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Abstract

Due to the limited and even imbalanced data, semi-supervised semantic segmen-
tation tends to have poor performance on some certain categories, e.g., tailed
categories in Cityscapes dataset which exhibits a long-tailed label distribution.
Existing approaches almost all neglect this problem, and treat categories equally.
Some popular approaches such as consistency regularization or pseudo-labeling
may even harm the learning of under-performing categories, that the predictions or
pseudo labels of these categories could be too inaccurate to guide the learning on the
unlabeled data. In this paper, we look into this problem, and propose a novel frame-
work for semi-supervised semantic segmentation, named adaptive equalization
learning (AEL). AEL adaptively balances the training of well and badly performed
categories, with a confidence bank to dynamically track category-wise performance
during training. The confidence bank is leveraged as an indicator to tilt training
towards under-performing categories, instantiated in three strategies: 1) adaptive
Copy-Paste and CutMix data augmentation approaches which give more chance
for under-performing categories to be copied or cut; 2) an adaptive data sampling
approach to encourage pixels from under-performing category to be sampled; 3) a
simple yet effective re-weighting method to alleviate the training noise raised by
pseudo-labeling. Experimentally, AEL outperforms the state-of-the-art methods by
a large margin on the Cityscapes and Pascal VOC benchmarks under various data
partition protocols. Code is available at https://github.com/hzhupku/SemiSeg-AEL.

1 Introduction

Supervised semantic segmentation requires pixel-level labeling, which is expensive and time-
consuming. This paper is interested in semi-supervised semantic segmentation, which can greatly
reduce the efforts of pixel-level annotation, yet may maintain reasonably high accuracy. One problem
of common semantic segmentation datasets is that the pixel categories tend to be imbalanced, e.g., the
pixel amount of head classes can be hundreds of times larger than that of tailed classes in the widely
used Cityscapes dataset [1]. The situation is more serious in the semi-supervised setting where tailed
classes may have extremely few samples. We note that recent approaches are mainly dedicated to the
design of consistency regularization [2, 3, 4, 5, 6, 7] and pseudo-labeling [8], almost all of which
neglect the imbalance problem and treat each category equally, leading to a biased training. These
approaches may even harm the learning of tailed classes, as inaccurate predictions or pseudo labels
of under-performing categories could falsely guide the learning on unlabeled data.
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(a) 1/16 data partition protocol. (b) 1/32 data partition protocol.

Figure 1: We count the the training samples of each category on Cityscapes train set under 1/16
and 1/32 data partition protocols, and compare the proposed AEL with a strong semi-supervised
learning baseline described in Section 3.2 which treats each category equally. Our method strives to
tilt training towards tailed categories which usually tend to be under-performing.

This paper aims to alleviate this biased training problem. We propose a novel Adaptive Equalization
Learning (AEL) framework, which adaptively balance the training of different categories as shown
in Figure 1. Our design follows two main principles: 1) increasing the proportion of training
samples from the under-performing categories; 2) tilting training towards under-performing categories.
Concretely, we maintain a confidence bank to dynamically record the category-wise performance at
each training step, which indicates the current performance of each category. Following principle 1),
we propose two data augmentation approaches named adaptive Copy-Paste and adaptive CutMix,
which give more chance for under-performing categories to be copied or cut. Following principle 2),
we present an adaptive equalization sampling strategy to encourage pixels from under-performing
categories to be sufficiently trained. In addition, we also introduce a simple yet effective re-weighting
strategy which takes the model predictions into account to alleviate the issue that semi-supervised
learning usually suffers from the training noise.

Experimentally, by using the DeepLabv3+ with ResNet-101 backbone, the proposed AEL outperforms
state-of-the-art methods by a large margin on the Cityscapes and PASCAL VOC 2012 benchmarks
under various data partition protocols. Specifically, it achieves 74.28%, 75.83% and 77.90% on
Cityscapes dataset under 1/32, 1/16 and 1/8 protocols, which is +16.39%, +12.87% and +8.09%
better than the supervised baseline. When evaluated on PASCAL VOC 2012 benchmark, it achieves
76.97%, 77.20% and 77.57% under 1/32, 1/16 and 1/8 protocols, which is +6.83%, +6.60% and
+4.45% better than the supervised baseline. Moreover, the proposed approach also proves to improve
the segmentation model trained on the full Cityscapes train set by +1.03% by leveraging 5, 000
images from the Cityscapes coarse set as unlabeled data, achieving 81.95%.

