

000
001
002
003
004
005
006
007
008

TOPOLOGICAL FLOW MATCHING

003
004
Anonymous authors
Paper under double-blind review007
008

ABSTRACT

009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
Flow matching is a powerful generative modeling framework, valued for its simplicity and strong empirical performance. However, its standard formulation treats signals on structured spaces—such as fMRI data on brain graphs—as points in Euclidean space, overlooking the rich topological features of their domains. To address this, we introduce *topological flow matching*, a topology-aware generalization of flow matching. We interpret flow matching as a framework for solving a degenerate Schrödinger bridge problem and inject topological information by augmenting the reference process with a Laplacian-derived drift. This principled modification captures the structure of the underlying domain while preserving the desirable properties of flow matching: a stable, simulation-free objective and deterministic sample paths. As a result, our framework serves as a plug-and-play replacement for standard flow matching. We demonstrate its effectiveness on diverse structured datasets, including brain fMRIs, ocean currents, seismic events, and traffic flows.¹

1 INTRODUCTION

Many of the most valuable datasets in science and engineering do not consist of collections of independent points but are better viewed as signals defined on structured domains—fMRI scans on a brain region graph, ocean current velocities on a mesh, or traffic flows on a road network. The underlying structure of these domains contains crucial information, and yet is often overlooked by standard generative models.

Flow Matching (FM) (Lipman et al., 2023; Liu, 2022; Albergo & Vanden-Eijnden, 2023; Peluchetti, 2021) has emerged as a powerful framework for generative modeling, achieving state-of-the-art performance across modalities such as images (Esser et al., 2024), video (Polyak et al., 2024), and audio (Vyas et al., 2023), as well as in diverse scientific applications (Tong et al., 2024b; Klein et al., 2023). Its appeal lies in a scalable, simulation-free training objective and deterministic sample paths. Despite these advantages, standard FM bears a key limitation: it treats data as points in Euclidean space, neglecting the rich structure of non-Euclidean domains. This approach effectively ignores the rich underlying structure of the data, discarding valuable topological and geometric information. Prior work in geometric and topological deep learning has shown that respecting such underlying structure can lead to substantial performance gains (Bronstein et al., 2021; Papamarkou et al., 2024). Indeed, recent extensions of FM have taken steps in this direction, for example by adapting the framework generating *points* in Riemannian manifolds (Chen & Lipman, 2024) and discrete spaces (Gat et al., 2024). Yet, such ideas have not been utilized in FM for modeling *signals* over such spaces, such as fMRI signals on the nodes of a brain graphs or current velocities on the edges of a mesh discretizing the ocean.

To fill this gap, we introduce *topological flow matching* (TFM), a principled generalization of FM that exploits the topology of the signal domain. Our key insight is that the relation between FM and the Schrödinger bridge problem (SBP) can be leveraged to inject topological information by augmenting the reference process with a Laplacian-derived drift. Compared to recent work on topological Schrödinger bridges (Yang, 2025), TFM has the distinct advantage of a simulation-free objective and deterministic sample paths. This also makes TFM a seamless substitute for standard FM in applications on structured spaces.

¹Anonymized code repository is available at <https://anonymous.4open.science/r/tfm-1514>.

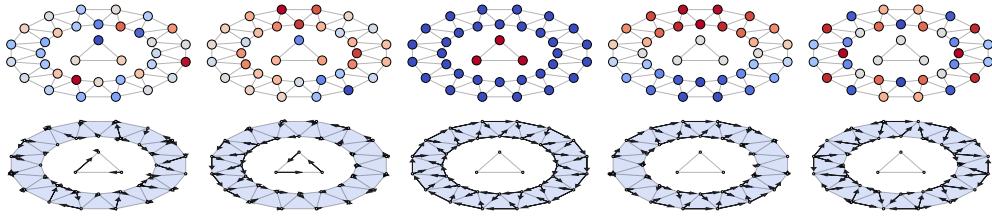


Figure 1: Illustration of the Hodge Laplacian spectrum and its corresponding heat Gaussian process. *Columns from the left:* (1) sample from the normal distribution; (2) sample from the heat Gaussian process; (3) eigenfunction with zero eigenvalue; (4) eigenfunction with low frequency; (5) eigenfunction with high frequency. *Top:* a graph with node signals—low values shown in blue, high in red. *Bottom:* a 2-simplicial complex with edge signals, whose values at an edge are proportional to arrow length.

Our contributions are threefold:

- We introduce a principled way of incorporating topological information into FM, utilizing its connection with SBP and augmenting the reference process with a Laplacian-derived drift.
- We derive TFM, a topology-aware generalization of FM for modeling distributions over signals on finite graphs and simplicial complexes. TFM enjoys a stable, simulation-free objective, and deterministic sample paths, making it a plug-and-play replacement for standard FM.
- We evaluate TFM on a diverse collection of datasets on structured domains—including brain fMRI, ocean currents, seismic events, and traffic flows—demonstrating improvements over both standard FM and topological Schrödinger bridge matching.

2 BACKGROUND

Notation. For a stochastic process X with a law \mathbb{P} and times t_0, \dots, t_k , we abbreviate the marginal distribution $\mathbb{P}((X_{t_0}, \dots, X_{t_k}) \in \cdot)$ as $\mathbb{P}_{t_0 \dots t_k}$. Given a random variable Z and a value z , we write the regular conditional distribution $\mathbb{P}(\cdot \mid Z = z)$ as \mathbb{P}^z . For a space Ω , we denote the space of probability distributions on Ω by $\mathcal{P}(\Omega)$. For two distributions $\mu_0, \mu_1 \in \mathcal{P}(\Omega)$ and random variables $X_0 \sim \mu_0, X_1 \sim \mu_1$, the set of couplings of X_0 and X_1 —that is, distributions $\pi \in \mathcal{P}(\Omega \times \Omega)$ with marginals $\pi_0 = \mu_0$ and $\pi_1 = \mu_1$ —is denoted $\Pi(\mu_0, \mu_1)$. We denote Brownian motion as W . For any vector or matrix, the i -th component is indicated by a superscript, e.g. X_t^i .

2.1 SIGNALS ON STRUCTURED TOPOLOGICAL SPACES

Graphs. Graphs are one of the most ubiquitous spaces in machine learning (Veličković, 2023). An undirected graph K consists of nodes $K_0 = \{1, \dots, n_0\}$ and edges $K_1 = \{[v_0, v_1] : v_0 < v_1 \in K_0\}$ (the K notation, instead of the graph-theoretic standard (V, E) , ensures consistency when generalizing to simplicial complexes)². Denoting $n_k := |K_k|$, the structure of a graph is encoded by its edge-to-node incidence matrix $B_1 \in \mathbb{R}^{n_0 \times n_1}$. The column of B_1 corresponding to edge $[v_0, v_1]$ has a $+1$ in the v_0 -th row, -1 in the v_1 -th row, and 0 elsewhere. A *node signal* on a graph K is a function $f: K_0 \rightarrow \mathbb{R}$, e.g. fMRI data on nodes representing functional regions in a brain graph, identified with its image $f(K_0) \in \mathbb{R}^{n_0}$. An *edge signal* is a function $K_1 \rightarrow \mathbb{R}$, e.g. traffic volumes on edges in a road network, identified with $f(K_1) \in \mathbb{R}^{n_1}$.

The *graph Laplacian* $L_0 := B_1 B_1^\top$ is a positive semi-definite matrix acting on node signals. Its eigenvectors with non-zero eigenvalues are wave-like signals with frequencies proportional to their eigenvalues—analogue to sines and cosines for the classical Laplacian on $[0, 1]$. This analogy extends to dynamics: The *graph heat equation* $\dot{f}_t = -\kappa L_0 f_t$, for $\kappa > 0$, describes heat diffusion of an initial node signal f_0 , while

²An edge $[v_0, v_1]$ is ordered by convention to make the definition of the incidence matrix unambiguous. The same convention extends to simplices in simplicial complexes and their boundary matrices.

094 the associated *heat Gaussian process* $\mathcal{N}(0, \exp(-\kappa \mathbf{L}_0))$ is a Gaussian distribution over node signals whose
 095 covariance reflects the graph structure, reducing to the standard Gaussian if the graph has no edges.
 096

097 **Simplicial complexes.** *Simplicial complexes* model discrete structures more expressively than graphs. A k -
 098 *simplicial complex* K consists of nodes K_0 , edges K_1 , triangles $K_2 = \{[v_0, v_1, v_2] : v_0 < v_1 < v_2 \in K_0\}$,
 099 and so on up to k -simplices $K_k = \{[v_0, \dots, v_k] : v_0 < \dots < v_k \in K_0\}$. A k -simplicial complex can be
 100 identified with a polyhedral subspace of \mathbb{R}^d , as shown in Figure 1. The structure of a simplicial complex is
 101 encoded by the *boundary matrices* $\mathbf{B}_k \in \mathbb{R}^{n_{k-1} \times n_k}$, which generalize the edge-to-node incidence matrix.
 102 The column of \mathbf{B}_k corresponding to a k -simplex $[v_0, \dots, v_k]$ has entries $(-1)^j$ in the rows indexed by its
 103 $(k-1)$ -faces $[v_0, \dots, v_{j-1}, v_{j+1}, \dots, v_k]$, for each $j = 0, \dots, k$; all other entries are 0. In practice, K may
 104 represent an existing real-world structure (e.g., a road network), be specified by domain experts (e.g., a brain-
 105 region graph), be constructed from data (e.g., a k -nearest-neighbors graph or a Vietoris–Rips complex), or
 106 arise from standard geometric constructions in synthetic experiments (e.g., a triangulation of a torus).

107 A k -simplex signal on K is a function $f: K_k \rightarrow \mathbb{R}$ identified with $f(K_k) \in \mathbb{R}^{n_k}$. The *Hodge Laplacian*

$$108 \quad \mathbf{L}_k := \mathbf{B}_k^\top \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^\top$$

109 is a positive semi-definite matrix, fully determined by the structure of K , which acts on k -simplex signals,
 110 generalizing the graph Laplacian. Its eigenvectors with non-zero eigenvalues correspond to higher-
 111 dimensional wave-like signals—e.g., to discrete vector fields for $k = 1$, illustrated in Figure 1. Its associated
 112 heat equation $\dot{f}_t = -\kappa \mathbf{L}_k f_t$ diffuses signals both through $(k-1)$ -simplices via $\mathbf{B}_k^\top \mathbf{B}_k$ and through $(k+1)$ -
 113 simplices via $\mathbf{B}_{k+1} \mathbf{B}_{k+1}^\top$, and also admits a structure-aware heat Gaussian process $\mathcal{N}(0, \exp(-\kappa \mathbf{L}_k))$.

