
Large Language Models Need Consultants for Reasoning: Becoming an
Expert in a Complex Human System Through Behavior Simulation

Anonymous ACL submission

Abstract

Large language models (LLMs), in conjunction001
with various reasoning reinforcement method-002
ologies, have demonstrated remarkable capa-003
bilities comparable to humans in fields such as004
mathematics, law, coding, common sense, and005
world knowledge. In this paper, we delve into006
the reasoning abilities of LLMs within complex007
human systems. We propose a novel reason-008
ing framework, termed "Mosaic Expert Obser-009
vation Wall" (MEOW) exploiting generative-010
agents-based simulation technique. In the011
MEOW framework, simulated data are utilized012
to train an expert model concentrating “experi-013
ence” about a specific task in each independent014
time of simulation. It is the accumulated “ex-015
perience” through the simulation that makes016
for an expert on a task in a complex human017
system. We conduct the experiments within a018
communication game that mirrors real-world019
security scenarios. The results indicate that our020
proposed methodology can cooperate with ex-021
isting methodologies to enhance the reasoning022
abilities of LLMs in complex human systems.023

1 Introduction024

Large language models (LLMs) are evolving025

rapidly. Through extensive training on vast026

datasets, they exhibit remarkable open-domain rea-027

soning capabilities. Llama-2 (Touvron et al., 2023)028

shows superior reasoning performance across var-029

ious evaluation benchmarks, including mathemat-030

ics (Cobbe et al., 2021; Hendrycks et al.), cod-031

ing (Chen et al., 2021), common sense (Bisk032

et al., 2020; Sap et al., 2019), world knowledge033

(Kwiatkowski et al., 2019), and reading compre-034

hension (Rajpurkar et al., 2018; Choi et al., 2018).035

Techniques such as fine-tuning (FT) (Hu et al.,036

2021; Roziere et al., 2023), chain-of-thought (CoT)037

(Kojima et al., 2022), in-context learning (ICL)038

(Wei et al., 2022), and retrieval-augmented genera-039

tion (RAG) (Lewis et al., 2020) further enhance the040

performance of LLMs in specific tasks or domains.041

Figure 1: Mosaic investigation wall is what detectives
use to visualize clues and interactions within cases.
Through simulating current individuals’ behaviors and
interactions on a Mosaic wall, a detective can deduce
who may be the crime in corresponding real case.

However, these methodologies may not deal well 042

with complex human strategic decision-making and 043

interaction scenarios. For instance, in the context 044

of financial security, due to privacy issues, there is 045

a lack of data and explicit knowledge to implement 046

FT and RAG effectively. Moreover, ICL combined 047

with CoT often leads LLMs to stick to examples or 048

historical information when solving problems. In 049

fact, this approach is not always effective, as finan- 050

cial attackers may not repeat previously detected 051

or blocked methods to attack the financial system, 052

and even some valid behaviors by the normal can 053

lead to systemic risk (Eisenberg and Noe, 2001). 054

Simulation techniques serve as indispensable 055

tools for tackling challenges within complex hu- 056

man systems. An inherent feature of simulation is 057

its capacity to delve into interactions among indi- 058

viduals, offering an optimal solution to problems 059

related to complex systems. Studies across diverse 060

fields (Cui et al., 2010; Zhou et al., 2020; Hui et al., 061

2022) have validated their effectiveness. With the 062

advent of generative agents technique (Park et al., 063

2023) which realized individual-level human be- 064

havior simulation in a sandbox, we believe that 065

simulation techniques based on it can indeed ex- 066

tend beyond complex natural systems to complex 067

human systems. 068

In this paper, after utilizing the generative- 069
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agents-based simulation technique to simulate a070

