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ABSTRACT

Flow matching is a powerful generative modeling framework, valued for its simplicity
and strong empirical performance. However, its standard formulation treats signals on
structured spaces—such as fMRI data on brain graphs—as points in Euclidean space,
overlooking the rich topological features of their domains. To address this, we introduce
topological flow matching, a topology-aware generalization of flow matching. We inter-
pret flow matching as a framework for solving a degenerate Schrodinger bridge problem
and inject topological information by augmenting the reference process with a Laplacian-
derived drift. This principled modification captures the structure of the underlying domain
while preserving the desirable properties of flow matching: a stable, simulation-free objec-
tive and deterministic sample paths. As a result, our framework serves as a plug-and-play
replacement for standard flow matching. We demonstrate its effectiveness on diverse struc-
tured datasets, including brain fMRIs, ocean currents, seismic events, and traffic ﬂowsﬂ

1 INTRODUCTION

Many of the most valuable datasets in science and engineering do not consist of collections of independent
points but are better viewed as signals defined on structured domains— fMRI scans on a brain region graph,
ocean current velocities on a mesh, or traffic flows on a road network. The underlying structure of these
domains contains crucial information, and yet is often overlooked by standard generative models.

Flow Matching (FM) (Lipman et al.,|2023}; [Liu, 2022; |Albergo & Vanden-Eijnden, 2023} |Peluchetti, [2021))
has emerged as a powerful framework for generative modeling, achieving state-of-the-art performance across
modalities such as images (Esser et al.,|2024), video (Polyak et al.,[2024), and audio (Vyas et al., [2023), as
well as in diverse scientific applications (Tong et al.| |2024b; |[Klein et al.l 2023)). Its appeal lies in a scalable,
simulation-free training objective and deterministic sample paths. Despite these advantages, standard FM
bears a key limitation: it treats data as points in Euclidean space, neglecting the rich structure of non-
Euclidean domains. This approach effectively ignores the rich underlying structure of the data, discarding
valuable topological and geometric information. Prior work in geometric and topological deep learning has
shown that respecting such underlying structure can lead to substantial performance gains (Bronstein et al.}
2021}, [Papamarkou et al) [2024). Indeed, recent extensions of FM have taken steps in this direction, for
example by adapting the framework generating points in Riemannian manifolds (Chen & Lipman, [2024)
and discrete spaces (Gat et al., 2024). Yet, such ideas have not been utilized in FM for modeling signals
over such spaces, such as fMRI signals on the nodes of a brain graphs or current velocities on the edges of a
mesh discretizing the ocean.

To fill this gap, we introduce topological flow matching (TFM), a principled generalization of FM that ex-
ploits the topology of the signal domain. Our key insight is that the relation between FM and the Schrodinger
bridge problem (SBP) can be leveraged to inject topological information by augmenting the reference pro-
cess with a Laplacian-derived drift. Compared to recent work on topological Schrodinger bridges (Yang|
2025), TFM has the distinct advantage of a simulation-free objective and deterministic sample paths. This
also makes TFM a seamless substitute for standard FM in applications on structured spaces.

! Anonymized code repository is available atjht tps: //anonymous . 4open.science/r/t fm-1514!
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Figure 1: Illustration of the Hodge Laplacian spectrum and its corresponding heat Gaussian process.
Columns from the left: (1) sample from the normal distribution; (2) sample from the heat Gaussian pro-
cess; (3) eigenfunction with zero eigenvalue; (4) eigenfunction with low frequency; (5) eigenfunction with
high frequency. Top: a graph with node signals—low values shown in blue, high in red. Bottom: a 2-
simplicial complex with edge signals, whose values at an edge are proportional to arrow length.

Our contributions are threefold:

* We introduce a principled way of incorporating topological information into FM, utilizing its connection
with SBP and augmenting the reference process with a Laplacian-derived drift.

* We derive TFM, a topology-aware generalization of FM for modeling distributions over signals on finite
graphs and simplicial complexes. TFM enjoys a stable, simulation-free objective, and deterministic sample
paths, making it a plug-and-play replacement for standard FM.

* We evaluate TFM on a diverse collection of datasets on structured domains—including brain fMRI, ocean
currents, seismic events, and traffic flows—demonstrating improvements over both standard FM and topo-
logical Schrodinger bridge matching.

2 BACKGROUND

Notation. For a stochastic process X with a law P and times to, . . . , tx, we abbreviate the marginal distri-
bution P((Xy,,..., X, ) € ) as Py, 4, . Given a random variable Z and a value z, we write the regular
conditional distribution P(- | Z = z) as P%. For a space €, we denote the space of probability distributions
on 2 by P(Q). For two distributions pg, 41 € P(2) and random variables X ~ pg, X1 ~ p1, the set of
couplings of X, and X;—that is, distributions 7 € P(€ x Q) with marginals 7y = o and 71 = p—is
denoted II(1, 111). We denote Brownian motion as W. For any vector or matrix, the i-th component is
indicated by a superscript, e.g. X;.

2.1 SIGNALS ON STRUCTURED TOPOLOGICAL SPACES

Graphs. Graphs are one of the most ubiquitous spaces in machine learning (Velickovic, 2023). An undi-
rected graph K consists of nodes Ky = {1,...,n0} and edges K1 = {[vo,v1] : vg < v1 € Ko} (the K,
notation, instead of the graph-theoretic standard (V, £'), ensures consistency when generalizing to simplicial
complexes) El Denoting ny, = | K}, the structure of a graph is encoded by its edge-to-node incidence matrix
B; € R™*™_ The column of B corresponding to edge [vg, v1] has a +1 in the vg-th row, —1 in the v;-th
row, and 0 elsewhere. A node signal on a graph K is a function f: Ky — R, e.g. fMRI data on nodes
representing functional regions in a brain graph, identified with its image f(Ky) € R™. An edge signal is
a function K; — R, e.g. traffic volumes on edges in a road network, identified with f(K;) € R".

The graph Laplacian Lo = B, B is a positive semi-definite matrix acting on node signals. Its eigenvec-
tors with non-zero eigenvalues are wave-like signals with frequencies proportional to their eigenvalues—
analogous to sines and cosines for the classical Laplacian on [0, 1]. This analogy extends to dynamics: The

graph heat equation ft = —kLgf, for k > 0, describes heat diffusion of an initial node signal fj, while

%An edge [vo,v1] is ordered by convention to make the definition of the incidence matrix unambiguous. The same
convention extends to simplices in simplicial complexes and their boundary matrices.
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the associated heat Gaussian process N'(0, exp(—rLg)) is a Gaussian distribution over node signals whose
covariance reflects the graph structure, reducing to the standard Gaussian if the graph has no edges.

Simplicial complexes. Simplicial complexes model discrete structures more expressively than graphs. A k-
simplicial complex K consists of nodes Ky, edges K1, triangles Ko = {[vg, v1,v2] : vo < v1 < v3 € Kp},
and so on up to k-simplices Ky = {[vg,...,vx] : vo < --- < v € Kp}. A k-simplicial complex can be
identified with a polyhedral subspace of R¢, as shown in Figure The structure of a simplicial complex is
encoded by the boundary matrices By, € R -1*"k which generalize the edge-to-node incidence matrix.
The column of By, corresponding to a k-simplex [vg, . .., vx] has entries (—1)7 in the rows indexed by its
(k—1)-faces [vo, ..., Vj—1,Vj4+1,.-., 0], foreach j = 0,...,k; all other entries are 0. In practice, ' may
represent an existing real-world structure (e.g., a road network), be specified by domain experts (e.g., a brain-
region graph), be constructed from data (e.g., a k-nearest-neighbors graph or a Vietoris—Rips complex), or
arise from standard geometric constructions in synthetic experiments (e.g., a triangulation of a torus).