114 **Laplacians and topology.** Eigenvectors of \mathbf{L}_k with non-zero eigenvalues are wave-like signals; those with
 115 zero eigenvalues reveal topological features—intuitively, properties of K preserved under continuous de-
 116 formations like stretching or twisting, but not discontinuous ones like cutting or gluing³. For $k = 0$, these
 117 are signals constant on connected components, for $k = 1$, they loop around holes. In general, elements of
 118 $\ker \mathbf{L}_k$, are signals circulating around “ k -dimensional holes” called *cohomology classes*. Thus, components
 119 of $f \in \mathbb{R}^{n_k}$ in $\ker \mathbf{L}_k$ can be viewed as fundamentally aligned with the topological features of K .

120 2.2 FLOW MATCHING

122 Let μ_0, μ_1 be two boundary distributions over \mathbb{R}^d . Flow matching (FM) (Lipman et al., 2023; Peluchetti,
 123 2021), also known as rectified-flows (Liu, 2022), or stochastic interpolants Albergo et al. (2023), learns a
 124 time-dependent vector field $u: [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that the law \mathbb{P} of the process X driven by the flow
 125 ODE

$$126 \quad \dot{X}_t = u_t(X_t), \quad X_0 \sim \mu_0 \quad (1)$$

127 satisfies $\mathbb{P}_1 = \mu_1$. Samples from μ_0 can be transformed into samples from μ_1 by integrating the ODE, which
 128 is used for generation by choosing a simple μ_0 like $\mathcal{N}(0, I_d)$. FM constructs u from *conditional vector fields*
 129 u^z driving the conditional process $(X \mid Z = z)$, for a chosen conditioning variable $Z \sim \pi$, as the average:

$$130 \quad u_t(x) := \mathbb{E}_{Z \sim \pi(\cdot \mid X_t = x)} [u_t^Z(x)]. \quad (2)$$

132 Sampling from $\pi(\cdot \mid X_t = x)$ is generally intractable, which makes computation of u via Equation (2)
 133 impossible, and also prevents direct minimization of the *FM loss*

$$134 \quad \mathcal{L}_{\text{FM}}(\theta) := \mathbb{E}_{t \sim \text{Unif}[0,1], X \sim \mathbb{P}_t} \left[\|u_t(X) - u_t^\theta(X)\|^2 \right].$$

136
 137 ³ Formally, K is not a topological space, since it is only equipped with combinatorial structure, rather than a collection
 138 of open subsets closed under arbitrary unions and finite intersections called a topology. Nevertheless, we can still
 139 consider its topological features in a meaningful and unambiguous way. This is because any two polyhedral subspaces
 140 that K is identified with are equivalent as topological spaces, or *homeomorphic*.

To overcome this, we need three operations: **(1) evaluation of $u_t^z(x)$, (2) sampling $X_t \sim \mathbb{P}_t^z$, (3) sampling $Z \sim \pi$.** If we can perform them efficiently, u can be learned by minimizing the *conditional FM loss*

$$\mathcal{L}_{\text{CFM}}(\theta) := \mathbb{E}_{t \sim \text{Unif}[0,1], Z \sim \pi, X \sim \mathbb{P}_t^Z} \left[\|u_t^Z(X) - u_t^\theta(X)\|^2 \right],$$

as guaranteed by the identity $\nabla_\theta \mathcal{L}_{\text{FM}}(\theta) = \nabla_\theta \mathcal{L}_{\text{CFM}}(\theta)$. An especially effective variant of FM, called *conditional flow matching* (CFM) (Lipman et al., 2023), is given by a choice of coupling $\pi \in \Pi(\mu_0, \mu_1)$ and

$$Z = (X_0, X_1), \quad u_t^{x_0, x_1}(x) = x_1 - x_0.$$

In this case, $(X_t \mid X_0 = x_0, X_1 = x_1)$ follows the straight line $(1-t)x_0 + tx_1$, i.e. $\mathbb{P}_t^{x_0, x_1} = \delta_{(1-t)x_0 + tx_1}$. Two variants of CFM are particularly notable: I-CFM, which uses the independent coupling $\pi = \mu_0 \otimes \mu_1$, and OT-CFM, which uses the *optimal transport* (OT) coupling π^* solving the *exact OT problem*

$$\min_{(X_0, X_1) \sim \pi} \mathbb{E} \left[\frac{1}{2} \|X_1 - X_0\|^2 \right], \quad \text{s.t. } \pi \in \Pi(\mu_0, \mu_1). \quad (3)$$

OT-CFM yields straighter sample paths than I-CFM, which can boost performance (Tong et al., 2024a; Pooladian et al., 2023). While powerful, this formulation's connection to the Schrödinger bridge problem, which we introduce next, provides the key to efficiently embedding topological structure in TFM.

2.3 THE SCHRÖDINGER BRIDGE PROBLEM

The *Schrödinger bridge problem* (SBP) (Léonard, 2013) with boundary distributions $\mu_0, \mu_1 \in \mathcal{P}(\mathbb{R}^d)$ and a reference law \mathbb{P} over paths $C([0, 1]; \mathbb{R}^d)$, with $\mu_0 \otimes \mu_1 \ll \mathbb{P}_{01}$, is the minimization problem

$$\min D_{\text{KL}}(\mathbb{Q} \parallel \mathbb{P}), \quad \text{s.t. } \mathbb{Q} \in \mathcal{P}(C([0, 1]; \mathbb{R}^d)), \quad \mathbb{Q} \ll \mathbb{P}, \quad \mathbb{Q}_{01} \in \Pi(\mu_0, \mu_1).$$

Intuitively, its solution is the most likely posterior evolution of a system, given a prior belief \mathbb{P} , an initial observation μ_0 , and a final observation μ_1 . It has a unique solution \mathbb{Q}^* given as the mixture

$$\mathbb{Q}^*(E) = \int \mathbb{P}^{x_0, x_1}(E) \mathbb{Q}_{01}^*(dx_0, dx_1), \quad (4)$$

implying $\mathbb{Q}^{x_0, x_1} = \mathbb{P}^{x_0, x_1}$. Moreover, if $\mathbb{Q}_{01}^* \ll \mu_0 \otimes \mu_1$, \mathbb{Q}_{01}^* is the solution of the *entropic OT problem*

$$\min_{\mathbb{Q}_{01}} \mathbb{E} [c] + D_{\text{KL}}(\mathbb{Q}_{01} \parallel \mu_0 \otimes \mu_1), \quad \text{s.t. } \mathbb{Q}_{01} \in \Pi(\mu_0, \mu_1), \quad (5)$$

with the *transport cost* $c = \log \frac{d\mu_0 \otimes \mu_1}{d\mathbb{P}_{01}}$. We focus on the SBP with a reference law of the *diffusion SDE*

$$dX_t = b_t(X_t) dt + \sigma_t(X_t) dW_t, \quad X_0 \sim \mu_0, \quad (6)$$

with a given *drift* $b_t: \mathbb{R}^d \rightarrow \mathbb{R}^d$ and *noise* $\sigma_t: \mathbb{R}^d \rightarrow \mathbb{R}^{d \times d}$. Heuristically, for small $s > 0$, we have

$$X_{t+s} \approx X_t + b_t(X_t)s + \sigma_t(X_t)\epsilon, \quad \epsilon \sim \mathcal{N}(0, sI_d).$$

If $\mathbb{P}_t(\cdot \mid X_s = x)$ has the Lebesgue density $p_{s,t}(x, y)$, the conditional process $(X \mid X_0 = x_0, X_1 = x_1)$ follows the *diffusion bridge SDE*

$$dX_t = [b_t(X_t) + u_t^{x_0, x_1}(X_t)] dt + \sigma_t(X_t) dW_t, \quad u_t^{x_0, x_1}(x) := \sigma_t(x) \sigma_t^\top(x) \nabla \log p_{t,1}(x, x_1). \quad (7)$$

Proposition 1 shows that the SBP solution follows an SDE expressed in terms of a mixture of *conditional controls* u^{x_0, x_1} .

Proposition 1. *Let \mathbb{P} be the law of a diffusion process X and define the marginal control u by*

$$u_t(x) := \mathbb{E}_{(X_0, X_1) \sim \mathbb{Q}_{01}^*(\cdot \mid X_t = x)} \left[u_t^{X_0, X_1}(x) \right]. \quad (8)$$

The solution \mathbb{Q}^ to the Schrödinger bridge problem with reference law \mathbb{P} is the law of the process*

$$dX_t = [b_t(X_t) + u_t(X_t)] dt + \sigma_t(X_t) dW_t, \quad X_0 \sim \mu_0.$$

188

3 INCORPORATING TOPOLOGY INTO FLOW MATCHING

190 In this section, we connect CFM to the diffusion SBP with zero drift. This motivates the use of a topolog-
191 ical drift, which we justify via spectral analysis as a topology-aware smoothness bias. We also suggest a
192 topology-aware initial distribution for use in generation tasks.

193

3.1 FLOW MATCHING SOLVES A DEGENERATE SCHRÖDINGER BRIDGE PROBLEM

195 CFM arises as a way of solving the SBP with the trivial drift $b = 0$ and a constant noise $\sigma \in \mathbb{R}_+$, in the limit
196 $\sigma \rightarrow 0$. It is instructive, as a blueprint for TFM, to see this connection in terms of the three key components
197 of CFM.

198 **1. Conditional vector field $u_t^{x_0, x_1}$.** If $b = 0$ and $\sigma \in \mathbb{R}_+$, the diffusion bridge SDE in Equation (7)
199 simplifies to

200
$$dX_t = u_t^{x_0, x_1}(X_t) dt + \sigma dW_t, \quad u_t^{x_0, x_1}(x) = \frac{x_1 - x}{1 - t}, \quad X_0 = x_0. \quad (9)$$

202 As $\sigma \rightarrow 0$, the dynamics reduce to the ODE $\frac{dX_t}{dt} = u_t^{x_0, x_1}(X_t)$. Its unique solution is the straight line
203 $X_t = (1 - t)x_0 + tx_1$. Thus, $u_t^{x_0, x_1}(X_t) = x_1 - x_0$, which recovers the CFM conditional vector field.

204 **2. Conditional path $\mathbb{P}_t^{x_0, x_1}$.** In the zero-noise limit, $(X_t \mid X_0 = x_0, X_1 = x_1)$ becomes deterministic.
205 Thus, if $b = 0$, its law $\mathbb{P}_t^{x_0, x_1}$ converges to the CFM conditional law $\delta_{(1-t)x_0 + tx_1}$.

