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ABSTRACT

Understanding and quantifying uncertainty in large model predictions is critical
for their safe and trustworthy deployment. However, existing methods that esti-
mate the overall prediction uncertainty often fail due to miscalibration like model
overconfidence. Uncertainty decomposition provides a way to focus on some
specific parts in total uncertainty, removing those unrelated components. Tra-
ditional uncertainty decomposition into epistemic (model-related) and aleatoric
(data-related) components is insufficient for current model usage, as additional
factors like prompt phrasing and context significantly influence the model’s pre-
dictions and add the source of uncertainty. We introduce a unified uncertainty
decomposition framework that systematically separates uncertainty contributed
by various factors such as prompting, context, and preprocessing of multimodal
inputs. By quantifying each component’s uncertainty, our approach identifies
which uncertainty terms are well-correlated with the model’s hallucination rates,
thereby enhancing hallucination detection and model improvement. We validate
our framework through applications in visual question answering and math rea-
soning, demonstrating that effective uncertainty components can serve as metrics
for hallucination detection and improve model performance through self-training.
Grounded in information theory and highly extensible, our framework provides a
novel perspective on uncertainty decomposition in large language and multimodal
models, offering valuable insights for future research.

1 INTRODUCTION

Large language models (LLMs) and multimodal models, while very capable, are prone to generating
hallucinations (Bender et al., 2021; Huang et al., 2023; Dziri et al., 2024). Understanding what these
models do not know or are uncertain about is important for detecting hallucinations and further safe
and trustworthy deployment. Much work has focused on quantifying LLM uncertainty and using it
to identify when the model’s outputs are likely to be incorrect or hallucinated (Xiong et al., 2023;
Kadavath et al., 2022; Farquhar et al., 2024; Kuhn et al., 2023; Hou et al., 2024). However, in real-
world applications, existing methods to quantify the model’s prediction uncertainty are not always
reliable, e.g. the models may produce incorrect predictions very confidently, which we refer to as
overconfidence (Xiong et al., 2023; Groot & Valdenegro-Toro, 2024; Yang et al., 2024). Previous
work on uncertainty-based hallucination detection often overlooks or explicitly excludes this issue
(Farquhar et al., 2024).

Decomposing uncertainty offers a path to more reliable estimates by attributing the prediction
uncertainty to different possible sources (Liu et al., 2019a; Der Kiureghian & Ditlevsen, 2009).
Traditional methods commonly decompose prediction uncertainty (or total uncertainty) into epis-
temic uncertainty (model’s knowledge) and aleatoric uncertainty (inherent data randomness) com-
ponents (Hüllermeier & Waegeman, 2021; Schweighofer et al., 2023); Focusing on the epistemic
component rather than the total uncertainty finds success in many applications, as it excludes the ir-
reducible data-contributed part (Charpentier et al., 2022; Osband et al., 2023; Hou et al., 2024; Ling
et al., 2024). However, this formulation is limited for foundation models. On one side, measuring
epistemic uncertainty in a pretrained model is challenging. On the other side, the basic decomposi-
tion does not capture new factors that affect predictions in foundation models. For example, LLM
outputs can be heavily influenced by the phrasing of the prompt, the choice of in-context examples,
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Figure 1: Outline of the paper. Traditional methods divide uncertainty into epistemic and aleatoric
components (Sec. 2.1). Our framework starts with a running example (Sec. 2.2): a vision language
model is queried to compare the size of two objects in the image, where the attribution used to
name the objects and the phrasing of the query alternate. We decompose total uncertainty (Ut) into
those contributed by attribution (Ua), rephrasing (Ur), and remaining part (Uo). Furthermore, it
can be extended to a unified version of any factors δ influencing model predictions. Based on the
decomposition identify those “effective calibrators” — uncertainty terms that strongly and positively
correlates with error rates — which can improve model calibration and reliability(Sec. 2.3).

or how objects are referred to in the input (Wei et al., 2023; Dong et al., 2022; Wu et al., 2024). This
motivates us to consider the extra uncertainty introduced by such factors.

Moving beyond the traditional aleatoric-epistemic dualism, we introduce a systematic framework for
uncertainty decomposition in large language and multimodal models (Sec. 2). Our framework breaks
down the total uncertainty, which is quantified by the entropy of the model’s output distribution, into
a sequence of mutual information between different factors, each of which measures the reduction
in uncertainty the factor contributes to the model’s output. An example is illustrated in Fig. 1 while
the framework is also flexible enough to be extensive settings. With the new framework, we are able
to precisely attribute different sources of uncertainty in the generation. And the explicit attribution
allows us to obtain a better uncertainty measure, because we find certain decomposed components
are more calibrated than the overall uncertainty, where calibration refers to the agreement between
the estimated uncertainty and the model’s actual performance (Wang, 2023; Zhang et al., 2020).

Our experiments (Sec. 3) demonstrate that certain decomposed components more reliably predict
hallucinations. We call these components “effective calibrators.” By focusing on them, we can have
better hallucination detection accuracy and also improve the model’s performance using self-training
approaches (Huang et al., 2022; Mukherjee & Awadallah, 2020; Yu et al., 2022). We showcase this
in both visual question-answering and reasoning tasks and observe that our decomposition gives
insights into why total uncertainty is not always well correlated with true error rates. We believe
this framework offers a useful perspective on how to measure and utilize uncertainty in the next
generation of large language and multimodal models. We believe that these findings provide a
new perspective on uncertainty quantification in the foundation model and could provide valuable
insights for future research.

2 GENERAL UNCERTAINTY DECOMPOSITION FOR FOUNDATION MODELS

We propose a framework to decompose the uncertainty in foundation models with respect to the
contributions of various factors. This section begins with an overview of traditional approaches to
uncertainty quantification (Section 2.1) and introduces our new formulation (Section 2.2). We then
explain the implications and applications of the methods, with a focus on their use for hallucination
detection (Section 2.3). Finally, we conclude by discussing related works within the context of our
framework (Section 2.4).
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2.1 BACKGROUND

Uncertainty is typically decomposed into aleatoric and epistemic uncertainty (Hora, 1996; Der Ki-
ureghian & Ditlevsen, 2009; Hüllermeier & Waegeman, 2021). Aleatoric uncertainty reflects the
inherent randomness in data. For instance, in a coin flip, even the best model cannot provide a de-
terministic prediction due to the stochastic nature. In contrast, epistemic uncertainty arises from the
model’s limited knowledge, often resulting from insufficient data or imperfect learning. This type
of uncertainty can in principle be reduced by incorporating additional information or data.

