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ABSTRACT

Flow matching is a powerful generative modeling framework, valued for its simplicity
and strong empirical performance. However, its standard formulation treats signals on
structured spaces—such as fMRI data on brain graphs—as points in Euclidean space,
overlooking the rich topological features of their domains. To address this, we introduce
topological flow matching, a topology-aware generalization of flow matching. We inter-
pret flow matching as a framework for solving a degenerate Schrödinger bridge problem
and inject topological information by augmenting the reference process with a Laplacian-
derived drift. This principled modification captures the structure of the underlying domain
while preserving the desirable properties of flow matching: a stable, simulation-free objec-
tive and deterministic sample paths. As a result, our framework serves as a plug-and-play
replacement for standard flow matching. We demonstrate its effectiveness on diverse struc-
tured datasets, including brain fMRIs, ocean currents, seismic events, and traffic flows.1

1 INTRODUCTION

Many of the most valuable datasets in science and engineering do not consist of collections of independent
points but are better viewed as signals defined on structured domains— fMRI scans on a brain region graph,
ocean current velocities on a mesh, or traffic flows on a road network. The underlying structure of these
domains contains crucial information, and yet is often overlooked by standard generative models.
Flow Matching (FM) (Lipman et al., 2023; Liu, 2022; Albergo & Vanden-Eijnden, 2023; Peluchetti, 2021)
has emerged as a powerful framework for generative modeling, achieving state-of-the-art performance across
modalities such as images (Esser et al., 2024), video (Polyak et al., 2024), and audio (Vyas et al., 2023), as
well as in diverse scientific applications (Tong et al., 2024b; Klein et al., 2023). Its appeal lies in a scalable,
simulation-free training objective and deterministic sample paths. Despite these advantages, standard FM
bears a key limitation: it treats data as points in Euclidean space, neglecting the rich structure of non-
Euclidean domains. This approach effectively ignores the rich underlying structure of the data, discarding
valuable topological and geometric information. Prior work in geometric and topological deep learning has
shown that respecting such underlying structure can lead to substantial performance gains (Bronstein et al.,
2021; Papamarkou et al., 2024). Indeed, recent extensions of FM have taken steps in this direction, for
example by adapting the framework generating points in Riemannian manifolds (Chen & Lipman, 2024)
and discrete spaces (Gat et al., 2024). Yet, such ideas have not been utilized in FM for modeling signals
over such spaces, such as fMRI signals on the nodes of a brain graphs or current velocities on the edges of a
mesh discretizing the ocean.
To fill this gap, we introduce topological flow matching (TFM), a principled generalization of FM that ex-
ploits the topology of the signal domain. Our key insight is that the relation between FM and the Schrödinger
bridge problem (SBP) can be leveraged to inject topological information by augmenting the reference pro-
cess with a Laplacian-derived drift. Compared to recent work on topological Schrödinger bridges (Yang,
2025), TFM has the distinct advantage of a simulation-free objective and deterministic sample paths. This
also makes TFM a seamless substitute for standard FM in applications on structured spaces.

1Anonymized code repository is available at https://anonymous.4open.science/r/tfm-1514.
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Figure 1: Illustration of the Hodge Laplacian spectrum and its corresponding heat Gaussian process.
Columns from the left: (1) sample from the normal distribution; (2) sample from the heat Gaussian pro-
cess; (3) eigenfunction with zero eigenvalue; (4) eigenfunction with low frequency; (5) eigenfunction with
high frequency. Top: a graph with node signals—low values shown in blue, high in red. Bottom: a 2-
simplicial complex with edge signals, whose values at an edge are proportional to arrow length.

Our contributions are threefold:
• We introduce a principled way of incorporating topological information into FM, utilizing its connection

with SBP and augmenting the reference process with a Laplacian-derived drift.
• We derive TFM, a topology-aware generalization of FM for modeling distributions over signals on finite

graphs and simplicial complexes. TFM enjoys a stable, simulation-free objective, and deterministic sample
paths, making it a plug-and-play replacement for standard FM.

• We evaluate TFM on a diverse collection of datasets on structured domains—including brain fMRI, ocean
currents, seismic events, and traffic flows—demonstrating improvements over both standard FM and topo-
logical Schrödinger bridge matching.

2 BACKGROUND

Notation. For a stochastic process X with a law P and times t0, . . . , tk, we abbreviate the marginal distri-
bution P((Xt0 , . . . , Xtk) ∈ ·) as Pt0...tk . Given a random variable Z and a value z, we write the regular
conditional distribution P(· | Z = z) as Pz . For a space Ω, we denote the space of probability distributions
on Ω by P(Ω). For two distributions µ0, µ1 ∈ P(Ω) and random variables X0 ∼ µ0, X1 ∼ µ1, the set of
couplings of X0 and X1—that is, distributions π ∈ P(Ω × Ω) with marginals π0 = µ0 and π1 = µ1—is
denoted Π(µ0, µ1). We denote Brownian motion as W . For any vector or matrix, the i-th component is
indicated by a superscript, e.g. Xi

t .

2.1 SIGNALS ON STRUCTURED TOPOLOGICAL SPACES

Graphs. Graphs are one of the most ubiquitous spaces in machine learning (Veličković, 2023). An undi-
rected graph K consists of nodes K0 = {1, . . . , n0} and edges K1 = {[v0, v1] : v0 < v1 ∈ K0} (the K•
notation, instead of the graph-theoretic standard (V,E), ensures consistency when generalizing to simplicial
complexes) 2. Denoting nk := |Kk|, the structure of a graph is encoded by its edge-to-node incidence matrix
B1 ∈ Rn0×n1 . The column of B1 corresponding to edge [v0, v1] has a +1 in the v0-th row, −1 in the v1-th
row, and 0 elsewhere. A node signal on a graph K is a function f : K0 → R, e.g. fMRI data on nodes
representing functional regions in a brain graph, identified with its image f(K0) ∈ Rn0 . An edge signal is
a function K1 → R, e.g. traffic volumes on edges in a road network, identified with f(K1) ∈ Rn1 .

The graph Laplacian L0 := B1B
⊤
1 is a positive semi-definite matrix acting on node signals. Its eigenvec-

tors with non-zero eigenvalues are wave-like signals with frequencies proportional to their eigenvalues—
analogous to sines and cosines for the classical Laplacian on [0, 1]. This analogy extends to dynamics: The
graph heat equation ḟt = −κL0ft, for κ > 0, describes heat diffusion of an initial node signal f0, while

2An edge [v0, v1] is ordered by convention to make the definition of the incidence matrix unambiguous. The same
convention extends to simplices in simplicial complexes and their boundary matrices.
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the associated heat Gaussian process N (0, exp(−κL0)) is a Gaussian distribution over node signals whose
covariance reflects the graph structure, reducing to the standard Gaussian if the graph has no edges.
Simplicial complexes. Simplicial complexes model discrete structures more expressively than graphs. A k-
simplicial complex K consists of nodes K0, edges K1, triangles K2 = {[v0, v1, v2] : v0 < v1 < v2 ∈ K0},
and so on up to k-simplices Kk = {[v0, . . . , vk] : v0 < · · · < vk ∈ K0}. A k-simplicial complex can be
identified with a polyhedral subspace of Rd, as shown in Figure 1. The structure of a simplicial complex is
encoded by the boundary matrices Bk ∈ Rnk−1×nk , which generalize the edge-to-node incidence matrix.
The column of Bk corresponding to a k-simplex [v0, . . . , vk] has entries (−1)j in the rows indexed by its
(k−1)-faces [v0, . . . , vj−1, vj+1, . . . , vk], for each j = 0, . . . , k; all other entries are 0. In practice, K may
represent an existing real-world structure (e.g., a road network), be specified by domain experts (e.g., a brain-
region graph), be constructed from data (e.g., a k-nearest-neighbors graph or a Vietoris–Rips complex), or
arise from standard geometric constructions in synthetic experiments (e.g., a triangulation of a torus).
A k-simplex signal on K is a function f : Kk → R identified with f(Kk) ∈ Rnk . The Hodge Laplacian

Lk := B⊤
k Bk +Bk+1B

⊤
k+1

is a positive semi-definite matrix, fully determined by the structure of K, which acts on k-simplex sig-
nals, generalizing the graph Laplacian. Its eigenvectors with non-zero eigenvalues correspond to higher-
dimensional wave-like signals—e.g., to discrete vector fields for k = 1, illustrated in Figure 1. Its associated
heat equation ḟt = −κLkft diffuses signals both through (k−1)-simplices via B⊤

k Bk and through (k+1)-
simplices via Bk+1B

⊤
k+1, and also admits a structure-aware heat Gaussian process N (0, exp(−κLk)).