206 **3. Coupling** $(X_0, X_1) \sim \pi$. If $b = 0$ and $\sigma \in \mathbb{R}_+$, the entropic OT problem in Equation (5) simplifies to

208
$$\min_{(X_0, X_1) \sim \mathbb{Q}_{01}} \mathbb{E} \left[\|X_1 - X_0\|^2 \right] + \sigma^2 D_{\text{KL}}(\mathbb{Q}_{01} \parallel \mu_0 \otimes \mu_1), \quad \text{s.t. } \mathbb{Q}_{01} \in \Pi(\mu_0, \mu_1). \quad (10)$$

210 As $\sigma \rightarrow 0$, this converges to the exact OT problem in Equation (3) (Léonard, 2013). Therefore, \mathbb{Q}_{01}^* coincides
211 with the coupling π^* used in OT-CFM. I-CFM can be seen as the independent approximation $\mathbb{Q}_{01}^* \approx \mu_0 \otimes \mu_1$.

212 Proposition 1 now shows that the marginal vector field u of OT-CFM is the drift of the SBP solution

213
$$dX_t = u_t(X_t) dt + \sigma dW_t, \quad X_0 \sim \mu_0.$$

214 In the limit $\sigma \rightarrow 0$, these dynamics converge to the flow ODE in Equation (1). Thus, OT-CFM can be viewed
215 as solving the zero-noise limit of the diffusion Schrödinger bridge problem by learning the drift of this
216 limiting ODE. This is a formal viewpoint, since an SBP with $\sigma = 0$ is generally not well-posed⁴. However,
217 the optimal drift of the SBP does converge under $\sigma \rightarrow 0$, solving the Benamou–Brenier OT problem

218
$$\min \int_0^1 \frac{1}{2} \|u_t(x)\|^2 \mathbb{P}_t(dx) dt, \quad \text{s.t. } \partial_t \mathbb{P}_t + \nabla \cdot (\mathbb{P}_t u_t) = 0, \quad \mathbb{P}_0 = \mu_0, \quad \mathbb{P}_1 = \mu_1.$$

220 Intuitively, this drift is the minimum-energy vector field transporting μ_0 to μ_1 in Euclidean space.

222

3.2 TOPOLOGICAL REFERENCE PROCESS

223 **Topological diffusion.** CFM can be seen as solving the zero-noise limit of a drift-free SBP. Since the
224 reference process plays the role of a prior, we can bias the SBP solution to respect topology of a simplicial
225 complex K , by augmenting it with a topology-aware drift (Yang, 2025):

226
$$b_t(X_t) = H_t(\mathbf{L}_k)X_t + \alpha_t, \quad (11)$$

227 for a polynomial H_t —a choice achieving tractability and flexibility, as $H_t(\mathbf{L}_k)$ can approximate any analytic
228 function of \mathbf{L}_k by the Cayley–Hamilton theorem (Yang, 2025). The resulting topological reference process

229
$$dX_t = H_t(\mathbf{L}_k)X_t + \alpha_t + \sigma dW_t$$

230 serves as the starting point for derivation of TFM in Section 4.

232 ⁴ For instance, let $b = 0$, $\sigma = 0$, and $\mu_0 = \delta_{x_0}$. In this case, \mathbb{P} is a Dirac delta on the constant path $t \mapsto x_0$. Any solution
233 \mathbb{Q} must satisfy $\mathbb{Q} \ll \mathbb{P}$. Since \mathbb{P} is a point mass, this implies $\mathbb{Q} = \mathbb{P}$ and, consequently, $\mathbb{Q}_1 = \mathbb{P}_1 = \delta_{\omega_{x_0}}$. Therefore, unless
234 $\mu_1 = \delta_{x_0}$, \mathbb{Q} cannot simultaneously satisfy the necessary condition $\mathbb{Q}_1 = \mu_1$. Thus, the SBP has no solution.

235 Table 1: Flow ODE, conditional vector fields, and bridge process of CFM and TFM.
236

Model	Flow ODE	$u_t^{x_0, x_1}(X_t)$	$(X_t \mid X_0 = x_0, X_1 = x_1)$
CFM	$\dot{X}_t = u_t(X_t)$	$x_1 - x_0$	$(1-t)x_0 + tx_1$
TFM	$\dot{X}_t = -\kappa \mathbf{L}_k X_t + u_t(X_t)$	$\Phi_{t,1} \tilde{\Sigma}_{1,1}^{-1}(x_1 - m_1(x_0))$	$m_t(x_0) + \tilde{\Sigma}_{t,1} \tilde{\Sigma}_{1,1}^{-1}(x_1 - m_1(x_0))$

240
241 To motivate this choice, we focus on the case $H_t(\mathbf{L}_k) = -\kappa \mathbf{L}_k$ for $\kappa > 0$, as it connects to the heat equation
242 and the heat kernel, providing a clear interpretation; however, other choices like $H_t(\mathbf{L}_k) = (\kappa^2 - \mathbf{L}_k)^{\nu+n_k/2}$
243 for $\kappa > 0$, $\nu > 1/2$ could be useful for their connection to the Matérn kernel (Borovitskiy et al., 2021). In
244 the zero-noise limit the reference process becomes the heat equation $\dot{X}_t = -\kappa \mathbf{L}_k X_t$ with *diffusion rate* κ .
245 Furthermore, let $\mathbf{U}_k = (u_1, \dots, u_{n_k})$ be the eigenvectors and $\mathbf{D}_k = \text{diag}(\lambda_0, \dots, \lambda_{n_k})$ the eigenvalues of
246 \mathbf{L}_k so that $\mathbf{L}_k = \mathbf{U}_k \mathbf{D}_k \mathbf{U}_k^\top$. Under the change of coordinates $Y := \mathbf{U}_k^\top X$, the heat equation is diagonalized

$$247 \quad \dot{X}_t = -\kappa \mathbf{L}_k X_t \iff \dot{Y}_t^i = -\kappa \lambda_i Y_t^i, \quad \forall i \in \{0, \dots, n_k\}.$$

248 Its solution is given component-wise by $Y_t^i = \exp(-\kappa \lambda_i t) Y_0^i$. Thus, the eigenfunctions with non-zero
249 eigenvalues decay exponentially quickly at a rate proportional to their frequency, while the eigenfunctions
250 with zero eigenvalues, corresponding to topological features (cf. Section 2), stay constant. Therefore, our
251 proposed drift can be seen as a bias dampening high-frequency oscillations—thereby denoising the signal—
252 while preserving signal components aligned with the structural features of K , **where the strength of this bias**
253 **is proportional to κ .**

254 **Topological initial distribution.** For generative tasks, we can also inject topological information in the
255 initial distribution μ_0 , by setting it to the heat Gaussian process $\mathcal{N}(0, \exp(-\kappa \mathbf{L}_k))$. Setting $\kappa = 0$ recovers
256 a standard Gaussian—the usual initial distribution used for generation in FM—effectively disregarding the
257 structure of K by disallowing heat flow between adjacent simplices.

258 4 TOPOLOGICAL FLOW MATCHING

260 CFM operates in Euclidean space, which overlooks the topology of structured domains like graphs and
261 simplicial complexes. Since OT-CFM learns a solution of the degenerate drift-free SBP, we can bias the SBP
262 solution, by modifying the reference process. Thus, we propose to inject a topological bias, by augmenting
263 the reference process with the topological drift in Equation (11). Retracing the derivation of OT-CFM from
264 SBP, this time for the topological SBP

$$265 \quad dX_t = [H_t(\mathbf{L}_k)X_t + \alpha_t] dt + \sigma dW_t, \quad X_0 \sim \mu_0,$$

266 yields *topological flow matching* (TFM)—a principled, topology-aware extension of FM. Although inspired
267 by topological Schrödinger bridge matching (TSBM) (Yang, 2025), in stark contrast to it, TFM enjoys the
268 key advantages of standard FM: scalable, simulation-free training and deterministic sample paths.

269 Before we present TFM, however, let us consider why we take the SBP perspective. Indeed, it may seem
270 unintuitive to go through the SBP, if in the end we take its zero-noise limit. However, if we simply augment
271 the flow ODE with the topological drift, yielding the *topological flow ODE*

$$272 \quad \dot{X}_t = H_t(\mathbf{L}_k)X_t + \alpha_t + u_t(X_t), \quad (12)$$

273 a sensible choice of $u_t^{x_0, x_1}(X_t)$ is not clear. For instance, $u_t^{x_0, x_1}(X_t) = (x_1 - x_0) - (H_t(\mathbf{L}_k)X_t + \alpha_t)$
274 yields **the same conditional path as CFM**, which ignores the topology completely:

$$276 \quad \dot{X}_t = (H_t(\mathbf{L}_k)X_t + \alpha_t) + u_t^{x_0, x_1}(X_t) = x_1 - x_0. \quad (13)$$

277 The degenerate SBP, however, has a unique solution, which induces a principled choice of $u_t^{x_0, x_1}(X_t)$ —as
278 stated in **Proposition 2**. **As in the Euclidean case, while the zero-noise limit of the topological SBP is formal,**
279 **its optimal drift u_t converges in the limit $\sigma \rightarrow 0$ to the minimizer of the dynamic optimal control problem**

$$280 \quad \min \int_0^1 \frac{1}{2} \|u_t(x)\|^2 \mathbb{P}_t(dx) dt, \quad \text{s.t. } \partial_t \mathbb{P}_t + \nabla \cdot (\mathbb{P}_t(H_t(\mathbf{L}_k) + \alpha_t + u_t)) = 0, \quad \mathbb{P}_0 = \mu_0, \quad \mathbb{P}_1 = \mu_1.$$

282 Intuitively, this u_t is the minimum-energy corrective force needed to steer from μ_0 to μ_1 when the system,
 283 left undisturbed, evolves according to the heat equation.

284 **Notation.** We denote $m_{t|s}(x) := \mathbb{E}[X_t | X_s = x]$, $\tilde{\Sigma}_{s,t|r} := \sigma^{-2}\text{Cov}(X_s, X_t | X_r = x)$, with the short-
 285 hands $m_t := m_{t|0}$, $\tilde{\Sigma}_{s,t} := \tilde{\Sigma}_{s,t|0}$. We write $\Phi_{s,t}$ for the solution to $\dot{\Phi}_{s,t} = H_t(\mathbf{L}_k)\Phi_{s,t}$, $\Phi_{s,s} = I_{n_k}$.