This decomposition is frequently discussed in the context of Bayesian inference, where the model
parameters θ are treated as a probability distribution. Given a training dataset D, an input x, the
posterior predictive distribution is p(y | x,D) = Eθ∼p(θ|D)p(y | x, θ). In this setting, the total un-
certainty—quantified as the entropy of the posterior predictive distribution—can be decomposed into
two components mathematically (Der Kiureghian & Ditlevsen, 2009; Schweighofer et al., 2023):

H[y | x,D]︸ ︷︷ ︸
Total Uncertainty

= H[y | x, θ,D]︸ ︷︷ ︸
Aleatoric Uncertainty

+ I[y; θ | x,D]︸ ︷︷ ︸
Epistemic Uncertainty

(1)

The conditional entropy H[y | x, θ,D] = Eθ∼p(θ|D)H[y | x, θ] quantifies the uncertainty in y that
remains even if the realization of θ is known. As such, it is used to represent aleatoric uncertainty,
which captures the inherent randomness in the data. The conditional mutual information I(y; θ |
x,D), proposed as a measure of epistemic uncertainty, is a symmetric metric that quantifies the
expected information gained about one variable by observing the other. Intuitively, it reflects the
potential reduction in uncertainty about y obtained by observing θ.

Recent works have adapted uncertainty decomposition to inference-time LLM settings, such as con-
sidering in-context examples (Ling et al., 2024) or adding a clarification step to the input (Hou
et al., 2024). For example, in the clarification setting, an ambiguous question like x = “In the
image, is this object larger than another?” can be clarified by a clarification
c = “The question refers to the red object.” The authors draws an analogy to
quantify the uncertainty in ambiguous inputs, categorizing those irreducible to clarification c as
“aleatoric” uncertainty and the remaining as “epistemic” part:

H[y | x,w]︸ ︷︷ ︸
Total Uncertainty

= H[y | c, x, w]︸ ︷︷ ︸
“Epistemic” Uncertainty

+ I[y; c | x,w]︸ ︷︷ ︸
“Aleatoric” Uncertainty

(2)

Partitioning total uncertainty into the component that is reducible by clarification c (I[y; c | x,w])
and the remaining uncertainty given the clarification (H[y | c, x, w]).
While inspiring, these work still rely on the traditional epistemic-aleatoric dualistic perspective. As
the use cases for LLMs involve a broader range of influencing factors beyond a clarification step or
in-context examples, we propose a more general framework and decomposing uncertainty based on
the specific variables that contribute to it. And later we will show that these previous works can be
explained as special cases of our proposed framework.

2.2 GENERAL UNCERTAINTY DECOMPOSITION FRAMEWORK

Running Example. We start with the running example in Fig.1 with two intermediate variables:
attribution a and rephrasing r. We will explain in detail what a and r represent and the insights
behind them in Sec.3; for now, you can consider a and r as two factors that modify the query’s
wording without changing the actual question. We quantify the uncertainty contributed by each
variables by:

H[y | x,w]︸ ︷︷ ︸
Ut: total uncertainty

= H[y | a, x, w] + I[y; a | x,w] (3)

= H[y | r, a, x, w]︸ ︷︷ ︸
Uo: observed uncertainty

+ I[y; r | a, x, w]︸ ︷︷ ︸
Ur : contributed by rephrasing r

+ I[y; a | x,w]︸ ︷︷ ︸
Ua: contributed by attribution a

(4)

Here, we adapt the similar equation to first decompose the contribution from variable a (Eq. 3).
Intuitively, the uncertainty introduced by a variable is quantified by how much it influences the
model’s predictions. In this context, mutual information I[y; a | x,w] captures how much additional
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certainty is gained in predicting y once the variable a is known. The term H[y | a, x, w] captures
the remaining unpredictability of y even when a is known. Thus we decompose this term to find the
uncertainty contributed by other variables without the influence of a.

Then, considering the variable r, we decompose the uncertainty further (Eq. 4). The uncertainty
contributed by r is Ur = I[y; r | a, x, w], which measures how much additional certainty is gained
by knowing r along with a, x, and w. The term Ua = I[y; a | x,w] quantifies the uncertainty due to
attribution a, reflecting how a reduces uncertainty about y given x and w. The residual uncertainty,
Uo = H[y | r, a, x, w], represents the unpredictability of y when both a and r are known.

Unified Formulation. To generalize, we propose a unified framework that can handle multiple
intermediate variables. Let y represent the model’s prediction, x denote the input, w indicate the
model. These factors are considered intermediate variables that influence the model’s prediction,
without altering the desired output (such as the ground truth answer in a QA task). We denote these
intermediate variables as δ1:n = δ1, δ2, . . . , δn. The total uncertainty can then be decomposed using
the chain rule of mutual information:

H[y | x,w] = H[y | δ1:n, x, w] +
n∑

i=1

I[y; δi | δ1:i−1, x, w] (5)

We can further elaborate on how this equation is quantified in practice. Taking all intermediate
factors into account, the predictive distribution of the model is p(y | δ1:n, x, w), which can be ap-
proximated by sampling and clustering the answers. Based on the predictive distribution we can
calculate the marginal distribution p (y | δ1:i−1, x, w) = Eδi:n [p (y | δ1:n, x, w)]. Then the uncer-
tainty contributed by δi is quantified using these marginal distributions:

I[y; δi | δ1:i−1, x, w] = Eδ1:i [DKL (p(y | δ1:i, x, w) ∥ p(y | δ1:i−1, x, w))] (6)

Mutual information here measures the expected reduction in uncertainty about y given knowledge
of δi and it can be expressed as the expected KL divergence between the conditional and marginal
distributions. The KL divergence quantifies the decrease in uncertainty (or increase of surprisal)
when updating our belief from the marginal distribution to the conditional distribution, thereby cap-
turing how additional information about δi influences the model’s predictions. This decomposition
allows us to quantify the individual contributions of each intermediate variable to the total uncer-
tainty. In the running example, n = 2, δ1 = a, and δ2 = r. A practical pipeline for implementing
the decomposition is shown in Algorithm 1.