complex human system, we design a novel frame-071

work, “Mosaic Expert Observation Wall” (MEOW),072

which imitates a detective simulating and analyzing073

a case through Mosaic investigation wall as illus-074

trated in Figure 1. In MEOW, real game data are075

processed by an expert model trained on simulated076

data and converted into natural language prompts as077

expert observation to assist LLM reasoning. From078

the perspective of assisted LLM agent, the expert079

model serves as its consultant. This novel method-080

ology addresses aforementioned problems of exist-081

ing LLM reasoning reinforcement methodologies,082

which offers the potential to improve LLM reason-083

ing independently or in conjunction with them in084

complex human systems. As a validation, we con-085

duct the experiments in a Werewolf-like communi-086

cation game where players infer others’ identities087

based on common sense and game strategies. This088

scenario is a simplified representation of real-world089

security scenarios involving conscious attackers090

and involuntary negative behaviors. Subsequently,091

another LLM-based agent acts as a detective to092

infer each player’s identity.093

MEOW addresses challenges in analyzing prob-094

lems in complex human systems and is capable of095

collaborating with existing LLM reasoning rein-096

forcement approaches. Our experimental results097

demonstrate the effectiveness of MEOW. Addition-098

ally, through these experiments, we stumble across099

and summarize some serious challenges of apply-100

ing MEOW to more complex human systems.101

2 Related Work102

2.1 LLM Reasoning103

When applying a general LLM to a specific sce-104

nario, there is often a demand for focusing on105

knowledge relevant to that scenario. To meet this106

demand, methodologies such as FT, CoT, ICL, and107

RAG have been proposed and are widely used.108

Among them, FT is the most powerful one. Ef-109

ficient fine-tuning methods based on Low-Rank110

Adaptation of LLMs (LoRA) (Hu et al., 2021) have111

enabled the realization of specialized LLMs for112

code (Roziere et al., 2023), biomedical applications113

(Tinn et al., 2023), and more. CoT (Kojima et al.,114

2022), originating from a special prompt, “Let’s115

think step by step”, is a data-free approach to im-116

prove LLM reasoning on complex problems. CoT117

methods, and further tree-of-thought (Yao et al.,118

2023) feature using special prompts and context or-119

ganization modes to direct the LLM in generating a 120

series of steps to solve a problem. Since LLMs 121

require context to filter candidate tokens, more 122

sufficient and meaningful contexts enhance their 123

ability to reason about complex problems. ICL, 124

which makes LLMs learn from analogy, was first 125

applied to solve mathematical problems (Wei et al., 126

2022). Through prompts of problem-solving exam- 127

ples, the LLM imitates the correct steps, making 128

it a kind of manual CoT based on example data 129

(Dong et al., 2022). RAG, leveraging external pro- 130

fessional knowledge, can effectively mitigate the 131

hallucination of LLMs (Lewis et al., 2020). By 132

retrieving external knowledge, LLM applications 133

like Copilot 1 and GPT-4 (Achiam et al., 2023) can 134

generate and reason more accurately. However, FT 135

and RAG require extremely huge amounts of high- 136

quality data that are often unavailable in complex 137

human systems. While CoT and ICL require less 138

data, the complexity of human systems makes it 139

challenging to solve problems using analogical and 140

simple “step by step” patterns. Therefore, none 141

of these methodologies is good enough to analyze 142

complex human systems at present. 143

2.2 Generative-agents-based Simulation 144

Generative-agents-based simulation is a form of 145

agent-based simulation whose agents are text-based 146

LLMs instead of typical deep learning (DL) mod- 147

els trained in closed domains. Proposed by Park 148

et al. (2023), this simulation leverages the strengths 149

of generative agents, encompassing common sense 150

reasoning, contextual retrieval, and humanity. With 151

these advantages, logical thoughts and human- 152

like social behaviors have been observed during 153

the simulation in a sandbox. Furthermore, Gao 154

et al. (2023) developed a social network simula- 155

tion framework building upon the work of genera- 156

tive agents. Their experiments demonstrated that 157

both individual-level and population-level simula- 158

tions within the generative agents social network 159

had remarkable alignment with data of information, 160

emotion, and attitude propagation in real world. 161

3 Behavior Simulation in Communication 162

Game 163

3.1 Game Rules 164

The communication game under discussion in this 165

study is called “Find The Spy”. our experiments 166

are based on a four-player version of this game. In 167

1Copilot: https://copilot.microsoft.com/
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Figure 2: The illustration of implementing generative-agents-based simulation and training an expert model based
on simulated data in the four-player version of “Find The Spy”.

