
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

HATSOLVER: LEARNING GRÖBNER BASES WITH
HIERARCHICAL ATTENTION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

At NeurIPS, Kera et al. (2024) introduced the use of transformers for comput-
ing Gröbner bases, a central object in computer algebra with numerous practical
applications. In this paper, we improve this approach by applying Hierarchical
Attention Transformers (HATs) to solve systems of multivariate polynomial equa-
tions via Gröbner bases computation. The HAT architecture incorporates a tree-
structured inductive bias that enables the modeling of hierarchical relationships
present in the data and thus achieves significant computational savings compared
to conventional flat attention models. We generalize to arbitrary depths and in-
clude a detailed computational cost analysis. Combined with curriculum learning,
our method solves instances that are much larger than those in Kera et al. (2024).

1 INTRODUCTION

Systems of multivariate non-linear equations are ubiquitous in mathematics and its applications,
emerging naturally in fields as diverse as cryptography, coding theory, optimization, computer vi-
sion, biology, etc . . . e.g. Perret (2016); Colotti et al. (2024); Fontán et al. (2022); Buchberger
(2006); Wang & Xia (2005); Boulier et al. (2011). In contrast to systems of linear equations, solving
a system of multivariate non-linear equations, also known as the PoSSo problem, is a well-known,
NP-hard Garey & Johnson (1979), computationally hard problem.

Among existing techniques, Gröbner bases Cox et al. (2007); Buchberger (1965; 2006) is the most
widely used approach for solving PoSSo. Indeed, the set of common solutions of a polynomial
system – also known as its variety – is studied via the ideal generated by those polynomials. Gröbner
basis provides a canonical generating set of a polynomial ideal, allowing in particular to efficiently
solve PoSSo. More generally, Gröbner basis is a powerful tool enabling to address a wide range of
problems related to polynomial ideals Cox et al. (2007), such as membership testing (determining
if a polynomial belongs to an ideal), elimination (reducing systems to fewer variables), finding
algebraic relations (syzygies) among generators of an ideal, etc . . .

The versatility of Gröbner bases renders their computation inherently difficult but also appealing.
From a theoretical point of view, this is illustrated by the folklore result about the double-exponential
worst-case complexity for computing a Gröbner basis Mayr & Meyer (1982). This theoretical state-
ment holds for a very peculiar example and does not fully capture the actual hardness of solving
PoSSo in practice. In particular, we can usually assume that the variety is radical and has a finite
number of solutions. In such a setting, the worst-case complexity drops to single exponential.

From an algorithmic point of view, the historical method for computing Gröbner bases was intro-
duced by Buchberger in his PhD thesis Buchberger (1965; 2006). Over the past 25 years, sig-
nificant improvements have been made, leading to more efficient algorithms such as F4 and F5

Faugère (1999; 2002) which are now implemented in major computer algebra systems, such as
Maple, Magma or Singular, and open-source projects such as Msolve Berthomieu et al. (2021).

Although tremendous progress has been made, Gröbner bases remain computationally difficult, and
their numerous applications make the design of efficient algorithms both challenging and rewarding.
Notably, the security of cryptographic standards such as AES Cid et al. (2006); Steiner (2024) or new
lattice-based post-quantum standards hinges directly on the hardness of solving algebraic equations
Cid et al. (2006); Albrecht et al. (2014); Steiner (2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Recent works, e.g. Peifer et al. (2020); Kera et al. (2024; 2025), started to explore advanced ma-
chine learning techniques for polynomial system solving. Peifer et al. (2020) employs reinforcement
learning to perform S-pair selection, a critical step in Buchberger’s algorithm. Kera et al. (2025)
uses deep learning to identify and eliminate computationally expensive reduction steps during the
computation of Border bases; another fundamental tool for solving systems of equations Kehrein &
Kreuzer (2005). Most notably, Kera et al. (2024) demonstrates that Transformer models are capa-
ble of learning Gröbner bases computation Kera et al. (2024). The authors propose reframing the
problem as a supervised learning task, where a model is trained on pairs of polynomial systems and
their corresponding Gröbner bases. To enable this, they address two previously unexplored algebraic
challenges of efficiently generating random Gröbner bases, and constructing diverse non-Gröbner
sets that generate the same ideal as a given Gröbner basis (the “backward Gröbner problem”). Their
solution focuses on 0-dimensional radical ideals, which are common in applications.

A notable limitation of the approach presented in Kera et al. (2024) is its restricted scalability to
larger polynomial systems. In their experiments, the authors were only able to handle systems with
up to five variables (n ≤ 5). Moreover, they had to significantly reduce the density of the polynomial
systems for n = 3, 4, and 5—meaning that the input polynomials were made much sparser. This
reduction in density (ρ << 1) was necessary to avoid overwhelming the model and hardware with
excessively long input and output sequences, a direct consequence of the quadratic memory and
computational cost of the attention mechanism in standard Transformers. As a result, the method
has not been demonstrated on denser or higher-dimensional systems, highlighting a key scalability
bottleneck that must be addressed.

1.1 MAIN RESULTS

To overcome this challenge, we propose replacing the multi-head attention layer in the Transformer
encoder—the most computationally intensive component of the model—with a hierarchical atten-
tion mechanism that leverages the inherent tree-like structure of multivariate polynomial systems.
The hierarchical attention layer operates in two distinct stages: bottom-up and top-down. In the
bottom-up phase, attention is computed locally at each hierarchical level, beginning at the term level
(ℓ = 0), progressing to the polynomial level, and culminating at the system level. Subsequently,
in the top-down phase, information is propagated back to the leaf nodes using various strategies,
including cross level attention and simple additive aggregation. This hierarchical approach signifi-
cantly reduces the sequence lengths processed by the attention layers, resulting in substantial com-
putational cutbacks as the problem dimensions grow. Notably, we successfully computed Gröbner
bases for systems of up to 13 variables and degree 11, which compares favorably with efficient tools
such as Msolve and STD-FGLM (see Table 2).

To accelerate the model’s learning process, we employ a curriculum learning strategy, training the
model on datasets with progressively increasing levels of difficulty and problem sizes. We validate
the merit of this method by applying it to the base model of Kera et al. (2024), enabling it to solve
systems with n = 7 variables at full density. This surpasses the previous results of Kera et al. (2024),
where the largest reported success was limited to n = 5 variables and a density of only ρ = 0.2.

2 PRELIMINARIES

2.1 SELF ATTENTION

Self-attention is a fundamental mechanism in transformer architectures Vaswani et al. (2017), en-
abling models to dynamically contextualize each element of an input sequence by attending to all
other elements. This mechanism is crucial for capturing long-range dependencies and modeling
complex relationships within sequential data, which is essential for tasks in natural language pro-
cessing, vision, and beyond.

