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Abstract
Large Language Models (LLMs) have demon-001
strated strong performance on various tasks. To002
unleash their power on the Text-to-SQL task,003
we propose R3 (Review-Rebuttal-Revision), a004
consensus-based multi-agent system for Text-005
to-SQL tasks. R3 outperforms the existing sin-006
gle LLM Text-to-SQL systems as well as the007
multi-agent Text-to-SQL systems by 1.3% to008
8.1% on Spider and Bird. Surprisingly, we find009
that for Llama-3-8B, R3 outperforms chain-of-010
thought prompting by over 20%, even outper-011
forming GPT-3.5 on the development set of012
Spider.013

1 Introduction014

Text-to-SQL, the task of converting natural lan-015

guage to SQL queries, enables non-technical016

users to access databases with natural language017

(Deng et al., 2022; Katsogiannis-Meimarakis and018

Koutrika, 2023). Recently, Large Language Mod-019

els (LLMs) have made significant progress on vari-020

ous tasks (Touvron et al., 2023; OpenAI, 2023).021

Although researchers have proposed various022

methods to enhance the reasoning abilities of LLMs023

(Wei et al., 2022; Yao et al., 2023; Besta et al.,024

2024), However, they are still facing challenges025

with Text-to-SQL tasks (Li et al., 2023; Hong et al.,026

2024). The LLM-based multi-agent system lever-027

ages collective intelligence from a group of LLMs028

and have achieved exceptional performance across029

various tasks (Park et al., 2023; Hong et al., 2023;030

Xu et al., 2023), but little work explores using them031

on Text-to-SQL. The existing multi-agent Text-to-032

SQL system first decomposes the task into multiple033

subtasks which are then accomplished step-by-step034

by agents (Wang et al., 2023). While achieving035

remarkable performances, such a decomposition-036

based system necessitates extensive manual prompt037

engineering and logic design.038

We propose R3, a consensus-based multi-agent039

system for Text-to-SQL tasks. The proposed sys-040

Figure 1: R3 Architecture. n reviewer agents, each
with distinct characteristics, are created to review the
generated SQL and its execution result. The process
continues until the master node (SQL-writer) and the
other nodes reach a consensus, at which point the system
outputs the final SQL.

tem draws inspiration from the peer-review mech- 041

anism, featuring one agent as the SQL-writer and 042

several reviewers automatically generated by the 043

LLM. Once the generated SQL query is tested to be 044

executable, the system will step into a review pro- 045

cess, where we use the execution results to guide 046

the SQL-writer and reviewers to refine the SQL. 047

Through rounds of “review”, “negotiation or rebut- 048

tal”, and “revision”, SQL-writer and reviewers will 049

finally achieve consensus and deliver a solution 050

with collective agreement (see Figure 1). 051

We test R3 on the popular Spider and Bird bench- 052

marks. R3 outperforms the existing single LLM 053

as well as the multi-agent Tex-to-SQL systems by 054

1.3% to 8.1% on Spider and Bird. Surprisingly, we 055

find that for Llama-3-8B, R3 outperforms chain-of- 056

thought prompting by over 20%, even outperform- 057

ing GPT-3.5 on the Spider-Dev set. Our contribu- 058

tions can be summarized as follows: 059

1. To the best of our knowledge, R3 is the first 060

Text-to-SQL system to use the execution result 061

for SQL refinements, and the first Text-to-SQL 062

system to equip agents with memory sequences 063
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to enhance SQL generation.064