this scenario, players are divided into two groups:168

“folk” and “spies”. Three players belong to the169

“folk” group, while one player is designated as a170

“spy”. At the beginning of the game, “folk” players171

receive the same word, while the “spy” receives a172

different word. These two words, while distinct,173

share some commonalities (e.g. two words, “apple”174

and “pineapple”, are both fruits). Each player only175

knows his own word and remains ignorant of both176

his identity (“ordinary people” belongs to “folk” or177

“spy” belongs to “spies”) and the identities of the178

other players.179

The objective of the game is to eliminate the180

opposing group of players through communication181

and voting. For “spies”, the goal is to conceal their182

identity to avoid being voted out. In the four-player183

scenario, when only two players remain and one of184

them is the “spy”, the referee announces the “spies”185

as the winners. Conversely, the “folk” players aim186

to identify the “spies” based on the communication187

and vote them out through the voting process. If all188

remaining players are “folk”, the referee announces189

the “folk” as the winners.190

The detailed game processes are documented in191

Appendix A.192

3.2 The Scope of Behavior Simulation193

Due to the features of communication games, play-194

ers are required to possess basic common sense,195

reasoning abilities, and expressive skills. Tiny dif-196

ferences in the comprehension and analyses of ut-197

terances may lead a game to another result. It is198

these uncertain factors that render the game engag-199

ing and unpredictable, thereby constituting what200

we refer to as a complex human system. As the201

essence of complex systems, neither closed-form 202

expressions nor accurate distributions about future 203

states are feasible due to the chaotic interactive 204

relationships among individuals in such systems 205

(Lorenz, 1963; May, 1976). Consequently, there 206

is no fixed distribution of individual behaviors and 207

states in a complex human system, implying that 208

an increased volume of data will facilitate a more 209

comprehensive analysis of this system, if the data 210

differ from existing historical data. To acquire such 211

data in a complex human system, direct observa- 212

tion of the real world is the optimal method, but 213

often costly, inefficient, time-consuming, and even 214

unavailable. Under such circumstances, resorting 215

to simulated data emerges as an alternative. DL 216

generative models have proven their effectiveness 217

in supplementing image datasets for better train- 218

ing (Shrivastava et al., 2017). However, relying 219

exclusively on the outputs of DL models may not 220

be effective in a complex human system. On the 221

one hand, images within a certain dataset follow a 222

relatively stable distribution compared to behaviors 223

and states in a complex human system, meaning 224

that supplementing the data with data of the same 225

distribution contributes to a specific image dataset 226

but not to a complex human system. On the other 227

hand, the complexity of behaviors and states, cou- 228

pled with limited real-world historical data, makes 229

it challenging to train a DL model. As a result, 230

behavior simulation currently stands as the only 231

method to extend or even create data to assist ana- 232

lyzing a complex human system. Fortunately, with 233

LLMs, it is feasible to create a generative agent 234

capable of playing this game with sufficient knowl- 235

edge as behavior simulation in the game system. 236
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3.3 Instance in “Find The Spy”237

Specifically for the “Find The Spy” game, we de-238

sign an LLM-driven judge agent tasked with iden-239

tifying the “spy” through players’ utterances and240

votes, relying solely on knowledge acquired from241

pre-training. Simultaneously, given that no histor-242

ical data are available, we utilize behavior simu-243

lation to create simulated “Find The Spy” game244

datasets, which are used to train an expert model245

that predicts the “spy” player. We name this246

framework the “Mosaic Expert Observation Wall”247

(MEOW). In MEOW, the simulated data, rich in248

agents’ interaction behaviors and states, constructs249

multiple graph data as mosaic investigation walls.250

Expert machine learning (ML) models, trained on251

these data, provide the judge agent with expert ob-252

servations on the real system to refine the analyses.253

We anticipate that the judge agent’s performance254

in identifying the “spy” will improve after con-255

sulting the expert models. If such improvements256

are observed, it indicates that LLM agents can rea-257

son more effectively in complex human systems258

through simulation, a data-efficient method besides259

CoT and FT.260

4 Architecture and Methodology261

To implement MEOW in the communication game,262

as illustrated in Figure 2, a game simulator is re-263

quired to perform a specified number of simula-264

tions. Subsequently, the simulated data of behav-265

iors and states are converted from text into graph-266

structured data. Finally, expert models are trained267

on the data and labels, using the chosen model and268

algorithm. In the following subsections, we will269

elaborate on the construction of the game simulator270

and the detailed implementation of MEOW.271

4.1 Game Simulator272

Our game simulator primarily comprises two com-273

ponents: generative agents and a game engine. The274

generative agents, driven by multi-turn dialogues,275

generate their analyses, utterances, and behaviors,276

including tendencies and votes, in text form. These277

behaviors are converted into dictionary-format data,278

which are then inputted into the game engine to279

represent interactions among agents. Subsequently,280

the game engine processes these interactions and281

updates the states of the system and agents in ac-282

cordance with the game rules. Finally, upon the283

conclusion of the game, all behaviors and states284

data are collected and reformatted as the output of285

Figure 3: Example of heterogeneous graph. The numer-
ical labels i at the tail of each arrow represent the ith
round of the game.