Laplacians and topology. Eigenvectors of Lk with non-zero eigenvalues are wave-like signals; those with
zero eigenvalues reveal topological features—intuitively, properties of K preserved under continuous de-
formations like stretching or twisting, but not discontinuous ones like cutting or gluing3. For k = 0, these
are signals constant on connected components, for k = 1, they loop around holes. In general, elements of
kerLk, are signals circulating around ”k-dimensional holes” called cohomology classes. Thus, components
of f ∈ Rnk in kerLk can be viewed as fundamentally aligned with the topological features of K.

2.2 FLOW MATCHING

Let µ0, µ1 be two boundary distributions over Rd. Flow matching (FM) (Lipman et al., 2023; Peluchetti,
2021), also known as rectified-flows (Liu, 2022), or stochastic interpolants Albergo et al. (2023), learns a
time-dependent vector field u : [0, 1) × Rd → Rd such that the law P of the process X driven by the flow
ODE

Ẋt = ut(Xt), X0 ∼ µ0 (1)
satisfies P1 = µ1. Samples from µ0 can be transformed into samples from µ1 by integrating the ODE, which
is used for generation by choosing a simple µ0 like N (0, Id). FM constructs u from conditional vector fields
uz driving the conditional process (X | Z = z), for a chosen conditioning variable Z ∼ π, as the average:

ut(x) := E
Z∼π(·|Xt=x)

[
uZ
t (x)

]
. (2)

Sampling from π(· | Xt = x) is generally intractable, which makes computation of u via Equation (2)
impossible, and also prevents direct minimization of the FM loss

LFM(θ) := E
t∼Unif[0,1), X∼Pt

[∥∥ut(X)− uθ
t (X)

∥∥2].
3 Formally, K is not a topological space, since it is only equipped with combinatorial structure, rather than a collec-

tion of open subsets closed under arbitrary unions and finite intersections called a topology. Nevertheless, we can still
consider its topological features in a meaningful and unambiguous way. This is because any two polyhedral subspaces
that K is identified with are equivalent as topological spaces, or homeomorphic.

3
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To overcome this, we need three operations: (1) evaluation of uz
t (x), (2) sampling Xt ∼ Pz

t , (3) sampling
Z ∼ π. If we can perform them efficiently, u can be learned by minimizing the conditional FM loss

LCFM(θ) := E
t∼Unif[0,1), Z∼π, X∼PZ

t

[∥∥uZ
t (X)− uθ

t (X)
∥∥2],

as guaranteed by the identity ∇θLFM(θ) = ∇θLCFM(θ). An especially effective variant of FM, called
conditional flow matching (CFM) (Lipman et al., 2023), is given by a choice of coupling π ∈ Π(µ0, µ1) and

Z = (X0, X1), ux0,x1

t (x) = x1 − x0.

In this case, (Xt | X0 = x0, X1 = x1) follows the straight line (1− t)x0 + tx1, i.e. Px0,x1

t = δ(1−t)x0+tx1
.

Two variants of CFM are particularly notable: I-CFM, which uses the independent coupling π = µ0 ⊗ µ1,
and OT-CFM, which uses the optimal transport (OT) coupling π∗ solving the exact OT problem

min E
(X0,X1)∼π

[
1
2∥X1 −X0∥2

]
, s.t. π ∈ Π(µ0, µ1). (3)

OT-CFM yields straighter sample paths than I-CFM, which can boost performance (Tong et al., 2024a;
Pooladian et al., 2023). While powerful, this formulation’s connection to the Schrödinger bridge problem,
which we introduce next, provides the key to efficiently embedding topological structure in TFM.

2.3 THE SCHRÖDINGER BRIDGE PROBLEM

The Schrödinger bridge problem (SBP) (Léonard, 2013) with boundary distributions µ0, µ1 ∈ P(Rd) and a
reference law P over paths C([0, 1];Rd), with µ0 ⊗ µ1 ≪ P01, is the minimization problem

minDKL(Q∥P), s.t. Q ∈ P(C([0, 1];Rd)), Q ≪ P, Q01 ∈ Π(µ0, µ1).

Intuitively, its solution is the most likely posterior evolution of a system, given a prior belief P, an initial
observation µ0, and a final observation µ1. It has a unique solution Q∗ given as the mixture

Q∗(E) =

∫
Px0,x1(E)Q∗

01(dx0, dx1), (4)

implying Qx0,x1 = Px0,x1 . Moreover, if Q∗
01 ≪ µ0 ⊗ µ1, Q∗

01 is the solution of the entropic OT problem
min E

Q01

[c] +DKL(Q01∥µ0 ⊗ µ1), s.t. Q01 ∈ Π(µ0, µ1), (5)

with the transport cost c = log dµ0⊗µ1

dP01
. We focus on the SBP with a reference law of the diffusion SDE

dXt = bt(Xt) dt+ σt(Xt) dWt, X0 ∼ µ0, (6)
with a given drift bt : Rd → Rd and noise σt : Rd → Rd×d. Heuristically, for small s > 0, we have

Xt+s ≈ Xt + bt(Xt)s+ σt(Xt)ϵ, ϵ ∼ N (0, sId).

If Pt(· | Xs = x) has the Lebesgue density ps,t(x, y), the conditional process (X | X0 = x0, X1 = x1)
follows the diffusion bridge SDE

dXt = [bt(Xt) + ux0,x1

t (Xt)] dt+ σt(Xt) dWt, ux0,x1

t (x) := σt(x)σ
⊤
t (x)∇ log pt,1(x, x1). (7)

Proposition 1 shows that the SBP solution follows an SDE expressed in terms of a mixture of conditional
controls ux0,x1 .
Proposition 1. Let P be the law of a diffusion process X and define the marginal control u by

ut(x) := E
(X0,X1)∼Q∗

01(·|Xt=x)

[
uX0,X1

t (x)
]
. (8)

The solution Q∗ to the Schrödinger bridge problem with reference law P is the law of the process
dXt = [bt(Xt) + ut(Xt)] dt+ σt(Xt) dWt, X0 ∼ µ0.

4
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3 INCORPORATING TOPOLOGY INTO FLOW MATCHING

In this section, we connect CFM to the diffusion SBP with zero drift. This motivates the use of a topolog-
ical drift, which we justify via spectral analysis as a topology-aware smoothness bias. We also suggest a
topology-aware initial distribution for use in generation tasks.

3.1 FLOW MATCHING SOLVES A DEGENERATE SCHRÖDINGER BRIDGE PROBLEM

CFM arises as a way of solving the SBP with the trivial drift b = 0 and a constant noise σ ∈ R+, in the limit
σ → 0. It is instructive, as a blueprint for TFM, to see this connection in terms of the three key components
of CFM.
1. Conditional vector field ux0,x1

t . If b = 0 and σ ∈ R+, the diffusion bridge SDE in Equation (7)
simplifies to

dXt = ux0,x1

t (Xt) dt+ σ dWt, ux0,x1

t (x) =
x1 − x

1− t
, X0 = x0. (9)

As σ → 0, the dynamics reduce to the ODE dXt

dt = ux0,x1

t (Xt). Its unique solution is the straight line
Xt = (1− t)x0 + tx1. Thus, ux0,x1

t (Xt) = x1 − x0, which recovers the CFM conditional vector field.
2. Conditional path Px0,x1

t . In the zero-noise limit, (Xt | X0 = x0, X1 = x1) becomes deterministic.
Thus, if b = 0, its law Px0,x1

t converges to the CFM conditional law δ(1−t)x0+tx1
.

3. Coupling (X0, X1) ∼ π. If b = 0 and σ ∈ R+, the entropic OT problem in Equation (5) simplifies to

min E
(X0,X1)∼Q01

[
∥X1 −X0∥2

]
+ σ2DKL(Q01∥µ0 ⊗ µ1), s.t. Q01 ∈ Π(µ0, µ1). (10)

As σ → 0, this converges to the exact OT problem in Equation (3) (Léonard, 2013). Therefore, Q∗
01 coincides

with the coupling π∗ used in OT-CFM. I-CFM can be seen as the independent approximation Q∗
01 ≈ µ0⊗µ1.

