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ABSTRACT

At NeurIPS, Kera et al. (2024) introduced the use of transformers for comput-
ing Gröbner bases, a central object in computer algebra with numerous practical
applications. In this paper, we improve this approach by applying Hierarchical
Attention Transformers (HATs) to solve systems of multivariate polynomial equa-
tions via Gröbner bases computation. The HAT architecture incorporates a tree-
structured inductive bias that enables the modeling of hierarchical relationships
present in the data and thus achieves significant computational savings compared
to conventional flat attention models. We generalize to arbitrary depths and in-
clude a detailed computational cost analysis. Combined with curriculum learning,
our method solves instances that are much larger than those in Kera et al. (2024).

1 INTRODUCTION

Systems of multivariate non-linear equations are ubiquitous in mathematics and its applications,
emerging naturally in fields as diverse as cryptography, coding theory, optimization, computer vi-
sion, biology, etc . . . e.g. Perret (2016); Colotti et al. (2024); Fontán et al. (2022); Buchberger
(2006); Wang & Xia (2005); Boulier et al. (2011). In contrast to systems of linear equations, solving
a system of multivariate non-linear equations, also known as the PoSSo problem, is a well-known,
NP-hard Garey & Johnson (1979), computationally hard problem.

Among existing techniques, Gröbner bases Cox et al. (2007); Buchberger (1965; 2006) is the most
widely used approach for solving PoSSo. Indeed, the set of common solutions of a polynomial
system – also known as its variety – is studied via the ideal generated by those polynomials. Gröbner
basis provides a canonical generating set of a polynomial ideal, allowing in particular to efficiently
solve PoSSo. More generally, Gröbner basis is a powerful tool enabling to address a wide range of
problems related to polynomial ideals Cox et al. (2007), such as membership testing (determining
if a polynomial belongs to an ideal), elimination (reducing systems to fewer variables), finding
algebraic relations (syzygies) among generators of an ideal, etc . . .

The versatility of Gröbner bases renders their computation inherently difficult but also appealing.
From a theoretical point of view, this is illustrated by the folklore result about the double-exponential
worst-case complexity for computing a Gröbner basis Mayr & Meyer (1982). This theoretical state-
ment holds for a very peculiar example and does not fully capture the actual hardness of solving
PoSSo in practice. In particular, we can usually assume that the variety is radical and has a finite
number of solutions. In such a setting, the worst-case complexity drops to single exponential.

From an algorithmic point of view, the historical method for computing Gröbner bases was intro-
duced by Buchberger in his PhD thesis Buchberger (1965; 2006). Over the past 25 years, sig-
nificant improvements have been made, leading to more efficient algorithms such as F4 and F5

Faugère (1999; 2002) which are now implemented in major computer algebra systems, such as
Maple, Magma or Singular, and open-source projects such as Msolve Berthomieu et al. (2021).

Although tremendous progress has been made, Gröbner bases remain computationally difficult, and
their numerous applications make the design of efficient algorithms both challenging and rewarding.
Notably, the security of cryptographic standards such as AES Cid et al. (2006); Steiner (2024) or new
lattice-based post-quantum standards hinges directly on the hardness of solving algebraic equations
Cid et al. (2006); Albrecht et al. (2014); Steiner (2024).
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Recent works, e.g. Peifer et al. (2020); Kera et al. (2024; 2025), started to explore advanced ma-
chine learning techniques for polynomial system solving. Peifer et al. (2020) employs reinforcement
learning to perform S-pair selection, a critical step in Buchberger’s algorithm. Kera et al. (2025)
uses deep learning to identify and eliminate computationally expensive reduction steps during the
computation of Border bases; another fundamental tool for solving systems of equations Kehrein &
Kreuzer (2005). Most notably, Kera et al. (2024) demonstrates that Transformer models are capa-
ble of learning Gröbner bases computation Kera et al. (2024). The authors propose reframing the
problem as a supervised learning task, where a model is trained on pairs of polynomial systems and
their corresponding Gröbner bases. To enable this, they address two previously unexplored algebraic
challenges of efficiently generating random Gröbner bases, and constructing diverse non-Gröbner
sets that generate the same ideal as a given Gröbner basis (the “backward Gröbner problem”). Their
solution focuses on 0-dimensional radical ideals, which are common in applications.

A notable limitation of the approach presented in Kera et al. (2024) is its restricted scalability to
larger polynomial systems. In their experiments, the authors were only able to handle systems with
up to five variables (n ≤ 5). Moreover, they had to significantly reduce the density of the polynomial
systems for n = 3, 4, and 5—meaning that the input polynomials were made much sparser. This
reduction in density (ρ << 1) was necessary to avoid overwhelming the model and hardware with
excessively long input and output sequences, a direct consequence of the quadratic memory and
computational cost of the attention mechanism in standard Transformers. As a result, the method
has not been demonstrated on denser or higher-dimensional systems, highlighting a key scalability
bottleneck that must be addressed.