the simulator. 286

4.1.1 LLM Agent 287

A generative agent takes action based on its mem- 288

ory, planning, retrieval, and reflection (Park et al., 289

2023). In the “Find The Spy” game, our player 290

agents are designed in a similar paradigm. We uti- 291

lize CoT prompt templates to guide the inference of 292

player agents during different phases of the game. 293

We divide the game into three processes and six 294

phases, which are described in detail in Appendix 295

B. The complete prompts along with examples of 296

transactions will soon be available online. 297

4.1.2 Game Engine 298

The game engine primarily serves two functions. 299

The first function involves broadcasting open infor- 300

mation. Given that LLM agents heavily rely on con- 301

text, particularly in multi-turn dialogue role-play 302

scenarios, we incorporate confirmation responses 303

to ensure that the agents receive the broadcast suc- 304

cessfully. For instance, 305

User: (system)(Player Bob is eliminated.)
Assistant: Okay, I see.

This context is manually added instead of being 306

generated by the LLM. 307

The second function of the game engine is to 308

update the states of the system and agents, such 309

as counting votes and eliminating. Concurrently, 310

it records the utterances and behaviors in files as 311

the simulator output. These files are subsequently 312

transformed during the implementation of MEOW. 313

4.2 Implementation of MEOW 314

Once acquiring the simulated data, the initial steps 315

involve transforming this data into graph-structured 316

representations and generating datasets. Utilizing 317

these datasets, we train two expert models. During 318

the inference phase of the actual game, the judge 319

agent identifies the “spy”, initially depending on 320
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raw record files, and then the inference is refined321

with expert observations from the trained expert322

models.323

4.2.1 Simulated Data to Heterogeneous Graph324

The simulated data are transformed into heteroge-325

neous graphs, as depicted in Figure 3. Each game326

corresponds to a directed heterogeneous graph, de-327

noted as G = (V,E), where V represents the set328

of nodes and E denotes the set of directed edges.329

The set V comprises a single type of node, i.e.,330

V = {vi|(xi,yi)}ni=1,xi ∈ R1×4,yi ∈ {0, 1},331

where each node vi corresponds to a player and332

n signifies the total number of players (in our ex-333

periments, n = 4). Node vi is characterized by a334

4-dimensional one-hot tensor feature xi and a label335

yi indicating its role (0 for “folk” and 1 for “spy”).336

One game consists of either one or two rounds. The337

set of directed edges are denoted as:338

E1 = E1
for ∪ E1

against ∪ E1
vote,

E2 = E1 ∪ E2
for ∪ E2

against ∪ E2
vote,

E1, E2 ⊆ V × V,

339

where Ei
for, Ei

against, E
i
vote represent the trust-340

ing, doubting, and voting interactions of the top341

i rounds respectively, if the round exists.342

Denoting G as the set of all the games and Gλ343

as the set of games where “spy” is not eliminated344

in the first round. Then, we create two datasets345

D1, D2 respectively containing the first round of346

each game in G, and two rounds of partial games347

in Gλ.348

D1 = {Gk|Gk = (V k, Ek
1 ), Gk ∈ G},

D2 = {Gl|Gl = (V l, El
2), Gl ∈ Gλ}.349

4.2.2 Expert Model Design350

We formulate the problem as a four-class classifi-351

cation task, where one out of the four players is the352

“spy”. To address this problem, we introduce two353

expert models respectively trained on D1 and D2.354

These models share a similar architectural design,355

as illustrated in Figure 4. We take the first expert356

model as an example to illustrate its design.357

The model employs two layers of the Graph At-358

tention Network v2 (GATv2) (Brody et al., 2021).359

In the one-round graph that we construct, there360

are three distinct types of edges. GATv2 en-361

ables isolated message passing on different types362

Figure 4: The architecture of expert models.