Proposition 1 now shows that the marginal vector field u of OT-CFM is the drift of the SBP solution
dXt = ut(Xt) dt+ σ dWt, X0 ∼ µ0.

In the limit σ → 0, these dynamics converge to the flow ODE in Equation (1). Thus, OT-CFM can be viewed
as solving the zero-noise limit of the diffusion Schrödinger bridge problem by learning the drift of this
limiting ODE. This is a formal viewpoint, since an SBP with σ=0 is generally not well-posed4. However,
the optimal drift of the SBP does converge under σ→0, solving the Benamou–Brenier OT problem

min

∫ 1

0

1
2∥ut(x)∥2Pt(dx) dt, s.t. ∂tPt +∇ · (Ptut) = 0, P0 = µ0, P1 = µ1.

Intuitively, this drift is the minimum-energy vector field transporting µ0 to µ1 in Euclidean space.

3.2 TOPOLOGICAL REFERENCE PROCESS

Topological diffusion. CFM can be seen as solving the zero-noise limit of a drift-free SBP. Since the
reference process plays the role of a prior, we can bias the SBP solution to respect topology of a simplicial
complex K, by augmenting it with a topology-aware drift (Yang, 2025):

bt(Xt) = Ht(Lk)Xt + αt, (11)
for a polynomial Ht—a choice achieving tractability and flexibility, as Ht(Lk) can approximate any analytic
function of Lk by the Cayley–Hamilton theorem (Yang, 2025). The resulting topological reference process

dXt = Ht(Lk)Xt + αt + σ dWt

serves as the starting point for derivation of TFM in Section 4.
4 For instance, let b=0, σ=0, and µ0=δx0 . In this case, P is a Dirac delta on the constant path t 7→x0. Any solution

Q must satisfy Q≪P. Since P is a point mass, this implies Q=P and, consequently, Q1=P1=δωx0
. Therefore, unless

µ1=δx0 , Q cannot simultaneously satisfy the necessary condition Q1=µ1. Thus, the SBP has no solution.

5
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Table 1: Flow ODE, conditional vector fields, and bridge process of CFM and TFM.
Model Flow ODE ux0,x1

t (Xt) (Xt | X0 = x0, X1 = x1)

CFM Ẋt = ut(Xt) x1 − x0 (1− t)x0 + tx1

TFM Ẋt = −κLkXt + ut(Xt) Φt,1Σ̃
−1
1,1(x1 −m1(x0)) mt(x0) + Σ̃t,1Σ̃

−1
1,1(x1 −m1(x0))

To motivate this choice, we focus on the case Ht(Lk) = −κLk for κ > 0, as it connects to the heat equation
and the heat kernel, providing a clear interpretation; however, other choices like Ht(Lk) = (κ2−Lk)

ν+nk/2

for κ > 0, ν > 1/2 could be useful for their connection to the Matérn kernel (Borovitskiy et al., 2021). In
the zero-noise limit the reference process becomes the heat equation Ẋt = −κLkXt with diffusion rate κ.
Furthermore, let Uk = (u1, . . . , unk

) be the eigenvectors and Dk = diag(λ0, . . . , λnk
) the eigenvalues of

Lk so that Lk = UkDkU
⊤
k . Under the change of coordinates Y := U⊤

k X , the heat equation is diagonalized

Ẋt = −κLkXt ⇐⇒ Ẏ i
t = −κλiY

i
t , ∀ i ∈ {0, . . . , nk}.

Its solution is given component-wise by Y i
t = exp(−κλit)Y

i
0 . Thus, the eigenfunctions with non-zero

eigenvalues decay exponentially quickly at a rate proportional to their frequency, while the eigenfunctions
with zero eigenvalues, corresponding to topological features (cf. Section 2), stay constant. Therefore, our
proposed drift can be seen as a bias dampening high-frequency oscillations—thereby denoising the signal—
while preserving signal components aligned with the structural features of K, where the strength of this bias
is proportional to κ.
Topological initial distribution. For generative tasks, we can also inject topological information in the
initial distribution µ0, by setting it to the heat Gaussian process N (0, exp(−κLk)). Setting κ = 0 recovers
a standard Gaussian—the usual initial distribution used for generation in FM—effectively disregarding the
structure of K by disallowing heat flow between adjacent simplices.

4 TOPOLOGICAL FLOW MATCHING

CFM operates in Euclidean space, which overlooks the topology of structured domains like graphs and
simplicial complexes. Since OT-CFM learns a solution of the degenerate drift-free SBP, we can bias the SBP
solution, by modifying the reference process. Thus, we propose to inject a topological bias, by augmenting
the reference process with the topological drift in Equation (11). Retracing the derivation of OT-CFM from
SBP, this time for the topological SBP

dXt = [Ht(Lk)Xt + αt] dt+ σ dWt, X0 ∼ µ0,

yields topological flow matching (TFM)—a principled, topology-aware extension of FM. Although inspired
by topological Schrödinger bridge matching (TSBM) (Yang, 2025), in stark contrast to it, TFM enjoys the
key advantages of standard FM: scalable, simulation-free training and deterministic sample paths.
Before we present TFM, however, let us consider why we take the SBP perspective. Indeed, it may seem
unintuitive to go through the SBP, if in the end we take its zero-noise limit. However, if we simply augment
the flow ODE with the topological drift, yielding the topological flow ODE

Ẋt = Ht(Lk)Xt + αt + ut(Xt), (12)
a sensible choice of ux0,x1

t (Xt) is not clear. For instance, ux0,x1

t (Xt) = (x1 − x0) − (Ht(Lk)Xt + αt)
yields the same conditional path as CFM, which ignores the topology completely:

Ẋt = (Ht(Lk)Xt + αt) + ux0,x1

t (Xt) = x1 − x0. (13)
The degenerate SBP, however, has a unique solution, which induces a principled choice of ux0,x1

t (Xt)—as
stated in Proposition 2. As in the Euclidean case, while the zero-noise limit of the topological SBP is formal,
its optimal drift ut converges in the limit σ→0 to the minimizer of the dynamic optimal control problem

min

∫ 1

0

1
2∥ut(x)∥2Pt(dx) dt, s.t. ∂tPt +∇ · (Pt(Ht(Lk) + αt + ut)) = 0, P0 = µ0, P1 = µ1.

6
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Intuitively, this ut is the minimum-energy corrective force needed to steer from µ0 to µ1 when the system,
left undisturbed, evolves according to the heat equation.

Notation. We denote mt|s(x) := E[Xt | Xs = x], Σ̃s,t|r := σ−2Cov(Xs, Xt | Xr = x), with the short-
hands mt := mt|0, Σ̃s,t := Σ̃s,t|0. We write Φs,t for the solution to Φ̇s,t = Ht(Lk)Φs,t, Φs,s = Ink

.

Proposition 2 (Conditional control ux0,x1

t ). Let Xt be the topological reference process. The bridge
(Xt | X0 = x0, X1 = x1) follows the SDE dXt = [Ht(Lk)Xt + αt + ux0,x1

t (Xt)] dt + σ dWt, with
the conditional control

ux0,x1

t (Xt) = Φt,1Σ̃
−1
1|t (x1 −m1|t(Xt)). (14)

In the limit σ → 0, ux0,x1

t (Xt) becomes independent of Xt

ux0,x1

t (Xt) = Φt,1Σ̃
−1
1,1(x1 −m1(x0)).

For Ht(Lk) = −κLk, we have the simple formulas in spectral coordinates

(uy0,y1

t (Yt))
i =

{
yi1 − yi0 λi = 0 or κ = 0
2κλi exp(−κλi(1−t))

exp(2κλi)−1 (yi1 − exp(−κλi)yi0) else.