2. R3 offers a consensus-based multi-agent sys-065

tem for Text-to-SQL tasks. Using very succinct066

prompts, it achieves strong performance com-067

pared to other systems. In addition, it effectively068

helps open-source LLMs such as Llama-3-8B069

on SQL generation.070

3. We provide a detailed error analysis of R3 on071

the existing Text-to-SQL benchmarks, shedding072

light on future research on the Text-to-SQL task.073

2 Architecture074

SQL-Writer (SW). We task SW agents to: (1)075

compose the original SQL query based on the user076

question and database schema; (2) ensure that the077

SQL query is executable, and correct it when errors078

occur; (3) respond to reviewer agents’ feedback and079

revise the SQL query accordingly. Specifically, we080

prompt SW agent through Prompt 1 in Appendix081

A.9. For task (1), we feed the Prompt 1 to SW082

agent directly. Given a user question x and the083

database schema S, task (1) can be formalized as:084

y = LLM(x,S),085

where y is the generated SQL query. For (2) and086

(3), we maintain a dialogue historyH initially set to087

H = [(x,S), y]. Specifically, if an error e occurs,088

we append e to the historyH ← H+ e and get y′089

through:090

y′ = LLM(H).091

We then concatenate y′ with the historyH ← H+092

y′. In addition, considering the length limitation of093

LLMs’ context window, we truncate the historyH094

when the prompt is longer than the context limit.095

Reviewers (REs). We generate the reviewer096

agent’s professions using an LLM (see Prompt 3 in097

Appendix A.9) based on the database schema and098

the content of the SQL query, for instance, “Senior099

Database Engineer specialized in writing various100

clauses” and “Data Analyst in the automotive indus-101

try”, etc. We incorporate these professions in the102

system prompt for the reviewer agent to make them103

focus on different aspects of the SQL query. These104

reviewer agents are prompted to provide their pro-105

fessional comments based on the database schema,106

the user’s question, the predicted SQL, and its exe-107

cution result in the table format.108

Overall Architecture. After several rounds of109

“negotiation” between the SQL-writer and reviewer110

GivenGivenGiven x (user question), S (schema)
y = LLM(x,S)
H = [(x,S), y]
i = 0
j = 0
while i <= MaxReviewTurns do

while j <= MaxDebugTurns do
Try:
T = Database(y)
break

Except Exception as e:
j ← j + 1
H ← H+ e; y′ = LLM(H)
H ← H+ y′

end
r = LLM(x,S, y, T )
H ← H+ r; y′′ = LLM(H)
H ← H+ y′′

if y == y′′ then
break

else
y ← y′′

end
i← i+ 1

end
Algorithm 1: R3-Loop

agents, we decide whether there is a consensus 111

by checking if the SQL-writer agent generates the 112

same SQL query as in the previous round. When 113

there is a consensus, we terminate the negotiation 114

loop and output the final SQL query. Algorithm 1 115

depicts the overall process of our system. 116

Appendix A.9 provides the detailed prompts we 117

use in R3. In addition, we incorporate: 118

1. Program of Thoughts (PoT) (Chen et al., 2023) 119

to prompt the SQL-writer agent to generate 120

Python code before SQL query (see Prompt 2 121

in Appendix A.9). Therefore, the agents may 122

leverage Python in their reasoning process for 123

better SQL query generation. 124

2. k-shots example selection based on similarity 125

of the user question embeddings. Specifically, 126

when our system infers the SQL query in the test 127

set, we select the k most similar use questions 128

and their corresponding SQL queries from the 129

training set (k-shots) and use them for in-context 130

learning. 131

3 Experiments and Results 132

We conduct experiments on two cross-domain Text- 133

to-SQL benchmarks, Spider and Bird detailed in Ta- 134

ble 5 in Appendix A.1. We employ test-suite execu- 135

tion evaluation1 (Zhong et al., 2020), the standard 136

evaluation protocol for Spider, and the official SQL 137

1github.com/taoyds/test-suite-sql-eval
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Model Method SD ST BD

G
PT-3.5

- (Li et al., 2023) 72.1 - 37.22
C3 (Dong et al., 2023) 81.8 82.3 -
MAC (Wang et al., 2023) 80.6 75.5 50.56
R3 5-shot 81.4 81.1 52.15

G
PT-4

DAIL (Gao et al., 2023) 83.6 86.6 -
PET (Li et al., 2024) 82.2 87.6 -
DIN (Pourreza and
Rafiei, 2023)

82.8 85.3 50.72

MAC (Wang et al., 2023) 86.8 82.8 59.39
R3 5-shot 88.1 89.9 61.80

Table 1: Execution accuracy across various models and
methods. We use the GPT-3.5-Turbo in our experiment.
“SD”, “ST”, “BD” represent Spider-Dev, Spider-Test,
Bird-Dev, respectively. For detailed description of base-
line methods mentioned above, see Appendix A.2.