Algorithm 1 Practical Pipeline for General Uncertainty Decomposition
Input: Input x, model w and n pre-selected intermediate variables δi|ni=1.
Output: Uncertainty measures Uδ1(x), Uδ2(x), · · · , Uδn(x) and Ut(x) on input x.
Sample candidates δ1:n from their joint distribution (assumed known, see Sec. 3);
foreach sampled candidates δ1:n do

Query and sample responses from the model predictive distribution;
Cluster the responses and save distribution p(y | δ[1:n], x, w) for each r, a;

end
Compute marginal distribution p(y | δ[1:i], x, w), ∀i ∈ [1, n− 1] and p(y | x,w);
Compute Uδi(x) = I[y; δi | δ1:i−1, x, w] = Eδ1:i [DKL (p(y | δ1:i, x, w) ∥ p(y | δ1:i−1, x, w))];
Compute total uncertainty Ut(x) = H[y | δ1:n, x, w] +

∑n
i=1 Uδi(x);

return Uδ1(x), Uδ2(x), · · · , Uδn(x) and Ut(x)

Examples of intermediate variables include different network modules, prompt rephrasings, contex-
tual information, etc (see Sec.2.4). When it comes to the practical decomposition order of interme-
diate variables, if a variable δj is generated conditionally based on δi, it is natural to decompose δi
before δj ; Otherwise, we can just assume their joint distribution is known. For further discussion
please see Appendix B. Regardless of the order of decomposition, the decomposition and analy-
sis principles remain consistent, allowing us to systematically quantify the uncertainty contributed
by each variable. This flexibility enables our framework to adapt to a wide range of models and
applications by selecting relevant intermediate variables based on the specific setting.
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2.3 UNDERSTANDING THE DECOMPOSED UNCERTAINTY

As discussed in Sec.1, calibration refers to the alignment between measured uncertainties and actual
error rates in this context (Gruber & Buettner, 2022). Because a well-calibrated uncertainty metric
helps in identifying when the model is likely to produce inaccurate or hallucinated outputs, cali-
bration is critical for applications such as hallucination detection and self-training (Farquhar et al.,
2024). Existing uncertainty quantification methods, including total uncertainty in our framework,
may not always be well-calibrated (Vashurin et al., 2025), leading to situations where a model is
overconfident despite high uncertainty.

Calibration Test. We use a simple method to help with ill-calibrated uncertainty measures. Our
decomposition framework offers a way to measure the individual components in total uncertainty
that are contributed by different variables. We then empirically assess the relationship between
different uncertainty components and hallucinations. As we will see in Sec. 3, some uncertainty
components correlate well with model hallucinations and thus provide better calibration results and
help in hallucination detection and self-training. From this view, we call different uncertainty com-
ponents calibrators.

For example, in the case in the running example (Fig. 1 and Sec. 3.1), we evaluate the effective-
ness of each calibrator by examining how well each uncertainty component (e.g., Ua, Ur and Uo)
correlates with actual prediction hallucination rates. A strong positive correlation between an uncer-
tainty component and hallucination rate indicates that the uncertainty component is a good predictor
of model hallucination. Therefore we call it an effective calibrator and can then be used in hal-
lucination detection, self-training, and other applications where understanding model uncertainty
is essential for improving reliability and trust. Conversely, uncertainty components with weak or
negative correlations fail to consistently predict hallucinations and are less useful for calibration.

2.4 USE CASES AND RELATED WORK

Table 1: Uncertainty decomposition in different scenarios. For further discussion see Appendix A.3.

Setting δ Formula Examples
Aleatoric-Epistemic
Decomposition model w H[y | x,D] = H[y | x,w]

+I[y;w | x,D]
(Hüllermeier & Waegeman, 2021)

In-Context Examples
or Input Clarification

context or
clarification c

H[y | x,w] = H[y | c, x, w]
+I[y; c | x,w] (Ling et al., 2024; Hou et al., 2024)

Prompt Rephrasing
or Input Augmentation prompts q H[y | x,w] = H[y | q, x, w]

+I[y; q | x,w] (Jiang et al., 2023; Yadkori et al., 2024)

VLM Attributions
Binding (Ours)

attribution a,
rephrasing r

H[y | x,w] = H[y | r, a, x, w]
+I[y; r | a, x, w] + I[y; a | x,w] Sec. 3.1

LLM Math
Reasoning (Ours)

entity name c,
prompts q

H[y | x,w] = H[y | q, c, x, w]
+I[y; q | c, x, w] + I[y; c | x,w] Sec. 3.2

As we mentioned earlier, this framework is capable of decomposing various types of uncertainty,
without imposing any prior assumptions on the intermediate variable δ. Table 1 provides examples
of relevant use cases from the literature.

Previous works like Bootstrapped DQN (Lakshminarayanan et al., 2017b) and random network dis-
tillation Burda et al. (2018), in our view, can be summarized as follows: in these learning algorithms,
epistemic uncertainty serves as an effective calibrator. Thus, the effectiveness of learning is reflected
in the uncertainty of w, i.e., the epistemic term, which supports the efficacy of ensemble learning
(Dong et al., 2020; Osband et al., 2016; Ghasemipour et al., 2022) and pessimistic learning, elimi-
nating aleatoric components inherent in the environment like the “noisy TV” problem (Burda et al.,
2018).. In recent work on LLMs, different parts have been decoupled according to the settings, each
focusing on a single intermediate variable and drawing analogies with the aleatoric-epistemic de-
composition. For example, Hou et al. (2024) focused on input ambiguity, introducing an additional
clarification step c. Ling et al. (2024) concentrated on sampling in-context examples, treating sam-
pling the context examples as an intermediate variable. Additionally, Yadkori et al. (2024) implicitly

5



1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25

used the prompt prefix or suffix as an intermediate variable, while Jiang et al. (2023) integrated var-
ious prompting design methods.