A k-simplex signal on K is a function f: K} — R identified with f(K}) € R™. The Hodge Laplacian
Ly = B} By + B;1B],

is a positive semi-definite matrix, fully determined by the structure of K, which acts on k-simplex sig-

nals, generalizing the graph Laplacian. Its eigenvectors with non-zero eigenvalues correspond to higher-

dimensional wave-like signals—e.g., to discrete vector fields for k = 1, illustrated in Figure[l] Its associated

heat equation f, = —r Ly, f; diffuses signals both through (k —1)-simplices via B, By, and through (k+1)-

simplices via Bj41 B/I+1’ and also admits a structure-aware heat Gaussian process N (0, exp(—~Ly)).

Laplacians and topology. Eigenvectors of Lj, with non-zero eigenvalues are wave-like signals; those with
zero eigenvalues reveal fopological features—intuitively, properties of K preserved under continuous de-
formations like stretching or twisting, but not discontinuous ones like cutting or gluinﬂ For k = 0, these
are signals constant on connected components, for £ = 1, they loop around holes. In general, elements of
ker Ly, are signals circulating around ”k-dimensional holes” called cohomology classes. Thus, components
of f € R™ in ker Ly can be viewed as fundamentally aligned with the topological features of K.

2.2 FLOW MATCHING

Let 19, 11 be two boundary distributions over R%. Flow matching (FM) (Lipman et al., 2023; Peluchetti,
2021), also known as rectified-flows 2022)), or stochastic interpolants [Albergo et al.[(2023), learns a
time-dependent vector field u: [0,1) x R? — R< such that the law IP of the process X driven by the flow
ODE

Xi = u(Xe), Xo~ po (D)
satisfies Py = p;. Samples from pg can be transformed into samples from 1; by integrating the ODE, which
is used for generation by choosing a simple pq like N'(0, I4). FM constructs u from conditional vector fields
u? driving the conditional process (X | Z = z), for a chosen conditioning variable Z ~ m, as the average:

ug(x) = E uZ (z)]. 2)
)=, B i@

Sampling from 7(- | X; = x) is generally intractable, which makes computation of u via Equation @)
impossible, and also prevents direct minimization of the FM loss

Lrn(0) = E [Hut(X) - uf(X)||2].

t~Unif[0,1), X ~P;

3 Formally, K is not a topological space, since it is only equipped with combinatorial structure, rather than a collec-
tion of open subsets closed under arbitrary unions and finite intersections called a topology. Nevertheless, we can still
consider its topological features in a meaningful and unambiguous way. This is because any two polyhedral subspaces
that K is identified with are equivalent as topological spaces, or homeomorphic.
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To overcome this, we need three operations: (1) evaluation of u} (), (2) sampling X; ~ P, (3) sampling
Z ~ . If we can perform them efficiently, u can be learned by minimizing the conditional FM loss

2
L 0) = E { wZ(X) —uf (X },
CFM( ) t~Unif[0,1), Z~m, X~PZ H ¢ ( ) t( )H
as guaranteed by the identity VgLrm(0) = VoLcrm(6). An especially effective variant of FM, called
conditional flow matching (CFM) (Lipman et al.,[2023), is given by a choice of coupling 7 € TI( 1, 1) and
7 = (Xo, X1), up " (x) = x1 — 0.
In this case, (X, | Xo = xo, X; = x1) follows the straight line (1 — t)zo + tz1, i.e. Py = (1 _4)pottas -
Two variants of CFM are particularly notable: I-CFM, which uses the independent coupling 7 = o ® i1,
and OT-CFM, which uses the optimal transport (OT) coupling 7* solving the exact OT problem
n E [leXQ, e (o, ). 3
min B2 [ X1 — Xo s.t. 7 € (o, p1) ©)

OT-CFM yields straighter sample paths than I-CFM, which can boost performance (Tong et al.l [2024a}
Pooladian et al., 2023). While powerful, this formulation’s connection to the Schrodinger bridge problem,
which we introduce next, provides the key to efficiently embedding topological structure in TFM.

2.3 THE SCHRODINGER BRIDGE PROBLEM

The Schrodinger bridge problem (SBP) (Léonard, [2013) with boundary distributions g, i1 € P(Rd) and a
reference law IP over paths C([0, 1]; RY), with 19 ® 11 < Py, is the minimization problem

min Dgr (Q[|P), s.t. Q € P(C([0,1];RY)), Q < P, Qo1 € H(po, pt1)-
Intuitively, its solution is the most likely posterior evolution of a system, given a prior belief P, an initial
observation p, and a final observation p. It has a unique solution Q* given as the mixture

@ (B) = [P (E)Q) dno.dny), o)
implying Q¥0-*1 = [P*o-*1, Moreover, if Qf; < 1o ® p1, Qf, is the solution of the entropic OT problem
miD@E [e] + Dk(Qo1|lpo ® 1), s.t. Qo1 € II(peo, f11), Q)
01

with the transport cost ¢ = log W&’T%’“. We focus on the SBP with a reference law of the diffusion SDE
dX; = by (Xy) dt + o (Xe) AW, Xo ~ po, (6)
with a given drift b, : R? — R? and noise oy : R% — R34, Heuristically, for small s > 0, we have
Xt+s %Xt-f—bt(Xt)S-f—Ut(Xt)E, ENN(O,SId).

If P,(- | Xy = x) has the Lebesgue density ps +(x,y), the conditional process (X | Xo = z9, X1 = 21)
follows the diffusion bridge SDE

dX; = [by(Xy) +ui N (Xy)] dt + oy (Xy) AWy, up®™ (z) == at(gc)otT(x)Vlogpm(x, z1). (1

Proposition |1| shows that the SBP solution follows an SDE expressed in terms of a mixture of conditional
controls u*o"1,

Proposition 1. Let P be the law of a diffusion process X and define the marginal control u by
uy(x) = % (@) ®)

The solution Q* to the Schridinger bridge problem with reference law P is the law of the process
dXt = [bt(Xt) +Ut(Xt)] dt+0t(Xt)th, Xo ~ lo-

E oo
(X0,X1)~Qp, (| X¢=x)
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3 INCORPORATING TOPOLOGY INTO FLOW MATCHING

In this section, we connect CFM to the diffusion SBP with zero drift. This motivates the use of a topolog-
ical drift, which we justify via spectral analysis as a topology-aware smoothness bias. We also suggest a
topology-aware initial distribution for use in generation tasks.

3.1 FLOW MATCHING SOLVES A DEGENERATE SCHRODINGER BRIDGE PROBLEM

CFM arises as a way of solving the SBP with the trivial drift b = 0 and a constant noise o € R, in the limit
o — 0. It is instructive, as a blueprint for TFM, to see this connection in terms of the three key components
of CFM.

1. Conditional vector field v;>"*. If b = 0 and o € R, the diffusion bridge SDE in Equation
simplifies to

AX, = uf ™ (X) dt+ oWy, uf™ @) = L Xo =, ©)
dX, Zo,T1

As 0 — 0, the dynamics reduce to the ODE 3t = u; """ (X;). Its unique solution is the straight line
Xy = (1 — t)zo + ta1. Thus, uy>™ (X;) = 1 — o, which recovers the CFM conditional vector field.