1.1 MAIN RESULTS

To overcome this challenge, we propose replacing the multi-head attention layer in the Transformer
encoder—the most computationally intensive component of the model—with a hierarchical atten-
tion mechanism that leverages the inherent tree-like structure of multivariate polynomial systems.
The hierarchical attention layer operates in two distinct stages: bottom-up and top-down. In the
bottom-up phase, attention is computed locally at each hierarchical level, beginning at the term level
(ℓ = 0), progressing to the polynomial level, and culminating at the system level. Subsequently,
in the top-down phase, information is propagated back to the leaf nodes using various strategies,
including cross level attention and simple additive aggregation. This hierarchical approach signifi-
cantly reduces the sequence lengths processed by the attention layers, resulting in substantial com-
putational cutbacks as the problem dimensions grow. Notably, we successfully computed Gröbner
bases for systems of up to 13 variables and degree 11, which compares favorably with efficient tools
such as Msolve and STD-FGLM (see Table 2).

To accelerate the model’s learning process, we employ a curriculum learning strategy, training the
model on datasets with progressively increasing levels of difficulty and problem sizes. We validate
the merit of this method by applying it to the base model of Kera et al. (2024), enabling it to solve
systems with n = 7 variables at full density. This surpasses the previous results of Kera et al. (2024),
where the largest reported success was limited to n = 5 variables and a density of only ρ = 0.2.

2 PRELIMINARIES

2.1 SELF ATTENTION

Self-attention is a fundamental mechanism in transformer architectures Vaswani et al. (2017), en-
abling models to dynamically contextualize each element of an input sequence by attending to all
other elements. This mechanism is crucial for capturing long-range dependencies and modeling
complex relationships within sequential data, which is essential for tasks in natural language pro-
cessing, vision, and beyond.

Given a set of queries Q ∈ Rs×d, keys K ∈ Rl×d, and values V ∈ Rl×d, the self-attention
mechanism computes a similarity score between each query and all keys:

s(Q,K) = softmax(
QK⊤
√
d

) ∈ Rs×l
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The softmax function normalizes the scores across all keys for each query, converting them into a
probability distribution that sums to 1.

The output of the attention layer is a weighted sum of the values V , where the weights are the
attention scores:

Att(Q,K, V ) = s(Q,K)V ∈ Rs×d

In the context of hierarchical or structured data, such as trees or graphs, self-attention can be applied
to sets of embedding vectors E ∈ Rn×d corresponding to the leaves or child nodes of a parent node.
The embedding vector for the parent node can then be computed by a pooling function p(E), which
aggregates the information from its children. Common pooling strategies include mean pooling and
selection of a specific child embedding:

p(E) = e ∈ Rd e.g. p(E) =
1

n

n∑
k=1

Ek,: or p(E) = E0,:

We tensorize the attention function Att(Q,K, V ) and pooling functions p by extending them to
operate on tensors with an arbitrary number of leading dimensions, which typically represent batch
size or other contextual groupings.

2.2 GRÖBNER BASES

Let k be a field, k[x] = k[x1, . . . , xn] be the polynomial ring in n variables over k. Let I be
the ideal I = ⟨f1, . . . , fm⟩ = {

∑m
i=1 hifi | h1, . . . , hm ∈ k[x1, . . . , xn]} ⊆ k[x] generated by

f1, . . . , fm ∈ k[x]. A finite set G = {g1, . . . , gt} ⊂ I is called a Gröbner basis Cox et al. (2007);
Buchberger (1965; 2006) for I with respect to an admissible monomial order ≺ (see appendix A.1)
if:

⟨lt(g1), . . . , lt(gt)⟩ = ⟨lt(I)⟩
where lt(I) = {lt(f) | f ∈ I \ {0}} is the set of leading terms of all nonzero polynomials in I and
the notation ⟨S⟩ refers to the ideal generated by the set S.

As defined below, a Gröbner basis is not unique, which motivates introducing the concept of reduced
Gröbner basis. G is reduced if each gi is monic and and no monomial of gi lies in ⟨lt(G \ {gi})⟩.
For any ideal I and monomial order ≺, there exists a unique reduced Gröbner basis.

2.3 SHAPE POSITION SYSTEMS

Gröbner bases is a fundamental computational tool in computer algebra that provide algorithmic
solutions to fundamental problems such as computing the variety associated to I = ⟨f1, . . . , fm⟩ ⊆
k[x]. The definition of Gröbner basis, and their properties, depend on the monomial ordering.

In particular, it can be proved that a lexicographic Gröbner basis of a zero-dimensional (i.e. finite
number of solutions) radical ideal has a triangular shape, which generically is as follows:

G = {h(xn), x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn)}, (1)

where h, g1, . . . , gn−1 ∈ k[xn] are univariate polynomials in the last variable xn, with deg gi <
deg h for all i = 1, . . . , n− 1.

I ⊆ k[x] is said to be in shape position if its reduced Gröbner basis has the triangular form as
in equation 1. Following Kera et al. (2024), we will restrict our attention to ideals such that their
Gröbner basis is in shape position.

2.4 DATASET GENERATION

We adopt the backward generation introduced by Kera et al. (2024) to construct training datasets
consisting of pairs (F,G) where F is a random looking system of polynomial equations and G is its
corresponding reduced Gröebner basis which is in shape position. Kambe et al. (2025) proved that
the samples generated by this algorithm are sufficiently general, ensuring a rich and diverse training
set. The backward technique proceeds as follows: 1) draw h, g1, . . . , gn−1 uniformly at random
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from k[xn]≤d subject to the degree condition above and 2) generate non-Gröbner training inputs
F = U1PU2G by multiplying G with random unimodular upper-triangular matrices U1 and U2

and a permutation matrix P .