3 APPLICATIONS AND EXPERIMENTS

In this section, we present empirical use cases for our decomposition framework and the insights
it provides. We apply the framework to two applications (hallucination detection, self-training) in
two tasks: VLM Attribution Binding (Sec. 3.1) and LLM math reasoning (Sec. 3.2). In each task,
our setting involves two subsets: (1) Dev Set: a small subset with ground truth answers, is used to
identify effective and ineffective calibrators. (2) Test Set: the subset without ground truth answers,
where we test applications (e.g. hallucination detection and self-training) with identified calibrators.

3.1 APPLICATION 1: VLM ATTRIBUTION BINDING TASK

When querying a vision language model (VLM) about an image containing a green circle and a blue
square (Fig. 1), such as asking which one is bigger, we need an attribution for composing the query.
This attribution may refer to the object name (e.g. comparing the circle and the square) or to the
object color (e.g. comparing the green one with the blue one). The accuracy often differs between
these two question forms (Rahmanzadehgervi et al., 2024; Kamath et al., 2023; Zeng et al., 2024).
We view this setting as an instance of the binding problem (Greff et al., 2020) or a problem on
compositionality (Han et al., 2024) and refer to it as attribution binding (details in Appendix A.3).
Because VLMs are expected to correctly identify all visible attributes of objects (e.g. names and
colors) and link these attributes to the correct objects, we treat variations in attributions as different
instantiations of the same question, “which object is bigger”. In other words, the inter-
mediate variables a (attribution) and r (rephrasing) influence the model’s output without changing
the ground truth that is determined by the original input x (comparing the objects in the image). We
explore the binding issue by separating the uncertainty related to attribution a from that related to
prompt rephrasing r.

Implementations. We need to quantify the uncertainty on a and r in a controlled setting. Since
there is no good benchmark available yet, we use the following synthetic data approach. For this
task, we create a dataset consisting of images each depicting simple scenes of two objects with
visible different occupancy, detailed in Appendix C.1. Then the pipeline follows Algorithm 1. Along
with the images, we pose all images with the same question x: “Which object is bigger?”.
Then we generate specific question instances incorporate two dimensions of variances: specific
attributions a to reference the objects and the rephrasing r. Specifically, we prompt GPT-4o using
Langfun1 framework to generate both dimensions of the questions (Achiam et al., 2023; Peng,
2023). We set the number of candidates for both δ1 = a and δ2 = r as 6. Under each query
instance, we sample 10 predictions from the tested model (InternVL2-4B and Llava-1.6-7B)
(Chen et al., 2023; 2024) with temp = 1.0. Then we use sampled predictions to estimate the model
prediction distribution p(y | r, a, x, w), in which the y is defined on semantic space (Farquhar
et al., 2024): which means, in this task, since y has only two options (two objects) while it can be
expressed in various wording ways with different attributions like “red object”, or the “object
on the right side”, we view those generations that referred to the same object as the same y.
We use GPT-4o prompted with ground truth information to cluster the various predictions into two
y options, judge their correctness, and calculate the average hallucination rate for every x: Error(x).
Detailed implementation procedures and additional examples are provided in Appendix C.1.

Correlation Test. Following Algorithm 1, given the pre-selected w, we have the prediction dis-
tribution p(y | a, r, x, w) for all a, r, x. Using these, we calculate p(y | a, x, w) = Er[p(y |
r, a, x, w)] and p(y | x,w) = Ea[p(y | a, x, w)] Then we quantify all uncertainty terms with
Uo(x) = Ea,r

[
H[p(y | r, a, x, w)]

]
; Ur(x) = Ea,r

[
DKL[p(y | r, a, x, w) ∥ p(y | a, x, w)]

]
;

Ua(x) = Ea

[
DKL[p(y | a, x, w) ∥ p(y | x,w)]

]
, and Ut(x) = Uo(x) + Ur(x) + Ua(x). As intro-

duced in Sec 2.3, we examine the correlation between different uncertainty terms and hallucination
rates Error(x) on the dev set, results listed the statistics in Table 2. We also present the scatter plot
between uncertainty components and hallucination rate on the dev set in Fig 9, which shows that for

1https://github.com/google/langfun
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Table 2: Calibration test of different calibrators in the VLM attribution binding task. Using this
table we can determine whether it is an effective or ineffective calibrator in our framework: here we
interpret that Ua is an effective calibrator while the other three: Ur, Uo are negatively correlated and
Ut is at chance level (or random).

Calibrator InternVL-2-4B Llava-1.6-7B DescriptionCorre. Coeff. p-value Corre. Coeff. p-value

Uo 0.0125 0.9016 0.0052 0.8341 random
Ur -0.3729 0.0001 -0.3104 0.0023 negative correlated
Ua 0.5701 0.0011 0.5903 0.0009 positive correlated
Ut 0.0704 0.4867 0.0453 0.5120 random

an ineffective calibrator like total uncertainty, there are samples in the low uncertainty region that
exhibits both low hallucination rates, showing the model’s overconfident behavior.

Hallucination Detection. We start with evaluating the performance of different calibrators in
hallucination detection, as in previous work (Farquhar et al., 2024; Hou et al., 2024; Ling et al.,
2024). We calculate the AUROC and AURAC metrics between different uncertainty components
and hallucination rates (Table 2a) to validate the hypothesis that effective calibrators work well in
uncertainty-based hallucination detection while others work poorly.

Self-Training. Then we inspect to possibility of self-training with the help of an effective calibra-
tor. This is quite similar to rejection sampling in LLM settings, however here we use the uncertainty
metrics to select those maintained for fine-tuning. In this task, we use certain predictions of the
model’s own as pseudo-labels to finetune itself, just as rejection sampling which trains the model
itself with its highest-scored generations. Specifically, we used the samples that fall into the lower
30% partition of each uncertainty term as training labels and fine-tuned the model, results in Fig. 2b.