Model Method SD ST

GPT-3.5 - (Li et al., 2023) 72.1 -

Llama-3-8B CoT 52.1 53.5
R3 0-shot 72.8 72.6

Llama-3-70B R3 0-shot 79.7 80.3

Table 2: Execution accuracy comparison when we equip
Llama-3 models with R3on Spider-Dev (“SD”) and
Spider-Test (“ST”).

execution accuracy evaluation for Bird2. Table 1138

compares R3’s performance with existing base-139

line methods when we employ different foundation140

LLMs. Our best performed system achieves 88.1%,141

89.9%, and 61.8% on the Spider-Dev, Spider-Test,142

and Bird-Dev respectively, surpassing the existing143

multi-agent Text-to-SQL systems. In addition, we144

test our system with open-source Llama-3 models145

on Spider and report the results in Table 2. To our146

surprise, with the help of R3, zero-shot Llama-3-8B147

outperforms GPT-3.5 performance reported by Li148

et al. (2023) on Spider-Dev set. This demonstrates149

the effectiveness of our proposed R3 system.150

3.1 Ablation Studies151

We conduct an ablation study on the impact of CoT,152

PoT with one or three reviewer agents in the discus-153

sion and report the results in Table 3. The results in154

Table 3 show that the n-Reviewer(s) Loop (nR-Lp)155

plays a major role in performance improvement,156

with the 3R-Lp configuration significantly outper-157

forming the 1R-Lp setup. The proposed R3 system158

achieves a 10.54% improvement over the baseline159

GPT-4 + CoT. We provide the statistical signifi-160

cant test for these results in Appendix A.4. Ap-161

2bird-bench.github.io/

GPT-3.5-Turbo GPT-4

Spider Bird Spider Bird

CoT 78.2 37.22 79.7 53.30

PoT 78.5 36.96 80.0 54.61

1R-Lp + CoT 78.3 44.13 82.3 57.89

1R-Lp + PoT 79.3 46.35 85.4 58.34

R3: 3R-Lp + PoT 81.4 52.15 88.1 61.80

Table 3: Ablation Studies on Spider-Dev and Bird-Dev
(Execution Accuracy). The 1-Reviewer Loop (1R-Lp)
represents that only one reviewer agent participates in
the discussion, while the 3-Reviewers Loop (3R-Lp) rep-
resents three in the dicussion, which is also the default
configuration of R3. We conduct all the experiments
here under the 5-shot setting.

pendix A.3 provides a sensitivity analysis of the 162

impacts of the k value in k-shots. 163

We conducted case studies on 244 instances 164

from the Spider-Dev dataset where the CoT fail 165

but R3succeed when combined with Llama-3-8B. 166

The findings are as follows: 167

1. Corrected non-executable SQL queries, 168

51%. The LLM equipped with memory mod- 169

ule (see Section 2) excels at correcting non- 170

executable SQL queries. 171

2. Refinement based on reviewers’ comments, 172

44%. The nR-Lp functions as an enhanced 173

Self-Consistency (SC) (Wang et al., 2022). 174

On the one hand, it avoids the hallucinations 175

caused by high temperatures (Renze and Gu- 176

ven, 2024). On the other hand, the nR-Lp 177

considers feedback from all agents, unlike the 178

voting process in SC, which consistently dis- 179

regards minority opinions. 180

3. Refinement based on the output table, 181

27.5%. LLMs may not experts in SQL writ- 182

ing, but they are full-skilled data readers. The 183

information that reviewers observe from exe- 184

cution results greatly assists the SQL-writer 185

in refining the SQL. 186

3.2 Error Analysis 187

In total, GPT-4+R3 fails to generate the gold SQL 188

queries for 123 instances in Spider-Dev. Table 4 189

shows the error case distribution for our system 190

on Spider-Dev (more in Appendices A.6 and A.7). 191

Note that though we have spotted issues with the 192
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Error Types Question, Gold & Prediction Explanation

Gold Error
(30.5%)

Q: What are the Asian countries which have a population larger than that of any country in Africa?
Gold: ❌ … AND population > (SELECT min(population) FROM country WHERE 
Continent = "Africa")
Pred: ✅ … AND population > (SELECT max(population)
FROM country WHERE Continent = "Africa") 

Judged as incorrect because of the 
incorrect gold SQL query.