Given a set of queries Q ∈ Rs×d, keys K ∈ Rl×d, and values V ∈ Rl×d, the self-attention
mechanism computes a similarity score between each query and all keys:

s(Q,K) = softmax(
QK⊤
√
d

) ∈ Rs×l

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

The softmax function normalizes the scores across all keys for each query, converting them into a
probability distribution that sums to 1.

The output of the attention layer is a weighted sum of the values V , where the weights are the
attention scores:

Att(Q,K, V) = s(Q,K)V ∈ Rs×d

In the context of hierarchical or structured data, such as trees or graphs, self-attention can be applied
to sets of embedding vectors E ∈ Rn×d corresponding to the leaves or child nodes of a parent node.
The embedding vector for the parent node can then be computed by a pooling function p(E), which
aggregates the information from its children. Common pooling strategies include mean pooling and
selection of a specific child embedding:

p(E) = e ∈ Rd e.g. p(E) =
1

n

n∑
k=1

Ek,: or p(E) = E0,:

We tensorize the attention function Att(Q,K, V) and pooling functions p by extending them to
operate on tensors with an arbitrary number of leading dimensions, which typically represent batch
size or other contextual groupings.

2.2 GRÖBNER BASES

Let k be a field, k[x] = k[x1, . . . , xn] be the polynomial ring in n variables over k. Let I be
the ideal I = ⟨f1, . . . , fm⟩ = {

∑m
i=1 hifi | h1, . . . , hm ∈ k[x1, . . . , xn]} ⊆ k[x] generated by

f1, . . . , fm ∈ k[x]. A finite set G = {g1, . . . , gt} ⊂ I is called a Gröbner basis Cox et al. (2007);
Buchberger (1965; 2006) for I with respect to an admissible monomial order ≺ (see appendix A.1)
if:

⟨lt(g1), . . . , lt(gt)⟩ = ⟨lt(I)⟩
where lt(I) = {lt(f) | f ∈ I \ {0}} is the set of leading terms of all nonzero polynomials in I and
the notation ⟨S⟩ refers to the ideal generated by the set S.

As defined below, a Gröbner basis is not unique, which motivates introducing the concept of reduced
Gröbner basis. G is reduced if each gi is monic and and no monomial of gi lies in ⟨lt(G \ {gi})⟩.
For any ideal I and monomial order ≺, there exists a unique reduced Gröbner basis.

2.3 SHAPE POSITION SYSTEMS

Gröbner bases is a fundamental computational tool in computer algebra that provide algorithmic
solutions to fundamental problems such as computing the variety associated to I = ⟨f1, . . . , fm⟩ ⊆
k[x]. The definition of Gröbner basis, and their properties, depend on the monomial ordering.

In particular, it can be proved that a lexicographic Gröbner basis of a zero-dimensional (i.e. finite
number of solutions) radical ideal has a triangular shape, which generically is as follows:

G = {h(xn), x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn)}, (1)

where h, g1, . . . , gn−1 ∈ k[xn] are univariate polynomials in the last variable xn, with deg gi <
deg h for all i = 1, . . . , n− 1.

I ⊆ k[x] is said to be in shape position if its reduced Gröbner basis has the triangular form as
in equation 1. Following Kera et al. (2024), we will restrict our attention to ideals such that their
Gröbner basis is in shape position.

2.4 DATASET GENERATION

We adopt the backward generation introduced by Kera et al. (2024) to construct training datasets
consisting of pairs (F,G) where F is a random looking system of polynomial equations and G is its
corresponding reduced Gröebner basis which is in shape position. Kambe et al. (2025) proved that
the samples generated by this algorithm are sufficiently general, ensuring a rich and diverse training
set. The backward technique proceeds as follows: 1) draw h, g1, . . . , gn−1 uniformly at random

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

from k[xn]≤d subject to the degree condition above and 2) generate non-Gröbner training inputs
F = U1PU2G by multiplying G with random unimodular upper-triangular matrices U1 and U2

and a permutation matrix P .

The resulting dataset is balanced: each (F,G) pair satisfies ⟨F ⟩ = ⟨G⟩, F is not a Gröbner basis, yet
G is. This algorithm as described above generates systems with |F | = |G| = n with n the number
of variables. However, the actual algorithm of Kera et al. (2024) generates s ≥ n equations by using
U2 ∈ k[x1, . . . , xn]

s×n rectangular unimodular upper-triangular matrix. We refer the reader to Kera
et al. (2024) Section 4.3 and Kambe et al. (2025) for more details.

3 METHOD

3.1 LIMITATIONS OF FLAT ATTENTION

Writing a system of multivariate polynomial equations as a sequence of tokens grows rapidly with
the number of variables and the total degrees of the equations. For instance, the number of different
monomials with n = 5 variables and total degree d ≤ 10 is

(
d+n
d

)
= 3003. A system of n+2 equa-

tions could therefore contain over 7 ·3003 ·7 = 147147 tokens, assuming each term is encoded using
n+2 tokens (see section 3.4). This explosion in token count makes training a sequence-to-sequence
model, such as a transformer, on such data particularly challenging. However, these systems of
equations are highly structured and can naturally be represented as trees. This raises the question of
whether attention-based models can be adapted to tree-like structures: rather than having each token
attend directly to every other token, a token could attend primarily to its siblings (i.e., those sharing
the same parent) and to other tokens indirectly through their parent nodes, and so on.

System

Equation 1

Term 1

<bos> C1 E2 E2

Term 2

+ C5 E2 E1

Equation 2

Term 1

<SEP> C3 E3 E0

Term 2

+ C2 E1 E0

Figure 1: Hierarchical representation of the tokenized system of equations p1 = x2
0x

2
1+5x2

0x1, p2 =
3x3

0 + 2x1 over k[x0, x1].

3.2 HIERARCHICAL ATTENTION LAYER

The hierarchical attention mechanism operates in two successive phases. The first phase involves
the computation of local attention at each hierarchical level, with information being propagated in a
bottom-up manner through the hierarchy.

Let us denote X = X(0) ∈ Rℓn−1×···×ℓ1×ℓ0×d an input tensor representing an n-level tree. For
instance, a system of ℓ2 equations, padded so that each equation has ℓ1 terms which have ℓ0 symbols
each. In the example above, ℓ2 = 2, ℓ1 = 2, ℓ0 = 4.

We fix a set of embedding dimensions (d0, d1, . . . , dn−1) for each of the n levels. For simplicity,
one could take di = d ∀i. However, computationally, it makes more sense to consider an increasing
sequence (di)i as we move up the tree since upper levels need to encode more information and
require much less compute.