InternVL-2-4B Llava-1.6-7B
AUROC AURAC AUROC AURAC

Uo 0.486 0.614 0.476 0.553
Ur 0.253 0.476 0.364 0.495
Ua 0.788 0.837 0.803 0.858
Ut 0.587 0.692 0.609 0.689

(a) AUROC and AURAC values in hal-
lucination detection for different un-
certainty components (calibrators).
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Uncertainty Components (Calibrators)
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(b) Accuracy under different Self-Training guided by different un-
certainty components (calibrators).

Analysis. The intuition behind why a turns out to be an effective calibrator is that given a VLM
model’s performance varies across different attributes a compared with changing prompt wording by
r; for example, it may achieve a relatively high accuracy when questioned about color, but perform
poorly in understanding spatial relationships. These results suggest that the ability to bind attributes
to objects is crucial for reliable VLM performance and that improvements in attribution binding
will have a more substantial impact than merely rephrasing prompts. It also hints that by properly
using the binding structure, we can gain semi-supervised information gain for free, just like the
self-training experiment.

3.2 APPLICATION 2: LLM MATH REASONING TASK

In this section, we apply uncertainty decomposition to a math reasoning task using LLMs. The
setting is that an LLM is queried with math problems, while the questions presented in the form of
application problems often contain multiple entity names (such as human names), even though the
underlying question remains unchanged. Additionally, the style of prompting, particularly which
elicits chain-of-thought (CoT) (Wei et al., 2023), can also influence the output. We will examine
these two variables: δ1 = c represents entity names, δ2 = q represents prompts design.
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Implementation. We choose the SVAMP benchmark (Patel et al., 2021) and model
Gemma-2-9B-it (Team et al., 2024) for the task. The implementation is quite sim-
ilar to that of the previous task. We utilize GPT-4o with Langfun framework to
rephrase the entity names in a single math question, resulting in the same query in 6
different forms alternating the entity names, see Table 6. For example, we rephrase a
question where “Paige raised 7 goldfish and 12 catfish in the pond, but
stray cats loved eating them. Now she has 15 left” with alternative entity
names, such as “Tom raised 7 rabbits and 12 hamsters in the yard, but
wild foxes loved chasing them. Now he has 15 left”, resulting in equivalent
queries like “How many fishes disappeared?” and “How many pets vanished?”
respectively. We then query them with 6 different designed CoT prompts templates respectively.
For more details, see the Appendix C.2. Applying our framework, we can naturally derive the de-
composition: H[y | x,w] = H[y | x, c, q, w] + I[y; q | x, c, w] + I[y; c | x,w] and quantify Uo, Uq

(CoT prompt design), Uc (entity-name-related), Ut following Algorithm 1.

Results and Analysis. The experimental procedure is the same as in the previous Sec. 3.1. Here,
we report the results of the calibration test and hallucination detection. Results for the calibration
test are presented in Table 3, indicating that Uq is an effective calibrator with a significant positive
correlation, while Uo, Uc, and Ut show either weak or negative correlations with error rates. For
hallucination detection, we report the AUROC and AURAC metrics for different calibrators, as
shown in Table 2a. The result shows Uq outperforms other uncertainty components in detecting
hallucinations, suggesting that prompt design variability is more informative than entity names in
questions for signaling the possibility of making errors.

Table 3: Quantitative comparison of different calibrators in
the uncertainty calibration task. We can interpret Uq as an
effective calibrator, while Uc, Uo, and Ut are not.

Calibrator Corre. Coeff. p-value Description

Uo -0.525 2.109e-08 negative correlated
Uq 0.460 1.495e-06 positive correlated
Uc 0.089 0.3767 random
Ut -0.024 0.8103 random

Table 4: AUROC and AURAC values
in hallucination detection task for dif-
ferent uncertainty parts.

Ux AUROC AURAC

Uo 0.291 0.316
Uq 0.819 0.742
Uc 0.530 0.540
Ut 0.592 0.544

The results show that prompt design q serves as an effective calibrator for LLM math reasoning, as
its structure significantly influences reasoning accuracy. It reveals that, for reasoning tasks, refining
prompt structure is more impactful for reducing uncertainty than altering surface things like entity
names in questions. The results here are actually supported by other works (Jiang et al., 2023),
where techniques like prompting have been shown to help calibrate the model.

4 CONCLUSION

In conclusion, we introduce a unified uncertainty decomposition framework that extends traditional
concepts of uncertainty decomposition to encompass multiple intermediate variables, which is more
suitable and useful in the foundation model era. By systematically quantifying different uncertainty
components, we can diagnose the sources of model uncertainty and their impact on performance.
Our framework reveals that not all sources of uncertainty are equally informative; specifically, it dis-
tinguishes between effective calibrators, which correlate positively with error rates, and ineffective
calibrators. This nuanced understanding better fits the practice reality where models exhibit high
overconfidence and provide a pathway to better uncertainty estimation. We demonstrate the prac-
tical use of our framework through two settings—the VLM attribution binding task and the LLM
math reasoning task, and applications of hallucination detection and self-training. Our framework is
highly extensible and grounded in information theory. It opens new avenues for future research into
uncertainty for foundation models, paving the way for trustworthy and interpretable AI systems.
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entangling epistemic and aleatoric uncertainty in reinforcement learning. arXiv preprint
arXiv:2206.01558, 2022.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qing-
long Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. In-
ternvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv
preprint arXiv:2312.14238, 2023.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
commercial multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Structural safety,
31(2):105–112, 2009.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-
context learning, 2022.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers of Computer Science, 14:241–258, 2020.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in
large language models using semantic entropy. Nature, 630(8017):625–630, June 2024. ISSN
1476-4687. doi: 10.1038/s41586-024-07421-0. URL https://doi.org/10.1038/
s41586-024-07421-0.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N
Suganthan. Ensemble deep learning: A review. Engineering Applications of Artificial Intelli-
gence, 115:105151, 2022.

Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic?
estimating uncertainties for offline rl through ensembles, and why their independence matters,
2022. URL https://arxiv.org/abs/2205.13703.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
neural networks, 2020. URL https://arxiv.org/abs/2012.05208.