The resulting dataset is balanced: each (F,G) pair satisfies ⟨F ⟩ = ⟨G⟩, F is not a Gröbner basis, yet
G is. This algorithm as described above generates systems with |F | = |G| = n with n the number
of variables. However, the actual algorithm of Kera et al. (2024) generates s ≥ n equations by using
U2 ∈ k[x1, . . . , xn]

s×n rectangular unimodular upper-triangular matrix. We refer the reader to Kera
et al. (2024) Section 4.3 and Kambe et al. (2025) for more details.

3 METHOD

3.1 LIMITATIONS OF FLAT ATTENTION

Writing a system of multivariate polynomial equations as a sequence of tokens grows rapidly with
the number of variables and the total degrees of the equations. For instance, the number of different
monomials with n = 5 variables and total degree d ≤ 10 is

(
d+n
d

)
= 3003. A system of n+2 equa-

tions could therefore contain over 7 ·3003 ·7 = 147147 tokens, assuming each term is encoded using
n+2 tokens (see section 3.4). This explosion in token count makes training a sequence-to-sequence
model, such as a transformer, on such data particularly challenging. However, these systems of
equations are highly structured and can naturally be represented as trees. This raises the question of
whether attention-based models can be adapted to tree-like structures: rather than having each token
attend directly to every other token, a token could attend primarily to its siblings (i.e., those sharing
the same parent) and to other tokens indirectly through their parent nodes, and so on.

System

Equation 1

Term 1

<bos> C1 E2 E2

Term 2

+ C5 E2 E1

Equation 2

Term 1

<SEP> C3 E3 E0

Term 2

+ C2 E1 E0

Figure 1: Hierarchical representation of the tokenized system of equations p1 = x2
0x

2
1+5x2

0x1, p2 =
3x3

0 + 2x1 over k[x0, x1].

3.2 HIERARCHICAL ATTENTION LAYER

The hierarchical attention mechanism operates in two successive phases. The first phase involves
the computation of local attention at each hierarchical level, with information being propagated in a
bottom-up manner through the hierarchy.

Let us denote X = X(0) ∈ Rℓn−1×···×ℓ1×ℓ0×d an input tensor representing an n-level tree. For
instance, a system of ℓ2 equations, padded so that each equation has ℓ1 terms which have ℓ0 symbols
each. In the example above, ℓ2 = 2, ℓ1 = 2, ℓ0 = 4.

We fix a set of embedding dimensions (d0, d1, . . . , dn−1) for each of the n levels. For simplicity,
one could take di = d ∀i. However, computationally, it makes more sense to consider an increasing
sequence (di)i as we move up the tree since upper levels need to encode more information and
require much less compute.

The local self-attention at level 0 (leaf level) is computed as:

Y(0) = Att(X(0)W (0)
q ,X(0)W

(0)
k ,X(0)W (0)

v ) ∈ Rℓn−1×···×ℓ1×ℓ0×d0 (2)

with W
(0)
ℓ∈{q,k,v} ∈ Rd×d0 trainable weight matrices.
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Subsequently, a pooling operation p is applied to aggregate information and reduce the dimension-
ality, yielding the input for the next levels:

X(i) = p(Y(i−1)) ∈ Rℓn−1×···×ℓi×di−1 ∀i > 0 (3)

Y(i) = Att(X(i)W (i)
q ,X(i)W

(i)
k ,X(i)W (i)

v ) ∈ Rℓn−1×···×ℓi×di ∀i (4)

with W
(i)
ℓ∈{q,k,v} ∈ Rdi−1×di

In the second phase, information is propagated in a top-down fashion either via cross-attention
mechanisms or simply additive aggregations. The latter is trivial and does not impact much the cost
analysis, therefore we’ll explain the former approach.

At each level, nodes refine their representations by extracting relevant contextual information from
their corresponding parent node and their siblings at the upper level:

Z(n−1) = Y(n−1)

Z(i) = Y(i) + Att(Y(i),Z(i+1)U
(i)
k ,Z(i+1)U (i)

v ) ∈ Rℓn−1×···×ℓi×di ∀i < n− 1 (5)

where the queries, keys, and values are viewed as having ℓn−1×· · ·× ℓi+2 leading dimensions with
the remaining ℓiℓi+1 sequence length for the queries Y(i) whereas the keys and values (parents) are
of sequence length ℓi+1. The matrices U (i)

ℓ∈{k,v} ∈ Rdi+1×di are trainable projection weights.

3.3 COST ANALYSIS

To simplify the analysis, we omit the batch size and the notion of multi-head attention, and we
neglect some lightweight operations such as pooling in the following calculations. We also use the
notation Li =

∏n−1
k=i ℓk with L = L0 total length of the flattened input.