Logic
(29.8%)

Q: How many owners temporarily do not have any dogs?
Gold: ✅ SELECT count(*) FROM Owners WHERE owner_id NOT IN (SELECT 
owner_id FROM Dogs)      
Pred: ❌ SELECT (SELECT COUNT(DISTINCT owner_id) FROM Owners) - (SELECT 
COUNT(DISTINCT owner_id) FROM Dogs WHERE date_departed IS NULL)

The predicted SQL query wrongly 
assumes that all owners have had 
dogs.

Ambiguity
(13.2%)

Q: What are the names of all makers with more than 3 models?
Gold: ✅ SELECT T1.FullName ... HAVING count(*) > 3; 
Pred: ✅ SELECT T1.Maker ... HAVING count(*) > 3; 

Both FullName  and Maker  
columns hold the information for 
“names”.

Inaccuracy
(11.3%)

Q: What are the arriving date of the dogs who have gone through a treatment?
Gold: ✅ SELECT T1. date_arrived, FROM ...
Pred: ❌ SELECT T1. date_arrived, T1.Name FROM ...

The selected Name  is not asked by 
the question.

DB Value
(10.6%)

Q: Which city and country is the Alton airport at?
Gold: ✅ SELECT ... WHERE AirportName = "Alton" ;
Pred: ❌ SELECT ... WHERE AirportName LIKE "%Alton%" ;

Our framework notices there is a 
space for Alton  in the DB, 
therefore employing a fuzzy match. 

Others (4.6%)

Table 4: Error Analysis of R3 on Spider-Dev. We make the part in the question red when it is either annotated
incorrectly in the gold SQL query (Gold) or predicted incorrectly in the predicted SQL query (Pred).

gold SQL queries, we still adopt the original set to193

calculate the performance of our system to ensure194

a fair comparison.195

Gold Error. We notice that though the annota-196

tion quality of Spider is good, there are still cases197

where the gold SQL queries are not correct. Specif-198

ically, among the 151 examples, 30.5% are due to199

incorrect gold SQL queries (4.5% of all the exam-200

ples in Spider-Dev). To facilitate future research,201

we catalog the instances with incorrect gold SQL,202

correct the errors, and share the details3.203

Ambiguity. We observe that there are a few ques-204

tions involving ambiguities, a phenomenon spot-205

ted on a wide range of NLP tasks (Plank, 2022;206

Deng et al., 2023). In Table 4.3, both FullName207

and Maker columns hold the information for the208

“name of makers”, except that FullName holds209

the full names while Maker holds the name abbre-210

viations. Therefore, both the gold and predicted211

SQL queries should be considered correct if there is212

no further clarifications. Such ambiguous requests213

may be common in real-world applications as the214

lay users may not be familiar with the database215

schema. This requires future research on interac-216

tive Text-to-SQL systems that can understand and217

deal with such ambiguities in user questions.218

3visible-after-review.com

Dirty Database Value. We observe that due to 219

the Database (DB) setup for Spider, certain DB val- 220

ues may deviate from what is asked in the question. 221

For instance, in Table 4.5, R3 notices a space for 222

Alton in DB, therefore employing a fuzzy match. 223

But this deviates the SQL query’s execution results 224

from the gold SQL query’s results. 225

Explanations of “Logic” and “Inaccuracy” er- 226

rors can be found in Appendix A.5. Our findings 227

indicate that the existing evaluation protocols for 228

Text-to-SQL generation may not authentically cap- 229

ture the capabilities of these sophisticated systems. 230

Therefore, we advocate for a reassessment and en- 231

hancement of Text-to-SQL evaluation methods. We 232

provide further error analysis of R3 on Bird in Ap- 233

pendix A.7. 234

4 Conclusion 235

R3 significantly enhance the performances of 236

LLMs on the Text-to-SQL task. We conduct a 237

comprehensive error analysis and identify persis- 238

tent issues with the current Text-to-SQL evaluation. 239

This underscores the necessity for our community 240

to develop a refined evaluation protocol that more 241

effectively captures nuances in SQL generation and 242

accurately reflects model performance. 243
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Limitations244