286 **Proposition 2** (Conditional control $u_t^{x_0, x_1}$). *Let X_t be the topological reference process. The bridge
 287 ($X_t | X_0 = x_0, X_1 = x_1$) follows the SDE $dX_t = [H_t(\mathbf{L}_k)X_t + \alpha_t + u_t^{x_0, x_1}(X_t)] dt + \sigma dW_t$, with
 288 the conditional control*

$$289 \quad u_t^{x_0, x_1}(X_t) = \Phi_{t,1}\tilde{\Sigma}_{1|t}^{-1}(x_1 - m_{1|t}(X_t)). \quad (14)$$

290 In the limit $\sigma \rightarrow 0$, $u_t^{x_0, x_1}(X_t)$ becomes independent of X_t

$$291 \quad u_t^{x_0, x_1}(X_t) = \Phi_{t,1}\tilde{\Sigma}_{1,1}^{-1}(x_1 - m_1(x_0)).$$

292 For $H_t(\mathbf{L}_k) = -\kappa\mathbf{L}_k$, we have the simple formulas in spectral coordinates

$$293 \quad (u_t^{y_0, y_1}(Y_t))^i = \begin{cases} y_1^i - y_0^i & \lambda^i = 0 \text{ or } \kappa = 0 \\ \frac{2\kappa\lambda^i \exp(-\kappa\lambda^i(1-t))}{\exp(2\kappa\lambda^i)-1} (y_1^i - \exp(-\kappa\lambda^i)y_0^i) & \text{else.} \end{cases}$$

294 As a framework, TFM learns the topological flow ODE in precisely the same way as CFM learns
 295 the standard flow ODE: (1) we choose a coupling $(X_0, X_1) \sim \pi$, (2) we find the conditional path
 296 $\mathbb{P}_t^{x_0, x_1} = \text{Law}(X_t | X_0 = x_0, X_1 = x_1)$, (3) we minimize the CFM loss

$$297 \quad \mathbb{E}_{t \sim \text{Unif}[0,1], (X_0, X_1) \sim \pi, X \sim \mathbb{P}_t^{x_0, x_1}} \left[\left\| u_t^{X_0, X_1}(X) - u_t^\theta(X) \right\|^2 \right].$$

300 As in CFM, this is a stable, simulation-free objective, since the bridge process $(X_t | X_0 = x_0, X_1 = x_1)$
 301 has a stable deterministic form. This is made precise by the proposition below.

302 **Proposition 3** (Conditional path $\mathbb{P}_t^{x_0, x_1}$). *Let X_t be the topological reference process. The bridge
 303 ($X_t | X_0 = x_0, X_1 = x_1$) has the mean*

$$304 \quad m_t^{x_0, x_1} = m_t(x_0) + \tilde{\Sigma}_{t,1}\tilde{\Sigma}_{1,1}^{-1}(x_1 - m_1(x_0)).$$

305 As $\sigma \rightarrow 0$, the bridge law concentrates on the mean $\mathbb{P}_t^{x_0, x_1} = \delta_{m_t^{x_0, x_1}}$. For $H_t(\mathbf{L}_k) = -\kappa\mathbf{L}_k$, we obtain
 306 the simple formulas in spectral coordinates

$$307 \quad (m_t^{y_0, y_1})^i = \begin{cases} ty_1^i + (1-t)y_0^i & \kappa = 0 \text{ or } \lambda^i = 0 \\ \frac{\sinh(\kappa\lambda^i(1-t))}{\sinh(\kappa\lambda^i)} y_0^i + \frac{\sinh(\kappa\lambda^i t)}{\sinh(\kappa\lambda^i)} y_1^i & \text{else.} \end{cases}$$

308 Any choice of π yields a valid TFM variant. However, only the OT-TFM variant with $\pi = \mathbb{Q}_{01}^*$ solves the
 309 degenerate topological SBP. Fortunately, \mathbb{Q}_{01}^* can be computed as efficiently as in the Euclidean case, since
 310 the transport cost c corresponding to the topological SBP has a simple formula given below.

311 **Proposition 4** (Coupling $(X_0, X_1) \sim \mathbb{Q}_{01}^*$). *For the topological reference process X , the entropic OT
 312 problem in Equation (5) is equivalent to*

$$313 \quad \min_{(X_0, X_1) \sim \mathbb{Q}_{01}} \mathbb{E}[c] + \sigma^2 D_{KL}(\mathbb{Q}_{01} \| \mu_0 \otimes \mu_1), \quad \text{s.t. } \mathbb{Q}_{01} \in \Pi(\mu_0, \mu_1), \quad (15)$$

314 and, in the limit $\sigma \rightarrow 0$, converges to an exact OT problem with the same transport cost c , given by

$$315 \quad c(x_0, x_1) = (x_1 - m_1(x_0))^\top \tilde{\Sigma}_{1,1}^{-1}(x_1 - m_1(x_0)).$$

316 With $H_t(\mathbf{L}_k) = -\kappa\mathbf{L}_k$, we get the simple formulas in spectral coordinates: $c(y_0, y_1) = \sum_{i=1}^{n_k} c_i(y_0^i, y_1^i)$,

$$317 \quad c_i(y_0^i, y_1^i) = \begin{cases} (y_1^i - y_0^i)^2 & \lambda^i = 0 \text{ or } \kappa = 0 \\ \frac{2\kappa\lambda^i}{1 - \exp(-2\kappa\lambda^i)} (y_1^i - \exp(-\kappa\lambda^i)y_0^i)^2 & \text{else.} \end{cases} \quad (16)$$

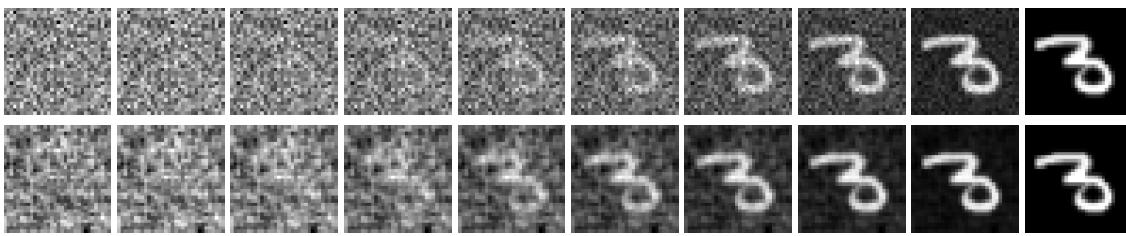


Figure 2: Conditional paths from noise to data on the MNIST dataset at t intervals of $1/9$, [illustrating the smoothing effect of the topological reference process](#). *Top*: CFM path. *Bottom*: TFM path with $\kappa = 0.5$ and a Gaussian process initial distribution $\mathcal{N}(0, \exp(-\kappa \mathbf{L}_k))$.

Table 2: Mean 1-Wasserstein distance, ± 1 standard deviation, of CFM and TFM on real-world datasets from Yang (2025) compared against the best performing TSBM variant.

Method	Earthquakes	Traffic flows	Brain fMRI	Single-cell	Ocean currents
I-CFM	8.37 ± 0.05	1.72 ± 0.01	11.71 ± 0.02	0.022 ± 0.001	1.95 ± 0.02
OT-CFM	8.25 ± 0.06	1.59 ± 0.01	11.30 ± 0.01	0.019 ± 0.001	2.00 ± 0.05
I-TFM	4.93 ± 0.06	1.27 ± 0.01	6.33 ± 0.02	0.018 ± 0.001	1.87 ± 0.04
OT-TFM	5.53 ± 0.02	1.27 ± 0.00	5.86 ± 0.01	0.019 ± 0.001	1.91 ± 0.06
TSBM (best)	7.69 ± 0.04	9.92 ± 0.02	7.51 ± 0.01	0.140 ± 0.010	6.89 ± 0.00

Thus, TFM enjoys the scalable, simulation-free formulas mirroring CFM, as summarized in Table 1. Any variant of TFM, such as *I-TFM* with $\pi = \mu_0 \otimes \mu_1$, exploits topological information via the flow ODE, the conditional vector fields, and the conditional path, while OT-CFM also uses it in the coupling $\pi = \mathbb{Q}_{01}^*$.

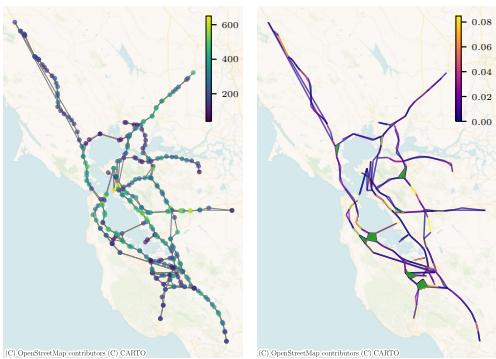
5 EXPERIMENTS

We developed TFM to improve performance over CFM on generative tasks over topological signals by exploiting the structure of their domains. To examine whether this goal has been achieved, we compare TFM—specifically its heat flow variant with the topological drift $-\kappa \mathbf{L}_k X_t$ —against CFM on diverse real-world datasets on graphs and 2-simplicial complexes, compiled by Yang (2025) to evaluate TSBM. This also lets us compare TFM against TSBM, showing whether TFM can serve as a scalable, simulation-free alternative. To ensure a fair comparison, we use the data, models, and experimental setup given by Yang (2025) wherever possible. [We use a fixed \$\kappa = 2.0\$, though a choice tailored to a given experiment can improve performance \(cf. Section F.3\)](#). We also investigate if the smoothing effect TFM has on conditional paths (cf. Figure 2) can aid image generation, by viewing images as node signals on the grid, using $\kappa = 0.01$. The experiments are divided into: *generation*, where the initial distribution is simple and the final distribution is a data distribution; and *matching*, where the initial and final distributions are different data distributions.

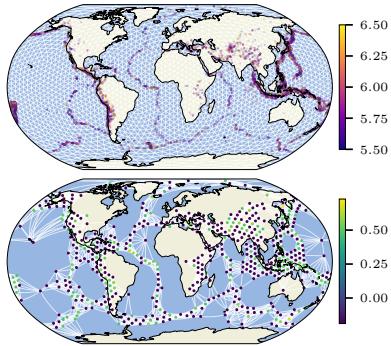
Generation. We first tackle modeling of earthquake magnitudes around the globe, using historical data between 1990 and 2017 from the IRIS dataset. To capture global regions of seismic activity, we discretize the Earth’s surface as a mesh and construct a 10-nearest-neighbors graph from the nodes closest to historical earthquake events, shown in Figure 4. For each year, the historical events are mapped to the nodes and their magnitudes are averaged to create a target signal. Secondly, we consider traffic flow modeling using the PeMSD4 dataset, which contains node signals from 307 measuring stations. Fol-

Table 3: The mean, median, and standard deviation of the FID scores on CIFAR-10 generation across 10 independent runs.