The local self-attention at level 0 (leaf level) is computed as:

Y(0) = Att(X(0)W (0)
q ,X(0)W

(0)
k ,X(0)W (0)

v) ∈ Rℓn−1×···×ℓ1×ℓ0×d0 (2)

with W
(0)
ℓ∈{q,k,v} ∈ Rd×d0 trainable weight matrices.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Subsequently, a pooling operation p is applied to aggregate information and reduce the dimension-
ality, yielding the input for the next levels:

X(i) = p(Y(i−1)) ∈ Rℓn−1×···×ℓi×di−1 ∀i > 0 (3)

Y(i) = Att(X(i)W (i)
q ,X(i)W

(i)
k ,X(i)W (i)

v) ∈ Rℓn−1×···×ℓi×di ∀i (4)

with W
(i)
ℓ∈{q,k,v} ∈ Rdi−1×di

In the second phase, information is propagated in a top-down fashion either via cross-attention
mechanisms or simply additive aggregations. The latter is trivial and does not impact much the cost
analysis, therefore we’ll explain the former approach.

At each level, nodes refine their representations by extracting relevant contextual information from
their corresponding parent node and their siblings at the upper level:

Z(n−1) = Y(n−1)

Z(i) = Y(i) + Att(Y(i),Z(i+1)U
(i)
k ,Z(i+1)U (i)

v) ∈ Rℓn−1×···×ℓi×di ∀i < n− 1 (5)

where the queries, keys, and values are viewed as having ℓn−1×· · ·× ℓi+2 leading dimensions with
the remaining ℓiℓi+1 sequence length for the queries Y(i) whereas the keys and values (parents) are
of sequence length ℓi+1. The matrices U (i)

ℓ∈{k,v} ∈ Rdi+1×di are trainable projection weights.

3.3 COST ANALYSIS

To simplify the analysis, we omit the batch size and the notion of multi-head attention, and we
neglect some lightweight operations such as pooling in the following calculations. We also use the
notation Li =

∏n−1
k=i ℓk with L = L0 total length of the flattened input.

At level i of the bottom-up phase, the projections W (i)
{q,k,v} have a complexity of 3Li × di−1di and

the attention is O(2Liℓidi). The total complexity per level is:

Ci
up = 3Lidi−1di + 2Liℓidi

For the second phase at level i, the projections cost 2Li+1 × di+1di and the cross attention call is
O(2Li+2 × (ℓi+1ℓi)× di × ℓi+1). Which adds up to:

Ci
down = 2Li+1di+1di + 2Liℓi+1di

Let ℓn = 0 for convenience. The total computational complexity is

C =

n−1∑
i=0

Ci
up +

n−2∑
i=0

Ci
down with d−1 = d (6)

=

n−1∑
i=0

3Lidi−1di + 2Liℓidi +

n−2∑
i=0

2Li+1di+1di + 2Liℓi+1di (7)

= 3L0d−1d0 +

n−1∑
i=1

5Lidi−1di +

n−1∑
i=0

2Lidi(ℓi + ℓi+1) (8)

By choosing (di)i appropriately, we can control the complexity to be dominated either by the pro-
jections or the attention mechanism. It also allows to choose the distribution of the compute over
the tree, either allocate most of the compute to the lower level (e.g. di ≤

√
ℓi−1di−1) or to the top

level (e.g. di ≥ ℓi−1di−1) or distribute the compute over the tree
√
ℓi−1di−1 ≤ di ≤ ℓi−1di−1.

Case where di = d: Complexity is overwhelmingly dominated by the terms 3Ld2+2Ld(ℓ0+ ℓ1)
while the flat attention’s cost is 3Ld2 + 2L2d. When the sequence lengths are larger than the
embedding dimension d, as when scaling up the inputs, the dominating factors are (ℓ0 + ℓ1)Ld

versus L2d. For a regular tree (i.e. an ℓ-ary tree with ℓ = L
1
n), the cost is L1+ 1

n d only.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.4 POLYNOMIAL ENCODING AND TOKENIZATION

We consider systems over finite fields k = Fq (we chose q = 7 for all of our experiments)
and we adopt the standard tokenization of Kera et al. (2024) without the hybrid embedding.
Namely, the vocabulary consists of the union of the sets {C1, . . . ,Cq-1} ∪ {E0,E1, . . . ,Ed} ∪
{<bos>,+,<sep>} with d maximum degree in the dataset. A polynomial

∑
u aux

u1
1 xu2

2 . . . xun
n

is then tokenized by joining the encodings of each term by the plus token, each term is tokenized
by encoding the coefficient and the powers of the variables in each term as Cau Eu1 Eu2 . . . Eun

including the null powers ui = 0.

Example: Consider the polynomial system: p1 = x2
0x

2
1+5x2

0x1, p2 = 3x3
0+2x1. The tokenization

produces the sequence:

<bos> C1 E2 E2 <+> C5 E2 E1 <sep> C3 E3 E0 <+> C2 E1 E0

3.5 POSITIONAL EMBEDDING

To encode positional information in multi-dimensional sequential data, we propose a learnable em-
bedding scheme that generalizes standard positional encodings to arbitrary tensor shapes. Given
an input of shape (ℓn−1, . . . , ℓ0, d), we associate each axis j with a dedicated embedding table
E(j) ∈ Rmax lengthj×d. The positional embedding for a token at index (in−1, . . . , i0) is then con-
structed as the sum of the corresponding embeddings from each dimension, i.e., PE(in−1, . . . , i0) =∑n−1

j=0 E
(j)
ij

. This approach enables the model to capture hierarchical and multi-axis positional de-
pendencies in a parameter-efficient manner, and can be extended to concatenation followed by a
linear projection if desired.

4 EXPERIMENTS

4.1 IMPROVING BASELINE MODEL WITH CURRICULUM LEARNING

We trained the base transformer model from Kera et al. (2024) using the curriculum learning ap-
proach explained in appendix B over polynomial systems over finite fields. In this experiment, we
used a model architecture with 4 encoder and 4 decoder layers and an embedding dimension of
d = 1024, which differs from the 6-layer encoder/decoder and d = 512 configuration used in Kera
et al. (2024). The curriculum gradually increased both the number of variables (n = 2 to n = 7)
and the system density (ρ), with each training task representing 1 million samples. Unlike the orig-
inal Kera et al. paper, which only considered up to n = 5 and ρ = 0.2 and trained one model per
configuration, our curriculum enabled the model to learn and generalize to much larger and denser
systems at once.