Tobias Groot and Matias Valdenegro-Toro. Overconfidence is key: Verbalized uncertainty evaluation
in large language and vision-language models. arXiv preprint arXiv:2405.02917, 2024.

Sebastian Gruber and Florian Buettner. Better uncertainty calibration via proper scores for classifi-
cation and beyond. Advances in Neural Information Processing Systems, 35:8618–8632, 2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. arXiv preprint arXiv:1706.04599, 2017.

9

https://arxiv.org/abs/1810.12894
https://doi.org/10.1038/s41586-024-07421-0
https://doi.org/10.1038/s41586-024-07421-0
https://arxiv.org/abs/2205.13703
https://arxiv.org/abs/2012.05208


1st workshop of ”Quantify Uncertainty and Hallucination in Foundation Models: The Next
Frontier in Reliable AI” at ICLR’25

Xu Han, Linghao Jin, Xiaofeng Liu, and Paul Pu Liang. Progressive compositionality in text-to-
image generative models. arXiv preprint arXiv:2410.16719, 2024.

Stephen C Hora. Aleatory and epistemic uncertainty in probability elicitation with an example from
hazardous waste management. Reliability Engineering & System Safety, 54(2-3):217–223, 1996.

Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. Decompos-
ing uncertainty for large language models through input clarification ensembling, 2024. URL
https://arxiv.org/abs/2311.08718.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions, 2023. URL https:
//arxiv.org/abs/2311.05232.
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A BACKGROUND AND RELATED WORK

A.1 PRELIMINARY OF INFORMATION THEORY USED

Some basic rules:

CE[P,Q] = H[P ] +DKL(P ∥ Q) (7)

I(X;Y ) = EY

[
DKL

(
pX|Y ∥ pX

)]
(8)

The uncertainty contributed to a specific variable δ is quantified by mutual information and by the
equation I(X;Y ) = EY

[
DKL

(
pX|Y ∥ pX

)]
are related to KL, which matches with the natural

on KL-divergence. The KL calculates the averaged difference of surprisal, thus the decrease of
uncertainty, note that DKL(P ∥ Q) = Ep[(− log q)− (− log p)] in which − log p is the surprisal.

A.2 TRADITIONAL UNCERTAINTY DECOMPOSITION

In classical formulations (Hüllermeier & Waegeman, 2021; Schweighofer et al., 2023), the Bayesian
framework offers a principled way to treat the uncertainty about the model weights through the
posterior over hypothesis space p(w | D) ∝ p(D | w)p(w) for a given dataset D. The Bayesian
model average (BMA) predictive distribution is given by

p(y | x,D) =

∫
W

p(y | x,w)p(w | D) dw (9)

.

And the uncertainty of the BMA predictive distribution is commonly measured by the entropy
H[p(y | x,D)]. It refers to the total uncertainty, which can be decomposed into an aleatoric and
an epistemic part. The BMA predictive entropy is equal to the posterior expectation of the cross-
entropy between the predictive distribution of candidate models and the BMA, using Eq. 7.

Expected uncertainty when selecting a model w:

CE[p(y | x,w), p(y | x,D)] = H[p(y | x,w)] +DKL(p(y | x,w) ∥ p(y | x,D)) (10)

Taking an expectation of w on Eq. 10 results in uncertainty formulation:

H[p(y | x,D)]︸ ︷︷ ︸
total uncertainty

= Ep(w|D)

[
CE[p(y | x,w), p(y | x,D)]

]
= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸

aleatoric uncertainty

+Ep(w|D) [DKL(p(y | x,w) ∥ p(y | x,D))]︸ ︷︷ ︸
epistemic uncertainty

(11)

Or, writing in the form of mutual information and conditional entropy as:

H[y | x,D] = H[y | x,w] + I[y;w | x,D] (12)

A.3 APPLICATION BACKGROUND: VLM BINDING (COMPOSITIONALITY) PROBLEM

The running example in our paper, which we refer to as VLM attribution binding problem, has
profound background. We provide a brief review here. We abstract this compositionality issue as
the problem of binding objects with their multiple attributes.

Recent research has revealed that large-scale pretrained VLMs struggle with understanding compo-
sitionality in images (Zeng et al., 2024; Kamath et al., 2024). They exhibit limitations in integrating
objects with their attributes and understanding spatial relationships (Rahmanzadehgervi et al., 2024;
Kamath et al., 2023). We abstract this compositionality issue as the binding problem of objects and
their multiple dimensions of attributions. When a model has binding issues between attributes and
objects, it can lead to severe hallucinations, such as failing to distinguish between “the grass
is eating the horse” and “the horse is eating the grass” (binding of the ob-
ject and predicate), which appears absurd to humans. Even state-of-the-art VLMs can easily make
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errors in determining which object is on the left and which is on the right (binding of position).
Although the model can correctly identify two objects in an image, it often confuses them when re-
ferring to attributes like color or shape. Some works have analyzed this issue from the perspectives
of flaws in pretraining data and model priors (Yuksekgonul et al., 2023; Trusca et al., 2024), but a
systematic quantitative explanation is lacking.

A.3.1 UNCERTAINTY QUANTIFICATION IN LLMS

Uncertainty quantification in large language models focuses on measuring uncertainty within the
semantic space of model outputs. Logit-based estimation calculates token-level probabilities or
entropy (Guo et al., 2017). Confidence elicitation via verbalization asks models to provide numerical
uncertainty scores, with chain-of-thought prompting shown to improve these estimates (Xiong et al.,
2023). Consistency-based assessment detects conflicting responses as indicators of uncertainty or
hallucination (Zhao et al., 2023). These approaches can offer insights into the internal reasoning
and reliability of LLMs Zhang et al. (2023). Another direction focus on the semantic invariance of
natural language and build methods based on the concept of semantic uncertainty, which does some
clustering on semantic level and then adapt entropy-based formulation (Farquhar et al., 2024).

B DISCUSSION ON THE FRAMEWORK

In this section we discussion about details when applying our framework, using the setting in the
running example presented in Sec. 2.2.