As a framework, TFM learns the topological flow ODE in precisely the same way as CFM learns
the standard flow ODE: (1) we choose a coupling (X0, X1) ∼ π, (2) we find the conditional path
Px0,x1

t = Law(Xt | X0 = x0, X1 = x1), (3) we minimize the CFM loss

E
t∼Unif[0,1), (X0,X1)∼π, X∼PX0,X1

t

[∥∥∥uX0,X1

t (X)− uθ
t (X)

∥∥∥2].
As in CFM, this is a stable, simulation-free objective, since the bridge process (Xt | X0 = x0, X1 = x1)
has a stable deterministic form. This is made precise by the proposition below.

Proposition 3 (Conditional path Px0,x1

t ). Let Xt be the topological reference process. The bridge
(Xt | X0 = x0, X1 = x1) has the mean

mx0,x1

t = mt(x0) + Σ̃t,1Σ̃
−1
1,1(x1 −m1(x0)).

As σ → 0, the bridge law concentrates on the mean Px0,x1

t = δmx0,x1
t

. For Ht(Lk) = −κLk, we obtain
the simple formulas in spectral coordinates

(my0,y1

t )i =

{
tyi1 + (1− t)yi0 κ = 0 or λi = 0
sinh(κλi(1−t))

sinh(κλi) yi0 +
sinh(κλit)
sinh(κλi) y

i
1 else.

Any choice of π yields a valid TFM variant. However, only the OT-TFM variant with π = Q∗
01 solves the

degenerate topological SBP. Fortunately, Q∗
01 can be computed as efficiently as in the Euclidean case, since

the transport cost c corresponding to the topological SBP has a simple formula given below.

Proposition 4 (Coupling (X0, X1) ∼ Q∗
01). For the topological reference process X , the entropic OT

problem in Equation (5) is equivalent to
min E

(X0,X1)∼Q01

[c] + σ2DKL(Q01∥µ0 ⊗ µ1), s.t. Q01 ∈ Π(µ0, µ1), (15)

and, in the limit σ → 0, converges to an exact OT problem with the same transport cost c, given by

c(x0, x1) = (x1 −m1(x0))
⊤Σ̃−1

1,1(x1 −m1(x0)).

With Ht(Lk) = −κLk, we get the simple formulas in spectral coordinates: c(y0, y1) =
∑nk

i=1 ci
(
yi0, y

i
1

)
,

ci
(
yi0, y

i
1

)
=

{
(yi1 − yi0)

2 λi = 0 or κ = 0
2κλi

1−exp(−2κλi)

(
yi1 − exp

(
−κλi

)
yi0
)2

else.
(16)
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Figure 2: Conditional paths from noise to data on the MNIST dataset at t intervals of 1/9, illustrating the
smoothing effect of the topological reference process. Top: CFM path. Bottom: TFM path with κ = 0.5 and
a Gaussian process initial distribution N (0, exp(−κLk)).

Table 2: Mean 1-Wasserstein distance, ± 1 standard deviation, of CFM and TFM on real-world datasets
from Yang (2025) compared against the best performing TSBM variant.

Method Earthquakes Traffic flows Brain fMRI Single-cell Ocean currents

I-CFM 8.37±0.05 1.72±0.01 11.71±0.02 0.022±0.001 1.95±0.02

OT-CFM 8.25±0.06 1.59±0.01 11.30±0.01 0.019±0.001 2.00±0.05

I-TFM 4.93±0.06 1.27±0.01 6.33±0.02 0.018±0.001 1.87±0.04

OT-TFM 5.53±0.02 1.27±0.00 5.86±0.01 0.019±0.001 1.91±0.06

TSBM (best) 7.69±0.04 9.92±0.02 7.51±0.01 0.140±0.010 6.89±0.00

Thus, TFM enjoys the scalable, simulation-free formulas mirroring CFM, as summarized in Table 1. Any
variant of TFM, such as I-TFM with π = µ0 ⊗ µ1, exploits topological information via the flow ODE, the
conditional vector fields, and the conditional path, while OT-CFM also uses it in the coupling π = Q∗

01.

5 EXPERIMENTS

We developed TFM to improve performance over CFM on generative tasks over topological signals by
exploiting the structure of their domains. To examine whether this goal has been achieved, we compare
TFM—specifically its heat flow variant with the topological drift −κLkXt—against CFM on diverse real-
world datasets on graphs and 2-simplicial complexes, compiled by Yang (2025) to evaluate TSBM. This
also lets us compare TFM against TSBM, showing whether TFM can serve as a scalable, simulation-free
alternative. To ensure a fair comparison, we use the data, models, and experimental setup given by Yang
(2025) wherever possible. We use a fixed κ=2.0, though a choice tailored to a given experiment can improve
performance (cf. Section F.3). We also investigate if the smoothing effect TFM has on conditional paths
(cf. Figure 2) can aid image generation, by viewing images as node signals on the grid, using κ=0.01. The
experiments are divided into: generation, where the initial distribution is simple and the final distribution is
a data distribution; and matching, where the initial and final distributions are different data distributions.

Table 3: The mean, median, and standard
deviation of the FID scores on CIFAR-10
generation across 10 independent runs.

Method Mean Median SD

I-CFM 3.7005 3.7061 0.0462
OT-CFM 3.8238 3.8308 0.0615

I-TFM 3.6972 3.6795 0.0821
OT-TFM 3.8107 3.8046 0.0771

Generation. We first tackle modeling of earthquake magni-
tudes around the globe, using historical data between 1990 and
2017 from the IRIS dataset. To capture global regions of seis-
mic activity, we discretize the Earth’s surface as a mesh and
construct a 10-nearest-neighbors graph from the nodes closest
to historical earthquake events, shown in Figure 4. For each
year, the historical events are mapped to the nodes and their
magnitudes are averaged to create a target signal. Secondly,
we consider traffic flow modeling using the PeMSD4 dataset,
which contains node signals from 307 measuring stations. Fol-
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Figure 3: Left: Road network in the traffic flow
experiment with a node signal. Right: Simplicial
complex built from the road network, with trian-
gles shown in green, and an edge signal.
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Figure 4: Top: Historical earthquake events
overlaid with a mesh discretizing the globe. Bot-
tom: Graph used in the earthquake experiment
with an example node signal.

lowing Chen et al. (2022), this data is lifted to the edges and, to model it more effectively, the road network
graph is lifted to a 2-simplicial complex (cf. Figure 3). From Table 2, we find that TFM significantly outper-
forms CFM and TSBM. Interestingly, OT-TFM is outperformed by I-TFM on the earthquake experiment.
We also test image generation on the CIFAR-10 dataset, treating images as node signals on a 32-by-32-by-3
(width, height, channels) grid, using the code of Tong et al. (2024a). From Table 3, we see that I-TFM and
OT-TFM achieve only a small mean and median improvement over I-CFM and OT-CFM respectively, with
a relatively high variance between runs. The advantage of TFM is thus much larger on the earthquake and
traffic experiment, where the signal domains have complex structure, than in image generation, where the
domain is a regular grid. This suggests that, while TFM shows some promise for image generation, it gains
significant advantage by capturing topological features of complex domains.

Matching. We first consider edge signals representing water currents on a 2-simplicial complex discretiz-
ing the North Atlantic Ocean, extracted by Chen & Meilă (2021) from data collected by NOAA Atlantic
Oceanographic and Meteorological Laboratory. As the initial distribution we use an edge GP fitted to data
(Yang et al., 2024), and for the final distribution we choose a synthetic curl-free Gaussian process as the final
distribution. The target curl-free samples exhibit only sinks and sources, while the initial samples form real-
istic, mostly swirling, patterns (cf. Figure 5). Secondly, we study the differentiation of cells in an embryoid
body across 5 time steps, using data from Moon et al. (2019); Tong et al. (2020). Using data from every time
step, we construct a 4-nearest-neighbors graph capturing the global structure of the temporal cell evolution.
Then, as the initial and final distributions we use a normalized indicator function over the data at the first
and last timestep. Lastly, we consider the graph of 360 functional regions of the brain, with edges weighted
by connection strength. We use 1,190 fMRI signals from the Human Connectome Project, each of which is
decomposed into a time-fluctuating aligned and a time-persistent liberal component, serving as the initial
and final distributions respectively. From Table 2, we see that TFM outperforms CFM on all experiments—
most of all on the brain graph, which has a complex weighted structure. TFM also consistently outperforms
TSBM5, demonstrating the advantage of a simulation-free framework.