Method	Mean	Median	SD
I-CFM	3.7005	3.7061	0.0462
OT-CFM	3.8238	3.8308	0.0615
I-TFM	3.6972	3.6795	0.0821
OT-TFM	3.8107	3.8046	0.0771



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
Figure 3: *Left*: Road network in the traffic flow experiment with a node signal. *Right*: Simplicial complex built from the road network, with triangles shown in green, and an edge signal.



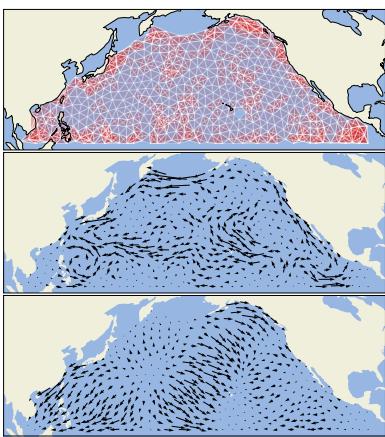
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
Figure 4: *Top*: Historical earthquake events overlaid with a mesh discretizing the globe. *Bottom*: Graph used in the earthquake experiment with an example node signal.

lowing Chen et al. (2022), this data is lifted to the edges and, to model it more effectively, the road network graph is lifted to a 2-simplicial complex (cf. Figure 3). From Table 2, we find that TFM significantly outperforms CFM and TSBM. Interestingly, OT-TFM is outperformed by I-TFM on the earthquake experiment.

We also test image generation on the CIFAR-10 dataset, treating images as node signals on a 32-by-32-by-3 (width, height, channels) grid, using the code of Tong et al. (2024a). From Table 3, we see that I-TFM and OT-TFM achieve only a small mean and median improvement over I-CFM and OT-CFM respectively, with a relatively high variance between runs. The advantage of TFM is thus much larger on the earthquake and traffic experiment, where the signal domains have complex structure, than in image generation, where the domain is a regular grid. This suggests that, while TFM shows some promise for image generation, it gains significant advantage by capturing topological features of complex domains.

Matching. We first consider edge signals representing water currents on a 2-simplicial complex discretizing the North Atlantic Ocean, extracted by Chen & Meilă (2021) from data collected by NOAA Atlantic Oceanographic and Meteorological Laboratory. As the initial distribution we use an edge GP fitted to data (Yang et al., 2024), and for the final distribution we choose a synthetic curl-free Gaussian process as the final distribution. The target curl-free samples exhibit only sinks and sources, while the initial samples form realistic, mostly swirling, patterns (cf. Figure 5). Secondly, we study the differentiation of cells in an embryoid body across 5 time steps, using data from Moon et al. (2019); Tong et al. (2020). Using data from every time step, we construct a 4-nearest-neighbors graph capturing the global structure of the temporal cell evolution. Then, as the initial and final distributions we use a normalized indicator function over the data at the first and last timestep. Lastly, we consider the graph of 360 functional regions of the brain, with edges weighted by connection strength. We use 1,190 fMRI signals from the Human Connectome Project, each of which is decomposed into a time-fluctuating *aligned* and a time-persistent *liberal* component, serving as the initial and final distributions respectively. From Table 2, we see that TFM outperforms CFM on all experiments—most of all on the brain graph, which has a complex weighted structure. TFM also consistently outperforms TSBM⁵, demonstrating the advantage of a simulation-free framework.

⁵We do not include the GTSB result, provided by Yang (2025) for the ocean current data, since we do not assume knowledge of the boundary distributions that GTSB necessitates.



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Figure 5: Ocean experiment data. *Top*: Ocean mesh (subset). *Middle*: Initial sample. *Bottom*: Final sample.

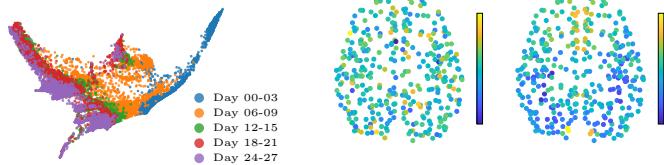


Figure 6: Single-cell data in the PHATE coordinates.

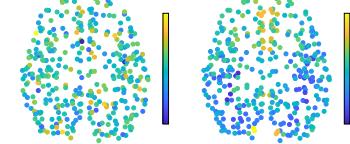


Figure 7: Initial (left) and final (right) brain fMRI signals.

Table 4: Summary of topological datasets. k : signal order (0=node, 1=edge). N : number of data points, ∞ if synthetic.

	Earthquake	Traffic	fMRI	Cell	Ocean
Task	Generation	Generation	Matching	Matching	Matching
K	Graph	Mesh	Graph	Graph	Mesh
k	0	1	0	0	1
n_k	576	340	360	18K	20K
N	28	17K	2K	6K	∞

6 CONCLUSION

We introduced topological flow matching, a topology-aware generalization of flow matching for generative modeling over signals on structured spaces. We proposed a way to incorporate topological information into FM by utilizing its relation to the Schrödinger bridge problem and augmenting the reference process with a Laplacian-derived drift. This addition can be seen as a prior which smooths signal components that do not correspond to topological features captured by the Laplacian kernel. Furthermore, we proved that TFM retains a stable, scalable, and simulation-free objective as well as deterministic sample paths, which makes it a drop-in replacement for standard FM. We demonstrated performance improvements over FM and topological Schrödinger bridge matching on a variety of datasets on graphs and simplicial complexes, with greatest advantage on most complex structures. While we focused on the natural choice of topological drift based on the heat equation, future work could further explore different reference processes, including Matérn-like drifts or drifts with a learned diffusion rate κ . In addition, a drift with a time-dependent Laplacian could enable matching tasks between signals on two different spaces. Finally, variants of TFM for signals on manifolds could be examined for applications e.g. in geostatistics and robotics. Altogether, TFM provides a principled extension of FM that improves performance on structured spaces and opens new avenues for both theoretical exploration and practical applications.

ETHICS STATEMENT

Our work is primarily focused on theoretical algorithmic development for faster and more accurate generative models for topological datatypes, with reduced focus on experimental implementation. However, we recommend that future users of our work exercise appropriate caution when applying it to domains that may involve sensitive considerations.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed information regarding our experimental setup, theoretical claims and datasets. An implementation of topological flow matching and the code to reproduce all experiments will be made available upon publication. The theoretical claims and derivations underlying TFM are presented in Section A. All datasets used in our experiments are publicly available at their cited source in Section 5. Further implementation details are available in Section E.

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. *International Conference on Learning Representations (ICLR)*, 2023.

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying framework for flows and diffusions. *arXiv preprint 2303.08797*, 2023.

Claudio Battiloro, Lucia Testa, Lorenzo Giusti, Stefania Sardellitti, Paolo Di Lorenzo, and Sergio Barbarossa. Generalized simplicial attention neural networks. *IEEE TSIPN*, 2024.

Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Deisenroth, and Nicolas Durrande. Matérn gaussian processes on graphs. In Arindam Banerjee and Kenji Fukumizu (eds.), *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pp. 2593–2601. PMLR, 13–15 Apr 2021. URL <https://proceedings.mlr.press/v130/borovitskiy21a.html>.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges, 2021. URL <https://arxiv.org/abs/2104.13478>.

Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries, 2024. URL <https://arxiv.org/abs/2302.03660>.

Yuzhou Chen, Yulia Gel, and H. Vincent Poor. Time-conditioned dances with simplicial complexes: Zigzag filtration curve based supra-hodge convolution networks for time-series forecasting. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 8940–8953. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/3a899fa79bc4110bca1eaa6649e9a8fa-Paper-Conference.pdf.

Yu-Chia Chen and Marina Meilă. The decomposition of the higher-order homology embedding constructed from the k -laplacian. In *Advances in Neural Information Processing Systems (NeurIPS 2021)*, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In *International Conference on Machine Learning (ICML)*, 2024.

517 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi
 518 Adi, and Yaron Lipman. Discrete flow matching. In *Advances in Neural Information
 519 Processing Systems 37 (NeurIPS 2024)*. Neural Information Processing Systems Foundation,
 520 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/f0d629a734b56a642701bba7bc8bb3ed-Paper-Conference.pdf. Spotlight.

521
 522 Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Liò. Simplicial attention networks, 2022.

523
 524 Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian
 525 Karrer, Ricky T. Q. Chen, and Yaron Lipman. Generator matching: Generative mod-
 526 eling with arbitrary markov processes. In Y. Yue, A. Garg, N. Peng, F. Sha, and
 527 R. Yu (eds.), *International Conference on Representation Learning*, volume 2025, pp. 52153–
 528 52219, 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/819aaee144cb40e887a4aa9e781b1547-Paper-Conference.pdf.

529
 530 Elvin Isufi, Geert Leus, Baltasar Beferull-Lozano, Sergio Barbarossa, and Paolo Di Lorenzo. Topological
 531 signal processing and learning: Recent advances and future challenges, 2024.

532
 533 Gavin Kerrigan, Giosuè Migliorini, and Padhraic Smyth. Functional flow matching. In *Proceedings of
 534 The 27th International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 238 of
 535 *Proceedings of Machine Learning Research*, pp. 3934–3942. PMLR, 2024.

536
 537 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
 538 *International Conference on Learning Representations*, 2017.

539
 540 Leon Klein, Andreas Krämer, and Frank Noe. Equivariant flow matching. *Ad-
 541 vances in Neural Information Processing Systems*, 36:59886–59910, December 2023.
 542 URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/bc827452450356f9f558f4e4568d553b-Abstract-Conference.html.

543
 544 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
 545 generative modeling. In *Proceedings of the 11th International Conference on Learning Representations
 (ICLR)*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>. Originally avail-
 546 able as arXiv:2210.02747.

547
 548 Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv*, 2022.

549
 550 Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal transport,
 551 2013. URL <https://arxiv.org/abs/1308.0215>.

552
 553 Kevin R. Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B. Burkhardt, William S. Chen,
 554 Kristina Yim, Antonia van den Elzen, Matthew J. Hirn, Ronald R. Coifman, Natalia B. Ivanova, Guy
 555 Wolf, and Smita Krishnaswamy. Visualizing structure and transitions in high-dimensional biological
 556 data. *Nature Biotechnology*, 37(12):1482–1492, 2019.

557
 558 Kunwoo Na, Junghyun Lee, Se-Young Yun, and Sungbin Lim. Probability-flow ode in infinite-dimensional
 559 function spaces. In *ICLR 2025 Workshop on DeLTa (Deep Learning Theory)*, 2025. arXiv preprint
 560 arXiv:2503.10219.