of edges. The input node features matrix is de- 363

noted as X =
[
x1 x2 x3 x4

]T, the graph 364

connectivity information as A, and edge types as 365

e, e ∈ {for, against, vote}. The neighbors set of 366

vi under e is denoted as Ni,e, the weight matrix as 367

W, and the attention parameter between vi and vj 368

under e is αi,j,e. The process of GATv2 is formally 369

described as follows: 370

h
(l)
i,e = σ

(∑
j∈N (l)

i,e

α
(l)
i,j,e ·W

(l)
e x

(l)
j

)
,

α
(l)
i,j,e =

exp(a
(l)T
e LReLU(W

(l)
e · [h(l)

i,e∥h
(l)
j,e]))∑

k∈N (l)
i,e

exp(a
(l)T
e LReLU(W

(l)
e · [h(l)

i,e∥h
(l)
k,e]))

,

x
(l+1)
i = aggr(h

(l)
i,e),

(1)

371

where l denotes the layer index, and a is a learnable 372

attention weight vector. LReLU(·) is a LeakyReLU 373

function. The output of the second GATv2 layer 374

is X(2), which we first concatenate into the vec- 375

tor X1 = [x
(2)
1 ,x

(2)
2 ,x

(2)
3 ,x

(2)
4 ]. This is followed 376

by ReLU activation function and a dropout layer 377

(Veličković et al., 2018). The final output ŷ is 378

obtained through a linear layer with a dimension- 379

ality of 4 and a softmax layer, i.e., ŷ ∈ R1×4. The 380

ground truth is y ∈ R1×4. When training the expert 381

model, a cross-entropy loss function is imposed, 382

i.e., 383

L = Cross_Entropy_Loss(y, ŷ). (2) 384

4.2.3 Inference of LLM-driven Judge Agent 385

With the expert model Me trained on simulated 386

data, an LLM-driven judge agent gets access to ex- 387

pert observations in real games, even when their ini- 388

tial states differ from those in our simulated games. 389

As illustrated in Figure 5, the data of interaction 390
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Figure 5: The framework of MEOW in the four-player version of “Find The Spy”.

behaviors and players’ states recorded in text form391

are added to the initial prompt, represented as praw,392

which allows the judge agent to infer which player393

is the “spy” for the first time. We denote the in-394

ference result as yraw. Concurrently, the real data395

are transformed into graph-structured data xgraph396

using the same method as in simulated data and397

then inputted into the expert model. Following the398

judge agent’s initial inference, the output yexpert of399

the expert model is transformed into prompts pEO,400

which instruct the judge agent to make another in-401

ference. We anticipate that the weighted average402

F1-score between the refined inference result yEO403

and the ground truth y is the lowest, i.e.,404

f(ytrue,ypred) = WA_F1(ytrue,ypred),

f(y,yEO), f(y,yexpert) ≥ f(y,yraw).
405

5 Experiment406

5.1 The Choice of LLM407

During the demo design stage of our experiment,408

internLM-20B (Team, 2023) was as our language409

model. Despite its superior performance over Chat-410

GPT on major evaluation datasets such as RACE411

(Lai et al., 2017), it still struggled to reason ef-412

fectively with its common sense obtained through413

pre-training. The agents driven by it failed to com-414

prehend the rules provided by our prompts and415

tend to repeat the same answer to the same ques-416

tions about different players, mirroring their initial417

responses. Therefore, to balance cost and effective-418

ness, we opt for the latest ERNIE-Bot-8k (Wang419

et al., 2021) as the LLM model used in the ex-420

periments. Since ERNIE-Bot-8k exhibits superior421

reasoning ability in Chinese compared to English, 422

we design the prompts in Chinese. The examples 423

in this paper are summarized and translated from 424

Chinese. 425

5.2 Agent Response 426

Reviewing the simulation log, we confirm that 427

agents driven by ERNIE-Bot-8k have the ability to 428

understand the game rules and make rational analy- 429

ses of other players’ utterances and behaviors. For 430

example, receiving the word “sunrise”, the player 431

agent Alice noticed an anomaly in Daniel’s descrip- 432

tion. 433

User: In this round, the fourth player
Daniel's decription of his word is "light
fades". <prompts instructing Alice to make
analysis based on common sense>
Assistant: <Alice's analysis>
...
(discussion process starts)
...
User: Reviewing utterances in this round,
analyze other player's motivation.
Assistant: <analysis of Bob and Carol>
Daniel describes "light fades", which I
think is more likely the "Spy", since the
sky gradually lights up at sunrise, rather
than darkens.

