN+1) log p(wN+1|WN−1)−
∑
wN

p(WN ) log p(wN |WN−1)


= 0.

The value it converges to is then defined as language entropy H by Shannon (1951).

We measure the correlation strengths among three proposed metrics, namely, Kendall’s Tau, NMI,
and language entropy on 1000 runs of experiments differing only in augmentation parameters with
Pearson’s r, Spearman’s ρ, and Kendall’s τ (Pedregosa et al., 2011). From Table 7, we can interpret
the results as indicating that NMI and language entropy have strong correlation while Kendall’s Tau
is linked to them weakly.

Table 7: Correlation among proposed metrics

|r| ↑ ρ ↑ τ ↑
Kendall’s Tau & NMI 0.45 0.45 0.31
Kendall’s Tau & language entropy 0.35 0.36 0.24
NMI & language entropy 0.82 0.81 0.62

F QUALITATIVE RESULTS

More acton instances (short skeleton sequences) clustered into actons can be found in in Figure 6. An
animated version can be found in the demo video in Supplementary Material.
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Figure 6: Continued Figure 5, visualization of discovered actons from advanced videos. For each acton, four
instances are shown side to side, with temporally earlier poses fading away. At the bottom left, an acton M
with large intra-cluster variance is shown; to its right are four acton instances facing different directions but
underpinned by the same motion.

To check the overall quality of a built lexicon, the length distribution of all segments and the
distribution of the number of instances for all actons are shown in Figure 7, with K = 450. We
can see that the discovered actons have a median duration of about 0.5 second and have reasonable
numbers of repetition.

Figure 7: The left histogram shows the distribution of segment length across all segments. The right histogram
shows the distribution of repetition number, or number of instances, for all discovered actons.

To qualitatively assess the quality of frame embeddings produced by Temporal Alignment Network
(TAN), we use t-SNE to reduce the embedding space to two dimensions and plot frames from four
basic videos with different tempos. Each of these four videos is a repetition of one basic motion.
From Figure 8, we can learn the following:
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• Embeddings of frames in a video form ordered lines, which show that our embeddings
possess the quality of temporal continuity.

• Despite different video lengths due to different tempos, different lines of videos have roughly
the same starting, turning and ending points. This shows that our embeddings are temporally
aligned.

• In the left part, different lines are largely overlapping, in concordance with the fact that
they are the same sequence of motions. This shows that the frame embedding is capturing
skeleton features. Non-overlapping parts can be attributed to the dancers rendering the same
motion differently each time.

• Four segments in each line are overlapped, which reflects the fact that there are repeated
motions in each video for four times.

• In the right part, we can see how lexicon building is working. It generally over-segments
one motion from a human perspective into a sequence of actons. For a conceptual example,
if a labanotation describes the dance as AAAA = (A)4, as it is a repetition of the same
motion A, our system represents it as (abcd)4.

• In the bottom part, we can see that for all four videos, the same patterns are repeated two
times in the middle. It is desired that an acton level pattern recognition system can identify
this and group over-segmented actons into one larger acton. This inspired us to use language
entropy as a metric.

Using the same setting as in Section 5.3, we show the reorganized corpus in Figure 9. Note that due
to the specific segmentation approach used in our method, the same acton cannot appear continuously
in the tokenization results.

Figure 8: t-SNE visualization of frame embeddings of videos with different tempos. In the left, frames are
colored by the video they belong to; on the right, they are colored by the cluster they belong to. At the bottom
is a visualization of tokenization results on the same four videos. Each line is one advanced video. Dot size
corresponds to acton instance duration. Consistent colors are used for the t-SNE plot in the right and the
tokenization visualization.

18



Under review as a conference paper at ICLR 2022

Figure 9: Illustration of segmentation on advanced videos in AIST++. Each line is one advanced video. Dot
size corresponds to acton instance duration. Different colors represent different actons.
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