5We do not include the GTSB result, provided by Yang (2025) for the ocean current data, since we do not assume
knowledge of the boundary distributions that GTSB necessitates.

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

Figure 5: Ocean experiment data.
Top: Ocean mesh (subset). Middle:
Initial sample. Bottom: Final sample.

Day 00-03

Day 06-09

Day 12-15

Day 18-21

Day 24-27

Figure 6: Single-cell data in
the PHATE coordinates.

Figure 7: Initial (left) and final
(right) brain fMRI signals.

Table 4: Summary of topological datasets. k: signal order
(0=node, 1=edge). N : number of data points, ∞ if synthetic.

Earthquake Traffic fMRI Cell Ocean

Task Generation Generation Matching Matching Matching
K Graph Mesh Graph Graph Mesh
k 0 1 0 0 1
nk 576 340 360 18K 20K
N 28 17K 2K 6K ∞

6 CONCLUSION

We introduced topological flow matching, a topology-aware generalization of flow matching for generative
modeling over signals on structured spaces. We proposed a way to incorporate topological information into
FM by utilizing its relation to the Schrödinger bridge problem and augmenting the reference process with
a Laplacian-derived drift. This addition can be seen as a prior which smooths signal components that do
not correspond to topological features captured by the Laplacian kernel. Furthermore, we proved that TFM
retains a stable, scalable, and simulation-free objective as well as deterministic sample paths, which makes it
a drop-in replacement for standard FM. We demonstrated performance improvements over FM and topolog-
ical Schrödinger bridge matching on a variety of datasets on graphs and simplicial complexes, with greatest
advantage on most complex structures. While we focused on the natural choice of topological drift based
on the heat equation, future work could further explore different reference processes, including Matérn-like
drifts or drifts with a learned diffusion rate κ. In addition, a drift with a time-dependent Laplacian could
enable matching tasks between signals on two different spaces. Finally, variants of TFM for signals on
manifolds could be examined for applications e.g. in geostatistics and robotics. Altogether, TFM provides a
principled extension of FM that improves performance on structured spaces and opens new avenues for both
theoretical exploration and practical applications.
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ETHICS STATEMENT

Our work is primarily focused on theoretical algorithmic development for faster and more accurate gener-
ative models for topological datatypes, with reduced focus on experimental implementation. However, we
recommend that future users of our work exercise appropriate caution when applying it to domains that may
involve sensitive considerations.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed information regarding our experimental setup,
theoretical claims and datasets. An implementation of topological flow matching and the code to reproduce
all experiments will be made available upon publication. The theoretical claims and derivations underlying
TFM are presented in Section A. All datasets used in our experiments are publicly available at their cited
source in Section 5. Further implementation details are available in Section E.
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Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal transport,
2013. URL https://arxiv.org/abs/1308.0215.

Kevin R. Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B. Burkhardt, William S. Chen,
Kristina Yim, Antonia van den Elzen, Matthew J. Hirn, Ronald R. Coifman, Natalia B. Ivanova, Guy
Wolf, and Smita Krishnaswamy. Visualizing structure and transitions in high-dimensional biological
data. Nature Biotechnology, 37(12):1482–1492, 2019.

Kunwoo Na, Junghyun Lee, Se-Young Yun, and Sungbin Lim. Probability-flow ode in infinite-dimensional
function spaces. In ICLR 2025 Workshop on DeLTa (Deep Learning Theory), 2025. arXiv preprint
arXiv:2503.10219.

Theodore Papamarkou, Tolga Birdal, Michael Bronstein, Gunnar Carlsson, Justin Curry, Yue Gao, Mustafa
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APPENDIX

A PROOFS

A.1 PROOF OF PROPOSITION 1

This proposition is a direct corollary of Proposition 1 of generator matching (GM) (Holderrieth et al., 2025),
which states that for any Markov process X with law P and the generator Lt of X is given as the mixture of
generators Lx1

t of (X | X1 = x1)

Ltf(x) = E
X1∼P1(·|Xt=x)

[LX1
t f(x)]. (17)

Now, a general diffusion SDE
dXt = bt(Xt) dt+ σt(Xt) dWt (18)

has the generator
Ltf(x) = ⟨bt(x),∇f(x)⟩+

〈
1
2at(x),∇

2f(x)
〉
,

where at(x) := σt(x)σ
⊤
t (x), the first inner product is the vector inner product, and the second inner product

is the Frobenius matrix inner product. It follows that the bridge X | X0 = x0, X1 = x1 with the dynamics
dXt = [bt(Xt) + ux0,x1

t (Xt)] dt+ σt(Xt) dWt, (19)
and ux0,x1

t (x) = at(x)∇ log pt,1(x, x1), has the generator

Lx1
t f(x) = ⟨bt(x) + ux0,x1

t (x),∇f(x)⟩+
〈
1
2at(x),∇

2f(x)
〉
.

Moreover, noting the SBP solution by X∗ ∼ Q∗, we have that Lx1 is also the generator of X∗ | X∗
0 =

x0, X
∗
1 = x1, because (Q∗)x0,x1 = Px0,x1 . Additionally, since the generator does not depend on the initial

distribution, Lx1
t is also the generator of X∗ | X∗

1 = x1. Taking expectations, it follows from Equation (17)
that the SBP solution has the generator

L∗
t f(x) =

〈
bt(x) + E

X∗
1∼Q∗

1(·|X∗
t =x)

[
ut(x)

X∗
0 ,X

∗
1

]〉
+

〈
1
2at(x),∇

2f(x)
〉
,

and so follows the SDE
dX∗

t = [bt(X
∗
t ) + ut(X

∗
t )] dt+ σt(X

∗
t ) dWt.

with

ut(Xt) := E
X∗

1∼Q∗
1(·|X∗

t )

[
u
X∗

0 ,X
∗
1

t (X∗
t )
]
.

Since neither side of the equation actually depends on X0, we can take expectation over Q∗
0(· | X∗

t , X
∗
1

obtaining

ut(Xt) = E
X∗

1∼Q∗
1(·|X∗

t ), X
∗
0∼Q∗

0(·|X∗
t ,X

∗
1 )

[
u
X∗

0 ,X
∗
1

t (X∗
t )
]
= E

(X∗
0 ,X

∗
1 )∼Q∗

01(·|X∗
t )

[
u
X∗

0 ,X
∗
1

t (X∗
t )
]
.

Renaming X∗ to X finishes the proof.

A.2 PROOF OF PROPOSITIONS 2 AND 3

General topological reference process. To simplify notation, let At = Ht(Lk), so that the topological
reference process takes the form

dXt = (AtXt + αt) dt+ σ dWt. (20)
This is an example of a linear Gaussian SDE. It is well-known that a linear Gaussian SDE can be expressed
for any 0 ≤ r < t as

Xt = Φr,tXr +

∫ t

r

Φs,tαs ds+ σ

∫ t

r

Φs,t dWs,

15
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where Φs,t is the solution of the ODE

Φ̇s,t = AtΦs,t, Φs,s = Ink
.

It follows that the conditional process (Xt | Xr = x) is a Gaussian process with the mean mt|r(x) and
covariance Σs,t|r

mt|r(x) := E[Xt | Xr = xr] = Φr,txr +

∫ t

r

Φs,tαs ds,

Σs,t|r := σ2Σ̃s,t|r,

where

Σ̃s,t|r :=

∫ s∧t

r

Φu,tΦ
⊤
u,s du.

This yields Gaussian transition probabilities
pt,1(x, x1) = N (x1;E[X1 | Xt = xt],Var(X1 | Xt = xt)) = N

(
x1;m1|t(x),Σ1,1|t

)
.