Due to the scope of the study, we only test a limited245

number of LLMs. The performance gap between246

1R-Lp and 3R-Lp demonstrates that the number of247

reviewers is a worthwhile topic of research. How-248

ever, this work does not delve into this much.249

Ethical Statements250

In this paper, we propose strategies to improve the251

SQL generation capabilities of LLMs. To the best252

of our knowledge, we do not expect our system253

would have negative impacts on the society.254
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A Appendix378

A.1 Dataset Descriptions379

Spider-Dev Spider-Test Bird-Dev

(Yu et al., 2018) (Li et al., 2023)

#QA 1,034 2147 1,534

#Domain 138 - 37

#DB 200 206 95

DB Size 879.5 MB 906.5 MB 1.76 GB

Table 5: Statistics of two Text-to-SQL benchmarks we
use in our experiments. “#QA”, “#Domain” and “#DB”
refer to the number of samples, domains and databases,
respectively.

A.2 Baseline380

Experiments in this work was based on LLMs in-381

cluding GPT-3.5-Turbo, GPT-4 (OpenAI, 2023)382

and Llama-3 (AI@Meta, 2024). As for the com-383

pared methods, the raw performance for GPT-3.5384

(“-”) was evaluated by Li et al. (2023); C3 employs385

schema linking filtering (Dong et al., 2023); DAIL386

selects few-shot demonstrations based on their387

skeleton similarities (Gao et al., 2023), and “SC” 388

represents Self-Consistency (Wang et al., 2022); 389

PET uses cross-consistency (Li et al., 2024); DIN 390

decomposes the text-to-SQL task into smaller sub- 391

tasks (Pourreza and Rafiei, 2023); MAC, as previ- 392

ously mentioned, is the first to apply a Multi-Agent 393

system to Text-to-SQL tasks (Wang et al., 2023). 394

A.3 Effects of k in k-shot. 395
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Figure 2: k-shot Sensitivity Analysis.

We test various k values on 200 random samples 396

from Spider-Dev. As shown in Figure 2, compared 397

to CoT, the performance of the R3 system remains 398

relatively stable regardless of the number of ex- 399

amples, which corroborates our previous findings 400

from the 0-shot experiments with Llama-3. 401

A.4 Significance Test 402

We divided the generated SQL by several strategies 403

in Table 3 into 10 equal parts and calculated the 404

execution accuracy for each. To test whether our 405

strategy can indeed improve execution accuracy, 406

we conduct a significance test between the “CoT” 407

and “3R-Lp+PoT” strategies. The null hypothesis 408

of the test is that the median execution accuracy 409

obtained by the two strategies is the same. The 410

Mann-Whitney U Test (Mann and Whitney, 1947) 411

is a non-parametric statistical method used to com- 412

pare whether there is a significant difference in the 413

6



medians of two independent samples. Compared414

to the Analysis of Variance (ANOVA), it does not415

require the data to be normally distributed, making416

it suitable for small samples or data with unknown417

distribution.418

The p-value of the test is 0.0024, which is below419

the commonly accepted significance level of 0.05.420

Therefore, we have reason to reject the null hy-421

pothesis, indicating that the “3R-Lp+PoT” strategy422

leads to a significant performance improvement.423

A.5 Additional Error Types424

Logic. In Table 4.2, we present an example of425

the logic error made by R3. We notice that LLMs426

may solve the problems using a more complicated427

logic, which is prone to mistakes. For instance, in428

Table 4.2, instead of directly counting the owners429

who do not own dogs, the LLMs try to substract430

the number of dog owners from the total number431

of owners. This ignores the possibility that some432

owners may have never had any dogs before. This433

addresses an issue with the multi-agent system that434

if the system comes up with a complicated initial435

SQL query, the following discussion process may436

try to polish the complicated SQL query instead437

of switching to an easier solution. In cases like438

Table 4.2, there is no way to reach a perfect SQL439

query with the substraction logic.440

Inaccuracy. We observe that the LLMs may in-441

corporate more information than what is asked by442

the end user. For instance, in Table 4.4, the user443

does not ask for the name of the dogs but the LLMs444

present such information along with the asked ar-445

riving date. We hypothesize that since such extra446

information can potentially be helpful to the end447

user, LLMs may be biased towards including it.448
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A.6 Spider Error Cases449

Error Type Question, Gold & Prediction Reason

DB Value Q:Q:Q: Find the last name of the students who currently live in the
state of North Carolina but have not registered in any degree
program.
Gold:Gold:Gold: SELECT ... WHERE
T2.state_province_county
= ’NorthCarolina’ EXCEPT ...