Moreover, still in this game, Bob received the same 434

word as Daniel which means Alice was the “Spy”. 435

After Alice doubted Daniel in statement, Bob raised 436

the opposite doubt. 437

Assistant: <thinking Daniel received the
same word as his>
...
(discussion process starts)
...
User: <(broadcast) Alice's statement
(doubting Daniel)>
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dataset graphs nodes edges

D1 261 1044 3551
D2 181 724 3966

Table 1: Summary of the datasets used in our experi-
ments.

Assistant: <analysis of other players
(trusting Daniel)> For Alice, I am against
her. Her doubts about Daniel may have been
strategic to increase her credibility. I
think that during the game, players can
be strategic and deceptive in their
actions and speech.

These two agent response samples illustrate the438

feasibility of simulating communication games439

with generative agents, and the agents are able to440

reason with knowledge like human players during441

the simulated game.442

5.3 Dataset443

We utilize the aforementioned dataset construction444

method in Section 4.2.1. Under diverse settings445

of words players receive, the single-round dataset446

D1 consists of 261 valid heterogeneous graphs,447

totaling 1044 nodes and 3551 edges. The two-448

round dataset D2 contains 181 valid heterogeneous449

graphs, amounting to 724 nodes and 3966 edges.450

To ensure the stability of our experiments, we im-451

plement ten different random data split configura-452

tions, yielding ten distinct training and test sets that453

respectively represent simulated games and real454

games. A summary of the statistical features of455

these datasets is presented in Table 1.456

5.4 Model Training457

The architecture of the two models is detailed in458

Section 4.2.2. Each dataset is systematically parti-459

tioned into ten distinct training and test sets, each460

of which is used to train an expert model. To en-461

sure robustness and generalize the model’s perfor-462

mance across diverse data scenarios, a four-fold463

cross-validation strategy is adopted, and training464

stops if the model’s performance on the validation465

set consistently deteriorates over a continuous span466

of K epochs, compared to the best validation loss467

identified previously.468

Denoting Hi, Oi, i ∈ {1, 2} as the num-469

bers of attention heads, output channels of470

the ith GATv2 layer, α as learning rate, λ471

as weight decay rate, p as dropout rate, the472

hyperparameters (H1, O1, H2, O2, α, λ, p,K) of473

Method Round Acc. WA-F1

EB w/ CoT 1 30.66 29.79
Expert 1 31.60 31.36
EB w/ CoT & EO 1 30.43 30.59

EB w/ CoT 2 28.72 28.96
Expert 2 38.85 38.01
EB w/ CoT & EO 2 36.82 36.50

Table 2: Ablation studies conducted on MEOW. ‘Acc.’
denotes the accuracy score, and ‘WA-F1’ represents the
weighted average F1-score. In the results generated by
EB, responses such as “I’m not certain” are considered
random predictions, with their randomness determined
based on multi-turn dialogue logs.

the first and second expert model are respec- 474

tively (6, 32, 6, 16, sum, 0.0001, 0.0005, 0.5, 30) 475

and (6, 32, 6, 18, sum, 0.0001, 0.0005, 0.5, 50). 476

5.5 Ablation Study 477

To validate the effectiveness of MEOW, we per- 478

form ablation studies on three distinct inference 479

approaches. 480

• ERNIE-Bot with Chain-of-thoughts (EB w/ 481

CoT): Provide game rules, hints of words, and 482

game broadcast messages including descrip- 483

tions, utterances, and votes. Then, the judge 484

agent is prompted to infer the agents’ actions 485

step by step, following a predefined sequence 486

of steps that includes a strategy review, ut- 487

terances analysis, and motivation inference, 488

culminating in a final identity judgment. 489

• Expert: The output of the expert model, 490

trained on simulated data, i.e., the expert ob- 491

servation, is considered as the final identity 492

judgment. 493

• ERNIE-Bot with Chain-of-thoughts and 494

Expert Observation (EB w/ CoT & EO): 495

Following the same process as EB w/ CoT, 496

the judge agent is prompted to re-infer the 497

game situation and determine whether to ad- 498

just the final judgment based on the expert 499

observation. 500

For the purpose of avoiding the advantage of 501

“Expert” on training sets, ablation studies are exclu- 502

sively conducted on the test sets. We perform ten 503

independent experiments with distinct randomized 504

training and test sets to guarantee the reliability of 505

our results. The average statistic of the eight sets, 506
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Method Round 1 Round 2