561
 562 Theodore Papamarkou, Tolga Birdal, Michael Bronstein, Gunnar Carlsson, Justin Curry, Yue Gao, Mustafa
 563 Hajij, Roland Kwitt, Pietro Liò, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane, Farzana Nas-
 rin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T. Schaub, Petar
 Veličković, Bei Wang, Yusu Wang, Guo-Wei Wei, and Ghada Zamzmi. Position: Topological deep learn-
 564 ing is the new frontier for relational learning. In *International Conference on Machine Learning*, 2024.

564 Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On buggy resizing libraries and surprising subtleties in
 565 fid calculation. *arXiv preprint arXiv:2104.11222*, 2021.

566

567 Stefano Peluchetti. Non-denoising forward-time diffusions, 2021.

568

569 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
 570 Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang, Geet
 571 Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng Li,
 572 Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh, Peizhao
 573 Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Rambhatla, Sam Tsai,
 574 Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy, Shelly Sheynin, Sid-
 575 dharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xi-
 576 aoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain,
 577 Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo,
 578 Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld,
 579 Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire,
 580 Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz,
 581 Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming
 582 Du. Movie gen: A cast of media foundation models. *arXiv preprint arXiv:2410.13720*, 2024. URL
<https://arxiv.org/abs/2410.13720>. Submitted Oct 2024.

583

584 Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and
 585 Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch couplings. In *Inter-
 586 national Conference on Machine Learning*, 2023.

587

588 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
 589 segmentation. In *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, pp. 234–241.
 Springer, 2015. doi: 10.1007/978-3-319-24574-4_28.

590

591 Alexander Tong, Jessie Huang, Guy Wolf, David van Dijk, and Smita Krishnaswamy. Trajectorynet: A dy-
 592 namic optimal transport network for modeling cellular dynamics. In *International Conference on Machine
 593 Learning*, 2020.

594

595 Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
 596 Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch
 597 optimal transport. *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856. URL <https://openreview.net/forum?id=CD9Snc73AW>. Expert Certification.

598

599 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
 600 Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch
 601 optimal transport. *Transactions on Machine Learning Research*, 2024b.

602

603 Petar Veličković. Everything is connected: Graph neural networks. *Current Opinion in Structural Biology*,
 604 79:102538, April 2023. ISSN 0959-440X. doi: 10.1016/j.sbi.2023.102538. URL <http://dx.doi.org/10.1016/j.sbi.2023.102538>.

605

606 Apoorv Vyas, Bowen Shi, Matthew Le, Andros Tjandra, Yi-Chiao Wu, Baishan Guo, Jiemin Zhang, Xinyue
 607 Zhang, Robert Adkins, William Ngan, Jeff Wang, Ivan Cruz, Bapi Akula, Akinniyi Akinyemi, Brian Ellis,
 608 Rashel Moritz, Yael Yungster, Alice Rakotoarison, Liang Tan, Chris Summers, Carleigh Wood, Joshua
 609 Lane, Mary Williamson, and Wei-Ning Hsu. Audiobox: Unified audio generation with natural language
 610 prompts. *arXiv preprint arXiv:2312.15821*, 2023. URL <https://arxiv.org/abs/2312.15821>.
 Version 1, Dec 2023.

611 Maosheng Yang. Topological schrödinger bridge matching. In *The Thirteenth International Conference on*
612 *Learning Representations*, 2025. URL <https://openreview.net/forum?id=WzCEiBILHu>.
613 Spotlight.

614
615 Maosheng Yang and Elvin Isufi. Convolutional learning on simplicial complexes, 2023.

616 Maosheng Yang, Viacheslav Borovitskiy, and Elvin Isufi. Hodge-compositional edge gaussian processes. In
617 Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), *Proceedings of The 27th International Conference*
618 *on Artificial Intelligence and Statistics (AISTATS)*, volume 238 of *Proceedings of Machine Learning*
619 *Research*, pp. 3754–3762. PMLR, 02–04 May 2024. URL <https://proceedings.mlr.press/v238/yang24e.html>.

620
621 Jianxin Zhang and Clayton Scott. Flow straight and fast in hilbert space: Functional rectified flow. *arXiv*
622 *preprint arXiv:2509.10384*, 2025. Submitted to ICLR 2026.

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

658 APPENDIX

659

660 A PROOFS

661

662 A.1 PROOF OF PROPOSITION 1

663

This proposition is a direct corollary of Proposition 1 of generator matching (GM) (Holderrieth et al., 2025), which states that for any Markov process \bar{X} with law $\bar{\mathbb{P}}$ and the generator $\bar{\mathcal{L}}_t$ of \bar{X} is given as the mixture of generators $\mathcal{L}_t^{x_1}$ of $(X \mid X_1 = x_1)$

$$667 \quad \mathcal{L}_t f(x) = \mathbb{E}_{X_1 \sim \bar{\mathbb{P}}_1(\cdot \mid X_t = x)} [\mathcal{L}_t^{X_1} f(x)]. \quad (17)$$

668 Now, a general diffusion SDE

$$669 \quad dX_t = b_t(X_t) dt + \sigma_t(X_t) dW_t \quad (18)$$

670 has the generator

$$672 \quad \mathcal{L}_t f(x) = \langle b_t(x), \nabla f(x) \rangle + \left\langle \frac{1}{2} a_t(x), \nabla^2 f(x) \right\rangle,$$

673 where $a_t(x) := \sigma_t(x) \sigma_t^\top(x)$, the first inner product is the vector inner product, and the second inner product
674 is the Frobenius matrix inner product. It follows that the bridge $X \mid X_0 = x_0, X_1 = x_1$ with the dynamics

$$675 \quad dX_t = [b_t(X_t) + u_t^{x_0, x_1}(X_t)] dt + \sigma_t(X_t) dW_t, \quad (19)$$

676 and $u_t^{x_0, x_1}(x) = a_t(x) \nabla \log p_{t,1}(x, x_1)$, has the generator

$$678 \quad \mathcal{L}_t^{x_1} f(x) = \langle b_t(x) + u_t^{x_0, x_1}(x), \nabla f(x) \rangle + \left\langle \frac{1}{2} a_t(x), \nabla^2 f(x) \right\rangle.$$

679 Moreover, noting the SBP solution by $X^* \sim \mathbb{Q}^*$, we have that \mathcal{L}^{x_1} is also the generator of $X^* \mid X_0^* = x_0, X_1^* = x_1$, because $(\mathbb{Q}^*)^{x_0, x_1} = \mathbb{P}^{x_0, x_1}$. Additionally, since the generator does not depend on the initial
680 distribution, $\mathcal{L}_t^{x_1}$ is also the generator of $X^* \mid X_1^* = x_1$. Taking expectations, it follows from Equation (17)
681 that the SBP solution has the generator

$$683 \quad \mathcal{L}_t^* f(x) = \left\langle b_t(x) + \mathbb{E}_{X_1^* \sim \mathbb{Q}_1^*(\cdot \mid X_t^* = x)} [u_t(x)^{X_0^*, X_1^*}] \right\rangle + \left\langle \frac{1}{2} a_t(x), \nabla^2 f(x) \right\rangle,$$

685 and so follows the SDE

$$686 \quad dX_t^* = [b_t(X_t^*) + u_t(X_t^*)] dt + \sigma_t(X_t^*) dW_t.$$

687 with

$$688 \quad u_t(X_t) := \mathbb{E}_{X_1^* \sim \mathbb{Q}_1^*(\cdot \mid X_t^*)} [u_t^{X_0^*, X_1^*}(X_t^*)].$$

689 Since neither side of the equation actually depends on X_0 , we can take expectation over $\mathbb{Q}_0^*(\cdot \mid X_t^*, X_1^*)$
690 obtaining

$$693 \quad u_t(X_t) = \mathbb{E}_{X_1^* \sim \mathbb{Q}_1^*(\cdot \mid X_t^*), X_0^* \sim \mathbb{Q}_0^*(\cdot \mid X_t^*, X_1^*)} [u_t^{X_0^*, X_1^*}(X_t^*)] = \mathbb{E}_{(X_0^*, X_1^*) \sim \mathbb{Q}_{01}^*(\cdot \mid X_t^*)} [u_t^{X_0^*, X_1^*}(X_t^*)].$$

694 Renaming X^* to X finishes the proof.

695

A.2 PROOF OF PROPOSITIONS 2 AND 3

696 **General topological reference process.** To simplify notation, let $A_t = H_t(\mathbf{L}_k)$, so that the topological
697 reference process takes the form

$$700 \quad dX_t = (A_t X_t + \alpha_t) dt + \sigma dW_t. \quad (20)$$

701 This is an example of a *linear Gaussian* SDE. It is well-known that a linear Gaussian SDE can be expressed
702 for any $0 \leq r < t$ as

$$703 \quad X_t = \Phi_{r,t} X_r + \int_r^t \Phi_{s,t} \alpha_s ds + \sigma \int_r^t \Phi_{s,t} dW_s,$$

705 where $\Phi_{s,t}$ is the solution of the ODE

$$706 \quad \dot{\Phi}_{s,t} = A_t \Phi_{s,t}, \quad \Phi_{s,s} = I_{n_k}.$$

708 It follows that the conditional process $(X_t \mid X_r = x)$ is a Gaussian process with the mean $m_{t|r}(x)$ and
709 covariance $\Sigma_{s,t|r}$

$$710 \quad m_{t|r}(x) := \mathbb{E}[X_t \mid X_r = x_r] = \Phi_{r,t} x_r + \int_r^t \Phi_{s,t} \alpha_s \, ds,$$

$$712 \quad \Sigma_{s,t|r} := \sigma^2 \tilde{\Sigma}_{s,t|r},$$

714 where

$$715 \quad \tilde{\Sigma}_{s,t|r} := \int_r^{s \wedge t} \Phi_{u,t} \Phi_{u,s}^\top \, du.$$

717 This yields Gaussian transition probabilities

$$718 \quad p_{t,1}(x, x_1) = \mathcal{N}(x_1; \mathbb{E}[X_1 \mid X_t = x], \text{Var}(X_1 \mid X_t = x)) = \mathcal{N}(x_1; m_{1|t}(x), \Sigma_{1,1|t}).$$