2 Related Work

Semi-Supervised Learning. Recent years have witnessed a significant progress in the SSL field.
Most of them can be categorized into consistency regularization, entropy minimization [9] and

pseudo-labeling. Consistency regularization [10, 11, 12] enforces consistency in predictions between
different views of unlabeled data. Pseudo-labeling [13, 14] trains the model on the unlabeled data
with pseudo labels generated from the model’s own predictions. Furthermore, [10, 15, 16, 17, 18]

use a low softmax temperature to sharpen the predictions of unlabeled set. Our method refers to
Mean Teacher [ 1] and FixMatch [14] when designing our basic framework.

Semi-Supervised Semantic Segmentation. Existing semi-supervised semantic segmentation meth-
ods mainly focus on the design of consistency regularization and pseudo-labeling. Cutmix-Seg [2]
applies CutMix augmentation on the unlabeled data. CCT [4] introduces a feature-level perturbation
and enforces consistency among the predictions of different decoders. GCT [19] performs network
perturbation by using two differently initialized segmentation models and encourages consistency
between the predictions from the two models. PseudoSeg [¢] focuses on improving the quality of
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Figure 2: Overview of AEL. We adopt the teacher-student architecture as our basic framework. The
teacher model is updated by the exponential moving average (EMA) of the student model. Confidence
bank is uesd to dynamically record the category-wise performance during training. Adaptive CutMix
and adaptive Copy-Paste are applied on the unlabeled and labeled data respectively to provide
sufficient training samples from the under-performing categories. Adaptive equalization sampling
(AES) encourages the training to involve more samples from the under-performing categories to make
the training unbiased. Dynamic re-weighting strategy aims to alleviate the noise of pseudo-labeling.

pseudo labels. Though achieving satisfactory improvements over the supervised baseline, none of the
aforementioned methods explore the biased learning issue in semi-supervised semantic segmentation.

Class Imbalance in Semi-Supervised Learning. Although SSL has been extensively studied,
class imbalance problem in SSL is relatively under-explored, especially for semantic segmentation.
Yang et al. [20] demonstrate that leveraging unlabeled data can alleviate imbalance issue. Hyun et
al. [21] propose a suppressed consistency loss for class-imbalanced image classification problems.
CReST [22] introduces a self-training framework for imbalanced SSL. Our method, though not
explicitly targeting at the class imbalance problem, focuses on improving the performance of under-
performing categories which are mostly tailed classes. Moreover, we refer to the ideas of re-
sampling [23, 24] and re-weighting [25, 26], which are designed for class imbalance problem.

3 Method

Given a labeled set D! = {(x!,y!)} and an unlabeled set D* = {z!}, the objective of semi-
supervised semantic segmentation is to learn a segmentation model by efficiently leveraging both
labeled and unlabeled data. In this section, we first present an overview of the proposed AEL in
Section 3.1. Then we describe our basic framework for semi-supervised semantic segmentation in
Section 3.2. Finally, the details of AEL are introduced in Section 3.3.

3.1 Overview

Figure 2 displays an overview of AEL, which is a data-efficient framework for semi-supervised
semantic segmentation. It is composed of two parts: 1) a basic framework which contains a teacher
model for pseudo-labeling and a student model for online learning; 2) dedicated modules which
encourages the under-performing categories to be sufficiently trained by effectively leveraging both
labeled and unlabeled data. We use the proposed confidence bank to dynamically record the category-
wise performance during training, and thus we can easily identify which categories are not sufficiently
trained. For those unsatisfactory categories, we present two data augmentation methods to increase
their frequency of occurrence in a training batch, namely adaptive CutMix which is applied on
the unlabeled data, and adaptive Copy-Paste which is applied on the labeled data. To make the
model towards the unbiased learning, we propose the adaptive equalization sampling and dynamic
re-weighting strategies to involve enough samples from the under-performing categories into the
training, and alleviate the noise raised by pseudo-labeling simultaneously.