2. Conditional path P;>*'. In the zero-noise limit, (X; | Xo = x9, X1 = z1) becomes deterministic.
Thus, if b = 0, its law P;*"** converges to the CFM conditional 1aw &(1_ )1tz -

3. Coupling (X¢, X1) ~ 7. If b = 0 and 0 € R, the entropic OT problem in Equation (5) simplifies to
min E {||X1 - Xolﬂ + 02 Dxr.(Qot |0 @ 1), s.t. Qo1 € T(po, p1). (10)
(X0,X1)~Qo1
As o — 0, this converges to the exact OT problem in Equation (3) (Léonard, 2013). Therefore, Qf; coincides
with the coupling 7 used in OT-CFM. I-CFM can be seen as the independent approximation Qg ~ fo® pt1.

Proposition [Tjnow shows that the marginal vector field u of OT-CFM is the drift of the SBP solution
dXt :Ut(Xt)dt+O'th, Xo ~ Q-

In the limit ¢ — 0, these dynamics converge to the flow ODE in Equation (T). Thus, OT-CFM can be viewed
as solving the zero-noise limit of the diffusion Schrédinger bridge problem by learning the drift of this
limiting ODE. This is a formal viewpoint, since an SBP with o =0 is generally not well—posecﬂ However,
the optimal drift of the SBP does converge under o — 0, solving the Benamou—Brenier OT problem

1
min/ %||71¢(.77)H2Pt(d.7:) dt, st.oP; +V - (Pouy) =0, Po=pg, Py=p.
0
Intuitively, this drift is the minimum-energy vector field transporting jo to p1 in Euclidean space.

3.2 TOPOLOGICAL REFERENCE PROCESS

Topological diffusion. CFM can be seen as solving the zero-noise limit of a drift-free SBP. Since the
reference process plays the role of a prior, we can bias the SBP solution to respect topology of a simplicial

complex K, by augmenting it with a topology-aware drift [2025):
be(X:) = He(Lg) Xt + au, 11)
for a polynomial H;—a choice achieving tractability and flexibility, as H;(Ly ) can approximate any analytic
function of L;, by the Cayley—Hamilton theorem [2025). The resulting ropological reference process
dX; = Hy(Lg) Xt + o + o dW,
serves as the starting point for derivation of TFM in Section 4]

4 For instance, let b=0, 0 =0, and o = 64, . In this case, P is a Dirac delta on the constant path ¢ — x¢. Any solution
Q must satisfy Q <. Since P is a point mass, this implies Q =P and, consequently, Q1 =P =4.,, . Therefore, unless
1 =10z,, Q cannot simultaneously satisfy the necessary condition Q1 = 1. Thus, the SBP has no solution.
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Table 1: Flow ODE, conditional vector fields, and bridge process of CFM and TFM.
Model Flow ODE ufo'zl (Xt) (Xt | X0 = xo, X1 = 1‘1)

CFM Xt = ut(Xt) r1 — To (1 — t)l’o —+ tx,

TFM Xt = —rkLpX: + ut(Xt) @t’lj;&(lj — m1(1’0)) mt(l‘o) + f]t,1Ei}(w1 - ml(wo))

To motivate this choice, we focus on the case H;(Ly) = —kLy, for k > 0, as it connects to the heat equation
and the heat kernel, providing a clear interpretation; however, other choices like H;(Ly) = (k2 — Ly)*+7+/?
for k > 0, v > 1/2 could be useful for their connection to the Matérn kernel (Borovitskiy et al., 2021). In
the zero-noise limit the reference process becomes the heat equation X, = —kLp X, with diffusion rate k.
Furthermore, let Uy, = (uq, ..., uy, ) be the eigenvectors and D), = diag(\o, . .., An, ) the eigenvalues of
Ly sothat L;, = U, D, U kT . Under the change of coordinates Y = U,;r X, the heat equation is diagonalized
Xt = -kl X; — }/tl = —K)\ii/ti, Vie {O, o ,le}.
Its solution is given component-wise by Y, = exp(—x\;t)Y{. Thus, the eigenfunctions with non-zero
eigenvalues decay exponentially quickly at a rate proportional to their frequency, while the eigenfunctions
with zero eigenvalues, corresponding to topological features (cf. Section 2)), stay constant. Therefore, our
proposed drift can be seen as a bias dampening high-frequency oscillations—thereby denoising the signal—

while preserving signal components aligned with the structural features of K, where the strength of this bias
is proportional to k.

Topological initial distribution. For generative tasks, we can also inject topological information in the
initial distribution g, by setting it to the heat Gaussian process N (0, exp(—~Lyg)). Setting x = 0 recovers
a standard Gaussian—the usual initial distribution used for generation in FM—effectively disregarding the
structure of K by disallowing heat flow between adjacent simplices.

4 TOPOLOGICAL FLOW MATCHING

CFM operates in Euclidean space, which overlooks the topology of structured domains like graphs and
simplicial complexes. Since OT-CFM learns a solution of the degenerate drift-free SBP, we can bias the SBP
solution, by modifying the reference process. Thus, we propose to inject a topological bias, by augmenting
the reference process with the topological drift in Equation (TI)). Retracing the derivation of OT-CFM from
SBP, this time for the topological SBP

dXy = [Hy(Li) Xy + aq] dt + o dW,,  Xo ~ po,
yields topological flow matching (TFM)—a principled, topology-aware extension of FM. Although inspired

by topological Schrodinger bridge matching (TSBM) (Yang] [2025)), in stark contrast to it, TFM enjoys the
key advantages of standard FM: scalable, simulation-free training and deterministic sample paths.

Before we present TFM, however, let us consider why we take the SBP perspective. Indeed, it may seem
unintuitive to go through the SBP, if in the end we take its zero-noise limit. However, if we simply augment
the flow ODE with the topological drift, yielding the topological flow ODE

Xt = Hi(Li)X: + ap + ue(Xy), (12)

a sensible choice of u;®™ (X;) is not clear. For instance, u;*"* (X;) = (z1 — o) — (Hy(Ly) Xt + o)
yields the same conditional path as CFM, which ignores the topology completely:

Xt = (Ht(Lk)Xt + at) + Ufoml (Xt) =1 — Xo- (13)
The degenerate SBP, however, has a unique solution, which induces a principled choice of u;®** (X;)—as
stated in Proposition2} As in the Euclidean case, while the zero-noise limit of the topological SBP is formal,
its optimal drift u; converges in the limit 0 — 0 to the minimizer of the dynamic optimal control problem

S
min / %||11,,,(.1f)|\2]1)£((1:1;) dt, st.OP+V .- (Py(He(Ly)+ar+u)) =0, Po=po, P1=p.
Jo
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Intuitively, this u; is the minimum-energy corrective force needed to steer from piy to 1 when the system,
left undisturbed, evolves according to the heat equation.

Notation. We denote m,,(z) = E[X; | X, = ], f]sﬂr = 0 2Cov(Xs, Xy | X, = x), with the short-
hands m; = my)o, 257,5 = 237“0. We write @ ; for the solution to <i>s7t = H(Ly)®sy, Ps5=1In,.
Proposition 2 (Conditional control u; ). Let X, be the topological reference process. The bridge

(Xt | Xo = z0, X1 = x1) follows the SDE dX; = [Hy(Ly)X; + o + uy® " (Xy)] dt + o dW;, with
the conditional control

ufO" (X)) = ‘Pt,lifﬁ(m —my(Xe)). (14)
In the limit o — 0, uy°"** (X;) becomes independent of X

up " (X)) = @tﬁlii%(xl —mq(xg))-
For Hy(Ly) = —rkLy, we have the simple formulas in spectral coordinates

Yt —yd AN=0o0rk=0

(uyanl()/t))i: L e exE (1 . o
t : Aexplém\?)—(i t))(yl - exp(—/@)\ )yo) else.