719 Thus, the conditional control $u_t^{x_0, x_1}$ of the corresponding bridge SDE takes the form

$$720 \quad u_t^{x_0, x_1}(X_t) = -\sigma^2 \nabla_x \log \mathcal{N}(x; m_{1|t}(x), \Sigma_{1,1|t})$$

$$722 \quad = \sigma^2 \Phi_{t,1} \Sigma_{1,1|t}^{-1} (x_1 - m_{1|t}(X_t))$$

$$723 \quad = \Phi_{t,1} \tilde{\Sigma}_{1,1|t}^{-1} (x_1 - m_{1|t}(X_t))$$

725 Moreover, conditional Gaussian process formulas show that the $(X_t \mid X_0 = x_0, X_1 = x_1)$ is also a Gaussian
726 process with the mean $m_t^{x_0, x_1}$ and covariance $\Sigma_{s,t}^{x_0, x_1}$:

$$727 \quad m_t^{x_0, x_1} := \mathbb{E}[X_t \mid X_0 = x_0, X_1 = x_1] = m_t(x_0) + \Sigma_{t,1} \Sigma_{1,1}^{-1} (x_1 - m_1(x_0))$$

$$729 \quad = m_t(x_0) + \tilde{\Sigma}_{t,1} \tilde{\Sigma}_{1,1}^{-1} (x_1 - m_1(x_0)),$$

$$730 \quad \Sigma_{s,t}^{x_0, x_1} := \text{Cov}(X_s, X_t \mid X_0 = x_0, X_1 = x_1)$$

$$731 \quad = \Sigma_{s,t} - \Sigma_{s,1} \Sigma_{1,1}^{-1} \Sigma_{1,t}$$

$$733 \quad = \sigma^2 \left(\tilde{\Sigma}_{s,t} - \tilde{\Sigma}_{s,1} \tilde{\Sigma}_{1,1}^{-1} \tilde{\Sigma}_{1,t} \right),$$

735 where $m_t := m_{t|0}$ and $\Sigma_{s,t} := \Sigma_{s,t|0}$. Taking the limit $\sigma \rightarrow 0$, these $u_t^{x_0, x_1}$ and $m_t^{x_0, x_1}$ stay constant, while
736 the law of the bridge $(X_t \mid X_0 = x_0, X_1 = x_1)$ converges to

$$737 \quad (X_t \mid X_0 = x_0, X_1 = x_1) \sim \mathbb{P}_t^{x_0, x_1} = \delta_{m_t^{x_0, x_1}}.$$

738 Finally, we can use the fact that $X_t \mid X_0 = x_0, X_1 = x_1$ is deterministic, to further simplify u^{x_0, x_1}

$$739 \quad u_t^{x_0, x_1}(X_t) = \Phi_{t,1} \tilde{\Sigma}_{1|t}^{-1} (x_1 - m_{1|t}(m_t^{x_0, x_1})) = \Phi_{t,1} \tilde{\Sigma}_{1,1}^{-1} (x_1 - m_1(x_0)),$$

741 yielding a stable conditional control independent of X_t . This proves the general formulas in Propositions 2
742 and 3.

743
744
745
746
747
748
749 **Heat topological reference process.** The spectral coordinates $Y := \mathbf{U}_k^\top X$ diagonalize the topological
750 reference process and hence the formulas for $u_t^{x_0, x_1}$ and $(X_t \mid X_0 = x_0, X_1 = x_1)$, which we denote $u_t^{y_0, y_1}$
751 and $Y_t \mid Y_0 = y_0, Y_1 = y_1$. It follows then by simple algebraic manipulation that for $H_t(\lambda^i) = -\kappa \lambda^i$, we

752 have the spectral formulas:

$$\begin{aligned}
 753 \quad \Phi_{s,t}^i &= \exp(-\kappa\lambda^i(t-s)), \\
 754 \quad m_1(y)^i &= \exp(-\kappa\lambda^i)y^i, \\
 755 \quad \tilde{\Sigma}_{1,1}^{i,i} &= \int_0^1 \exp(-2\kappa\lambda^i(1-t)) dt = \begin{cases} 1 & \kappa = 0 \text{ or } \lambda^i = 0 \\ \frac{1-\exp(-2\kappa\lambda^i)}{2\kappa\lambda^i} & \text{else,} \end{cases} \\
 756 \quad (u_t^{y_0,y_1}(Y_t))^i &= \begin{cases} y_1^i - y_0^i & \kappa = 0 \text{ or } \lambda^i = 0 \\ \frac{2\kappa\lambda^i \exp(-\kappa\lambda^i(1-t))}{1-\exp(-2\kappa\lambda^i)}(y_1^i - \exp(-\kappa\lambda^i)y_0^i) & \text{else,} \end{cases} \\
 757 \quad (m_t^{y_0,y_1})^i &= \begin{cases} ty_1^i + (1-t)y_0^i & \kappa = 0 \text{ or } \lambda^i = 0 \\ \frac{\sinh(\kappa\lambda^i(1-t))}{\sinh(\kappa\lambda^i)}y_0^i + \frac{\sinh(\kappa\lambda^i t)}{\sinh(\kappa\lambda^i)}y_1^i & \text{else} \end{cases}, \\
 758 \quad (21)
 \end{aligned}$$

759 which was to be shown.

760 A.3 PROOF OF PROPOSITION 4.

761 We can use the formulas found in Section A.2 to find the transport cost $c = \log \frac{d\mu_0 \otimes \mu_1}{d\mathbb{P}_{01}}$ when \mathbb{P} is the law
 762 of a process with the linear Gaussian SDE dynamics (cf. Equation (20))

763 **General topological reference process.** To this end, we first notice that if μ_1 has Lebesgue density ρ , then
 764 the transport cost factorizes as

$$765 \quad \log \frac{d\mu_0 \otimes \mu_1}{d\mathbb{P}_{01}}(x_0, x_1) = \log \frac{d\mu_1}{d\mathbb{P}_{01}(\cdot | X_0 = x_0)}(x_1) = \log \rho(x_1) - \log p_{0,1}(x_0, x_1). \quad (22)$$

766 Since $\mathbb{E}_{\mathbb{Q}_{01}}[\log \rho(X_1)] = \mathbb{E}_{\mu_1}[\log \rho(X_1)]$, the first summand does not change the minimizer of the associated
 767 entropic OT problem. Hence, in solving this problem, it is equivalent to consider the cost

$$768 \quad c(x_0, x_1) = -\log p_{0,1}(x_0, x_1) = \log \mathcal{N}(x_1; m_1(x_0), \Sigma_{1,1}) \propto (x_1 - m_1(x_0))^\top \Sigma_{1,1}^{-1} (x_1 - m_1(x_0)), \quad (23)$$

769 where we drop the constant $\frac{1}{2} \log(2\pi\Sigma_{1,1})$, since it too does not affect the minimizer. Furthermore, we can
 770 extract out σ

$$771 \quad c(x_0, x_1) = (x_1 - m_1(x_0))^\top \Sigma_{1,1}^{-1} (x_1 - m_1(x_0)) = \sigma^{-2} (x_1 - m_1(x_0))^\top \tilde{\Sigma}_{1,1}^{-1} (x_1 - m_1(x_0)) \quad (24)$$

772 Multiplying the associated entropic OT problem by σ^2 , we get the equivalent problem

$$773 \quad \min_{(X_0, X_1) \sim \mathbb{Q}_{01}} \mathbb{E}[(X_1 - m_1(X_0))^\top \Sigma_{1,1}^{-1} (X_1 - m_1(X_0))] + \sigma^2 D_{\text{KL}}(\mathbb{Q}_{01} \| \mu_0 \otimes \mu_1), \quad \text{s.t. } \mathbb{Q}_{01} \in \Pi(\mu_0, \mu_1). \quad (25)$$

774 Since the cost is now no longer dependent on σ , we can pass to the zero noise limit obtaining the exact OT
 775 problem

$$776 \quad \min_{(X_0, X_1) \sim \mathbb{Q}_{01}} \mathbb{E}[(X_1 - m_1(X_0))^\top \Sigma_{1,1}^{-1} (X_1 - m_1(X_0))], \quad \text{s.t. } \mathbb{Q}_{01} \in \Pi(\mu_0, \mu_1), \quad (26)$$

777 what was to be shown.

778 **Heat topological reference process.** In the spectral coordinates, the covariance of X is diagonal; hence,
 779 the probability density $p_{0,1}(Y_0, Y_1)$ factorizes as $\prod_{i=1}^{n_k} p_{0,1}(Y_0^i, Y_1^i)$. Consequently, the cost factorizes
 780 $c(y_0, y_1) = \sum_{i=1}^{n_k} c_i(y_0^i, y_1^i)$ with

$$781 \quad c_i(y_0^i, y_1^i) = (\Sigma_{1,1}^{-1})^{i,i} (y_1^i - m_1(y_0^i))^2.$$

782 Finally, in the case $H_t(\lambda_i) = -\kappa\lambda^i$, plugging in the expression from Equation (21) simplifies the transport
 783 cost even further. Most simply, if either $\kappa = 0$ or $L_k = 0$, we get

$$784 \quad c_i(y_0^i, y_1^i) = (y_1^i - y_0^i)^2 / 1 = (y_1^i - y_0^i)^2. \quad (27)$$

799 Otherwise, we still get an efficient formula
 800

$$801 \quad c_i(y_0^i, y_1^i) = \frac{2\kappa\lambda^i}{1 - \exp(-2\kappa\lambda^i)} (y_1^i - \exp(-\kappa\lambda^i) y_0^i)^2, \quad (28)$$

802 which was to be proven.
 803

804

805 B ADDITIONAL RELATED WORK

806

807

808 B.1 TOPOLOGICAL SCHRÖDINGER BRIDGE MATCHING

809

810 **Absence of a Topological Flow-Matching Framework in Yang (2025).** To the best of our knowledge,
 811 Yang (2025) does not present a topological flow matching framework. The closest relevant result is Corol-
 812 lary E.2, which provides the probability-flow ODE associated with the solution of the topological SBP.
 813 However, the drift in this ODE is expressed in terms of two auxiliary random variables defined via a coupled
 814 system of heat equations, making it computationally intractable and therefore unsuitable as a basis for flow
 815 matching.

816 **Distinction Between TFM and TSBM.** TFM differs fundamentally from TSBM along the same axis that
 817 distinguishes flow matching from Schrödinger bridge matching:

- 818 • **Simulation-free vs. simulation-based training.** TFM inherits the simulation-free training
 819 paradigm of FM: its objective requires only deterministic evaluations of the vector field, and no
 820 stochastic sample path simulation is involved. In contrast, TSBM inherits the simulation-based
 821 nature of SBM and relies on stochastic path sampling during training. This yields substantial em-
 822 pirical benefits for TFM: faster training, increased numerical stability, and more direct scalability
 823 to high-dimensional settings.
- 824 • **Deterministic vs. stochastic sample paths.** TFM produces deterministic sample paths governed
 825 by the learned flow ODE, while TSBM yields stochastic paths arising from diffusion processes.
 826 This is a qualitative difference intrinsic to the two formulations.