Table 1: Accuracy (%) / Support Accuracy (%) of the base transformer model in predicting Gröbner
bases for multivariate polynomial systems over F7. Each cell reports accuracy over 1,000 test sam-
ples, after training with 1 million samples per setting (values shown in red). Non-colored cells
correspond to out-of-distribution evaluations. n is the number of variables, ρ is the density of the
randomly generated system (backward generation method). The curriculum learning approach en-
ables scaling to larger and denser systems compared to prior work.

n

ρ (%) 2 3 4 5 6 7

10 57.1/63.0 65.0/71.2 53.7/58.7 59.0/63.7 63.5/69.0 50.7/56.3
25 55.6/61.3 65.5/72.4 61.5/67.2 59.9/65.4 63.4/69.4 46.7/51.2
33 57.0/62.3 64.4/71.7 59.1/63.6 62.3/68.4 62.7/67.9 50.3/56.1
50 54.0/60.1 62.0/69.7 57.6/63.8 50.5/56.5 58.4/62.7 43.0/49.3
67 56.0/61.7 62.4/69.1 51.5/58.3 55.3/61.0 59.4/66.1 38.9/46.7
75 52.4/58.3 58.8/66.0 55.0/61.1 56.9/63.9 58.1/66.9 42.3/50.9

100 51.3/57.5 55.4/63.9 53.0/60.6 50.4/56.6 53.7/61.9 42.3/51.3

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1 reports the model’s accuracy in predicting Gröbner bases for multivariate polynomial sys-
tems over F7, evaluated on 1,000 test samples per setting. The curriculum learning approach enables
the model to learn beyond the settings considered in prior work, achieving an accuracy of (0.41) for
n = 7 at full density ρ = 1, a significant improvement over the baseline in Kera et al. (2024), which
only solved up to n = 5 at a much lower density of ρ = 0.2.

4.2 MODEL COMPARISON

Orthogonally to the curriculum learning experiments, Figure 2 presents a comparison of different
model architectures on the task of predicting Gröbner bases. All models were trained for 52 hours on
8 V100 GPUs using a backward-generated dataset consisting of 1 million multivariate polynomial
systems over F7, with n = 6 variables and density ρ = 0.33.

The baseline corresponds to the model from Kera et al. (2024), which uses 6 encoder and 6 de-
coder layers with an embedding dimension of 1024. In contrast, our proposed HATSolver-2 and
HATSolver-3 models employ the same architectural hyperparameters as the baseline, but replace
the standard attention mechanism with our hierarchical attention layer.

In HATSolver-2, we use two hierarchy levels. At the lowest level (level 0), the model attends to
the individual tokens within a term. At the next level (level 1), it aggregates across all terms within
all equations.

HATSolver-3 introduces a third hierarchy level. Here, level 0 again corresponds to the tokens of
a term. Level 1 groups tokens into complete terms within each polynomial, while level 2 aggregates
across the set of polynomials.

0 2000 4000 6000 8000
Training Steps (x 50)

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Tr
ai

ni
ng

 L
os

s

Training Loss
Baseline
HATSolver-2
HATSolver-3

0 2000 4000 6000 8000
Training Steps (x 50)

10 2

4 × 10 3

6 × 10 3

2 × 10 2

3 × 10 2

E
va

lu
at

io
n

Lo
ss

Evaluation Loss
Baseline
HATSolver-2
HATSolver-3

0 2000 4000 6000 8000
Training Steps (x 50)

90

92

94

96

98

To
ke

n
Ac

cu
ra

cy
 (%

)

Token Accuracy (%)

Baseline
HATSolver-2
HATSolver-3

0 2000 4000 6000 8000
Training Steps (x 50)

5

0

5

10

15

20

25

30

35

Se
qu

en
ce

 A
cc

ur
ac

y
(%

)

Sequence Accuracy (%)
Baseline
HATSolver-2
HATSolver-3

Figure 2: Training dynamics comparison; training models on predicting Gröbner bases for 52 hours
on 8 V100 GPUs using the backward generated dataset of size 1 million multivariate systems over
F7 with n = 6 variables and density ρ = 0.33. Baseline is the Kera et al. (2024) base model with
6/6 encoder decoder layers and 1024 embedding dimensions. The HATSolver-2/-3 models are
our models with the same hyperparameters as the baseline, with the attention layer replaced by our
hierarchical attention layer with 2 and 3 levels respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

As shown in the figure, both HATSolver-2 and HATSolver-3 demonstrate faster convergence
and achieve higher accuracy compared to the baseline throughout training. HATSolver-2 was
faster in training and performed about 450K training steps while the baseline model did less than
300K steps during the trainig period. The case of HATSolver-3 is particularly noteworthy: al-
though it requires padding—forcing all polynomials to be represented with the same length—the
method remains faster than the baseline. The cost of padding is significant here because polynomial
lengths vary widely: in this setting (n = 6, ρ = 0.33), polynomials range from only 12 terms up to
238 terms, with an average of 63 terms. This variability means that shorter sequences are heavily
padded, effectively doubling the number of training tokens. Despite this overhead, HATSolver-3
still maintains a clear advantage over the baseline in both speed and accuracy. More results for
n = 7 and n = 10 are reported in the appendix figs. 3 and 4.

4.3 SCALING UP HATSolver-3 (n = 13)

The instances solved in previous experiments proved to be relatively tractable for classical algo-
rithms such as STD-FGLM Greuel et al. (2009); Faugère et al. (1993), as demonstrated in table 5.
Hence we now focus on larger and more challenging problem instances. In this section we scale
up our model architecture by expanding the embedding dimension to d = 1408 while keeping the
number of layers to 4/4 encoder/decoder layers. The HATSolver-3 model is trained on a diverse
dataset of 13-variable polynomial systems with various sparsity levels using the curriculum learning
schedule discussed in appendix B with σ = 2 and v = 1

2 . We cap the number of terms per equation
in the datasets to 400 to avoid memory spikes. We give some statistics about the datasets in table 4.
We use STD-FGLM algorithm provided in SageMath with the libSingular backend and Msolve as
comparison baselines. These algorithms compute the Gröbner basis in the graded reverse lexico-
graphic order (grevlex) which is efficient, and followed by the FGLM Faugère et al. (1993) algorithm
for the change of term order to the lexicographic (lex) order.