As a framework, TFM learns the topological flow ODE in precisely the same way as CFM learns
the standard flow ODE: (1) we choose a coupling (Xo,X;) ~ m, (2) we find the conditional path
Pyo" = Law(X; | Xo = 20, X1 = 1), (3) we minimize the CFM loss

2
E [‘ufo,Xl(X)_uﬁ(X)H :|
t~Unif[0,1), (X0, X1 )~m, X~B0:X1

As in CFM, this is a stable, simulation-free objective, since the bridge process (X; | Xo = 2o, X1 = 21)
has a stable deterministic form. This is made precise by the proposition below.

Proposition 3 (Conditional path Py°"). Ler X, be the topological reference process. The bridge
(Xt | Xo = z0, X1 = x1) has the mean

my " = my(zo) + flt,lfll_&(xl —mq(xg)).

As o — 0, the bridge law concentrates on the mean P;*"*" = Opzower. For Hy(Ly) = —kLg, we obtain
the simple formulas in spectral coordinates
_ tyl + (1 —t)yh k=00r\'=0
(my™")" = sinh(kA*(1—t)) § , sinh(kX't) 4 I
sinh(kA?) Yo + sinh(kA?) i e

Any choice of 7 yields a valid TFM variant. However, only the OT-TFM variant with m = Qf; solves the
degenerate topological SBP. Fortunately, Qf;; can be computed as efficiently as in the Euclidean case, since
the transport cost ¢ corresponding to the topological SBP has a simple formula given below.

Proposition 4 (Coupling (Xo, X1) ~ Qf;). For the topological reference process X, the entropic OT
problem in Equation (3)) is equivalent to

min E [c] + 0° Dxr(Qo1llpo ® pa),  s.t. Qo1 € M(pao, p11), (15)
(X0,X1)~Qo1

and, in the limit ¢ — 0, converges to an exact OT problem with the same transport cost c, given by
Ts—1
c(zo, 1) = (21 —mi(zo)) X7 1(z1 — ma(20)).

With Hy(Ly) = —kLy, we get the simple formulas in spectral coordinates: c¢(yo,y1) = > iy ¢i (¥, yi),

Do (yli*yé)2 N=0o0ork=0
Cz‘(yanl) = {Hxifzf%)\l)(yi —exp(fn)\i)yé)z else. =
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Ill

Figure 2: Conditional paths from noise to data on the MNIST dataset at ¢ intervals of 1/9, illustrating the
smoothing effect of the topological reference process. Top: CFM path. Bottom: TFM path with x = 0.5 and
a Gaussian process initial distribution A/(0, exp(—#.Ly)).

Table 2: Mean 1-Wasserstein distance, & 1 standard deviation, of CFM and TFM on real-world datasets
from Yang| (2025) compared against the best performing TSBM variant.

Method Earthquakes  Traffic flows  Brain fMRI Single-cell Ocean currents

I-CFM 8.37+0.05 1.7240.01 11.7140.02  0.022+0.001 1.9540.02
OT-CFM 8.2540.06 1.5940.01 11.304+0.01 0.019+0.001 2.00+0.05
I-TFM 4.9310.06 1.27410.01 6.33+0.02 0.018.10.001 1.8710.04
OT-TFM 5.53+0.02 1.2710.00 5.86+10.01 0.019+0.001 1.9140.06

TSBM (best) 7.69+0.04 9.9210.02 7.5110.01 0.14040.010 6.8940.00

Thus, TFM enjoys the scalable, simulation-free formulas mirroring CFM, as summarized in Table [T} Any
variant of TFM, such as I-TFM with m = o ® p1, exploits topological information via the flow ODE, the
conditional vector fields, and the conditional path, while OT-CFM also uses it in the coupling 7 = Q;.

5 EXPERIMENTS

We developed TFM to improve performance over CFM on generative tasks over topological signals by
exploiting the structure of their domains. To examine whether this goal has been achieved, we compare
TFM—specifically its heat flow variant with the topological drift —« L X;—against CFM on diverse real-
world datasets on graphs and 2-simplicial complexes, compiled by (2025) to evaluate TSBM. This
also lets us compare TFM against TSBM, showing whether TFM can serve as a scalable, simulation-free
alternative. To ensure a fair comparison, we use the data, models, and experimental setup given by
wherever possible. We use a fixed = = 2.0, though a choice tailored to a given experiment can improve
performance (cf. Section[F3). We also investigate if the smoothing effect TFM has on conditional paths
(cf. Figure[2) can aid image generation, by viewing images as node signals on the grid, using x=0.01. The
experiments are divided into: generation, where the initial distribution is simple and the final distribution is
a data distribution; and matching, where the initial and final distributions are different data distributions.

Generation. We first tackle modeling of earthquake magni- Table 3: The mean, median, and standard
tudes around the globe, using historical data between 1990 and deviation of the FID scores on CIFAR-10
2017 from the IRIS dataset. To capture global regions of seis- generation across 10 independent runs.
mic activity, we discretize the Earth’s surface as a mesh and
construct a 10-nearest-neighbors graph from the nodes closest Method ~ Mean  Median SD
to historicgl ea1.’thquake events, shown in Figure [d] For eagh LCEM 37005 37061  0.0462
year, the historical events are mapped to the nodes and their OT-CFM 3.8238 13.8308 0.0615
magnitudes are averaged to create a target signal. Secondly,
we consider traffic flow modeling using the PeMSD4 dataset,
which contains node signals from 307 measuring stations. Fol-

I-TFM 3.6972  3.6795 0.0821
OT-TFM  3.8107 3.8046 0.0771
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Figure 3: Left: Road network in the traffic flow Figure 4: Top: Historical earthquake events

experiment with a node signal. Right: Simplicial overlaid with a mesh discretizing the globe. Bot-
complex built from the road network, with trian- tom: Graph used in the earthquake experiment
gles shown in green, and an edge signal. with an example node signal.

lowing |Chen et al.| (2022), this data is lifted to the edges and, to model it more effectively, the road network
graph is lifted to a 2-simplicial complex (cf. Figure[3). From Table[2] we find that TFM significantly outper-
forms CFM and TSBM. Interestingly, OT-TFM is outperformed by I-TFM on the earthquake experiment.

We also test image generation on the CIFAR-10 dataset, treating images as node signals on a 32-by-32-by-3
(width, height, channels) grid, using the code of [Tong et al.[|(2024a)). From Table E} we see that I-TFM and
OT-TFM achieve only a small mean and median improvement over I-CFM and OT-CFM respectively, with
a relatively high variance between runs. The advantage of TFM is thus much larger on the earthquake and
traffic experiment, where the signal domains have complex structure, than in image generation, where the
domain is a regular grid. This suggests that, while TFM shows some promise for image generation, it gains
significant advantage by capturing topological features of complex domains.

Matching. We first consider edge signals representing water currents on a 2-simplicial complex discretiz-
ing the North Atlantic Ocean, extracted by |(Chen & Meila (2021) from data collected by NOAA Atlantic
Oceanographic and Meteorological Laboratory. As the initial distribution we use an edge GP fitted to data
(Yang et al.||2024), and for the final distribution we choose a synthetic curl-free Gaussian process as the final
distribution. The target curl-free samples exhibit only sinks and sources, while the initial samples form real-
istic, mostly swirling, patterns (cf. Figure[3). Secondly, we study the differentiation of cells in an embryoid
body across 5 time steps, using data from|Moon et al.[(2019); Tong et al.|(2020). Using data from every time
step, we construct a 4-nearest-neighbors graph capturing the global structure of the temporal cell evolution.
Then, as the initial and final distributions we use a normalized indicator function over the data at the first
and last timestep. Lastly, we consider the graph of 360 functional regions of the brain, with edges weighted
by connection strength. We use 1,190 fMRI signals from the Human Connectome Project, each of which is
decomposed into a time-fluctuating aligned and a time-persistent liberal component, serving as the initial
and final distributions respectively. From Table 2] we see that TFM outperforms CFM on all experiments—
most of all on the brain graph, which has a complex weighted structure. TFM also consistently outperforms
TSBME], demonstrating the advantage of a simulation-free framework.