EB w/ CoT 0.0419 0.0635
Expert 0.0298 0.0232
EB w/ CoT & EO 0.0146 0.0288

Table 3: Standard deviation of Weighted-average F1
score in round 1 and round 2.

representing the median performance among the507

ten sets, is presented in Table 2.508

In the first round, “EB w/ CoT” attains an accu-509

racy score of 30.66 and a WA-F1 score of 29.79.510

“Expert” outperforms by approximately 1 percent,511

achieving an accuracy score of 31.60 and a WA-512

F1 score of 31.36. The combined method “EB w/513

CoT & EO” registers an accuracy score of 30.43514

and a WA-F1 score of 30.59, approximating the515

average of “EB w/ CoT” and “Expert”. Similarly,516

in the second round, “EB w/ CoT” keeps a better517

performance than “Expert”, and “EB w/ CoT &518

EO” remains intermediate to the two methods. In519

both rounds, the Expert model exhibits superior520

performance compared to the CoT methods, and521

expert observation effectively aids in correcting522

some errors in the initial inference, as reflected in523

the statistics.524

Besides, as is shown in Table 3, after refine-525

ment of expert observations, the standard deviation526

of WA-F1 score reduces significantly. This indi-527

cates that MEOW can enhance the stability of LLM528

agents’ reasoning while improving its performance.529

6 Discussion530

Through our experiments, training an expert model531

based on simulated data is both feasible and bene-532

ficial for addressing problems in complex human533

systems. In the absence of any conversation infor-534

mation in a new game, expert models outperform535

manual CoT methods. On one hand, simulation536

expands the available data of states in a system,537

enabling models trained on these data to “experi-538

ence” more, thereby refining LLM inference even539

without any historical data. On the other hand, in540

complex human systems, current LLMs with CoT541

prompts are not capable of fully comprehending542

human behaviors and other system forms. As a re-543

sult, in our two-round experiments, “LLM w/ CoT”544

fails to recognize that the player voted out in the545

first round cannot be the “spy”, and its performance546

The results of the first round of voting
are: Alice votes for Carol, Bob votes for

Alice, Carol votes for Bob, and Daniel
votes for Bob. Thus, Bob is eliminated.
...
Next up is player Bob, who I consider to
be the "spy".

falls below 33 percent, which is the expectation of 547

random guessing. 548

When adjusting the parameters of the judge 549

agent, we discover that at the setting of 550

(top_p, temperature) = (0.85, 0.8), the judge 551

agent achieves an optimal balance between stick- 552

ing to itself and illogical inferences. In this setting, 553

expert observations do correct some inferences. 554

According to the judgment of game experts,
Daniel is likely to be the "spy". I think
there is some truth to it, because Daniel
did not give any clear words related to
bees in the description and discussion
session, and his descriptor "unique" was
relatively vague, which is consistent with
the characteristics of the "spy" trying
to hide his identity.

Therefore, MEOW is never the substitute for 555

FT, CoT, ICL, and RAG, but rather to collaborate 556

with them to enhance the performance of inference 557

in complex human systems. By leveraging these 558

rapidly evolving reasoning methods, the simula- 559

tion process in MEOW becomes more authentic, 560

thereby increasing the value of expert observation. 561

7 Conclusion 562

In this paper, we propose a novel methodology 563

aiming at enhancing the reasoning ability of LLMs 564

in addressing problems concerning complex hu- 565

man systems through simulation. It brings unprece- 566

dented human behavior simulation and has the po- 567

tential for addressing data collection challenges 568

out of privacy, security, etc. in special scenarios. 569

Leveraging the simulated data, we present MEOW, 570

a framework that employs ML models to learn 571

from these data and generate expert observations. 572

By referring to these expert observations, LLMs 573

can refine their inferences, typically yielding re- 574

sults better than those obtained using the CoT-only 575

method. We believe that beyond the realm of com- 576

munication games, in real-world complex human 577

systems such as sociology and economics, both 578

the generative-agents-based simulation technique 579

and MEOW hold promise as effective methodolo- 580

gies. We are looking forward to the development 581

of more powerful LLMs that can further enhance 582

the effectiveness of our proposed framework. 583
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Limitations584