Thus, the conditional control ux0,x1

t of the corresponding bridge SDE takes the form
ux0,x1

t (Xt) = −σ2∇x logN
(
x;m1|t(x),Σ1,1|t

)
= σ2Φt,1Σ

−1
1,1|t(x1 −m1|t(Xt))

= Φt,1Σ̃
−1
1,1|t(x1 −m1|t(Xt))

Moreover, conditional Gaussian process formulas show that the (Xt | X0 = x0, X1 = x1) is also a Gaussian
process with the mean mx0,x1

t and covariance Σx0,x1

s,t :

mx0,x1

t := E[Xt | X0 = x0, X1 = x1] = mt(x0) + Σt,1Σ
−1
1,1(x1 −m1(x0))

= mt(x0) + Σ̃t,1Σ̃
−1
1,1(x1 −m1(x0)),

Σx0,x1

s,t := Cov(Xs, Xt | X0 = x0, X1 = x1)

= Σs,t − Σs,1Σ
−1
1,1Σ1,t

= σ2
(
Σ̃s,t − Σ̃s,1Σ̃

−1
1,1Σ̃1,t

)
,

where mt := mt|0 and Σs,t := Σs,t|0. Taking the limit σ → 0, these ux0,x1

t and mx0,x1

t stay constant, while
the law of the bridge (Xt | X0 = x0, X1 = x1) converges to

(Xt | X0 = x0, X1 = x1) ∼ Px0,x1

t = δmx0,x1
t

.

Finally, we can use the fact that Xt | X0 = x0, X1 = x1 is deterministic, to further simplify ux0,x1

ux0,x1

t (Xt) = Φt,1Σ̃
−1
1|t (x1 −m1|t(m

x0,x1

t )) = Φt,1Σ̃
−1
1,1(x1 −m1(x0)),

yielding a stable conditional control independent of Xt. This proves the general formulas in Propositions 2
and 3.

Heat topological reference process. The spectral coordinates Y := U⊤
k X diagonalize the topological

reference process and hence the formulas for ux0,x1

t and (Xt | X0 = x0, X1 = x1), which we denote uy0,y1

t
and Yt | Y0 = y0, Y1 = y1. It follows then by simple algebraic manipulation that for Ht(λ

i) = −κλi, we

16
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have the spectral formulas:
Φi

s,t = exp(−κλi(t− s)),

m1(y)
i = exp(−κλi)yi,

Σ̃i,i
1,1 =

∫ 1

0

exp(−2κλi(1− t)) dt =

{
1 κ = 0 or λi = 0
1−exp(−2κλi)

2κλi else,

(uy0,y1

t (Yt))
i =

{
yi1 − yi0 κ = 0 or λi = 0
2κλi exp(−κλi(1−t))

1−exp(−2κλi) (yi1 − exp(−κλi)yi0) else,

(my0,y1

t )i =

{
tyi1 + (1− t)yi0 κ = 0 or λi = 0
sinh(κλi(1−t))

sinh(κλi) yi0 +
sinh(κλit)
sinh(κλi) y

i
1 else

,

(21)

which was to be shown.

A.3 PROOF OF PROPOSITION 4.

We can use the formulas found in Section A.2 to find the transport cost c = log dµ0⊗µ1

dP01
when P is the law

of a process with the linear Gaussian SDE dynamics (cf. Equation (20))

General topological reference process. To this end, we first notice that if µ1 has Lebesgue density ρ, then
the transport cost factorizes as

log
dµ0 ⊗ µ1

dP01
(x0, x1) = log

dµ1

dP1(· | X0 = x0)
(x1) = log ρ(x1)− log p0,1(x0, x1). (22)

Since EQ01
[log ρ(X1)] = Eµ1

[log ρ(X1)], the first summand does not change the minimizer of the associated
entropic OT problem. Hence, in solving this problem, it is equivalent to consider the cost
c(x0, x1) = − log p0,1(x0, x1) = logN (x1;m1(x0),Σ1,1) ∝ (x1 −m1(x0))

⊤Σ−1
1,1(x1 −m1(x0)), (23)

where we drop the constant 1
2 log(2πΣ1,1), since it too does not affect the minimizer. Furthermore, we can

extract out σ
c(x0, x1) = (x1 −m1(x0))

⊤Σ−1
1,1(x1 −m1(x0)) = σ−2(x1 −m1(x0))

⊤Σ̃−1
1,1(x1 −m1(x0)) (24)

Multiplying the associated entropic OT problem by σ2, we get the equivalent problem
min E

(X0,X1)∼Q01

[
(X1 −m1(X0))

⊤Σ−1
1,1(X1 −m1(X0))

]
+σ2DKL(Q01∥µ0 ⊗ µ1), s.t. Q01 ∈ Π(µ0, µ1).

(25)
Since the cost is now no longer dependent on σ, we can pass to the zero noise limit obtaining the exact OT
problem

min E
(X0,X1)∼Q01

[
(X1 −m1(X0))

⊤Σ−1
1,1(X1 −m1(X0))

]
, s.t. Q01 ∈ Π(µ0, µ1), (26)

what was to be shown.

Heat topological reference process. In the spectral coordinates, the covariance of X is diagonal; hence,
the probability density p0,1(Y0, Y1) factorizes as

∏nk

i=1 p0,1(Y
i
0 , Y

i
1 ). Consequently, the cost factorizes

c(y0, y1) =
∑nk

i=1 ci(y
i
0, y

i
1) with

ci(y
i
0, y

i
1) = (Σ−1

1,1)
i,i(yi1 −m1(y0)

i)2.

Finally, in the case Ht(λi) = −κλi, plugging in the expression from Equation (21) simplifies the transport
cost even further. Most simply, if either κ = 0 or Lk = 0, we get

ci(y
i
0, y

i
1) =

(
yi1 − yi0

)2
/1 =

(
yi1 − yi0

)2
. (27)
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Otherwise, we still get an efficient formula

ci(y
i
0, y

i
1) =

2κλi

1− exp(−2κλi)

(
yi1 − exp

(
−κλi

)
yi0
)2
, (28)

which was to be proven.

B ADDITIONAL RELATED WORK

B.1 TOPOLOGICAL SCHRODINGER BRIDGE MATCHING

Absence of a Topological Flow-Matching Framework in Yang (2025). To the best of our knowledge,
Yang (2025) does not present a topological flow matching framework. The closest relevant result is Corol-
lary E.2, which provides the probability-flow ODE associated with the solution of the topological SBP.
However, the drift in this ODE is expressed in terms of two auxiliary random variables defined via a coupled
system of heat equations, making it computationally intractable and therefore unsuitable as a basis for flow
matching.

Distinction Between TFM and TSBM. TFM differs fundamentally from TSBM along the same axis that
distinguishes flow matching from Schrödinger bridge matching:

• Simulation-free vs. simulation-based training. TFM inherits the simulation-free training
paradigm of FM: its objective requires only deterministic evaluations of the vector field, and no
stochastic sample path simulation is involved. In contrast, TSBM inherits the simulation-based
nature of SBM and relies on stochastic path sampling during training. This yields substantial em-
pirical benefits for TFM: faster training, increased numerical stability, and more direct scalability
to high-dimensional settings.

• Deterministic vs. stochastic sample paths. TFM produces deterministic sample paths governed
by the learned flow ODE, while TSBM yields stochastic paths arising from diffusion processes.
This is a qualitative difference intrinsic to the two formulations.

In summary, TFM retains the key properties of FM (scalable, simulation-free, deterministic), whereas TSBM
retains those of SBM (simulation-based, stochastic). The methodological gap between TFM and TSBM is
therefore as substantial as the gap between FM and SBM.

Topology-Aware Initialisation. For generative modelling, we additionally propose a topology-aware ini-
tial distribution, which can further improve fidelity of CFM and TFM. Empirical evidence for this design
choice is provided in Section F.2.

B.2 OTHER ARCHITECTURES AND FRAMEWORKS

In this work, we consider a topological form of flow matching which generates signals with respect to
a specific topological space. A large literature exists on graph signal processing (Isufi et al., 2024) and
geometric deep learning (Bronstein et al., 2021). In this work we use simple architectures, but note that
TFM could potentially benefit from the vast literature on topological deep learning architectures (Yang &
Isufi, 2023; Battiloro et al., 2024; Goh et al., 2022). Or graph neural networks (in the case of simple 1-
simplices) (Kipf & Welling, 2017).
This literature is in contrast to that of generating topologies (Papamarkou et al., 2024), which is a related,
field with many potential synergies, but is not directly applicable to our setting.
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C SKETCH OF EXTENSIONS

We sketch how TFM extends to vector-valued signals, countably infinite simplicial complexes, and compact
Riemannian manifolds. For the latter two cases, the guiding principle is that once the reference Brownian
motion is defined in the correct infinite-dimensional space and mild regularity holds, the linear Gaussian
reference dynamics are well posed, bridges are Gaussian, and the formulas from Section 4 carry over in the
sense of operator calculus. However, since the Laplacian eigendecomposition is infinite, it must be finitely
truncated to handle in practice. This eliminates most functional analytic technicalities, since the setting
becomes finite-dimensional.