>We do not include the GTSB result, provided by Yang| (2025) for the ocean current data, since we do not assume
knowledge of the boundary distributions that GTSB necessitates.
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Day 00-03
Day 06-09
Day 12-15
Day 18-21
Day 24-27

Figure 6: Single-cell data in Figure 7: Initial (left) and final
the PHATE coordinates. (right) brain fMRI signals.

Table 4: Summary of topological datasets. k: signal order
(O=node, 1=edge). N: number of data points, oo if synthetic.

Earthquake Traffic fMRI Cell Ocean
Task Generation Generation Matching Matching Matching
K Graph Mesh Graph Graph Mesh
Figure 5: Ocean experiment data. k 0 1 0 0 1
. . . ng 576 340 360 18K 20K
Top: Ocean mesh (subset). Middle: N 73 17K K 6K o

Initial sample. Bottom: Final sample.

6 CONCLUSION

We introduced topological flow matching, a topology-aware generalization of flow matching for generative
modeling over signals on structured spaces. We proposed a way to incorporate topological information into
FM by utilizing its relation to the Schrodinger bridge problem and augmenting the reference process with
a Laplacian-derived drift. This addition can be seen as a prior which smooths signal components that do
not correspond to topological features captured by the Laplacian kernel. Furthermore, we proved that TFM
retains a stable, scalable, and simulation-free objective as well as deterministic sample paths, which makes it
a drop-in replacement for standard FM. We demonstrated performance improvements over FM and topolog-
ical Schrodinger bridge matching on a variety of datasets on graphs and simplicial complexes, with greatest
advantage on most complex structures. While we focused on the natural choice of topological drift based
on the heat equation, future work could further explore different reference processes, including Matérn-like
drifts or drifts with a learned diffusion rate . In addition, a drift with a time-dependent Laplacian could
enable matching tasks between signals on two different spaces. Finally, variants of TFM for signals on
manifolds could be examined for applications e.g. in geostatistics and robotics. Altogether, TEM provides a
principled extension of FM that improves performance on structured spaces and opens new avenues for both
theoretical exploration and practical applications.
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ETHICS STATEMENT

Our work is primarily focused on theoretical algorithmic development for faster and more accurate gener-
ative models for topological datatypes, with reduced focus on experimental implementation. However, we
recommend that future users of our work exercise appropriate caution when applying it to domains that may
involve sensitive considerations.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed information regarding our experimental setup,
theoretical claims and datasets. An implementation of topological flow matching and the code to reproduce
all experiments will be made available upon publication. The theoretical claims and derivations underlying
TEFM are presented in Section [A] All datasets used in our experiments are publicly available at their cited
source in Section[5} Further implementation details are available in Section [E]
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APPENDIX

A PROOFS

A.1 PROOF OF PROPOSITION[]]

This proposition is a direct corollary of Proposition 1 of generator matching (GM) (Holderrieth et al., 2025)),
which states that for any Markov process X with law P and the generator £; of X is given as the mixture of
generators £;* of (X | X1 = 1)

Lif(x) = E (£ ()] (17)

T X P (X =)
Now, a general diffusion SDE
dXt = bt(Xt) dt+0’t(Xt)th (18)

has the generator

Lif(x) = (be(2), Vf(2)) + (zac(a), V2 f(2)),
where a;(r) := o(z)o, (), the first inner product is the vector inner product, and the second inner product
is the Frobenius matrix inner product. It follows that the bridge X | X¢ = x¢, X1 = 1 with the dynamics

dXt = [bt(Xt) +’Ujf07z1 (Xt)] dt+0’t(Xt) th, (19)
and u;*"" (z) = a¢(x)V log pt.1(z, x1), has the generator

L3 f(x) = (be(x) +up™ " (2), V() + (ga(2), V2 f(x)).

Moreover, noting the SBP solution by X* ~ Q*, we have that £ is also the generator of X* | X =
xo, X7 = x1, because (Q*)®0:*1 = P*o-"1_ Additionally, since the generator does not depend on the initial

distribution, £3* is also the generator of X* | X; = x;. Taking expectations, it follows from Equation
that the SBP solution has the generator

£i(@) = (e +
and so follows the SDE

55 ) + o) 92100

E
X7~Qi (X[ =x)

dX] = [0(X]) + u(X))] dt + o4 (X]) dW,.
with

w(X,) = (X))

E ol
X{~Q1 (1X7)
Since neither side of the equation actually depends on X, we can take expectation over Qj(- | X, X}
obtaining

w(X) = (X)) = w0 (x|

: | B ol
X7 Qi (1X]), Xg~Qp (X7, XT) (X5 X7)~Qg, (1X7)

Renaming X* to X finishes the proof.
A.2 PROOF OF PROPOSITIONS 2] AND [3]

General topological reference process. To simplify notation, let A, = H;(Ly), so that the topological
reference process takes the form

dXt = (AtXt + O[t) dt + O'th. (20)

This is an example of a linear Gaussian SDE. It is well-known that a linear Gaussian SDE can be expressed
forany 0 <r < tas

t t
Xt = (I)r,tXr +/ (ps,tas ds + (7/ q)s,t dW97
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where @, ; is the solution of the ODE

(bs,t = At(I)s,ty (I)s,s = Ink
It follows that the conditional process (X; | X, = x) is a Gaussian process with the mean my,.(z) and
covariance X |,

t
myp(z) = E[X¢ | X, = 2,] = @, 52, —|—/ O, g ds,

2%
Es,t|r =0 Es,t\ra
where

sAL
3 . T
Ystr = / .9, ; du.
T

This yields Gaussian transition probabilities
pea(z, 1) = N(z1; E[Xq | Xy = 2], Var(Xy | Xo = @) = N (z15mye(2), S1ape) -
Thus, the conditional control u;°** of the corresponding bridge SDE takes the form
u*" (X)) = —0?V, log NV (5 my (), S111¢)
= 02<I>t7121_7ht(x1 —my(Xy))
= ‘I’t,1il_,ht(l‘1 —my(X¢))

Moreover, conditional Gaussian process formulas show that the (X; | Xo = 2, X; = 1) is also a Gaussian
process with the mean m;*“* and covariance 7%

mfo@l = E[Xt | X() = l’o,Xl = xl] = mt(on) + Et’lzi%(l'l — ml(.’Eo))
= my(z0) + L1 71 (21 — ma(x0)),
Ef?f/"zl = COV(XS,Xt | Xo = Io,Xl = 1‘1)
=Yt — Be1 51151
= o? (is,t - is,liiiil,f)v
where m; = my)p and X, ; = X 4. Taking the limit ¢ — 0, these u;***" and m{*""" stay constant, while
the law of the bridge (X; | Xo = x0, X1 = 1) converges to
(Xt | Xo = xo,Xl = .Tl) ~ Ptxo’ﬁ = (5mtzo»11.
Finally, we can use the fact that X, | Xo = xo, X1 = 1 is deterministic, to further simplify 0%

u”" (X)) = @t,lifﬁ(l’l = my(mi®™)) = 4157 (21 — ma(20)),

yielding a stable conditional control independent of X;. This proves the general formulas in Propositions 2]
and

Heat topological reference process. The spectral coordinates ¥ = U,;r X diagonalize the topological
reference process and hence the formulas for u;®** and (X; | Xo = zo, X1 = 21), which we denote /¥

and Y; | Yo = yo,Y1 = y1. It follows then by simple algebraic manipulation that for H;(\*) = —r\%, we
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have the spectral formulas:
O,y = exp(—KX'(t - 3)),
mi(y)' = exp(—kA)y’,

iy ! i 1 k=0o0r\ =0

Y= exp(—2kA*(1 - 1)) dt = Loexp(=2kA)

0 T 2mxt . CI8G

o Do 0 @1
_ Jyi—w K=0or\" =
(uymyl (Y%))l = 3 26A exp(—rA (1— i A

' 1—ci;(>(—2;<g\z) K (y1 —exp(—rA")yg)  else,

(i tyi + (1 =)y k=0o0r\ =0

t —  sinh(rkX'(1—t)) 7, sinh(kA't) )

sinh(kA?) ot sinh(kA?) yl else

which was to be shown.