At level i of the bottom-up phase, the projections W (i)
{q,k,v} have a complexity of 3Li × di−1di and

the attention is O(2Liℓidi). The total complexity per level is:

Ci
up = 3Lidi−1di + 2Liℓidi

For the second phase at level i, the projections cost 2Li+1 × di+1di and the cross attention call is
O(2Li+2 × (ℓi+1ℓi)× di × ℓi+1). Which adds up to:

Ci
down = 2Li+1di+1di + 2Liℓi+1di

Let ℓn = 0 for convenience. The total computational complexity is

C =

n−1∑
i=0

Ci
up +

n−2∑
i=0

Ci
down with d−1 = d (6)

=

n−1∑
i=0

3Lidi−1di + 2Liℓidi +

n−2∑
i=0

2Li+1di+1di + 2Liℓi+1di (7)

= 3L0d−1d0 +

n−1∑
i=1

5Lidi−1di +

n−1∑
i=0

2Lidi(ℓi + ℓi+1) (8)

By choosing (di)i appropriately, we can control the complexity to be dominated either by the pro-
jections or the attention mechanism. It also allows to choose the distribution of the compute over
the tree, either allocate most of the compute to the lower level (e.g. di ≤

√
ℓi−1di−1) or to the top

level (e.g. di ≥ ℓi−1di−1) or distribute the compute over the tree
√
ℓi−1di−1 ≤ di ≤ ℓi−1di−1.

Case where di = d: Complexity is overwhelmingly dominated by the terms 3Ld2+2Ld(ℓ0+ ℓ1)
while the flat attention’s cost is 3Ld2 + 2L2d. When the sequence lengths are larger than the
embedding dimension d, as when scaling up the inputs, the dominating factors are (ℓ0 + ℓ1)Ld

versus L2d. For a regular tree (i.e. an ℓ-ary tree with ℓ = L
1
n ), the cost is L1+ 1

n d only.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.4 POLYNOMIAL ENCODING AND TOKENIZATION

We consider systems over finite fields k = Fq (we chose q = 7 for all of our experiments)
and we adopt the standard tokenization of Kera et al. (2024) without the hybrid embedding.
Namely, the vocabulary consists of the union of the sets {C1, . . . ,Cq-1} ∪ {E0,E1, . . . ,Ed} ∪
{<bos>,+,<sep>} with d maximum degree in the dataset. A polynomial

∑
u aux

u1
1 xu2

2 . . . xun
n

is then tokenized by joining the encodings of each term by the plus token, each term is tokenized
by encoding the coefficient and the powers of the variables in each term as Cau Eu1 Eu2 . . . Eun

including the null powers ui = 0.

Example: Consider the polynomial system: p1 = x2
0x

2
1+5x2

0x1, p2 = 3x3
0+2x1. The tokenization

produces the sequence:

<bos> C1 E2 E2 <+> C5 E2 E1 <sep> C3 E3 E0 <+> C2 E1 E0

3.5 POSITIONAL EMBEDDING

To encode positional information in multi-dimensional sequential data, we propose a learnable em-
bedding scheme that generalizes standard positional encodings to arbitrary tensor shapes. Given
an input of shape (ℓn−1, . . . , ℓ0, d), we associate each axis j with a dedicated embedding table
E(j) ∈ Rmax lengthj×d. The positional embedding for a token at index (in−1, . . . , i0) is then con-
structed as the sum of the corresponding embeddings from each dimension, i.e., PE(in−1, . . . , i0) =∑n−1

j=0 E
(j)
ij

. This approach enables the model to capture hierarchical and multi-axis positional de-
pendencies in a parameter-efficient manner, and can be extended to concatenation followed by a
linear projection if desired.

4 EXPERIMENTS

4.1 IMPROVING BASELINE MODEL WITH CURRICULUM LEARNING

We trained the base transformer model from Kera et al. (2024) using the curriculum learning ap-
proach explained in appendix B over polynomial systems over finite fields. In this experiment, we
used a model architecture with 4 encoder and 4 decoder layers and an embedding dimension of
d = 1024, which differs from the 6-layer encoder/decoder and d = 512 configuration used in Kera
et al. (2024). The curriculum gradually increased both the number of variables (n = 2 to n = 7)
and the system density (ρ), with each training task representing 1 million samples. Unlike the orig-
inal Kera et al. paper, which only considered up to n = 5 and ρ = 0.2 and trained one model per
configuration, our curriculum enabled the model to learn and generalize to much larger and denser
systems at once.

Table 1: Accuracy (%) / Support Accuracy (%) of the base transformer model in predicting Gröbner
bases for multivariate polynomial systems over F7. Each cell reports accuracy over 1,000 test sam-
ples, after training with 1 million samples per setting (values shown in red). Non-colored cells
correspond to out-of-distribution evaluations. n is the number of variables, ρ is the density of the
randomly generated system (backward generation method). The curriculum learning approach en-
ables scaling to larger and denser systems compared to prior work.

n

ρ (%) 2 3 4 5 6 7

10 57.1/63.0 65.0/71.2 53.7/58.7 59.0/63.7 63.5/69.0 50.7/56.3
25 55.6/61.3 65.5/72.4 61.5/67.2 59.9/65.4 63.4/69.4 46.7/51.2
33 57.0/62.3 64.4/71.7 59.1/63.6 62.3/68.4 62.7/67.9 50.3/56.1
50 54.0/60.1 62.0/69.7 57.6/63.8 50.5/56.5 58.4/62.7 43.0/49.3
67 56.0/61.7 62.4/69.1 51.5/58.3 55.3/61.0 59.4/66.1 38.9/46.7
75 52.4/58.3 58.8/66.0 55.0/61.1 56.9/63.9 58.1/66.9 42.3/50.9