Hallucination is the primary limitation when scal-585

ing generative-agents-simulation and subsequent586

MEOW. Given that LLMs generate text in a “token587

by token” manner, setting a relatively low tempera-588

ture to achieve the desired diversity in simulation589

can lead to errors in some key tokens among all dia-590

logues. For instance, during the discussion process,591

double quotation marks are followed by identities592

or word descriptions. If we set the temperature593

to 0.8, we observe the following response in the594

simulation,595

Player Bob's description "Spy" ...

which results in illogical reasoning. The security of596

LLMs presents another limitation if we aim to uti-597

lize generative agents and MEOW in human-related598

security scenarios. To prevent negative generation599

of LLMs, token chains that violate laws and social600

norms are penalized during pre-training. However,601

this restricts the ability of generative agents to simu-602

late offensive attackers. Cost is the final limitation,603

and its impact becomes more significant when scal-604

ing. Implementing generative-agent-based simula-605

tion and MEOW requires large volumes of multi-606

turn dialogues, with most previous turns needing to607

be retained as context for the next generation. This608

implies that after completing one generation, there609

are fees for its tokens in every subsequent turn. In610

our experiments, using GPT-4 would cost us 5400611

dollars, and this is only for a four-player version.612

As the number of agents increases, there will be613

more interactions, leading to nonlinear growth in614

cost.615
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A Game Processes787

1. At the beginning of a game, the referee dis-788

tributes words to all players, and then several789

processes loop until one side wins. A loop of790

2, 3, 4 is called one round, and a game may791

consist of one or more rounds;792

2. Description process: Players take turns to de-793

liver statements, using a word (cannot be their794

own word or include all their fellow players795

who used their words before) to describe their796

received word;797

3. Discussion process: After all players give de-798

scriptions of received words, they take turns to799

express opinions on other players’ identities.800

4. Voting process: Each player chooses a pos-801

sible "spies" player to vote for him/her. The802

Player getting the most amounts of votes is803

eliminated from the game (If several play-804

ers get the same number of votes, the player805

whose first vote is got earlier will be elim-806

inated.). The referee will announce which807

player is eliminated by voting and reveal808

his/her identity. The eliminated player will809

be excluded from the rest of the game.810

Other rules: a) In each player’s utterances at any811

time it is not allowed to use the word he/she re-812

ceives. b) In each player’s description of words in813

each round they must not use words used by other814

players before.815

B Six Phases816

1. Game initialization817

(a) Game initialization phase: Every818

player agent is prompted the game rules,819

game skills, the players in the game, its820

received word, and a request to confirm821

above information.822

2. Description process823

(a) Identity inference phase: Before de-824

scribing the word, the player agent is825

prompted to infer its identity in the game826

based on other players’ utterances and827

behaviors so as to guess the word which828

players of the opposite identity received.829

(b) Word description phase: The player830

agent is first prompted to recall the word831

they received and the game rules. Con-832

sequently, it establishes its description833

strategy (be honest or tell a lie). Finally, 834

we prompt the player agent to give its 835

description in textual JSON format so 836

that the game engine can complete the 837

transformation efficiently, and this de- 838

scription is the only information open to 839

other players in this process. 840

(c) Description analysis phase: After a 841

player agent makes its word description, 842

the rest player agents will be prompted 843

to analyze it. They are requested to judge 844

whether it is proper to describe their re- 845

ceived words and further consider its 846

identity. 847

3. Discussion process 848

(a) Statement and discussion phase: 849

Firstly, a player agent is prompted to 850

recall its identity and other players’ 851

descriptions and statements in this round. 852

Secondly, it needs to choose the players 853

it will be for and against, which will 854

have to be embodied in his following 855

statement. Thirdly, we prompt it to 856

confirm its tendency in textual JSON 857

format. Finally, it makes its statement 858

corresponding to its tendency in this 859

round, and this statement is the only 860

information open to other players in this 861

process. 862

4. Voting process 863

(a) Vote phase: Player agents are prompted 864

the vote rules and have an opportunity to 865

rethink the situation of the current game. 866

Finally, they are requested to make their 867

voting in JSON format, and this is the 868

only information open to other players in 869

this process. 870
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