B.1 WHY SOME CALIBRATOR (UNCERTAINTY COMPONENTS) ILL-CALIBRATED?

Based on our unified decomposition framework, especially the ensembling perspective outlined in
Eq. 6 that each uncertainty part is quantified as KL divergence between individual prediction distri-
butions and an aggregated average distribution, we can discuss why some uncertainty components
are badly calibrated-negatively correlated with error rates. Ensemble-based methods are tradition-
ally valued for enhancing model performance by reducing uncorrelated errors and increasing ro-
bustness through the diversity of ensemble members, thereby better capturing the x → y mapping
(Rokach, 2010; Ganaie et al., 2022; Lakshminarayanan et al., 2017a). However, this benefit does
not consistently extend to inference-time ensembling techniques, such as prompt augmentation or
output bootstrapping (Jiang et al., 2023). In these cases, ensembling may fail to produce a more
accurate mapping, meaning that higher uncertainty does not necessarily indicate a higher likelihood
of error. This discrepancy arises primarily for two reasons. First, when the true distribution is
approximated by model parameters rather than the data D, ensembling can reinforce the model’s in-
herent biases, conflicting with the actual data distribution and nullifying beneficial explorations from
sampling stochasticity (Song et al., 2024). Second, joint training can lead to ensembling collapse,
where ensemble members become overly similar, reducing their diversity and effectiveness (Jeffares
et al., 2023; Liu et al., 2019b). This lack of diversity can result in spurious structures and ineffec-
tive ensembling during inference. Our unified decomposition framework quantifies uncertainty in
these scenarios and provides diagnostic methods to identify sources of model uncertainty, thereby
highlighting situations where ensembling might not enhance—and could even degrade—model per-
formance.

B.2 INTERMEDIATE VARIABLES DESIGNS

When first examining our uncertainty decomposition framework (e.g., Fig. 1), it may seem that
intermediate variables, such as rephrasings (r) and attributions referred to (a), are arbitrarily added
and inflate the total uncertainty. However, these variables are intrinsic to model operation and crucial
for capturing prediction variability and uncertainty.

Ideally, the model’s predictions should remain consistent regardless of variations in q and c. How-
ever, models often show sensitivity to these variations, causing output fluctuations. Including these
intermediate variables in our decomposition explicitly captures the uncertainty resulting from this
sensitivity.
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These variables are not artificial constructs but integral to the model interaction. Every model query
involves specific prompt rephrings r and context attributions a, naturally treated as random variables
from underlying distributions rather than fixed inputs. This treatment reflects real-world usage and
allows us to model the variability introduced by differing prompt formulations and contexts.

Our approach aligns with prompt optimization and ensembling techniques. Traditional prompt opti-
mization seeks the best prompt instance for model performance, while we generalize by treating r as
a distribution, quantifying uncertainty across prompt variations. Similarly, ensembling aggregates
predictions across configurations to enhance robustness; our framework systematically accounts for
uncertainty at this level by considering distributions over intermediate variables.

Explicitly modeling intermediate variables within uncertainty decomposition deepens our under-
standing of factors affecting predictions. It reveals model sensitivity to prompt or context shifts,
essential for improving reliability. This method also highlights areas needing further training or
refinement to enhance robustness.

B.3 DISCUSSION OF DECOMPOSITION PRACTICE

What about multivariate mutual information? The extension of mutual information between
3 or more variables is an open question (Liang et al., 2023; McGill, 1954), so we not bother on in-
troducing more complex decomposition which involves multivariate mutual information as in such
scenarios the physical meaning of the decomposed terms remains unclear. However, we acknowl-
edge this direction as worthy exploration.

Decomposition Order. In applying the chain rule of conditional entropy for our uncertainty
decomposition such as in Eq. 4, a natural question arises regarding the order in which we perform the
decomposition: should we first condition on the context c or the prompt rephrasing q? The answer to
this question is critical because the decomposition order affects the interpretation of the uncertainty
components and must reflect the underlying conditional dependencies among the variables.

The appropriate decomposition order is determined by the conditional independence relationships
among the variables. Conditional independence dictates how variables influence each other and,
consequently, how uncertainty propagates through the model. When variables are conditionally
independent given certain conditions, the order of decomposition should respect these relationships
to ensure that each term accurately represents its contribution to the total uncertainty.

C IMPLEMENTATION DETAILS AND EXAMPLES

We present the details of experiments here.

C.1 VLM ATTRIBUTION BINDING TASK

The Dataset Synthesis. In this dataset generation process, we use the ManiSkill simulator2

(Tao et al., 2024), which is primarily designed for robot arm manipulation tasks. To adapt it to our
needs, we remove the robot arm and transform it into a tabletop manipulation environment. This
setup enables us to generate synthetic images that meet our controlled requirements for quantifying
uncertainty in the variables a (attribution) and r (rephrasing) with minimal bias.

The dataset consists of simple scenes with two objects that differ in size and other attributes. To
introduce controlled variation, we adjust several variables in each scene, including color, shape,
camera position, background, and object size. Each variable has a set of options, such as nine color
choices (rainbow colors plus black and white). Using nested for-loops, we exhaustively combine all
options across these variables, resulting in over 1,000 unique data points.

Prompts We present the prompts used to generate intermediate variables a and r, along with the
prompts used to evaluate the answers. The format of prompts is followed the Langfun documents.

2https://github.com/haosulab/ManiSkill
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Figure 3: Decomstration of example implementation of variations on a, r in the VLM attribution
binding task. We illustrate the pipeline that for a single query x, enumerates different a and r then
sample predictions which then clustered into a distribution over y.

The question is asking about a fact in the image.
Please identify the fact it asks, and rephrase the question while keeping the fact the same but refer to
different attribution in the image.
First reason about what are the attributions of the nouns in the question, and then rephrase the
question.
For example, you can replace the nouns in the question using their color, shape, position, state, or
alternate names, thus creating different questions.

Image: {{image}}

Question: {{question}}

Fact:

Rephrased questions:
1.
2.
3.
4.
5.