Pred:Pred:Pred: SELECT ... WHERE
T2.state_province_county
= ’North Carolina’ EXCEPT ...

The filtering condition in the
question does not match the
database value, string
“NorthCalifornia” in database
do not have a space in between.

Gold Error Q:Q:Q: What are the first names of all players, and their average
rankings?
Gold:Gold:Gold: SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2 ON
T1.player_id = T2.player_id
GROUP BY T1.first_name

Pred:Pred:Pred: SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2 ON
T1.player_id = T2.player_id
GROUP BY T1.player_id

The individuals in the table can
be uniquely determined by
column player_id not
first_name, when GROUP BY.

Gold Error Q:Q:Q: Find the id and cell phone of the professionals who operate
two or more types of treatments.
Gold:Gold:Gold: SELECT T1.professional_id,
T1.cell_number FROM Professionals AS T1
JOIN Treatments AS T2 ON
T1.professional_id = T2.professional_id
GROUP BY T1.professional_id
HAVING count(*) >= 2

Pred:Pred:Pred: SELECT T1.professional_id,
T1.cell_number FROM Professionals AS T1
JOIN Treatments AS T2 ON
T1.professional_id = T2.professional_id
GROUP BY T1.professional_id HAVING
COUNT( DISTINCT T2.treatment_type_code) >=
2

The gold only finds
professionals who have two or
more records in the treatment
table does not ensure that the
records are for different types
of treatments

Ambiguity Q:Q:Q: What are the names and ids of all makers with more than 3
models?
Gold:Gold:Gold: SELECT T1.FullName , T1.Id FROM
CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON
T1.Id = T2.Maker GROUP BY T1.Id HAVING
count(*) > 3;
Pred:Pred:Pred: SELECT T1.Maker , T1.Id FROM
CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON
T1.Id = T2.Maker GROUP BY T1.Id HAVING
count(*) > 3;

Both column “Maker” and
column “FullName” can answer
the question about the “names
of makers” in the query.

Imprecise Q:Q:Q: What are the arriving date and the departing date of the dogs
who have gone through a treatment?
Gold:Gold:Gold: SELECT DISTINCT T1.date_arrived,
T1.date_departed FROM Dogs AS T1 JOIN
Treatments AS T2 ON T1.dog_id = T2.dog_id
Pred:Pred:Pred: SELECT DISTINCT T1.date_arrived,
T1.date_departed, T1.Name FROM Dogs AS T1
JOIN Treatments AS T2 ON T1.dog_id =
T2.dog_id

The question do not require
listing the specific names of the
students, but only ask to list the
students’ arrival and departure
dates. This falls under
information redundancy.

Table 6
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A.7 BIRD Error Cases 450

Error Type Question, Gold & Prediction Reason

DB Value Q:Q:Q: How many cards with unknown power that can’t be found in
foil is in duel deck A?
Gold:Gold:Gold: SELECT SUM(CASE WHEN power
LIKE ’%*%’ OR power IS NULL THEN 1 ELSE 0
END) FROM cards WHERE hasFoil = 0 AND
duelDeck = ’a’
Pred:Pred:Pred: SELECT COUNT(*) FROM cards WHERE
(power IS NULL OR power = ’*’ ) AND
hasFoil = 0 AND duelDeck = ’a’

Values in database cannot exact
match with the question and
evidence.

Gold Error Q:Q:Q: How many artists have designed a card with a black border
color and is available in both "arena" and "mtgo" printing type?
Gold:Gold:Gold: SELECT COUNT(CASE WHEN availability
LIKE ’%arena,mtgo%’ THEN 1 ELSE NULL END)
FROM cards
Pred:Pred:Pred: SELECT COUNT(DISTINCT artist) FROM
cards WHERE borderColor = ’black’ AND
availability LIKE ’%arena,mtgo%’

The gold missed one filtering
condition.