100 51.3/57.5 55.4/63.9 53.0/60.6 50.4/56.6 53.7/61.9 42.3/51.3
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Table 1 reports the model’s accuracy in predicting Gröbner bases for multivariate polynomial sys-
tems over F7, evaluated on 1,000 test samples per setting. The curriculum learning approach enables
the model to learn beyond the settings considered in prior work, achieving an accuracy of (0.41) for
n = 7 at full density ρ = 1, a significant improvement over the baseline in Kera et al. (2024), which
only solved up to n = 5 at a much lower density of ρ = 0.2.

4.2 MODEL COMPARISON

Orthogonally to the curriculum learning experiments, Figure 2 presents a comparison of different
model architectures on the task of predicting Gröbner bases. All models were trained for 52 hours on
8 V100 GPUs using a backward-generated dataset consisting of 1 million multivariate polynomial
systems over F7, with n = 6 variables and density ρ = 0.33.

The baseline corresponds to the model from Kera et al. (2024), which uses 6 encoder and 6 de-
coder layers with an embedding dimension of 1024. In contrast, our proposed HATSolver-2 and
HATSolver-3 models employ the same architectural hyperparameters as the baseline, but replace
the standard attention mechanism with our hierarchical attention layer.

In HATSolver-2, we use two hierarchy levels. At the lowest level (level 0), the model attends to
the individual tokens within a term. At the next level (level 1), it aggregates across all terms within
all equations.

HATSolver-3 introduces a third hierarchy level. Here, level 0 again corresponds to the tokens of
a term. Level 1 groups tokens into complete terms within each polynomial, while level 2 aggregates
across the set of polynomials.
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Figure 2: Training dynamics comparison; training models on predicting Gröbner bases for 52 hours
on 8 V100 GPUs using the backward generated dataset of size 1 million multivariate systems over
F7 with n = 6 variables and density ρ = 0.33. Baseline is the Kera et al. (2024) base model with
6/6 encoder decoder layers and 1024 embedding dimensions. The HATSolver-2/-3 models are
our models with the same hyperparameters as the baseline, with the attention layer replaced by our
hierarchical attention layer with 2 and 3 levels respectively.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

As shown in the figure, both HATSolver-2 and HATSolver-3 demonstrate faster convergence
and achieve higher accuracy compared to the baseline throughout training. HATSolver-2 was
faster in training and performed about 450K training steps while the baseline model did less than
300K steps during the trainig period. The case of HATSolver-3 is particularly noteworthy: al-
though it requires padding—forcing all polynomials to be represented with the same length—the
method remains faster than the baseline. The cost of padding is significant here because polynomial
lengths vary widely: in this setting (n = 6, ρ = 0.33), polynomials range from only 12 terms up to
238 terms, with an average of 63 terms. This variability means that shorter sequences are heavily
padded, effectively doubling the number of training tokens. Despite this overhead, HATSolver-3
still maintains a clear advantage over the baseline in both speed and accuracy. More results for
n = 7 and n = 10 are reported in the appendix figs. 3 and 4.

4.3 SCALING UP HATSolver-3 (n = 13)

The instances solved in previous experiments proved to be relatively tractable for classical algo-
rithms such as STD-FGLM Greuel et al. (2009); Faugère et al. (1993), as demonstrated in table 5.
Hence we now focus on larger and more challenging problem instances. In this section we scale
up our model architecture by expanding the embedding dimension to d = 1408 while keeping the
number of layers to 4/4 encoder/decoder layers. The HATSolver-3 model is trained on a diverse
dataset of 13-variable polynomial systems with various sparsity levels using the curriculum learning
schedule discussed in appendix B with σ = 2 and v = 1

2 . We cap the number of terms per equation
in the datasets to 400 to avoid memory spikes. We give some statistics about the datasets in table 4.
We use STD-FGLM algorithm provided in SageMath with the libSingular backend and Msolve as
comparison baselines. These algorithms compute the Gröbner basis in the graded reverse lexico-
graphic order (grevlex) which is efficient, and followed by the FGLM Faugère et al. (1993) algorithm
for the change of term order to the lexicographic (lex) order.