3.2 Basic Framework

We first set up a basic framework for semi-supervised semantic segmentation. The framework consists
of a student model and a teacher model. The teacher model has the same architecture as the student
model, but uses a different set of weights which are updated by exponential moving average (EMA)
of the student model [ 1]. Following FixMatch [14], we use the teacher model to generate a set of
pseudo labels Y= {9;} on the weakly augmented unlabeled data D". Subsequently, the student
model is trained on both labeled data D' (of weak augmentation) with the ground-truth and unlabeled
data D" (of strong augmentation) with the generated pseudo labels Y. We use standard random resize
and random horizontal flip as the weak augmentation. Strong augmentation includes CutMix [27]
and all data augmentation strategies used in the weak augmentation.

The overall loss consists of the supervised loss £, and the unsupervised loss L,,:
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where p;; is the prediction of the j-th pixel in the i-th labeled (or unlabeled) image, N; and N,,
denote the number of labeled images and unlabeled images in a training batch, W and H represent
the width and height of the input image, and /.. denotes the standard pixel-wise cross-entropy loss.
We define the overall loss function as:

L=Ls+aly,, 3)
where « controls the contribution of the unsupervised loss.

3.3 Adaptive Equalization Learning

The baseline framework, though achieving competitive results compared with previous related works,
neglects the key issues in semi-supervised semantic segmentation. Due to the limited labeled data,
semi-supervised learning tends to have poor performance on some certain categories, e.g., tailed
categories in Cityscapes dataset which exhibits a long-tailed label distribution. Insufficient training on
these categories introduces more noise of pseudo labels which can disrupt the learning process. The
proposed AEL framework aims to alleviate the degradation of under-performing categories during
the semi-supervised training. Concretely, we maintain a confidence bank to record the performance
of each category during training. The confidence bank enables us to identify the under-performing
categories. To improve the performance of these categories and further make the training unbiased,
we propose a series of technologies to efficiently leverage both labeled and unlabeled data, namely
adaptive CutMix, adaptive Copy-Paste, adaptive equalization sampling and dynamic re-weighting.

Confidence Bank. To tackle the biased training, previous methods [25, 26, 22, 28] always rely on
the prior knowledge such as the number of training samples of each category to design the ad hoc
sampling and weighting strategies. However, the performance of each category is not always strictly
proportional to the number of training samples, because some categories tend to have discriminative
features and thus fewer samples are required for training. Inspired by the recent progress [29] which
applies active learning on semantic segmentation, we propose to maintain a confidence bank to record
the category-wise performance during training. An indicator is needed to assess the performance of
each category.

We consider several indicators, namely Confidence, Margin and Entropy. Formally, we define
Confidence indicator as:

N(‘
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where C is the category number, N, denotes the number of pixels belonging to category c according
to its ground-truth y;, pj; denotes the c-th channel prediction of the j-th pixel in the i-th image.



Define Margin indicator as:
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where max2(-) denotes the second largest value operator. At last, we define Entropy indicator as:
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For all of the indicators, we only take into account predictions from labeled data. Experimentally, the
confidence indicator serves best in our AEL and thus we adopt it by default (see Section 4.3 for the
comparison). We use EMA to update the category-wise confidence at each training step:

Conf}, « 7Conf},_; + (1 — 7)Conf}, c€ {1,...,C}, 7

where k denotes the k-th iteration, 7 € [0,1) is the momentum coefficient which is set to 0.999
experimentally. Through the confidence bank, we can easily identify the under-performing categories
for the current model.

Adaptive CutMix. Here we introduce the proposed adaptive CutMix (see Figure 2 for illustration)
which is applied on the unlabeled data. It aims to increase the frequency of occurrence of the
under-performing samples from the unlabeled data. We first formulate the original CutMix [27] as:

I = CutMix(Crop(1), I5), (8)

where I; and I, denote randomly selected unlabeled images, I is the augmented image, and Crop(-)
represents the random crop operation.

Different from the original CutMix where unlabeled images are randmoly selected, the proposed
adaptive CutMix gives under-performing categories a higher sampling probability. Specifically, we
first convert the category-wise confidence stored in the confidence bank to the normalized sampling
probability » € RY, which can be formulated as:

r = Softmax(1 — Conf). )

According to the sampling probability, we randomly select an unlabeled image containing the sampled
category as I, and another unlabeled image from the training batch is randomly selected as I5. The
Crop(-) operation is performed on the region containing the chosen category. After that, we can
generate the augmented image by Eq 8. Since the adaptive CutMix is performed on the unlabeled
data without any annotations, we use predictions as approximate ground-truth, which works well in
practice.