Density (%) 30 40 50 60 70 80 90 100

Ours

Success (%) 52.5 49.4 47.1 49.5 55.2 56.1 61.2 60.8
Support Acc. 65.0 63.0 59.0 61.0 68.0 70.0 94.0 91.0
Per Token Acc. 99.8 99.7 99.8 99.8 99.8 99.8 99.9 99.8
Runtime (s) 224 241 273 277 280 287 292 300

STD-
FGLM

Success (%) 33.5 19.6 10.7 8.5 8.2 7.4 6.1 6.5
Runtime (s) 652 936 1025 995 1068 687 1012 1129

Msolve
Success (%) 32.8 17.0 11.7 6.9 7.1 4.9 4.5 4.6
Runtime (s) 787 773 1274 766 1010 852 1232 588

Table 2: Performance of HATSolver-3 on computing Gröbner bases for polynomial systems
with 13 variables over F7, across varying system densities with comparison to traditional algorithms
STD-FGLM Greuel et al. (2009); Faugère et al. (1993) and Msolve Berthomieu et al. (2021). The
density (%) indicates the proportion of nonzero terms in the matrix U2 in backward generation
2.4, controlling the sparsity of the systems. Success denotes the percentage of test instances for
which the model generated the exact correct Gröbner basis. Support Acc. measures the accuracy
when only the support (i.e., the set of monomials) of the polynomials is considered, treating two
polynomials as equal if they have the same set of monomials regardless of coefficients. Per Token
Acc. reports the average token-level accuracy over all outputs. The reported runtime corresponds to
the output generation phase, noting that no optimization efforts were implemented (e.g. key-value
caching, inference engines, etc.). For the STD-FGLM and Msolve algorithms, a run is considered
failed after a 2 hour time limit.

Table 2 presents the performance of HATSolver-3, evaluated across a range of systems of equa-
tions over F7. Overall, the results indicate that HATSolver-3 is capable of learning to compute
Gröbner bases and beats the classical algorithms STD-FGLM and Msolve. It is important to note
that the runtime reported for our model refers to inference time only. Training is performed offline
once and does not depend on the number of evaluation samples. The model’s accuracy fluctuates
with density, exhibiting no simple monotonic trend, but reaches a peak of 61% at 90% density, with
support accuracy (see the caption of table 2) reaching 94%. This indicates that challenging instances

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

exist across all levels of sparsity, and that the difficulty of the problem is not solely determined by
the density of the system. Notably, when the same training experiment was conducted using the base
model, it failed to learn any meaningful solution. The STD-FGLM and Msolve algorithms on the
other hand do not terminate after running for 2 hours for most cases, with up to 93.5% timeout rate
for the full density samples and an average runtime of 1129s (resp. 1434s) for the remaining 6.5%
(resp 6%) completed runs.

5 RELATED WORK

Yang et al. (2016) were the first to introduce Hierarchical Attention Networks (HAN) for classify-
ing documents–modeling them as sequences of sentences, which in turn are sequences of tokens.
This approach has inspired numerous subsequent works Chalkidis et al. (2019); Wu et al. (2021);
Liu et al. (2022); Chalkidis et al. (2022); Liu et al. (2024). For instance, Wu et al. (2021) intro-
duced Hi-Transformer, a hierarchical interactive architecture for long document processing through
a three-stage design. Their approach first employs a sentence Transformer to learn contextual rep-
resentations for words within each sentence, generating sentence-level representations using spe-
cial [CLS] tokens appended to each sentence. Subsequently, a document Transformer processes
these sentence representations with added positional embeddings to capture global document con-
text and produce document context-aware sentence representations. A third sentence Transformer
stage enhances word-level modeling by propagating the global document context back to individual
sentences. This is achieved by simply concatenating the global token to the local tokens and ap-
plying the transformer on this combined sequence–a process distinct from our second phase. Their
complexity analysis demonstrates significant efficiency gains.

The recent work by Videau et al. (2025) introduces AU-Net, an autoregressive U-Net model that
integrates tokenization and representation learning into a multi-stage hierarchy operating directly on
raw bytes. Unlike traditional fixed tokenization methods such as Byte Pair Encoding (BPE), AU-Net
dynamically pools bytes into words and multi-word chunks. This approach eliminates the need for
predefined vocabularies and large embedding tables, and allows the model to handle rare or unseen
tokens more efficiently.

While these hierarchical Transformer architectures focus on natural language processing tasks, simi-
lar hierarchical attention principles have also been adapted to other domains such as computer vision
Liu et al. (2021),Liu et al. (2024), where computational efficiency is critical. Liu et al. (2024) ad-
dress the computational and memory inefficiencies of standard Multi-Head Self-Attention (MHSA)
in vision transformers by introducing the Hierarchical Multi-Head Self-Attention (H-MHSA) mech-
anism. In their approach, the input image is initially partitioned into small patches, each treated as
a token. H-MHSA first computes self-attention locally within small grids of patches to significantly
reduce the computational burden. These local features are then merged into larger patches, and
global attention is computed over the reduced set of tokens to allow for the modeling of long-range
dependencies.

6 CONCLUSION

In this work, we successfully design and implement a Hierarchical Attention Transformer (HAT) for
the task of computing Gröbner bases for multivariate polynomial systems. Our results demonstrate
substantial computational improvements over previous results, as well as superior scalability of
the HATSolver compared to the standard Transformer baseline. Transformer-based solvers may
prove to be a good replacement for solving multivariate polynomial equations in the absence of
more efficient traditional algorithms. We leave it as future work to investigate whether a model can
be trained on any finite field, including non-prime fields such as power-of-two fields (e.g. F16) used
in cryptography, and whether the model can generalize to unseen fields. Additionally, some of the
techniques explored in this work may offer useful insights for improving HAT models in natural
language processing. Further research is needed to assess their practical impact in this domain.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we generated all datasets using the publicly available scripts from the
repository associated with the prior work we build upon: Kera et al. (2024) 1. This repository
provides detailed instructions and code for dataset creation, enabling other researchers to replicate
our data generation process in alignment with previous studies.

We have included a comprehensive list of hyperparameters used in our experiments in Appendix F
tables 3 and 6 to facilitate exact replication of our training and evaluation procedures. Our own
codebase is not publicly available yet. However, we plan to open source it in the future to enable the
research community to validate and build upon our results.

REFERENCES

Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret.
Algebraic algorithms for LWE problems. IACR Cryptol. ePrint Arch., pp. 1018, 2014. URL
http://eprint.iacr.org/2014/1018.

Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. msolve: A Library for Solving Poly-
nomial Systems. In 2021 International Symposium on Symbolic and Algebraic Computation, 46th
International Symposium on Symbolic and Algebraic Computation, pp. 51–58, Saint Petersburg,
Russia, July 2021. ACM. doi: 10.1145/3452143.3465545.

François Boulier, François Lemaire, Michel Petitot, and Alexandre Sedoglavic. Chemical reac-
tion systems, computer algebra and systems biology - (invited talk). In Vladimir P. Gerdt,
Wolfram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov (eds.), Computer Algebra in Sci-
entific Computing - 13th International Workshop, CASC 2011, Kassel, Germany, Septem-
ber 5-9, 2011. Proceedings, volume 6885 of Lecture Notes in Computer Science, pp. 73–87.
Springer, 2011. doi: 10.1007/978-3-642-23568-9\ 7. URL https://doi.org/10.1007/
978-3-642-23568-9_7.