A.3 PROOF OF PROPOSITION 4]

d;to@m

We can use the formulas found in Section to find the transport cost ¢ = log when P is the law

of a process with the linear Gaussian SDE dynam1cs (cf. Equation (20))
General topological reference process. To this end, we first notice that if 11 has Lebesgue density p, then
the transport cost factorizes as

dpo @ p dpuy
log ——— log—FF—F7—— =1 —1 . 22
8 1P, ( 8 TPy (-] Xo = xo)(l‘l) og p(x1) — log po,1(zo, x1) (22)

Since Eq,, [log p(X1)] = E,,, [log p(X1)], the first summand does not change the minimizer of the associated
entropic OT problem. Hence, in solving this problem, it is equivalent to consider the cost
c(wo, 1) = —log po,1(wo, 1) = log N (w13 my (w0), $1,1) o (w1 — ma(20)) " 871 (21 — ma(zo)), (23)

where we drop the constant % log(27%4 1), since it too does not affect the minimizer. Furthermore, we can
extract out o

x07x1) -

c(xo, 1) = (21 — ma(x0)) ST (w1 — ma(xo)) = 02 (21 — ma(w0)) ' E7 (21 — ma(20))  (24)
Multiplying the associated entropic OT problem by o2, we get the equivalent problem

min x XE) . (X1 — ma(X0)) "E11 (X1 — ma(X0)]+0°Dxe(Qoillo @ p1), st Qo1 € M(po, 1)
0,31 )~o1
(25)

Since the cost is now no longer dependent on o, we can pass to the zero noise limit obtaining the exact OT
problem

min ]E [(Xl — ml(Xo))TEf%(Xl — ml(Xo))], S.t. QOl € H(M07/L1), (26)
(X0,X1)~Qo1 ’

what was to be shown.
Heat topological reference process. In the spectral coordinates, the covariance of X is diagonal; hence,
the probability density po1(Yo, Y1) factorizes as []}*, po,1(Yy,Yy). Consequently, the cost factorizes
c(yo,y1) = 2202 cilyp, yi) with

ciyo,yi) = (1) (yi — ma(yo))*.
Finally, in the case H;()\;) = —r\?, plugging in the expression from Equation simplifies the transport
cost even further. Most simply, if either K = 0 or L;, = 0, we get

cilybl) = (i —v) /1= (i — wi)™. 27)
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Otherwise, we still get an efficient formula

kN . o
~ ) (yi — exp(—rA)yd)*, (28)

ci(yo, y1) = T oxp(—2r0)

which was to be proven.

B ADDITIONAL RELATED WORK

B.1 TOPOLOGICAL SCHRODINGER BRIDGE MATCHING

Absence of a Topological Flow-Matching Framework in Yang (2025). To the best of our knowledge,
does not present a topological flow matching framework. The closest relevant result is Corol-
lary E.2, which provides the probability-flow ODE associated with the solution of the topological SBP.
However, the drift in this ODE is expressed in terms of two auxiliary random variables defined via a coupled
system of heat equations, making it computationally intractable and therefore unsuitable as a basis for flow
matching.

Distinction Between TFM and TSBM. TFM differs fundamentally from TSBM along the same axis that
distinguishes flow matching from Schrédinger bridge matching:

e Simulation-free vs. simulation-based training. TFM inherits the simulation-free training
paradigm of FM: its objective requires only deterministic evaluations of the vector field, and no
stochastic sample path simulation is involved. In contrast, TSBM inherits the simulation-based
nature of SBM and relies on stochastic path sampling during training. This yields substantial em-
pirical benefits for TFM: faster training, increased numerical stability, and more direct scalability
to high-dimensional settings.

* Deterministic vs. stochastic sample paths. TFM produces deterministic sample paths governed
by the learned flow ODE, while TSBM yields stochastic paths arising from diffusion processes.
This is a qualitative difference intrinsic to the two formulations.

In summary, TFM retains the key properties of FM (scalable, simulation-free, deterministic), whereas TSBM
retains those of SBM (simulation-based, stochastic). The methodological gap between TFM and TSBM is
therefore as substantial as the gap between FM and SBM.

Topology-Aware Initialisation. For generative modelling, we additionally propose a topology-aware ini-
tial distribution, which can further improve fidelity of CFM and TFM. Empirical evidence for this design
choice is provided in Section [F2]

B.2 OTHER ARCHITECTURES AND FRAMEWORKS

In this work, we consider a topological form of flow matching which generates signals with respect to
a specific topological space. A large literature exists on graph signal processing and
geometric deep learning (Bronstein et al 2021). In this work we use simple architectures, but note that
TFM could potentially benefit from the vast literature on topological deep learning architectures
[Tsufil, 2023}, [Battiloro et al. [Goh et al| [2022). Or graph neural networks (in the case of simple 1-
simplices) (Kipf & Welling,2017).

This literature is in contrast to that of generating topologies (Papamarkou et al, [2024), which is a related,
field with many potential synergies, but is not directly applicable to our setting.
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C SKETCH OF EXTENSIONS

We sketch how TFM extends to vector-valued signals, countably infinite simplicial complexes, and compact
Riemannian manifolds. For the latter two cases, the guiding principle is that once the reference Brownian
motion is defined in the correct infinite-dimensional space and mild regularity holds, the linear Gaussian
reference dynamics are well posed, bridges are Gaussian, and the formulas from Section [ carry over in the
sense of operator calculus. However, since the Laplacian eigendecomposition is infinite, it must be finitely
truncated to handle in practice. This eliminates most functional analytic technicalities, since the setting
becomes finite-dimensional.

Vector-valued signals. To model distributions over vector-valued k-simplex signals X;: K; — R%, we
can simply assume that the topology acts only spatially and not across output dimensions. This simply means
that we identify the signal X, with an element of R™*¢ and apply TFM with the block-diagonal Laplacian:

Lzec =L, ®1,.

Signals on infinite simplicial complexes Let K be a countably infinite, but locally finite, simplicial com-
plex and fix k. We can model k-simplex signals in the Hilbert space H = ¢2(Kj). A direct sum of
i.i.d. 1-dimensional Brownian motions does not produce ¢2-valued paths: >_. ||W/e;||? has infinite expected
value, so paths ”blow up” immediately. To remedy this, we can use a QQ-Brownian motion, which simply
down-weights high-frequency directions so the expectation stays finite. Specifically, choosing an orthonor-
mal basis (e;) of H and nonnegative weights (g;) with >, ¢; < oo, we can define WS as the convergent
series

WtQ = Z \/(ZWtzelv
=1

where W} are independent 1-dimensional Brownian motions. With such a choice the reference process
dX, = [H(Ly)X; + oy dt + o dWE

is well-posed, and the bridges remain Gaussian. All expressions for conditional controls, conditional paths,
and transport costs from §4] carry over essentially verbatim. The zero-noise limits yields TFM on infinite
simplicial complexes.