Adaptive Copy-Paste. Copy-Paste [30] is an effective data augmentation strategy for instance
segmentation. It yields significant gains on the challenging LVIS benchmark [31], especially for rare
object categories. The key idea behind the Copy-Paste augmentation is to paste objects from the
source image to the target image. Inspired by this, we further propose the adaptive Copy-Paste (see
Figure 2 for illustration) for semi-supervised semantic segmentation. Different from adaptive CutMix,
adaptive Copy-Paste augmentation strives for efficiently leveraging the labeled data. Similarly, we
involve confidence bank to assess category-wise performance and use Eq 9 to compute sampling
probability. The under-performing categories have higher probability to be selected for Copy-Paste.
Experimentally, the proposed adaptive Copy-Paste augmentation yields slightly better performance in
the category level than the instance level. Thus we copy all pixels belonging to the sampled category
in the source image and paste them on the target image. Following [30], the augmented image is
composed of two randomly selected images from the labeled data and a large scale jittering is applied.

Adaptive Equalization Sampling. As described in Section 1, due to the limited and unbalanced
labeled data, the training tends to be biased. To alleviate the training bias, we propose a novel adaptive
equalization sampling strategy which focuses training on a sparse set of under-performing samples
and prevents the vast number of well-trained samples from overwhelming the model during training.
Concretely, we define the sampling rate s for category c as:

1 — Conf* B
= 1,...,C 10
’ max.e(1,...,c} (1 — Conf?) yeed{l,....C, (10)




where 3 denotes a tunable parameter. Instead of using all pixels to compute the unsupervised loss,
for category c with the sampling rate s, we randomly sample a subset of pixels according to their
predictions. Then the unsupervised loss in Eq 2 can be reformulated as:
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where 1;; = 1 indicates that the j-th pixel in the i-th image is sampled according to the sampling
rate, otherwise 1; is set to 0, the other terms are the same as in Eq 2.

Dynamic Re-Weighting. The performance of the model depends on the quality of pseudo labels.
Existing methods [2, 4, 19] usually adopt a higher threshold on classification score to filter out most
of the pixels with low-confidence. Though this strategy could alleviate the noise raised by pseudo-
labeling, the strict criteria leads to lower recall for the pixels from under-performing categories,
which hinders the training. Another option is to discard the threshold and involve all pixels into the
training. However, much more noise is introduced simultaneously. To alleviate this issue, we propose
a dynamic re-weighting strategy which adds a modulating factor to the unsupervised loss in the way
of semi-supervised learning. On the basis of Eq 11, we formulate our final unsupervised loss as:

P ST e (12)
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where ~y is the tunable parameter. Different from the Focal Loss [32] where the modulating factor is
used for reducing the loss contribution from easy samples, our formulation aims to allocate more
contributions for the convincing samples. The combination of adaptive equalization sampling and
dynamic re-weighting not only involves more samples from the under-performing categories into the
training, but also alleviate the noise raised by pseudo-labeling.

4 Experiments

4.1 Setup

Datasets. Cityscapes [|] dataset is designed for urban scene understanding. It contains 30 classes
and only 19 classes of them are used for scene parsing evaluation. The dataset contains 5, 000 finely
annotated images and 20, 000 coarsely annotated images. The finely annotated 5,000 images are
split into 2,975, 500 and 1, 525 images for training, validation and testing respectively.

PASCAL VOC 2012 [33] dataset is a standard object-centric semantic segmentation dataset. It
contains 20 foreground object classes and a background class. The strand training, validation and
testing sets consist of 1,464, 1,449 and 1, 556 images, respectively. Following common practice, we
use the augmented set [34] which contains 10, 582 images as the training set.

ADE20K dataset [35] is a large scale scene parsing benchmark which contains dense labels of 150
stuff/object categories. The dataset includes 20K/2K/3K images for training, validation and testing.

For both Cityscapes and PASCAL VOC 2012 datasets, 1/2, 1/4, 1/8, 1/16 and 1/32 training images
are randomly sampled as the labeled training data, and the remaining images are used as the unlabeled
data. For each protocol, AEL provides 5 different data folds and the final performance is the average
of 5 folds. In addition, we also evaluate our method on the setting where the full Cityscapes train
set is used as the labeled data and 1, 000, 3,000 and 5, 000 images and randomly selected from the
Cityscapes coarse set as the unlabeled data.