Figure 4: VLM attribution prompt. It is used to generate different candidates of attribution a for any
specific question sample x. The “fact” is just to improve Langfun’s performance.

Finetuning For the self-training experiment, we use the official repo for InternVL3 (Chen et al.,
2024) for fine-tuning InternVL-2-4B. The hyperparameters are listed in Table 5.

C.2 LLM REASONING TASK

We also detail the prompts utilized for the LLM reasoning tasks, as illustrated in Fig. 7 and 8.
Additionally, Table 6 provides example bodies and their corresponding questions, offering a clear
overview of the task setup and the types of problems addressed in our experiments.

3https://github.com/OpenGVLab/InternVL
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Given the following question, please rephrase it in 5 different ways:
The rephrase should be asking the same thing as the question.
When asking about the same thing, you can rephrase the question by changing the nouns, adjectives,
or verbs.
And you can also change the asking type from choice-of-one to yes-or-no.

Question: {{question}}

Rephrased questions:
1.
2.
3.
4.
5.

Figure 5: VLM rephrasing prompt. It is used to generate different candidates of rephrasings r given
attributions a.

Your task is to determine if the model response is correct given the question and groundtruth response.
Ensure to interpret the model response in accordance to the the question.

If the question asks about the comparison of occupancy of two objects, if the groundtruth is A is
bigger than B. Then the desired answer is either: “A is bigger than B” or “B is smaller than A”. Both
answers are correct.

If the question asks about a detail of an element that is not present in the image, A prediction of “yes”,
“no” or “nothing” should be considered incorrect because it inaccurately suggests that the element is
presented in the image.
The correct prediction in such cases should acknowledge the absence of the element in question by
stating the element is not present.
If prediction says that it can not assist or cannot provide an answer, then the prediction is incorrect.
If the question is about counting, then the prediction is correct only it matches the groundtruth counts
exactly.

question={{question}},
model response={{model response}}
groundtruth response={{groundtruth response}},

Figure 6: VLM Attribution labeling prompt

C.3 MORE ANALYSIS ON THE CALIBRATION TEST

In this subsection, we provide a comprehensive analysis of the calibration tests conducted across two
distinct tasks, as illustrated in Fig. 9 and 10. These scatter plots demonstrate that when total uncer-
tainty is employed, the model exhibits a pronounced overconfidence phenomenon, with numerous
samples simultaneously showing high error rates and low uncertainty. Specifically, Fig 9 pertains
to the VLM attribution binding task, while Fig 10 relates to the LLM math reasoning task. The
consistent observation of high errors paired with low uncertainty across both tasks underscores the
significant limitations of using total uncertainty alone. This finding highlights the critical importance
and necessity of uncertainty decomposition, which enables a more nuanced and accurate calibration
of model confidence, thereby enhancing the reliability and robustness of predictive performance.
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Table 5: Key Training Hyperparameters

Hyperparameter Value
Total Batch Size 32
Number of Epochs 2
Learning Rate 6× 10−6

Weight Decay 0.05
Warmup Ratio 0.03
Learning Rate Scheduler Cosine
Model Name or Path OpenGVLab/InternVL2-4B
Image Size 448
Max Sequence Length 4096
Mixed Precision (bf16) Yes
Gradient Checkpointing Yes
Zero Optimization Stage zero stage1
Freeze (Vision) Backbone True
Vision Select Layer -1

Given the following math problem consisting of a Body and a Question, please rephrase it by replacing
entity names which are irrelevant to the underlying mathematical reasoning. Keep all numbers and
the core mathematical structure intact.

Original Body: {{body}}
Original Question: {{question}}

Please provide a rephrased version with different entity names but the same mathematical structure:

Rephrased Body:
Rephrased Question:

Figure 7: LLM Reasoning entity replacing prompt; The “body” and “question” are those corre-
sponding keys in the SVAMP dataset.

Your task is to determine if the model response is correct given the question and groundtruth response.
Ensure to interpret the model response in accordance to the the question.

If the question asks about the comparison of occupancy of two objects, if the groundtruth is A is
bigger than B. Then the desired answer is either: “A is bigger than B” or “B is smaller than A”. Both
answers are correct.

If the question asks about a detail of an element that is not present in the image, A prediction of “yes”,
“no” or “nothing” should be considered incorrect because it inaccurately suggests that the element is
presented in the image.
The correct prediction in such cases should acknowledge the absence of the element in question by
stating the element is not present.
If prediction says that it can not assist or cannot provide an answer, then the prediction is incorrect.
If the question is about counting, then the prediction is correct only it matches the groundtruth counts
exactly.

question={{question}},
model response={{model response}}
groundtruth response={{groundtruth response}},

Figure 8: LLM Reasoning labeling prompt
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Bodies Questions

Paige raised 7 goldfish and 12 catfish in the pond but stray cats loved
eating them. Now she has 15 left.

How many fishes disappeared?

Tom raised 7 rabbits and 12 hamsters in the yard but wild foxes loved
chasing them. Now he has 15 left.

How many pets vanished?

Lisa raised 7 puppies and 12 kittens in the shelter but stray dogs loved
bothering them. Now she has 15 left.

How many animals went missing?

Mark raised 7 ducks and 12 geese in the pond but hungry raccoons loved
stealing them. Now he has 15 left.

How many birds were lost?

Emily raised 7 turtles and 12 frogs in the aquarium but curious cats
loved disturbing them. Now she has 15 left.

How many creatures disappeared?

Jake raised 7 turtles and 12 slugs in the garden but wandering snails
loved tasting them. Now he has 15 left.

How many critters went away?

Table 6: Example Bodies and Corresponding Questions
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Figure 9: Scatter plots between error rate and uncertainty parts Uc, Uo, Uq , and Ut in the VLM at-
tribution binding task. We calculate the Pearson r and p-value to show the correlation relationships.
Uc is a effective calibrator while others behave poorly.
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Figure 10: Scatter plots between error rate and uncertainty terms Uc, Uo, Uq , and Ut in the LLM
math reasoning task. We calculate the Pearson r and p-value to show the correlation relationships.
Uq is a effective calibrator while others behave poorly.
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