Vector-valued signals. To model distributions over vector-valued k-simplex signals Xt : Kk → Rd, we
can simply assume that the topology acts only spatially and not across output dimensions. This simply means
that we identify the signal Xt with an element of Rnkd and apply TFM with the block-diagonal Laplacian:

Lvec
k := Lk ⊗ Id.

Signals on infinite simplicial complexes Let K be a countably infinite, but locally finite, simplicial com-
plex and fix k. We can model k-simplex signals in the Hilbert space H = ℓ2(Kk). A direct sum of
i.i.d. 1-dimensional Brownian motions does not produce ℓ2-valued paths:

∑
i ∥W i

t ei∥2 has infinite expected
value, so paths ”blow up” immediately. To remedy this, we can use a Q-Brownian motion, which simply
down-weights high-frequency directions so the expectation stays finite. Specifically, choosing an orthonor-
mal basis (ei) of H and nonnegative weights (qi) with

∑
i qi < ∞, we can define WQ

t as the convergent
series

WQ
t :=

∞∑
i=1

√
qiW

i
t ei,

where W i
t are independent 1-dimensional Brownian motions. With such a choice the reference process

dXt = [Ht(Lk)Xt + αt] dt+ σ dWQ
t

is well-posed, and the bridges remain Gaussian. All expressions for conditional controls, conditional paths,
and transport costs from §4 carry over essentially verbatim. The zero-noise limits yields TFM on infinite
simplicial complexes.

Functions and differential forms on compact Riemannian manifolds The compact Riemannian man-
ifold setting mirrors the simplicial one and can be treated exactly the same as the infinite simplicial com-
plex setting under proper identifications. On a compact Riemannian manifold M, we replace the space of
k-simplex signals Rnk with the space of k-forms L2Λk(M) and the Hodge Laplacian Lk with the Laplace–
de Rham operator ∆k. Because L2Λk(M) has a countable basis (ei), we can again drive the reference SDE
with a Q-Brownian motion, this time on L2Λk(M). The eigenfunctions of ∆k have an analogous inter-
pretation as wave-like signals for non-negative eigenvalues and signals circulating around ”k-dimensional
holes”; hence, the motivation for the topological reference process remains the same. Thus, under the iden-
tification (Rnk ,Lk) ↔ (L2Λk(M),∆k), the construction of TFM for signals on M can proceed exactly as
for infinite simplicial complexes. An extension to functions on non-compact manifolds may be facilitated by
taking functional flow matching (Kerrigan et al., 2024), or functional rectified flow (Zhang & Scott, 2025)
as a starting point, possibly aided by the literature on the probability-flow ODE in function spaces (Na et al.,
2025).

D FURTHER MOTIVATION OF THE TOPOLOGICAL REFERENCE PROCESS

This section expands on our motivation for the reference process used in TFM by comparison to alternative
flow matching formulations based on a Q-Brownian motion that dependent on the topology of the signal do-
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Table 5: Summary statistics (mean ± std across 5 seeds) for all models under the identity (I) and optimal-
transport (OT) couplings.

Model 1-Wasserstein distance 2-Wasserstein Distance

I-CFM 11.84±0.14 8.41±0.10

I-TFM 8.99±0.06 6.42±0.04

I-TAN 11.24±0.09 7.97±0.06

OT-CFM 11.77±0.08 8.36±0.06

OT-TFM 8.97±0.05 6.41±0.04

OT-TAN 11.22±0.09 7.95±0.06

main K. We provide a quantitative and qualitative comparison of these methods on a synthetic experiments,
where K is a triangulated torus.

Alternative Topology-Aware Reference Processes. Topology awareness in flow matching could also be
introduced by modifying the Brownian component of the reference SDE prior to taking the zero-noise limit.
A natural candidate is a Q-Brownian motion,

dXt = Q−1/2dWt,

where Q depends on the Laplacian (e.g., Q = L). To investigate this idea, we analyze a more general
reference process,

dXt = σQ
−1/2
t dWt, (29)

where Qt may vary in time and σ ∈ R+. Conditioned on endpoints X0 = x0 and X1 = x1, the process
follows the bridge SDE

dXt = QtΣ
−1
t,1 (x1 −Xt) dt+ σQ

−1/2
t dWt, Σs,t =

∫ t

s

Qr dr. (30)

Taking the zero-noise limit σ → 0, we obtain the deterministic bridge
Xt = x1 +Σt,1Σ

−1
0,1(x1 − x0), dXt = Qt Σ

−1
0,1(x1 − x0).

Consequences for Flow Matching. If Qt is time-homogeneous (Qt = Q0), then

QtΣ
−1
0,1 = Q0

(∫ 1

0

Q0 ds
)−1

= I,

so the resulting vector field is exactly x1−x0, recovering conditional flow matching (CFM). Thus, constant-
Q topology-aware noising does not produce a different FM method.
When Qt is time-dependent, the zero-noise limit yields a genuinely different bridge. However, choosing a
meaningful time-inhomogeneous Qt is nontrivial, in contrast to the physically motivated process

dXt = −cLXt dt+ σ dWt,

which corresponds to heat diffusion perturbed by Brownian noise.

A Time-Inhomogeneous Alternative. For comparison, we consider
Qt = exp(−κLt).

In the Laplacian eigenbasis this yields the conditional drift

(ut(y)
y0,y1)i =


κλi exp(−κλit)

1− exp(−κλi)
(yi1 − yi0), λi > 0,

yi1 − yi0, λi = 0.
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Figure 8: Standard deviation of the predicted distributions by the I-CFM, I-TFM, and I-TAN models in
spectral coordinates. Left plot shows the results for coordinates corresponding to curl-free eigenvectors.
Right plots shows the results for coordinates corresponding to divergence-free eigenvectors.
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Figure 9: Standard deviation of the predicted distributions by the OT-CFM, OT-TFM, and OT-TAN models
in spectral coordinates. Left plot shows the results for coordinates corresponding to curl-free eigenvectors.
Right plots shows the results for coordinates corresponding to divergence-free eigenvectors.

This expression resembles the TFM vector field but lacks the topology-dependent rescaling of yi0 via
exp(−κλi) that TFM introduces. For generation tasks from noise (x0) to data (x1), this mechanism ef-
fectively denoises low-frequency components before high-frequency ones.

Synthetic Comparison on a Triangulated Torus. To further motivate our approach and compare against
this topology-aware noising (TAN) alternative, we conducted a controlled synthetic experiment on a trian-
gulated torus. The task is to match distributions over edge signals: the initial distribution is divergence-free
(no sources or sinks), and the target distribution is curl-free (no ”swirls”). Specifically, the initial distribution
is a Hodge-compositional Matern Gaussian process (Yang et al., 2024) with smoothness parameter ν = 2.5.
We make this choice, instead of choosing the heat Gaussian process, to prevent making the task by-design
easy for TFM and TAN.
We find that, TFM outperforms both CFM and TAN in terms of the Wasserstein distance, as reported in
Table 5. Furthermore, we can consider the standard deviation in the spectral coordinates of the final distribu-
tion modelled by each method. Specifically, by dividing the plots into the spectral dimensions corresponding
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to the curl-free and divergence-free components, we can understand how well these FM variants interpolate
these qualitative differences of the boundary distributions. As shown in Figures 8 and 9, TFM dampens the
curl-free features of the initial samples, introducing divergence-free flow in the final samples. In particular,
TAN and CFM struggle to interpolate between the high-frequency components of the boundary distributions.
These differences are qualitatively visible in sample visualizations in Figure 10.

(a) Samples from the CFM (left), TFM (middle), and TAN (right) models.

(b) Samples from the true initial (left) and final (right) distributions.

Figure 10: True and predicted samples in the synthetic matching experiment on the triangulated torus.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 TOPOLOGICAL SCHRÖDINGER BRIDGE MATCHING EXPERIMENT SUITE

For the earthquake, traffic flow, brain fMRI, single-cell differentiation, and ocean currents experiments we
replicate the experimental setup described extensively in Yang (2025). We summarize key aspects here, and
provide additional details unspecified by Yang (2025) and ones pertain to TFM specifically.