Density (%) 30 40 50 60 70 80 90 100

Ours

Success (%) 52.5 49.4 47.1 49.5 55.2 56.1 61.2 60.8
Support Acc. 65.0 63.0 59.0 61.0 68.0 70.0 94.0 91.0
Per Token Acc. 99.8 99.7 99.8 99.8 99.8 99.8 99.9 99.8
Runtime (s) 224 241 273 277 280 287 292 300

STD-
FGLM

Success (%) 33.5 19.6 10.7 8.5 8.2 7.4 6.1 6.5
Runtime (s) 652 936 1025 995 1068 687 1012 1129

Msolve
Success (%) 32.8 17.0 11.7 6.9 7.1 4.9 4.5 4.6
Runtime (s) 787 773 1274 766 1010 852 1232 588

Table 2: Performance of HATSolver-3 on computing Gröbner bases for polynomial systems
with 13 variables over F7, across varying system densities with comparison to traditional algorithms
STD-FGLM Greuel et al. (2009); Faugère et al. (1993) and Msolve Berthomieu et al. (2021). The
density (%) indicates the proportion of nonzero terms in the matrix U2 in backward generation
2.4, controlling the sparsity of the systems. Success denotes the percentage of test instances for
which the model generated the exact correct Gröbner basis. Support Acc. measures the accuracy
when only the support (i.e., the set of monomials) of the polynomials is considered, treating two
polynomials as equal if they have the same set of monomials regardless of coefficients. Per Token
Acc. reports the average token-level accuracy over all outputs. The reported runtime corresponds to
the output generation phase, noting that no optimization efforts were implemented (e.g. key-value
caching, inference engines, etc.). For the STD-FGLM and Msolve algorithms, a run is considered
failed after a 2 hour time limit.

Table 2 presents the performance of HATSolver-3, evaluated across a range of systems of equa-
tions over F7. Overall, the results indicate that HATSolver-3 is capable of learning to compute
Gröbner bases and beats the classical algorithms STD-FGLM and Msolve. It is important to note
that the runtime reported for our model refers to inference time only. Training is performed offline
once and does not depend on the number of evaluation samples. The model’s accuracy fluctuates
with density, exhibiting no simple monotonic trend, but reaches a peak of 61% at 90% density, with
support accuracy (see the caption of table 2) reaching 94%. This indicates that challenging instances
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exist across all levels of sparsity, and that the difficulty of the problem is not solely determined by
the density of the system. Notably, when the same training experiment was conducted using the base
model, it failed to learn any meaningful solution. The STD-FGLM and Msolve algorithms on the
other hand do not terminate after running for 2 hours for most cases, with up to 93.5% timeout rate
for the full density samples and an average runtime of 1129s (resp. 1434s) for the remaining 6.5%
(resp 6%) completed runs.

5 RELATED WORK

Yang et al. (2016) were the first to introduce Hierarchical Attention Networks (HAN) for classify-
ing documents–modeling them as sequences of sentences, which in turn are sequences of tokens.
This approach has inspired numerous subsequent works Chalkidis et al. (2019); Wu et al. (2021);
Liu et al. (2022); Chalkidis et al. (2022); Liu et al. (2024). For instance, Wu et al. (2021) intro-
duced Hi-Transformer, a hierarchical interactive architecture for long document processing through
a three-stage design. Their approach first employs a sentence Transformer to learn contextual rep-
resentations for words within each sentence, generating sentence-level representations using spe-
cial [CLS] tokens appended to each sentence. Subsequently, a document Transformer processes
these sentence representations with added positional embeddings to capture global document con-
text and produce document context-aware sentence representations. A third sentence Transformer
stage enhances word-level modeling by propagating the global document context back to individual
sentences. This is achieved by simply concatenating the global token to the local tokens and ap-
plying the transformer on this combined sequence–a process distinct from our second phase. Their
complexity analysis demonstrates significant efficiency gains.

The recent work by Videau et al. (2025) introduces AU-Net, an autoregressive U-Net model that
integrates tokenization and representation learning into a multi-stage hierarchy operating directly on
raw bytes. Unlike traditional fixed tokenization methods such as Byte Pair Encoding (BPE), AU-Net
dynamically pools bytes into words and multi-word chunks. This approach eliminates the need for
predefined vocabularies and large embedding tables, and allows the model to handle rare or unseen
tokens more efficiently.

While these hierarchical Transformer architectures focus on natural language processing tasks, simi-
lar hierarchical attention principles have also been adapted to other domains such as computer vision
Liu et al. (2021),Liu et al. (2024), where computational efficiency is critical. Liu et al. (2024) ad-
dress the computational and memory inefficiencies of standard Multi-Head Self-Attention (MHSA)
in vision transformers by introducing the Hierarchical Multi-Head Self-Attention (H-MHSA) mech-
anism. In their approach, the input image is initially partitioned into small patches, each treated as
a token. H-MHSA first computes self-attention locally within small grids of patches to significantly
reduce the computational burden. These local features are then merged into larger patches, and
global attention is computed over the reduced set of tokens to allow for the modeling of long-range
dependencies.

6 CONCLUSION

In this work, we successfully design and implement a Hierarchical Attention Transformer (HAT) for
the task of computing Gröbner bases for multivariate polynomial systems. Our results demonstrate
substantial computational improvements over previous results, as well as superior scalability of
the HATSolver compared to the standard Transformer baseline. Transformer-based solvers may
prove to be a good replacement for solving multivariate polynomial equations in the absence of
more efficient traditional algorithms. We leave it as future work to investigate whether a model can
be trained on any finite field, including non-prime fields such as power-of-two fields (e.g. F16) used
in cryptography, and whether the model can generalize to unseen fields. Additionally, some of the
techniques explored in this work may offer useful insights for improving HAT models in natural
language processing. Further research is needed to assess their practical impact in this domain.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we generated all datasets using the publicly available scripts from the
repository associated with the prior work we build upon: Kera et al. (2024) 1. This repository
provides detailed instructions and code for dataset creation, enabling other researchers to replicate
our data generation process in alignment with previous studies.