Bruno Buchberger. Ein algorithmus zum auffinden der basiselemente des restklassenringes nach
einem nulldimensionalen polynomideal. Ph. D. Thesis, Math. Inst., University of Innsbruck,
1965.

Bruno Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for finding the basis elements
of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput., 41(3-4):475–
511, 2006. doi: 10.1016/J.JSC.2005.09.007. URL https://doi.org/10.1016/j.jsc.
2005.09.007.

Ilias Chalkidis, Ion Androutsopoulos, and Nikolaos Aletras. Neural legal judgment prediction in
english. arXiv preprint arXiv:1906.02059, 2019.

Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. An
exploration of hierarchical attention transformers for efficient long document classification. arXiv
preprint arXiv:2210.05529, 2022.

Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Algebraic aspects of the advanced encryp-
tion standard. Springer, 2006. ISBN 978-0-387-24363-4. doi: 10.1007/978-0-387-36842-9.
URL https://doi.org/10.1007/978-0-387-36842-9.

Alessandro Colotti, Jorge Garcı́a Fontán, Alexandre Goldsztejn, Sébastien Briot, François
Chaumette, Olivier Kermorgant, and Mohab Safey El Din. Determination of all stable and un-
stable equilibria for image-point-based visual servoing. IEEE Trans. Robotics, 40:3406–3424,
2024. doi: 10.1109/TRO.2024.3422050. URL https://doi.org/10.1109/TRO.2024.
3422050.

David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in
Mathematics). Springer-Verlag, Berlin, Heidelberg, 2007. ISBN 0387356509.

1https://github.com/HiroshiKERA/transformer-groebner

10

http://eprint.iacr.org/2014/1018
https://doi.org/10.1007/978-3-642-23568-9_7
https://doi.org/10.1007/978-3-642-23568-9_7
https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1007/978-0-387-36842-9
https://doi.org/10.1109/TRO.2024.3422050
https://doi.org/10.1109/TRO.2024.3422050

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

J.-C. Faugère. A new efficient algorithm for computing gröbner bases (F4). Journal of Pure and
Applied Algebra, 139(1-3):61–88, 1999.

J.-C. Faugère. A new efficient algorithm for computing gröbner bases without reduction to zero :
F5. In ISSAC’02, pp. 75–83. ACM press, 2002.

J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional
gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):329–344,
1993. ISSN 0747-7171. doi: https://doi.org/10.1006/jsco.1993.1051. URL https://www.
sciencedirect.com/science/article/pii/S0747717183710515.

Jorge Garcı́a Fontán, Alessandro Colotti, Sébastien Briot, Alexandre Goldsztejn, and Mohab
Safey El Din. Computer algebra methods for polynomial system solving at the service of
image-based visual servoing. ACM Commun. Comput. Algebra, 56(2):36–40, 2022. doi:
10.1145/3572867.3572871. URL https://doi.org/10.1145/3572867.3572871.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.

G. M. Greuel, G. Pfister, and H. Schönemann. Singular: a computer algebra system for polynomial
computations. ACM Commun. Comput. Algebra, 42(3):180–181, February 2009. ISSN 1932-
2232. doi: 10.1145/1504347.1504377. URL https://doi.org/10.1145/1504347.
1504377.

Yuta Kambe, Yota Maeda, and Tristan Vaccon. Geometric generality of transformer-based gr\”
obner basis computation. arXiv preprint arXiv:2504.12465, 2025.

Achim Kehrein and Martin Kreuzer. Characterizations of border bases. Journal of Pure and Applied
Algebra, 196(2-3):251–270, 2005.

Hiroshi Kera, Yuki Ishihara, Yuta Kambe, Tristan Vaccon, and Kazuhiro Yokoyama. Learning to
compute gröbner bases. Advances in Neural Information Processing Systems, 37:33141–33187,
2024.

Hiroshi Kera, Nico Pelleriti, Yuki Ishihara, Max Zimmer, and Sebastian Pokutta. Computa-
tional algebra with attention: Transformer oracles for border basis algorithms. arXiv preprint
arXiv:2505.23696, 2025.

Yang Liu, Jiaxiang Liu, Li Chen, Yuxiang Lu, Shikun Feng, Zhida Feng, Yu Sun, Hao Tian, Hua Wu,
and Haifeng Wang. Ernie-sparse: Learning hierarchical efficient transformer through regularized
self-attention. arXiv preprint arXiv:2203.12276, 2022.

Yun Liu, Yu-Huan Wu, Guolei Sun, Le Zhang, Ajad Chhatkuli, and Luc Van Gool. Vision trans-
formers with hierarchical attention. Machine intelligence research, 21(4):670–683, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ernst W Mayr and Albert R Meyer. The complexity of the word problems for commutative semi-
groups and polynomial ideals. Advances in mathematics, 46(3):305–329, 1982.

Dylan Peifer, Michael Stillman, and Daniel Halpern-Leistner. Learning selection strategies in buch-
berger’s algorithm, 2020. URL https://arxiv.org/abs/2005.01917.

Ludovic Perret. Bases de Gröbner en Cryptographie Post-Quantique. (Gröbner bases techniques
in Quantum-Safe Cryptography). 2016. URL https://tel.archives-ouvertes.fr/
tel-01417808.

Matthias Johann Steiner. The complexity of algebraic algorithms for LWE. In Marc Joye and
Gregor Leander (eds.), Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland,
May 26-30, 2024, Proceedings, Part III, volume 14653 of Lecture Notes in Computer Science,
pp. 375–403. Springer, 2024. doi: 10.1007/978-3-031-58734-4\ 13. URL https://doi.
org/10.1007/978-3-031-58734-4_13.

11

https://www.sciencedirect.com/science/article/pii/S0747717183710515
https://www.sciencedirect.com/science/article/pii/S0747717183710515
https://doi.org/10.1145/3572867.3572871
https://doi.org/10.1145/1504347.1504377
https://doi.org/10.1145/1504347.1504377
https://arxiv.org/abs/2005.01917
https://tel.archives-ouvertes.fr/tel-01417808
https://tel.archives-ouvertes.fr/tel-01417808
https://doi.org/10.1007/978-3-031-58734-4_13
https://doi.org/10.1007/978-3-031-58734-4_13

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Mathurin Videau, Badr Youbi Idrissi, Alessandro Leite, Marc Schoenauer, Olivier Teytaud, and
David Lopez-Paz. From bytes to ideas: Language modeling with autoregressive u-nets. arXiv
preprint arXiv:2506.14761, 2025.