Evaluation. We use single scale testing and adopt mean of Intersection over Union (mloU) as the
metric to evaluate the performance. We report the results on the Cityscapes val set and PASCAL
VOC 2012 val set in comparisons with state-of-the-art methods. All ablation studies are conducted
on the Cityscapes val set under 1/16 and 1/32 partition protocols.

Implementation Details. We use ResNet-101 pretrained on ImageNet [36] as our backbone, remove
the last two down-sampling operations and employ dilated convolutions in the subsequent convolution
layers, making the output stride equal to 8. We use DeepLabv3+ [37] as the segmentation head. For



Table 1: Comparison with state-of-the-art methods on the Cityscapes val set under different partition
protocols. All the methods are based on DeepLabv3+ with ResNet-101 backbone.

Method | 1/32(93) | 1/16(186) | 1/8(372) | 1/4(744) | 1/2(1488)
Superv1sed | 5789 | 6296 | 6981 | 7423 | 7746
MT [ 64.07 68.05 73.56 76.66 78.39
CCT [ 66.35 69.32 74.12 75.99 78.10
Cutmix- Seg (2] 69.11 72.13 75.83 77.24 78.95
GCT [ 63.21 66.75 72.66 76.11 78.34
AEL (Ours) 74.28 75.83 77.90 79.01 80.28

Table 2: Comparison with state-of-the-art methods on the PASCAL VOC 2012 val set under
different partition protocols. All the methods are based on DeepLabv3+ with ResNet-101 backbone.

Method | 1/32(331) | 1/16(662) | 1/8(1323) | 1/4(2646) | 1/2(5291)
Superv1sed | 7014 | 7060 | 7312 | 7635 | 7721
MT [ 70.56 71.29 73.33 76.61 78.08
CCT [ 71.22 71.86 73.68 76.51 77.40
Cutmix- Seg[ ] 73.39 73.56 73.96 77.58 78.12
GCT[ 70.32 70.90 73.29 76.66 77.98
AEL (Ours) 76.97 7720 | 7757 |  78.06 80.29

Cityscapes dataset, we use stochastic gradient descent (SGD) optimizer with initial learning rate 0.01,
weight decay 0.0005 and momentum 0.9. Moreover, we adopt the ‘poly’ learmng rate policy, where
the initial learning rate is multiplied by (1 — mdl):erner)o 9. We adopt the crop size as 769 x 769, batch
size as 16 and training iterations as 18k. For PASCAL VOC 2012 dataset, we set the initial learning
rate as 0.001, weight decay as 0.0001, crop size as 513 x 513, batch size as 16 and training iterations
as 30k. We use random horizontal flip and random resize as the default data augmentation if not

specified. All the supervised baselines are trained on the labeled data.

4.2 Comparison with State-of-the-Art Methods

We compare our method with recent semi-supervised semantic segmentation methods, including
Mean Teacher (MT) [ 1], Cross-Consistency Training (CCT) [4], Guided Collaborative Training
(GCT) [19] and Cutmix-Seg [2]. For a fair comparison, we re-implement all above methods and
adopt the same network architecture (DeepLabv3+ with ResNet-101 backbone).

Results on Cityscapes Dataset. Table 1 compares AEL with state-of-the-art methods on the
Cityscapes val set. Without leveraging any unlabeled data, the performance of the supervised
baseline is unsatisfactory under various data partition protocols, especially for the fewer data settings,
e.g., 1/32 and 1/16 protocols. Our method consistently promotes the baseline, achieving the improve-
ments of +16.4%, +12.9%, +8.1%, +4.8% and +2.8% under 1/32, 1/16, 1/8, 1/4 and 1/2 partition
protocols respectively. Our method also significantly outperforms the existing state-of-the-art meth-
ods by a large margin under all data partition protocols. In particular, AEL outperforms the existing
best method Cutmix-Seg by +5.2% under extremely few data setting (1/32 protocol), and surpasses
Cutmix-Seg by +1.3% under the 1/2 protocol.