Ambiguity Q:Q:Q: Among black card borders, which card has full artwork?
Gold:Gold:Gold: SELECT id FROM cards WHERE
borderColor = ’black’ AND isFullArt = 1
Pred:Pred:Pred: SELECT name FROM cards WHERE
borderColor = ’black’ AND isFullArt = 1;

Both column “name” and
column “id” can answer the
question about the “the card has
full artwork” in the query.

Logic Q:Q:Q: Which cities have the top 5 lowest enrollment number for
students in grades 1 through 12?
Gold:Gold:Gold: SELECT T2.City FROM frpm AS T1 INNER
JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode GROUP BY T2.City ORDER BY
SUM(T1.‘Enrollment (K-12)‘) ASC LIMIT 5
Pred:Pred:Pred: SELECT T2.City, T1."Enrollment (K-12)"
FROM frpm AS T1 JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode ORDER BY
T1."Enrollment (K-12)" ASC LIMIT 5;

The Pred query is incorrect
because it lacks grouping and
aggregation. It directly selects
cities and their corresponding
"Enrollment (K-12)" without
summing up the enrollment
numbers across all schools
within each city. As a result, it
returns the cities of the five
schools with the lowest
enrollment numbers, which
does not accurately answer the
question seeking the top 5 cities
with the lowest total enrollment
for students in grades 1 through
12.

Table 7
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A.8 Interactive Correction Cases451

Before After Reason

Q:Q:Q: What is the phone number of the school that has the highest number of test takers with an SAT score of over 1500?

Before:Before:Before:
SELECT schools.Phone
FROM satscores
JOIN schools ON
satscores.cds =
schools.CDSCode
WHERE satscores.NumGE1500
> 1500
GROUP BY schools.School
ORDER BY COUNT(*) DESC
LIMIT 1;

After:After:After:
SELECT schools.Phone
FROM satscores
JOIN schools ON
satscores.cds =
schools.CDSCode
ORDER BY
satscores.NumGE1500 DESC
LIMIT 1;

The WHERE clause is checking if the
number of test takers with an SAT score
over 1500 is greater than 1500, which is
not what the question is asking. The
question is asking for the school with
the highest number of test takers who
scored over 1500. Additionally, the
GROUP BY clause is grouping by the
school name, which may not be unique.
It would be better to group by the
school code (CDSCode) which is
unique for each school.

Q:Q:Q: List the top five schools, by descending order, from the highest to the lowest, the most number of Enrollment (Ages
5-17). Please give their NCES school identification number.

Before:Before:Before:
SELECT T1."School Name",
T2.NCESSchool
FROM frpm AS T1
JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

After:After:After:
SELECT T2.NCESSchool
FROM frpm AS T1
JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

The question asks for the top five
schools with the most number of
Enrollment (Ages 5-17), and their
NCES school identification number.
However, the SQL query provided
returns the school name, which is not
required by the question.

Q:Q:Q: find the package option of the tv channel that do not have any cartoon directed by Ben Jones.

Before:Before:Before:
SELECT
TV_Channel.Package_Option
FROM TV_Channel
LEFT JOIN Cartoon ON
TV_Channel.id =
Cartoon.Channel
WHERE Cartoon.Directed_by
IS NOT ’Ben Jones’;

After:After:After:
SELECT
TV_Channel.Package_Option
FROM TV_Channel
WHERE TV_Channel.id NOT IN
(
SELECT Cartoon.Channel
FROM Cartoon
WHERE Cartoon.Directed_by
= ’Ben Jones’);

The current query is selecting all
channels where the director is not Ben
Jones, but it should exclude channels
that have any cartoons directed by Ben
Jones. This can be achieved by using a
subquery to find all channels that have
cartoons directed by Ben Jones, and
then excluding these channels in the
main query. Here is the corrected SQL:

Q:Q:Q: List the earnings of poker players in descending order.

Before:Before:Before:
SELECT * FROM poker_player
ORDER BY Earnings DESC;

After:After:After:
SELECT Earnings FROM
poker_player ORDER BY
Earnings DESC;

The question only asks for the earnings
of poker players. Therefore, we should
only select the ‘Earnings‘ column to
make the result more concise and
relevant to the question.

Q:Q:Q: How many countries speak both English and Dutch?