Functions and differential forms on compact Riemannian manifolds The compact Riemannian man-
ifold setting mirrors the simplicial one and can be treated exactly the same as the infinite simplicial com-
plex setting under proper identifications. On a compact Riemannian manifold M, we replace the space of
k-simplex signals R™* with the space of k-forms L?A* (M) and the Hodge Laplacian L, with the Laplace—
de Rham operator A*. Because L?A*( M) has a countable basis (e;), we can again drive the reference SDE
with a Q-Brownian motion, this time on L?A*(M). The eigenfunctions of A* have an analogous inter-
pretation as wave-like signals for non-negative eigenvalues and signals circulating around ”k-dimensional
holes”; hence, the motivation for the topological reference process remains the same. Thus, under the iden-
tification (R™*, Ly,) <> (L2A¥(M), A¥), the construction of TFM for signals on M can proceed exactly as
for infinite simplicial complexes. An extension to functions on non-compact manifolds may be facilitated by
taking functional flow matching (Kerrigan et al [2024), or functional rectified flow (Zhang & Scott, [2025])
as a starting point, possibly aided by the literature on the probability-flow ODE in function spaces (Na et al.}
2025).

D FURTHER MOTIVATION OF THE TOPOLOGICAL REFERENCE PROCESS

This section expands on our motivation for the reference process used in TFM by comparison to alternative
flow matching formulations based on a (Q-Brownian motion that dependent on the topology of the signal do-
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Table 5: Summary statistics (mean =+ std across 5 seeds) for all models under the identity (I) and optimal-
transport (OT) couplings.

Model 1-Wasserstein distance  2-Wasserstein Distance

I-CFM 11.8440.14 8.4140.10
I-TFM 8.99.0 06 6.42.0 04
I-TAN 11.2410‘09 7'9710‘06
OT-CFM 11~77iO.08 8.36i0_06
OT-TFM 8.9710.05 6.41:|:0'04
OT-TAN 11.221 .09 7.9510.06

main K. We provide a quantitative and qualitative comparison of these methods on a synthetic experiments,
where K is a triangulated torus.

Alternative Topology-Aware Reference Processes. Topology awareness in flow matching could also be
introduced by modifying the Brownian component of the reference SDE prior to taking the zero-noise limit.
A natural candidate is a ()-Brownian motion,

dX; = Q712w

where () depends on the Laplacian (e.g., @ = L). To investigate this idea, we analyze a more general
reference process,

AdX, = o Q; * aw, (29)
where (); may vary in time and 0 € R . Conditioned on endpoints Xy = z¢ and X; = 1, the process
follows the bridge SDE

t
AXe = QS oy~ X dt+0Q7 AW, = [ Quar (30)

Taking the zero-noise limit 0 — 0, we obtain the deterministic bridge
Xi = m1 + 54,1501 (21 — 20), dXy = Qy Xg 1 (21 — x0).

Consequences for Flow Matching. If ), is time-homogeneous (@Q; = Qo), then

1 —1
@zl = o[ @uas) =1,
0
so the resulting vector field is exactly x1 — x¢, recovering conditional flow matching (CFM). Thus, constant-
@ topology-aware noising does not produce a different FM method.

When Q) is time-dependent, the zero-noise limit yields a genuinely different bridge. However, choosing a
meaningful time-inhomogeneous @ is nontrivial, in contrast to the physically motivated process

dXt = —CLXt dt + O'th,
which corresponds to heat diffusion perturbed by Brownian noise.

A Time-Inhomogeneous Alternative. For comparison, we consider
Q¢ = exp(—kLt).
In the Laplacian eigenbasis this yields the conditional drift
KA exp(—KAt)
(up(y)? )" = $ 1 — exp(—rAT)
yzl - y(i)’ A= 0.

(i — i), A >0,
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Figure 8: Standard deviation of the predicted distributions by the I-CFM, I-TFM, and I-TAN models in
spectral coordinates. Left plot shows the results for coordinates corresponding to curl-free eigenvectors.
Right plots shows the results for coordinates corresponding to divergence-free eigenvectors.
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Figure 9: Standard deviation of the predicted distributions by the OT-CFM, OT-TFM, and OT-TAN models
in spectral coordinates. Left plot shows the results for coordinates corresponding to curl-free eigenvectors.
Right plots shows the results for coordinates corresponding to divergence-free eigenvectors.

This expression resembles the TEM vector field but lacks the topology-dependent rescaling of yb via
exp(—~A") that TFM introduces. For generation tasks from noise (z¢) to data (1), this mechanism ef-
fectively denoises low-frequency components before high-frequency ones.

Synthetic Comparison on a Triangulated Torus. To further motivate our approach and compare against
this topology-aware noising (TAN) alternative, we conducted a controlled synthetic experiment on a trian-
gulated torus. The task is to match distributions over edge signals: the initial distribution is divergence-free
(no sources or sinks), and the target distribution is curl-free (no ’swirls”). Specifically, the initial distribution

is a Hodge-compositional Matern Gaussian process (Yang et al}[2024) with smoothness parameter v = 2.5.

We make this choice, instead of choosing the heat Gaussian process, to prevent making the task by-design
easy for TFM and TAN.

We find that, TFM outperforms both CFM and TAN in terms of the Wasserstein distance, as reported in
TableEl Furthermore, we can consider the standard deviation in the spectral coordinates of the final distribu-
tion modelled by each method. Specifically, by dividing the plots into the spectral dimensions corresponding
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to the curl-free and divergence-free components, we can understand how well these FM variants interpolate
these qualitative differences of the boundary distributions. As shown in Figures[§]and[0] TFM dampens the
curl-free features of the initial samples, introducing divergence-free flow in the final samples. In particular,
TAN and CFM struggle to interpolate between the high-frequency components of the boundary distributions.
These differences are qualitatively visible in sample visualizations in Figure [I0}

(a) Samples from the CFM (left), TFM (middle), and TAN (right) models.

(b) Samples from the true initial (left) and final (right) distributions.

Figure 10: True and predicted samples in the synthetic matching experiment on the triangulated torus.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 TOPOLOGICAL SCHRODINGER BRIDGE MATCHING EXPERIMENT SUITE

For the earthquake, traffic flow, brain fMRI, single-cell differentiation, and ocean currents experiments we
replicate the experimental setup described extensively in|Yang| (2025). We summarize key aspects here, and
provide additional details unspecified by (2025) and ones pertain to TFM specifically.

Topological drift. In all experiments we use the heat equation topological drift —x Ly, with & = 2.0, where
the value of x was set after initial testing on a synthetic dataset, though values from 0.5 to 4.0 performed
similarly well. Depending on the size of the graph, we approximated the eigendecomposition of Lj with
m eigenpairs with the lowest eigenvalues: for earthquakes we take the full spectrum, for traffic flow the
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full spectrum, for brain the full spectrum, for single-cell differentiation m = 256, and for ocean currents
m = 500.

Training. To learn the conditional control we trained a residual neural network, as well as a graph neural
network and a simplicial neural network, depending on the signal domain, implemented by [Yang| (2025)).
Each training run consisted of up to 100 epochs with 25,600 samples each, stopping early after 10 epochs of
improvement no greater than 1% in terms of 1-Wasserstein distance on a withheld validation set. For gener-
ation experiments and ocean current experiments, where at least one distribution is analytic, we approximate
the optimal transport plan with batch-wise optimal transport [Tong et al.| (2024b)).