Topological drift. In all experiments we use the heat equation topological drift −κLk with κ = 2.0, where
the value of κ was set after initial testing on a synthetic dataset, though values from 0.5 to 4.0 performed
similarly well. Depending on the size of the graph, we approximated the eigendecomposition of Lk with
m eigenpairs with the lowest eigenvalues: for earthquakes we take the full spectrum, for traffic flow the
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full spectrum, for brain the full spectrum, for single-cell differentiation m = 256, and for ocean currents
m = 500.

Training. To learn the conditional control we trained a residual neural network, as well as a graph neural
network and a simplicial neural network, depending on the signal domain, implemented by Yang (2025).
Each training run consisted of up to 100 epochs with 25,600 samples each, stopping early after 10 epochs of
improvement no greater than 1% in terms of 1-Wasserstein distance on a withheld validation set. For gener-
ation experiments and ocean current experiments, where at least one distribution is analytic, we approximate
the optimal transport plan with batch-wise optimal transport Tong et al. (2024b).

Evaluation. In generation tasks, evaluation was done by sampling 512 points X0 from the initial distribu-
tion µ0, obtaining predicted samples X̂1 by simulating the flow ODE started at X0 and computing the 1- and
2-Wasserstein distances between their distribution and the test set. Averaging the result over 16 independent
samples to obtain a final metric. For the ocean experiment we compute the metrics in the same way, except
we also resample 512 points from the target distribution 16 times. For the single-cell and brain datasets we
simply compute the Wasserstein distances exactly between the empirical distribution of the withheld target
point and the initial points transported along the flow ODE.

E.2 IMAGE GENERATION ON CIFAR-10

For image generation on the CIFAR-10 dataset we used the experimental setup of Tong et al. (2024a).
Because it is designed for CFM, we simply replaced its corresponding components according to Table 1.
After initial testing of κ ∈ {0.001, 0.01, 0.1, 1.0}, we chose the best-performing TFM variant with κ = 0.01.
We perform full eigendecomposition of the Laplacian, which can be done efficiently due to the product
structure of the grid. All other setup pertaining to training and testing is done according to Tong et al.
(2024a). In particular, we use a UNet (Ronneberger et al., 2015) for learning of the conditional control and
compute the FID scores using clean-fid (Parmar et al., 2021).

E.3 ADDITIONAL RESULTS

5 6 7 8

1-Wasserstein distance

I-CFM

OT-CFM

I-TFM

OT-TFM

Figure 11: Test performance on the earthquake magnitude generation experiment, in terms of 1-Wasserstein
distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the
mean, boxes show interquartile range, and outliers are shown as circles.

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

3.5 4.0 4.5 5.0 5.5 6.0

2-Wasserstein distance

I-CFM

OT-CFM

I-TFM

OT-TFM

Figure 12: Test performance on the earthquake magnitude generation experiment, in terms of 2-Wasserstein
distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the
mean, boxes show interquartile range, and outliers are shown as circles.
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Figure 13: Test performance of topological and Euclidean flow matching models on the traffic flow genera-
tion experiment, in terms of 1-Wasserstein distance measured over 10 independent runs. Orange bars show
median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as
circles.
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Figure 14: Test performance of topological and Euclidean flow matching models on the traffic flow genera-
tion experiment, in terms of 2-Wasserstein distance measured over 10 independent runs. Orange bars show
median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as
circles.
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Figure 15: Test performance on the ocean current matching experiment, in terms of 1-Wasserstein distance
measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean,
boxes show interquartile range, and outliers are shown as circles.
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Figure 16: Test performance on the ocean current matching experiment, in terms of 1-Wasserstein distance
measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean,
boxes show interquartile range, and outliers are shown as circles.
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Figure 17: Test performance on the brain fMRI matching experiment, in terms of 1-Wasserstein dis-
tance measured over 10 independent runs. Orange bars show median value, green dashed bars show the
mean,boxes show interquartile range, and outliers are shown as circles.
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Figure 18: Test performance on the brain fMRI matching experiment, in terms of 1-Wasserstein distance
measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean,
boxes show interquartile range, and outliers are shown as circles.
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Figure 19: FID on the CIFAR-10 image generation experiment, computed over 10 independent runs. Orange
bars show median value, green dashed bars show the mean, boxes show interquartile range, and outliers are
shown as circles.

F SUPPLEMENTARY EXPERIMENTS AND ABLATIONS

F.1 EFFECT OF COORDINATE FRAME ON CFM PERFORMANCE

One way to attempt an incorporation of topological information into the neural network uθ
t , is to predict the

vector field in spectral coordinates Y = U⊤
k X . Algebraically, the CFM conditional vector field in spectral

coordinates takes the same form as in standard coordinates
ux0,x1

t (Xt) = x1 − x0 = Uky1 −Uky0 = Uk(y1 − y0) = Uku
y0,y1

t (Yt).

Our empirical results reported in Table 6 suggest that there is no meaningful difference in performance
between performing CFM in standard coordinates compared with spectral coordinates on the datasets from
Yang (2025).

F.2 EFFECT OF THE INITIAL DISTRIBUTION ON PERFORMANCE

Using the heat Gaussian processes exp(−κLk) can boost performance of CFM and TFM in the generation
experiments with earthquake magnitudes and traffic data. The performance gain is significant for CFM and
relatively small for TFM. We report the results in Table 7.
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Table 6: Mean 1-Wasserstein distance, ±1 standard deviation, of CFM in spectral and standard coordinates
on real-world datasets from (Yang, 2025).

Method (coordinates) Earthquakes Traffic Brain Single Cell Ocean Currents

I-CFM (Spectral) 8.37±0.05 1.72±0.01 11.71±0.02 0.022±0.001 1.95±0.02

I-CFM (Standard) 8.29±0.05 1.76±0.01 11.86±0.23 0.020±0.001 1.93±0.02

OT-CFM (Spectral) 8.25±0.06 1.59±0.01 11.30±0.01 0.019±0.001 2.00±0.05

OT-CFM (Standard) 8.26±0.07 1.47±0.18 11.50±0.05 0.019±0.001 1.98±0.02

Table 7: 1-Wasserstein distance for TFM and CFM with compared across the normal and heat Gaussian
process (GP) initial distribution on the traffic flows and earthquake magnitudes experiments.

Dataset Initial Distribution I-TFM OT-TFM I-CFM OT-CFM

Traffic Normal 1.30±0.01 1.28±0.01 1.72±0.01 1.59±0.01

Heat GP 1.27±0.01 1.27±0.00 1.47±0.01 1.45±0.01

Earthquakes Normal 5.35±0.07 5.49±0.10 8.37±0.05 8.25±0.06

Heat GP 4.93±0.06 5.53±0.02 7.02±0.07 7.39±0.17

F.3 EFFECT OF κ ON PERFORMANCE

The parameter κ in the topological drift −κLkXt dt may be further tuned to improve performance of TFM.
This is shown for a range of κ values in across the earthquake magnitude, traffic flow, brain fMRI, single-cell
differentiation, and ocean current experiments in Figures 20 to 24. Except for the single-cell experiment, it
appears that the 1- and 2-Wasserstein distance is approximately convex in κ.
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Figure 20: Test performance of I-TFM and OT-TFM across a range of κ choices on the earthquake magnitude
generation experiment over 5 independent runs. Bars show median value, boxes show interquartile range,
and outliers are shown as circles.
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Figure 21: Test performance of I-TFM and OT-TFM across a range of κ choices on the traffic generation
experiment over 5 independent runs. Bars show median value, boxes show interquartile range, and outliers
are shown as circles.
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Figure 22: Test performance of I-TFM and OT-TFM across a range of κ choices on the brain fMRI matching
experiment over 5 independent runs. Bars show median value, boxes show interquartile range, and outliers
are shown as circles.
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Figure 23: Test performance of I-TFM and OT-TFM across a range of κ choices on the single cell differ-
entiation matching experiment over 5 independent runs. Bars show median value, boxes show interquartile
range, and outliers are shown as circles.
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Figure 24: Test performance of I-TFM and OT-TFM across a range of κ choices on the ocean current
matching experiment over 5 independent runs. Bars show median value, boxes show interquartile range, and
outliers are shown as circles.
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