We have included a comprehensive list of hyperparameters used in our experiments in Appendix F
tables 3 and 6 to facilitate exact replication of our training and evaluation procedures. Our own
codebase is not publicly available yet. However, we plan to open source it in the future to enable the
research community to validate and build upon our results.
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A MATHEMATICAL FOUNDATIONS

A.1 MONOMIAL ORDERS

Let k be a field and k[x] = k[x1, . . . , xn] be the polynomial ring in n variables over k. A monomial
in k[x] is an expression of the form xα1

1 · · ·xαn
n where αi ≥ 0 are non-negative integers. We denote

monomials as xα where α = (α1, . . . , αn) ∈ Nn.

A monomial order on k[x] is a total order ≺ on the set of monomials satisfying:

1. 1 ≺ xα for all α ̸= 0

2. If xα ≺ xβ , then xαxγ ≺ xβxγ for all γ ∈ Nn

The lexicographic order ≺lex with x1 > x2 > · · · > xn is defined by xα ≺lex xβ if the leftmost
nonzero entry of β − α is positive. For any nonzero polynomial f ∈ k[x], the leading term lt(f) is
the largest monomial appearing in f with respect to the chosen monomial order.

A.2 ZERO-DIMENSIONAL SYSTEMS

Let I ⊂ k[x] be an ideal. The variety of I is defined as:

V (I) = {a ∈ k̄n | f(a) = 0 for all f ∈ I}

where k̄ is the algebraic closure of k.

An ideal I is called zero-dimensional if its variety V (I) is finite, i.e., |V (I)| < ∞. Equivalently,
I is zero-dimensional if and only if the quotient ring k[x]/I is finite-dimensional as a vector space
over k.

B CURRICULUM LEARNING SCHEDULERS

We use a structured curriculum learning approach to progressively train our model on systems of
increasing complexity. Therefore, we generate datasets D0, . . . ,Dn−1 of increasing number of vari-
ables and increasing densities. During training, we sample from dataset Di with probability:

p(t, i) =
exp

(
− (i−µ(t))2

2σ2

)
∑n−1

j=0 exp
(
− (j−µ(t))2

2σ2

) with µ(t) = v ·
⌊

t

steps per epoch

⌋
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where the curriculum center µ(t) advances with t.

The hyperparameters v (learning pace) and σ (curriculum width) control the progression speed and
overlap between difficulty levels. Setting v = 1 advances the curriculum focus by one variable count
per epoch, while σ determines how much probability mass is distributed to neighboring complexity
levels.

Gaussian scheduler ensures smooth and stable transitions between complexity levels while maintain-
ing exposure to simpler problems throughout training. Early training focuses on low-dimensional
systems where the model can learn basic reduction patterns, while later stages emphasize higher-
dimensional systems that require more sophisticated elimination strategies. The probabilistic sam-
pling prevents abrupt difficulty jumps that could destabilize training.

Evaluation Protocol We evaluate on held-out test sets T0, . . . , Tn−1 using uniform sampling
across all complexity levels: peval(i) =

1
n for i = 0, . . . , n− 1. This uniform evaluation ensures that

performance metrics reflect the model’s ability across the full range of problem complexities and
not being biased toward the current curriculum focus. At the end of training, we evaluate the model
on each dataset separately to characterize the model’s performance and scaling behavior.

C COMPLEMENTARY EXPERIMENTS

We present here more results on the comparison (section 4.2) of HATSolver with the base model
from Kera et al. (2024). We use the same model size and dataset budget as in section 4.2 but train the
models on larger instances, namely the configurations with n = 7 variables and density ρ = 0.25
and with n = 10 variables and ρ = 0.1. As a reminder, the model has 6/6 encoder/decoder layers
with d = 1024 embedding dimensions. The training was performed on 8×V100 GPUs for 72
hours. The training metrics are shown in figs. 3 and 4 which confirm our findings in section 4.2 that
HATSolver learns much faster and is computationally more efficient; in fig. 4, the HATSolver-3
performed more than 400K training steps during the 72h training period while the baseline model
only did less than 120K training steps during the same period. More importantly, the accuracy
of the base model is stuck at 0% while HATSolver-2 and HATSolver-3 achieve 9% and 8%
accuracies respectively.

D DATASETS

D.1 DATA GENERATION CONFIG

Table 3 lists the parameters used to generate the datasets using the script from Kera et al. (2024).
We use the same configuration for a fair comparison.

Hyperparameter Value Explanation
degree sampling (empty) Method for sampling polynomial degrees (not specified)
density 0 < · ≤ 1 Proportion of nonzero terms in generated polynomials
field GF7 Finite field used for computations (Galois Field of order 7)
gb type shape Type of Gröbner basis generated (e.g., shape position)
max degree F 3 Maximum degree for polynomials in matrices U1,U2

max degree G 5 Maximum degree for polynomials in set G
max num terms F 2 Maximum number of polynomial terms in matrices U1,U2

max num terms G 5 Maximum number of terms in polynomials in set G
max size F n+ 2 Maximum size (number of polynomials) in set F
num duplicants 1 Number of duplicate samples generated
num samples test 1000 Number of samples in the test set
num samples train 1,000,000 Number of samples in the training set
num var n Number of variables in the system
term sampling uniform Method for sampling the number of polynomial terms

(uniform over [1,max num terms {F,G}]).