Evaluation. In generation tasks, evaluation was done by sampling 512 points X from the initial distribu-
tion pi, obtaining predicted samples X; by simulating the flow ODE started at X, and computing the 1- and
2-Wasserstein distances between their distribution and the test set. Averaging the result over 16 independent
samples to obtain a final metric. For the ocean experiment we compute the metrics in the same way, except
we also resample 512 points from the target distribution 16 times. For the single-cell and brain datasets we
simply compute the Wasserstein distances exactly between the empirical distribution of the withheld target
point and the initial points transported along the flow ODE.

E.2 IMAGE GENERATION ON CIFAR-10

For image generation on the CIFAR-10 dataset we used the experimental setup of Tong et al| (2024a)).
Because it is designed for CFM, we simply replaced its corresponding components according to Table [I}
After initial testing of x € {0.001,0.01,0.1, 1.0}, we chose the best-performing TFM variant with x = 0.01.
We perform full eigendecomposition of the Laplacian, which can be done efficiently due to the product
structure of the grid. All other setup pertaining to training and testing is done according to [Tong et al.
(20244a). In particular, we use a UNet (Ronneberger et al.| 2015)) for learning of the conditional control and
compute the FID scores using clean-fid (Parmar et al., [2021)).

E.3 ADDITIONAL RESULTS

OT-TFM —TH
v T T }——
OT-CFM - H
I-CFM A H
T T T T
5 6 7 8

1-Wasserstein distance
Figure 11: Test performance on the earthquake magnitude generation experiment, in terms of 1-Wasserstein

distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the
mean, boxes show interquartile range, and outliers are shown as circles.
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e B e i T
OT-CFM - CH]
-CFM A {H
T T T T T T
3.5 4.0 45 5.0 5.5 6.0

2-Wasserstein distance

Figure 12: Test performance on the earthquake magnitude generation experiment, in terms of 2-Wasserstein
distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the
mean, boxes show interquartile range, and outliers are shown as circles.

OT-TFM { HH
rTFM A [H
OT-CFM A HT H ®
L-CFM A — ! H
T T T T . .
13 1.4 15 16 L7 1.8

1-Wasserstein distance

Figure 13: Test performance of topological and Euclidean flow matching models on the traffic flow genera-
tion experiment, in terms of 1-Wasserstein distance measured over 10 independent runs. Orange bars show
median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as
circles.
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OT-CFM - H T H °
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T T T T T T T T
1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
2-Wasserstein distance

Figure 14: Test performance of topological and Euclidean flow matching models on the traffic flow genera-
tion experiment, in terms of 2-Wasserstein distance measured over 10 independent runs. Orange bars show
median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as
circles.
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1-Wasserstein distance

Figure 15: Test performance on the ocean current matching experiment, in terms of 1-Wasserstein distance
measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean,
boxes show interquartile range, and outliers are shown as circles.
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Figure 16: Test performance on the ocean current matching experiment, in terms of 1-Wasserstein distance
measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean,
boxes show interquartile range, and outliers are shown as circles.
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1-Wasserstein distance
Figure 17: Test performance on the brain fMRI matching experiment, in terms of 1-Wasserstein dis-

tance measured over 10 independent runs. Orange bars show median value, green dashed bars show the
mean,boxes show interquartile range, and outliers are shown as circles.
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Figure 18: Test performance on the brain fMRI matching experiment, in terms of 1-Wasserstein distance
measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean,
boxes show interquartile range, and outliers are shown as circles.
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Figure 19: FID on the CIFAR-10 image generation experiment, computed over 10 independent runs. Orange
bars show median value, green dashed bars show the mean, boxes show interquartile range, and outliers are
shown as circles.

F SUPPLEMENTARY EXPERIMENTS AND ABLATIONS

F.1 EFFECT OF COORDINATE FRAME ON CFM PERFORMANCE

One way to attempt an incorporation of topological information into the neural network u?, is to predict the
vector field in spectral coordinates Y = U, X. Algebraically, the CFM conditional vector field in spectral
coordinates takes the same form as in standard coordinates

uy "N (Xy) = 21 — w0 = Upyr — Uryo = Uk (y1 — yo) = Upu{”?" (V7).
Our empirical results reported in Table [f] suggest that there is no meaningful difference in performance
between performing CFM in standard coordinates compared with spectral coordinates on the datasets from

[2023).

F.2 EFFECT OF THE INITIAL DISTRIBUTION ON PERFORMANCE

Using the heat Gaussian processes exp(—«.Ly) can boost performance of CFM and TEM in the generation
experiments with earthquake magnitudes and traffic data. The performance gain is significant for CFM and
relatively small for TEM. We report the results in Table[7]
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Table 6: Mean 1-Wasserstein distance, -1 standard deviation, of CFM in spectral and standard coordinates

on real-world datasets from (Yang] [2023)).

Method (coordinates)  Earthquakes Traffic Brain Single Cell ~ Ocean Currents
I-CFM (Spectral) 8-37i0.05 1~72i0.01 11~71i0.02 0~022j:0.001 1-95i0.02
I-CFM (Standard) 8.29i0_05 1.76i0_01 11.86i0423 0~020i0.001 1-93i0.02
OT-CFM (Spectral) 8.25:|:0_06 1.59:|:0,01 1130:‘:0.01 0.019:‘:0,001 2.00:‘:0_05
OT-CFM (Standard) 8.2640.07 1.474018 11.504¢0.05 0.01940.001 1.9840.02

Table 7: 1-Wasserstein distance for TFM and CFM with compared across the normal and heat Gaussian
process (GP) initial distribution on the traffic flows and earthquake magnitudes experiments.

Dataset Initial Distribution I-TFM  OT-TFM I-CFM OT-CFM
Traffic Normal 1.30:&0.01 1.28:‘:0.01 1.72:‘:0,01 1.59:‘:0‘01
Heat GP 1-27i0.01 1-27i0.00 1-47i0.01 1-45i0.01
Normal 5.35:|:0_07 5.49:‘:0,10 8.37:‘:0,05 8.25:‘:0,06
Earthquakes Heat GP 4.9340.06 95.534+0.02 7.0240.07 7.39+0.17

F.3 EFFECT OF kK ON PERFORMANCE

The parameter « in the topological drift —x L X; d¢ may be further tuned to improve performance of TFM.
This is shown for a range of x values in across the earthquake magnitude, traffic flow, brain fMRI, single-cell
differentiation, and ocean current experiments in Figures 20]to[24] Except for the single-cell experiment, it
appears that the 1- and 2-Wasserstein distance is approximately convex in .

[ I-TFM °
0 OT-TFM

1-Wasserstein Distance
-
[V
- ¢ S
2-Wasserstein Distance

1.0 1.5 2.0 2.5 3.0 4.0 5.0
R
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[ I-TFM °
3 OT-TFM
o
—— L
&E —— e
1.0 1.5 2.0 2.5 3.0 4.0 5.0

Figure 20: Test performance of I-TFM and OT-TFM across a range of « choices on the earthquake magnitude
generation experiment over 5 independent runs. Bars show median value, boxes show interquartile range,

and outliers are shown as circles.
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1355  Figure 24: Test performance of I-TFM and OT-TFM across a range of ~ choices on the ocean current

1359  matching experiment over 5 independent runs. Bars show median value, boxes show interquartile range, and
1360 outliers are shown as circles.
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