Results on PASCAL VOC 2012 Dataset. Table 2 shows comparison with state-of-the-art methods
on the PASCAL VOC 2012 val dataset. AEL achieves consistent performance gains over the
supervised baseline, obtaining an improvements of +6.8%, +7.0%, +4.1%, +1.7% and +3.1% under
1/32, 1/16, 1/8, 1/4 and 1/2 partition protocols respectively. We can see that over all protocols, AEL
outperforms the state-of-the-art methods. For example, our method outperforms the previous best
method by +3.6% and +2.2% under the 1/32 and 1/2 partition protocols.



Table 3: Ablation study on the effectiveness of different components: Dynamic Re-weighting (DR),
Adaptive Equalization Sampling(AES), Adaptive CutMix (ACM), Adaptive Copy-Paste (ACP).

DR | AES | ACM | ACP | 1/32(93) | 1/16(186)
69.11 72.13
v 70.27 73.85
v 71.65 74.12
v 70.49 73.89
v 69.69 72.64
v v 72.51 74.39
v v v 73.43 75.12
v v v v 74.28 75.83

4.3 Ablation Study

To further understand the advantages of AEL, we conduct a series of ablation studies that examine the
effectiveness of different components and different hyper-parameters. All experiments are conducted
on the validation set of Cityscapes dataset.

The Effectiveness of Different Components. We ablate each component of AEL step by step.
Table 3 reports the studies. We use the basic framework described in Section 3.2 as our baseline,
which achieves 69.11% and 72.13% under 1/32 and 1/16 protocols respectively. We first evaluate
the effectiveness of each single component. As shown in the table, Dynamic Re-weighting (DR)
improves the baseline by +1.1% and +1.7% under 1/32 and 1/16 partition protocols. Adaptive
Equalization Sampling (AES) alleviates the biased training issue, achieving the improvements of
+2.5% and +2.0% over the baseline. Adaptive CutMix (ACM) and Adaptive Copy-Paste (ACP) data
augmentation approaches give more chance for under-performing categories to be sampled, and
bring the improvements of +1.3% / +1.7% and +0.5% / +0.5% respectively. Furthermore, we present
the performance gains in a progressive manner. On top of the DR, by leveraging AES strategy on
the unsupervised loss, our method obtains improvements of +2.3% and +0.5% under 1/32 and 1/16
protocols. The two proposed data augmentation approaches further boost the performance to 74.28%
and 75.83%, demonstrating the effectiveness of our adaptive learning.

Ablation Study on Hyper-Parameters. Table 5 ablates the tunable parameter v in dynamic re-
weighting (in Eq 13), where v = 2 yields slightly better performance. Dynamic re-weighting is found
to be insensitive to .

Table 6 ablates the influence of different indicators, including Confidence (in Eq 4), Margin (in Eq 5),
and Entropy (in Eq 6). We use the Confidence as the default indicator to assess the category-wise
performance during training due to its best performance.

Adaptive CutMix requires a criteria to identify whether an unlabeled image contains a certain class.
We use the ratio between pseudo labels of a certain category and total pixels of the input image as the
criteria. Table 7 ablates different ratios.

Table 8 studies the number of sampled categories K in the Adaptive Copy-Paste. We find that K = 3
achieves the best performance. One potential reason is that a smaller K provides less training samples
from the under-performing categories while a larger K may increase the difficulty for training.

Table 9 ablates the loss weight o which is used to balance the supervised loss and unsupervised loss
as shown in Eq 3. As illustrated in the table, @ = 1 achieves the best performance. We use o = 1 in
our approach for all the experiments.

4.4 Per-class Results

Since the class imbalance problem is severe in the Cityscapes dataset, we provide per-class results
under 1/32 data partition protocol in Table 4. We choose 9 classes with the least training samples
in the Cityscapes dataset as tail classes, i.e. wall, traffic light, traffic sign, rider, truck, bus, train,
motorcycle and bicycle. As shown in the table, our method not only achieves the best overall mloU,



Table 4: Per-class results on Cityscapes val set under 1/32 data partition protocol. All the methods
are based on DeepLabv3+ with ResNet-101 backbone.
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Table 5: Study on ~ of dy- Table 6: Study on different in- Table 7: Study on different ra-

namic re-weighting. dicators for AES. tios in ACM.
yoo| 132 | 16 Indicator | 1/32 | 1/16 Ratio | 1/32 | 1/16
0 69.11 | 72.13 None 70.27 | 73.85 0.001 | 73.27 | 74.28
0.5 69.74 | 73.28 Ent 71.38 | 73.21 0.003 | 73.29 | 74.36
1 69.35 | 73.67 Conf 72.51 | 74.39 0.005 | 7343 | 75.12
2 70.27 | 73.85 Margin | 70.86 | 73.05 0.01 7278 | 73.66
3 70.26 | 73.40

but also obtains significant improvements on tail classes. In particular, Our method outperforms the
existing best method Cutmix-Seg by +5.2% in overall mIoU and +9.2% in mloU for tail classes under
1/32 partition protocol.