Table 3: Data Generation Configuration and explanations.
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Figure 3: Training dynamics comparison; training models for 72 hours on multivariate datasets of
n = 7 variables and density ρ = 0.25

D.2 STATISTICS OF THE GENERATED DATA

Table 4 provides some statistics about the generated datasets for n = 13 variables over finite field
F7. Notably, we report the max length1 (max sequence length at level 1) which corresponds to the
maximum number of terms per equation within a polynomial system (we report the max, mean, and
std of this statistics over our dataset) for HATSolver-3. When using HATSolver-2 instead,
max length1 is the total number of terms in a system which we also report.

Density Max # Monoms in Sys. Total # Monoms in Sys. Max Degree
max mean std mean std max

0.1 304.0 112.3 33.0 795.0 252.2 11.0
0.2 422.0 167.6 47.8 1188.0 371.6 11.0
0.3 568.0 222.7 61.6 1581.7 484.2 11.0
0.4 658.0 277.4 75.0 1973.1 593.0 11.0
0.5 763.0 331.9 87.7 2361.9 696.2 11.0
0.6 899.0 386.3 100.0 2752.4 798.5 11.0
0.7 987.0 440.9 112.6 3143.9 901.3 11.0
0.8 1099.0 495.0 125.1 3531.2 1002.9 11.0
0.9 1215.0 549.0 137.4 3918.4 1104.0 11.0
1.0 1269.0 602.9 149.3 4305.4 1203.2 11.0

Table 4: Statistics about the 13-variable datasets over F7. Max # Monoms in Sys. is the maximum
number of monomials per equation in each system, for which we report max/mean/std over the
whole dataset. This is the metric we cap to 400 for training. This means that for ρ = 0.4 for
example, we trained on most of the dataset as mean+std = 277 + 75 < 400 while for ρ = 1, we
considered less than 10% of the dataset as mean - std > 400. We also report the total number of
monomials in each system Total # Monoms in Sys. which would be relevant for HATSolver-2
which considers this entity instead.
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Figure 4: Training dynamics comparison; training models for 72 hours on multivariate datasets of
n = 10 variables and density ρ = 0.1

E CLASSICAL ALGORITHM RUNTIME

To verify the computational complexity claims presented in the Kera et al. (2024), we conducted
an independent timing analysis of the STD-FGLM algorithm using 1000 trials per configuration for
polynomial systems with n = 2 to 5 variables using the same backward generated datasets. Our ex-
perimental setup utilized Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz (80 cores) and used the algo-
rithm via SageMath’s interface to Singular (ideal.groebner basis(algorithm=’libsingular:stdfglm’)).
The results reveal substantial discrepancies with the published benchmarks, with our measure-
ments consistently faster than the reported values across all tested configurations. Most notably,
for n = 5, ρ = 0.2 variables, our mean execution time of 0.008±0.028 seconds differs significantly
from the claimed 7.46 seconds. The observed timing variations suggest either different experimental
conditions, alternative algorithm implementations or outlier effect on the mean.

n Density Matched Mean Time ± Std (s) Median (s) Max (s) Paper Claim Mean (s)

2 1.0 100% 0.005 ± 0.010 0.002 0.052 8.02
3 0.6 100% 0.005 ± 0.010 0.002 0.050 7.50
4 0.3 100% 0.006 ± 0.010 0.003 0.054 7.25
5 0.2 100% 0.008 ± 0.028 0.004 0.755 7.46

Table 5: Comparison of STD-FGLM algorithm execution times between reported literature values
in Kera et al. (2024) and experimental verification. Our results show mean ± standard deviation
and median execution times across 1000 trials per configuration (n = 2 to 5 variables, finite field
F7) using ’libsingular:stdfglm’ implementation via SageMath. Matched column indicate that the
found groebner basis matches the one used in backward generation as a sanity check metric. Our
measurements (in seconds) are consistently faster than reported values. All trials were conducted on
Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz (80 cores).
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F TRAINING HYPERPARAMETERS

Hyperparameter Value
Task multivariate-curriculum
Model hatsolver.3
Eval samples 1000
Train samples 1,000,000
Num train epochs 15
Optimizer adam linear warmup, lr=0.00001, warmup updates=1000, weight decay=0
Num encoder heads 1
Timescale 40
Clip grad norm 1.0
Workers 4
Dtype float16
Max sequence length 15,400,15
Max output sequence length 900
Num variables 13
Density -1 # all available densities
Train batch size 2
Val batch size 2
Field GF7
Curriculum scheduler ramp 1
Curriculum scheduler sigma 4
Curriculum min num variables 13
Max coefficient 100
Max degree 20
Auto find batch size False
Dim expansion per level 1
Top down cross attn True
Positional encoding combination concat # versus sum
Pad to max length True
Num encoder layers 4
Num decoder layers 4
Encoder embedding dim 1408

Table 6: Hyperparameters used in our table 2 training experiment.
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