Dongming Wang and Bican Xia. Stability analysis of biological systems with real solution classifi-
cation. In Manuel Kauers (ed.), Symbolic and Algebraic Computation, International Symposium
ISSAC 2005, Beijing, China, July 24-27, 2005, Proceedings, pp. 354–361. ACM, 2005. doi:
10.1145/1073884.1073933. URL https://doi.org/10.1145/1073884.1073933.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Hi-transformer: Hierarchical interactive
transformer for efficient and effective long document modeling. arXiv preprint arXiv:2106.01040,
2021.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 conference of the North
American chapter of the association for computational linguistics: human language technologies,
pp. 1480–1489, 2016.

A MATHEMATICAL FOUNDATIONS

A.1 MONOMIAL ORDERS

Let k be a field and k[x] = k[x1, . . . , xn] be the polynomial ring in n variables over k. A monomial
in k[x] is an expression of the form xα1

1 · · ·xαn
n where αi ≥ 0 are non-negative integers. We denote

monomials as xα where α = (α1, . . . , αn) ∈ Nn.

A monomial order on k[x] is a total order ≺ on the set of monomials satisfying:

1. 1 ≺ xα for all α ̸= 0

2. If xα ≺ xβ , then xαxγ ≺ xβxγ for all γ ∈ Nn

The lexicographic order ≺lex with x1 > x2 > · · · > xn is defined by xα ≺lex xβ if the leftmost
nonzero entry of β − α is positive. For any nonzero polynomial f ∈ k[x], the leading term lt(f) is
the largest monomial appearing in f with respect to the chosen monomial order.

A.2 ZERO-DIMENSIONAL SYSTEMS

Let I ⊂ k[x] be an ideal. The variety of I is defined as:

V (I) = {a ∈ k̄n | f(a) = 0 for all f ∈ I}

where k̄ is the algebraic closure of k.

An ideal I is called zero-dimensional if its variety V (I) is finite, i.e., |V (I)| < ∞. Equivalently,
I is zero-dimensional if and only if the quotient ring k[x]/I is finite-dimensional as a vector space
over k.

B CURRICULUM LEARNING SCHEDULERS

We use a structured curriculum learning approach to progressively train our model on systems of
increasing complexity. Therefore, we generate datasets D0, . . . ,Dn−1 of increasing number of vari-
ables and increasing densities. During training, we sample from dataset Di with probability:

p(t, i) =
exp

(
− (i−µ(t))2

2σ2

)
∑n−1

j=0 exp
(
− (j−µ(t))2

2σ2

) with µ(t) = v ·
⌊

t

steps per epoch

⌋

12

https://doi.org/10.1145/1073884.1073933

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

where the curriculum center µ(t) advances with t.

The hyperparameters v (learning pace) and σ (curriculum width) control the progression speed and
overlap between difficulty levels. Setting v = 1 advances the curriculum focus by one variable count
per epoch, while σ determines how much probability mass is distributed to neighboring complexity
levels.

Gaussian scheduler ensures smooth and stable transitions between complexity levels while maintain-
ing exposure to simpler problems throughout training. Early training focuses on low-dimensional
systems where the model can learn basic reduction patterns, while later stages emphasize higher-
dimensional systems that require more sophisticated elimination strategies. The probabilistic sam-
pling prevents abrupt difficulty jumps that could destabilize training.

Evaluation Protocol We evaluate on held-out test sets T0, . . . , Tn−1 using uniform sampling
across all complexity levels: peval(i) =

1
n for i = 0, . . . , n− 1. This uniform evaluation ensures that

performance metrics reflect the model’s ability across the full range of problem complexities and
not being biased toward the current curriculum focus. At the end of training, we evaluate the model
on each dataset separately to characterize the model’s performance and scaling behavior.

C COMPLEMENTARY EXPERIMENTS

We present here more results on the comparison (section 4.2) of HATSolver with the base model
from Kera et al. (2024). We use the same model size and dataset budget as in section 4.2 but train the
models on larger instances, namely the configurations with n = 7 variables and density ρ = 0.25
and with n = 10 variables and ρ = 0.1. As a reminder, the model has 6/6 encoder/decoder layers
with d = 1024 embedding dimensions. The training was performed on 8×V100 GPUs for 72
hours. The training metrics are shown in figs. 3 and 4 which confirm our findings in section 4.2 that
HATSolver learns much faster and is computationally more efficient; in fig. 4, the HATSolver-3
performed more than 400K training steps during the 72h training period while the baseline model
only did less than 120K training steps during the same period. More importantly, the accuracy
of the base model is stuck at 0% while HATSolver-2 and HATSolver-3 achieve 9% and 8%
accuracies respectively.

D DATASETS

D.1 DATA GENERATION CONFIG

Table 3 lists the parameters used to generate the datasets using the script from Kera et al. (2024).
We use the same configuration for a fair comparison.

Hyperparameter Value Explanation
degree sampling (empty) Method for sampling polynomial degrees (not specified)
density 0 < · ≤ 1 Proportion of nonzero terms in generated polynomials
field GF7 Finite field used for computations (Galois Field of order 7)
gb type shape Type of Gröbner basis generated (e.g., shape position)
max degree F 3 Maximum degree for polynomials in matrices U1,U2

max degree G 5 Maximum degree for polynomials in set G
max num terms F 2 Maximum number of polynomial terms in matrices U1,U2

max num terms G 5 Maximum number of terms in polynomials in set G
max size F n+ 2 Maximum size (number of polynomials) in set F
num duplicants 1 Number of duplicate samples generated
num samples test 1000 Number of samples in the test set
num samples train 1,000,000 Number of samples in the training set
num var n Number of variables in the system
term sampling uniform Method for sampling the number of polynomial terms

(uniform over [1,max num terms {F,G}]).

Table 3: Data Generation Configuration and explanations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

0 2000 4000 6000 8000 10000 12000 14000
Training Steps (x 50)

10 1
Tr

ai
ni

ng
 L

os
s

Training Loss
Baseline
HATSolver-3
HATSolver-2

0 2000 4000 6000 8000 10000 12000 14000
Training Steps (x 50)

10 2

6 × 10 3

2 × 10 2

E
va

lu
at

io
n

Lo
ss

Evaluation Loss
Baseline
HATSolver-3
HATSolver-2

0 2000 4000 6000 8000 10000 12000 14000
Training Steps (x 50)

92

94

96

98

To
ke

n
Ac

cu
ra

cy
 (%

)

Token Accuracy (%)
Baseline
HATSolver-3
HATSolver-2

0 2000 4000 6000 8000 10000 12000 14000
Training Steps (x 50)

0

5

10

15

20

Se
qu

en
ce

 A
cc

ur
ac

y
(%

)

Sequence Accuracy (%)
Baseline
HATSolver-3
HATSolver-2

Figure 3: Training dynamics comparison; training models for 72 hours on multivariate datasets of
n = 7 variables and density ρ = 0.25

D.2 STATISTICS OF THE GENERATED DATA

Table 4 provides some statistics about the generated datasets for n = 13 variables over finite field
F7. Notably, we report the max length1 (max sequence length at level 1) which corresponds to the
maximum number of terms per equation within a polynomial system (we report the max, mean, and
std of this statistics over our dataset) for HATSolver-3. When using HATSolver-2 instead,
max length1 is the total number of terms in a system which we also report.