4.5 Performance on the Full Labeled Set

We conduct experiments where the full Cityscapes train set is used as the labeled dataset and the
Cityscapes coarse set is used as the unlabeled dataset. We do not leverage any annotations from the
coarse set though it provides coarsely annotated ground-truth. We randomly sample 1,000, 3,000
and 5,000 images from the coarse set to verify the proposed method. As shown in Table 10, the
proposed AEL can still improve the supervised baselines by leveraging the unlabeled data though a
large amount of labeled data is provided.

4.6 Results on ADE20K Dataset

We further provide results on the ADE20K dataset [35]. Since no previous methods in semi-supervised
segmentation conducted experiments on ADE20K dataset, we compare our method with supervised
baseline and existing best method Cutmix-Seg on the dataset. As shown in Table 11, our method
consistently promotes the supervised baseline by 6.36%, 5.70%, 5.67%, 3.18% and 1.45%, and
outperforms the Cutmix-Seg by 2.25%, 3.38%, 2.48%, 1.31% and 1.26% under 1/32, 1/16, 1/8, 1/4
and 1/2 partition protocols, respectively.

4.7 Qualitative Results

Figure 3 shows the visualization results of different methods evaluated on the Cityscapes val set.
We compare the proposed AEL with ground-truth, supervised baseline and our basic framework
described in Section 3.2. Benefiting from a series of technologies designed for the balanced training,
AEL achieves great performance on not only head categories (e.g. Road), but also tailed categories
(e.g. Rider and Bicycle).



Table 8: Study on number of Table 9: Study on loss weight Table 10: Performance on the

sampled categories K in ACP. a. full Cityscapes train set.
K | 132 | 1/16 a | 132 | 1/16 Number | Baseline | AEL
1 72.18 | 74.85 0.5 71.85 | 74.61 0 80.16 -
2 72.84 | 74.95 1.0 74.28 | 75.83 1000 80.22 | 80.28
3 74.28 | 75.83 1.5 74.10 | 73.44 3000 80.55 | 81.36
4 73.43 | 74.10 2.0 73.79 | 72.86 5000 80.92 | 81.95

Table 11: Comparison with supervised baseline and Cutmix-Seg on the ADE20K val set under
different partition protocols. All the methods are based on DeepLabv3+ with ResNet-101 backbone.

Method | 1/32(631) | 1/16 (1263) | 1/8(2526) | 1/4(5052) | 1/2(10105)
Supervised | 2204 | 2752 | 3236 | 3639 | 4197
Cutmix-Seg [2] | 2615 | 2984 | 3555 | 3826 | 4216
AEL (Ours) | 2840 | 3322 | 3803 | 3957 | 4342

P

Input Ground Truth Supervised Basic Framework AEL

Figure 3: Qualitative results on the Cityscapes val set. From left to right: input image, ground-truth,
predictions of the supervised baseline, predictions of our basic framework and predictions of the
proposed AEL. Orange rectangles highlight the unsatisfactory segmentation results.

5 Conclusion

In this paper, we propose a novel Adaptive Equalization Learning (AEL) framework for semi-
supervised semantic segmentation. Different from the existing methods dedicating to the design of
consistency regularization or pseudo-labeling, AEL aims to adaptively balance the training based on
the fact that pixel categories in common semantic segmentation datasets tend to be imbalanced. We
introduce a confidence bank to dynamically record the category-wise performance at each training
step, which enables us to identify the under-performing categories and adaptively tilt training towards
these categories. Several technologies are proposed to make the training unbiased, namely adaptive
Copy-Paste and CutMix, adaptive equalization sampling and dynamic re-weighting. Through the
adaptive design, AEL outperforms the state-of-the-art methods by a large margin on the Cityscapes
and Pascal VOC benchmarks under various data partition protocols.
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