Before:Before:Before:
SELECT COUNT(DISTINCT
CountryCode)
FROM countrylanguage
WHERE Language = ’English’
AND CountryCode IN (
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’Dutch’)

After:After:After:
SELECT COUNT(*)
FROM (
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’English’
INTERSECT
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’Dutch’)

The SQL query provided uses the ‘IN‘
clause, which selects countries that
speak either English or Dutch. However,
the question asks for countries speaking
both languages. Using IN results in a
union of sets (either English or Dutch),
not an intersection (both English and
Dutch). This could be done with two
separate queries joined by an
‘INTERSECT‘ clause.

Table 8
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A.9 Prompt Examples 452

Describe how you understand the question based on the evidence , and 453

help me write an SQL to answer the question. 454

# ## EVIDENCE : { e v i d e n c e } 455

# ## USER_QUESTION : { q u e s t i o n } 456

457

# ## RELATED SQL : 458

{related_sql} 459

460

# ## DATABASE STRUCTURE : 461

{schema} 462

Prompt 1: CoT-SQL-Writer

Write an to answer the question. 463

464

Program of Thoughts (PoT) is a variant of Chain of Thought (CoT), 465

pre −generating Python code to assist in the creation of SQL. Please 466

apply PoT (and PoT only) before generating an SQL. 467

In your python code , `Table %s` is stored in `db_dict['%s']`, ` 468

db_dict ` is of type dict[pandas.DataFrame ]. 469

470

# ## RELATED SQL : 471

{related_sqls} 472

473

# ## DATABASE STRUCTURE : 474

{schema} 475

476

# ## EXAMPLES : 477

QUESTION: What is %s in the earliest year and what year was it? 478

SQL: 479

earliest_year = db_dict [%s]['Year'].min() 480

year_filtered_data = step1_result[step1_result['Year'] == 481

earliest_year] 482

result = year_filtered_data [[%s, 'Year']] 483

```sql 484

SELECT T1.%s, T2.Year FROM %s AS T1 JOIN %s AS T2 ON T1.Id = T2.Id 485

WHERE T2.Year = (SELECT min(YEAR) FROM %s); 486

``` 487

488

QUESTION: Show names for all %s except for %s having a %s in year 489

2023. 490

SQL: 491

%s_2023 = db_dict['%s'][ db_dict['%s']['year'] == '2023'] 492

result = db_dict [%s][~ db_dict [%s][%s].isin(% ss_2023 [%s])] 493

```sql 494

SELECT name FROM %s EXCEPT SELECT T2.name FROM %s AS T1 WHERE T1. 495

year = 2023 496

``` 497

498

QUESTION: Find the %s that %s is A and B? 499

SQL: 500
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condition_a_data = db_dict [%s][ db_dict['Cartoon '][%s] == 'A']501

condition_b_data = db_dict [%s][ db_dict['Cartoon '][%s] == 'B']502

result = pd.merge(condition_a_data , condition_b_data , how='inner')503

```sql504

SELECT T1.%s FROM %s AS T1 WHERE %s = 'A'505

INTERSECT506

SELECT T1.%s FROM %s AS T1 WHERE %s = 'B'507

```508

509

# ## EVIDENCE : { e v i d e n c e }510

# ## USER_QUESTION : { q u e s t i o n }511

# ## SQL :512

Prompt 2: PoT-SQL-Writer

You are the manager of a Database project. You are going to invite513

{n} experts to review an SQL query.514

Who would you invite?515

516

considering:517

(1) the domain of this database;518

(2) the structure of this SQL.519

Please write your invitation as a JSON format dictionary , Enclose520

the JSON within ```json...```.521

522

# ## DATABASE STRUCTURE :523

{schema}524

525

# ## QUESTION : { q u e s t i o n }526

# ## SQL :527

{pred_sql}528

529

# ## EXAMPLES :530

```json531

{532

"Reviewer PVsg": "Data Analyst in automotive industry",533

"Reviewer 2KtR": "Senior Database Engineer specialized in writing534

various clauses",535

"Reviewer LmN3": "Senior Database Engineer specialized in writing536

filtering conditions"537

}538

```539

# ## INVITATION :540

Prompt 3: Invitation
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