Density Max # Monoms in Sys. Total # Monoms in Sys. Max Degree
max mean std mean std max

0.1 304.0 112.3 33.0 795.0 252.2 11.0
0.2 422.0 167.6 47.8 1188.0 371.6 11.0
0.3 568.0 222.7 61.6 1581.7 484.2 11.0
0.4 658.0 277.4 75.0 1973.1 593.0 11.0
0.5 763.0 331.9 87.7 2361.9 696.2 11.0
0.6 899.0 386.3 100.0 2752.4 798.5 11.0
0.7 987.0 440.9 112.6 3143.9 901.3 11.0
0.8 1099.0 495.0 125.1 3531.2 1002.9 11.0
0.9 1215.0 549.0 137.4 3918.4 1104.0 11.0
1.0 1269.0 602.9 149.3 4305.4 1203.2 11.0

Table 4: Statistics about the 13-variable datasets over F7. Max # Monoms in Sys. is the maximum
number of monomials per equation in each system, for which we report max/mean/std over the
whole dataset. This is the metric we cap to 400 for training. This means that for ρ = 0.4 for
example, we trained on most of the dataset as mean+std = 277 + 75 < 400 while for ρ = 1, we
considered less than 10% of the dataset as mean - std > 400. We also report the total number of
monomials in each system Total # Monoms in Sys. which would be relevant for HATSolver-2
which considers this entity instead.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

0 2000 4000 6000 8000
Training Steps (x 50)

10 1

9 × 10 2

2 × 10 1

Tr
ai

ni
ng

 L
os

s

Training Loss
Baseline
HATSolver-2
HATSolver-3

0 2000 4000 6000 8000
Training Steps (x 50)

10 1

E
va

lu
at

io
n

Lo
ss

Evaluation Loss

Baseline
HATSolver-2
HATSolver-3

0 2000 4000 6000 8000
Training Steps (x 50)

92.5

93.0

93.5

94.0

94.5

95.0

95.5

To
ke

n
Ac

cu
ra

cy
 (%

)

Token Accuracy (%)
Baseline
HATSolver-2
HATSolver-3

0 2000 4000 6000 8000
Training Steps (x 50)

0

2

4

6

8

Se
qu

en
ce

 A
cc

ur
ac

y
(%

)

Sequence Accuracy (%)
Baseline
HATSolver-2
HATSolver-3

Figure 4: Training dynamics comparison; training models for 72 hours on multivariate datasets of
n = 10 variables and density ρ = 0.1

E CLASSICAL ALGORITHM RUNTIME

To verify the computational complexity claims presented in the Kera et al. (2024), we conducted
an independent timing analysis of the STD-FGLM algorithm using 1000 trials per configuration for
polynomial systems with n = 2 to 5 variables using the same backward generated datasets. Our ex-
perimental setup utilized Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz (80 cores) and used the algo-
rithm via SageMath’s interface to Singular (ideal.groebner basis(algorithm=’libsingular:stdfglm’)).
The results reveal substantial discrepancies with the published benchmarks, with our measure-
ments consistently faster than the reported values across all tested configurations. Most notably,
for n = 5, ρ = 0.2 variables, our mean execution time of 0.008±0.028 seconds differs significantly
from the claimed 7.46 seconds. The observed timing variations suggest either different experimental
conditions, alternative algorithm implementations or outlier effect on the mean.

n Density Matched Mean Time ± Std (s) Median (s) Max (s) Paper Claim Mean (s)

2 1.0 100% 0.005 ± 0.010 0.002 0.052 8.02
3 0.6 100% 0.005 ± 0.010 0.002 0.050 7.50
4 0.3 100% 0.006 ± 0.010 0.003 0.054 7.25
5 0.2 100% 0.008 ± 0.028 0.004 0.755 7.46

Table 5: Comparison of STD-FGLM algorithm execution times between reported literature values
in Kera et al. (2024) and experimental verification. Our results show mean ± standard deviation
and median execution times across 1000 trials per configuration (n = 2 to 5 variables, finite field
F7) using ’libsingular:stdfglm’ implementation via SageMath. Matched column indicate that the
found groebner basis matches the one used in backward generation as a sanity check metric. Our
measurements (in seconds) are consistently faster than reported values. All trials were conducted on
Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz (80 cores).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

F TRAINING HYPERPARAMETERS

Hyperparameter Value
Task multivariate-curriculum
Model hatsolver.3
Eval samples 1000
Train samples 1,000,000
Num train epochs 15
Optimizer adam linear warmup, lr=0.00001, warmup updates=1000, weight decay=0
Num encoder heads 1
Timescale 40
Clip grad norm 1.0
Workers 4
Dtype float16
Max sequence length 15,400,15
Max output sequence length 900
Num variables 13
Density -1 # all available densities
Train batch size 2
Val batch size 2
Field GF7
Curriculum scheduler ramp 1
Curriculum scheduler sigma 4
Curriculum min num variables 13
Max coefficient 100
Max degree 20
Auto find batch size False
Dim expansion per level 1
Top down cross attn True
Positional encoding combination concat # versus sum
Pad to max length True
Num encoder layers 4
Num decoder layers 4
Encoder embedding dim 1408

Table 6: Hyperparameters used in our table 2 training experiment.

16

	Introduction
	Main Results

	Preliminaries
	Self Attention
	Gröbner Bases
	Shape Position Systems
	Dataset Generation

	Method
	Limitations of flat attention
	Hierarchical Attention Layer
	Cost Analysis
	Polynomial Encoding and Tokenization
	Positional embedding

	Experiments
	Improving Baseline Model with Curriculum Learning
	Model Comparison
	Scaling up HATSolver-3 (n=13)

	Related Work
	Conclusion
	Reproducibility Statement
	Mathematical foundations
	Monomial Orders
	Zero-Dimensional Systems

	Curriculum Learning Schedulers
	Complementary experiments
	Datasets
	Data Generation Config
	Statistics of the generated data

	Classical algorithm runtime
	Training Hyperparameters