827 In summary, TFM retains the key properties of FM (scalable, simulation-free, deterministic), whereas TSBM
 828 retains those of SBM (simulation-based, stochastic). The methodological gap between TFM and TSBM is
 829 therefore as substantial as the gap between FM and SBM.

830 **Topology-Aware Initialisation.** For generative modelling, we additionally propose a topology-aware ini-
 831 tial distribution, which can further improve fidelity of CFM and TFM. Empirical evidence for this design
 832 choice is provided in Section F.2.

833

834 B.2 OTHER ARCHITECTURES AND FRAMEWORKS

835

836 In this work, we consider a topological form of flow matching which generates signals with respect to
 837 a specific topological space. A large literature exists on graph signal processing (Isufi et al., 2024) and
 838 geometric deep learning (Bronstein et al., 2021). In this work we use simple architectures, but note that
 839 TFM could potentially benefit from the vast literature on topological deep learning architectures (Yang &
 840 Isufi, 2023; Battiloro et al., 2024; Goh et al., 2022). Or graph neural networks (in the case of simple 1-
 841 simplices) (Kipf & Welling, 2017).

842 This literature is in contrast to that of generating topologies (Papamarkou et al., 2024), which is a related,
 843 field with many potential synergies, but is not directly applicable to our setting.

846 **C SKETCH OF EXTENSIONS**
847

848 We sketch how TFM extends to vector-valued signals, countably infinite simplicial complexes, and compact
849 Riemannian manifolds. For the latter two cases, the guiding principle is that once the reference Brownian
850 motion is defined in the correct infinite-dimensional space and mild regularity holds, the linear Gaussian
851 reference dynamics are well posed, bridges are Gaussian, and the formulas from Section 4 carry over in the
852 sense of operator calculus. However, since the Laplacian eigendecomposition is infinite, it must be finitely
853 truncated to handle in practice. This eliminates most functional analytic technicalities, since the setting
854 becomes finite-dimensional.

855 **Vector-valued signals.** To model distributions over vector-valued k -simplex signals $X_t: K_k \rightarrow \mathbb{R}^d$, we
856 can simply assume that the topology acts only *spatially* and not across output dimensions. This simply means
857 that we identify the signal X_t with an element of $\mathbb{R}^{n_k d}$ and apply TFM with the block-diagonal Laplacian:

$$858 \quad \mathbf{L}_k^{\text{vec}} := \mathbf{L}_k \otimes I_d.$$

859 **Signals on infinite simplicial complexes** Let K be a countably infinite, but locally finite, simplicial com-
860 plex and fix k . We can model k -simplex signals in the Hilbert space $\mathcal{H} = \ell^2(K_k)$. A direct sum of
861 i.i.d. 1-dimensional Brownian motions does *not* produce ℓ^2 -valued paths: $\sum_i \|W_t^i e_i\|^2$ has infinite expected
862 value, so paths "blow up" immediately. To remedy this, we can use a *Q*-Brownian motion, which simply
863 down-weights high-frequency directions so the expectation stays finite. Specifically, choosing an orthonormal
864 basis (e_i) of \mathcal{H} and nonnegative weights (q_i) with $\sum_i q_i < \infty$, we can define W_t^Q as the *convergent*
865 series

$$866 \quad W_t^Q := \sum_{i=1}^{\infty} \sqrt{q_i} W_t^i e_i,$$

867 where W_t^i are independent 1-dimensional Brownian motions. With such a choice the reference process

$$868 \quad dX_t = [H_t(L_k)X_t + \alpha_t] dt + \sigma dW_t^Q$$

869 is well-posed, and the bridges remain Gaussian. All expressions for conditional controls, conditional paths,
870 and transport costs from §4 carry over essentially verbatim. The zero-noise limits yields TFM on infinite
871 simplicial complexes.

872 **Functions and differential forms on compact Riemannian manifolds** The compact Riemannian man-
873 ifold setting mirrors the simplicial one and can be treated exactly the same as the infinite simplicial com-
874 plex setting under proper identifications. On a compact Riemannian manifold \mathcal{M} , we replace the space of
875 k -simplex signals \mathbb{R}^{n_k} with the space of k -forms $L^2 \Lambda^k(\mathcal{M})$ and the Hodge Laplacian \mathbf{L}_k with the Laplace–
876 de Rham operator Δ^k . Because $L^2 \Lambda^k(\mathcal{M})$ has a countable basis (e_i) , we can again drive the reference SDE
877 with a *Q*-Brownian motion, this time on $L^2 \Lambda^k(\mathcal{M})$. The eigenfunctions of Δ^k have an analogous inter-
878 pretation as wave-like signals for non-negative eigenvalues and signals circulating around "k-dimensional
879 holes"; hence, the motivation for the topological reference process remains the same. Thus, under the iden-
880 tification $(\mathbb{R}^{n_k}, \mathbf{L}_k) \leftrightarrow (L^2 \Lambda^k(\mathcal{M}), \Delta^k)$, the construction of TFM for signals on \mathcal{M} can proceed exactly as
881 for infinite simplicial complexes. [An extension to functions on non-compact manifolds may be facilitated by](#)
882 [taking functional flow matching \(Kerrigan et al., 2024\)](#), or [functional rectified flow \(Zhang & Scott, 2025\)](#)
883 as a starting point, possibly aided by the literature on the probability-flow ODE in function spaces (Na et al.,
884 2025).

885

886

887 **D FURTHER MOTIVATION OF THE TOPOLOGICAL REFERENCE PROCESS**
888

889 This section expands on our motivation for the reference process used in TFM by comparison to alternative
890 flow matching formulations based on a *Q*-Brownian motion that dependent on the topology of the signal do-

893 Table 5: Summary statistics (mean \pm std across 5 seeds) for all models under the identity (I) and optimal-
 894 transport (OT) couplings.
 895

Model	1-Wasserstein distance	2-Wasserstein Distance
I-CFM	11.84 ± 0.14	8.41 ± 0.10
I-TFM	8.99 ± 0.06	6.42 ± 0.04
I-TAN	11.24 ± 0.09	7.97 ± 0.06
OT-CFM	11.77 ± 0.08	8.36 ± 0.06
OT-TFM	8.97 ± 0.05	6.41 ± 0.04
OT-TAN	11.22 ± 0.09	7.95 ± 0.06

904
 905 main K . We provide a quantitative and qualitative comparison of these methods on a synthetic experiments,
 906 where K is a triangulated torus.
 907

908 **Alternative Topology-Aware Reference Processes.** Topology awareness in flow matching could also be
 909 introduced by modifying the Brownian component of the reference SDE prior to taking the zero-noise limit.
 910 A natural candidate is a Q -Brownian motion,

$$dX_t = Q^{-1/2} dW_t,$$

911 where Q depends on the Laplacian (e.g., $Q = L$). To investigate this idea, we analyze a more general
 912 reference process,
 913

$$dX_t = \sigma Q_t^{-1/2} dW_t, \quad (29)$$

914 where Q_t may vary in time and $\sigma \in \mathbb{R}_+$. Conditioned on endpoints $X_0 = x_0$ and $X_1 = x_1$, the process
 915 follows the bridge SDE
 916

$$dX_t = Q_t \Sigma_{t,1}^{-1}(x_1 - X_t) dt + \sigma Q_t^{-1/2} dW_t, \quad \Sigma_{s,t} = \int_s^t Q_r dr. \quad (30)$$

917 Taking the zero-noise limit $\sigma \rightarrow 0$, we obtain the deterministic bridge
 918

$$X_t = x_1 + \Sigma_{t,1} \Sigma_{0,1}^{-1}(x_1 - x_0), \quad dX_t = Q_t \Sigma_{0,1}^{-1}(x_1 - x_0).$$

919 **Consequences for Flow Matching.** If Q_t is time-homogeneous ($Q_t = Q_0$), then
 920

$$Q_t \Sigma_{0,1}^{-1} = Q_0 \left(\int_0^1 Q_0 ds \right)^{-1} = I,$$

921 so the resulting vector field is exactly $x_1 - x_0$, recovering *conditional flow matching* (CFM). Thus, constant-
 922 Q topology-aware noising does *not* produce a different FM method.
 923

924 When Q_t is time-dependent, the zero-noise limit yields a genuinely different bridge. However, choosing a
 925 meaningful time-inhomogeneous Q_t is nontrivial, in contrast to the physically motivated process
 926

$$dX_t = -cLX_t dt + \sigma dW_t,$$

927 which corresponds to heat diffusion perturbed by Brownian noise.
 928

929 **A Time-Inhomogeneous Alternative.** For comparison, we consider
 930

$$Q_t = \exp(-\kappa L t).$$

931 In the Laplacian eigenbasis this yields the conditional drift
 932

$$(u_t(y)^{y_0, y_1})^i = \begin{cases} \frac{\kappa \lambda^i \exp(-\kappa \lambda^i t)}{1 - \exp(-\kappa \lambda^i)} (y_1^i - y_0^i), & \lambda^i > 0, \\ y_1^i - y_0^i, & \lambda^i = 0. \end{cases}$$

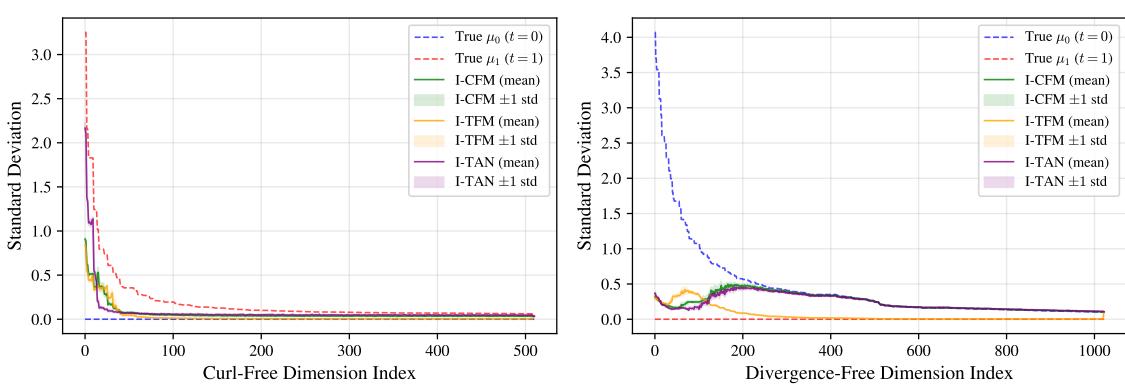


Figure 8: Standard deviation of the predicted distributions by the I-CFM, I-TFM, and I-TAN models in spectral coordinates. Left plot shows the results for coordinates corresponding to curl-free eigenvectors. Right plots shows the results for coordinates corresponding to divergence-free eigenvectors.

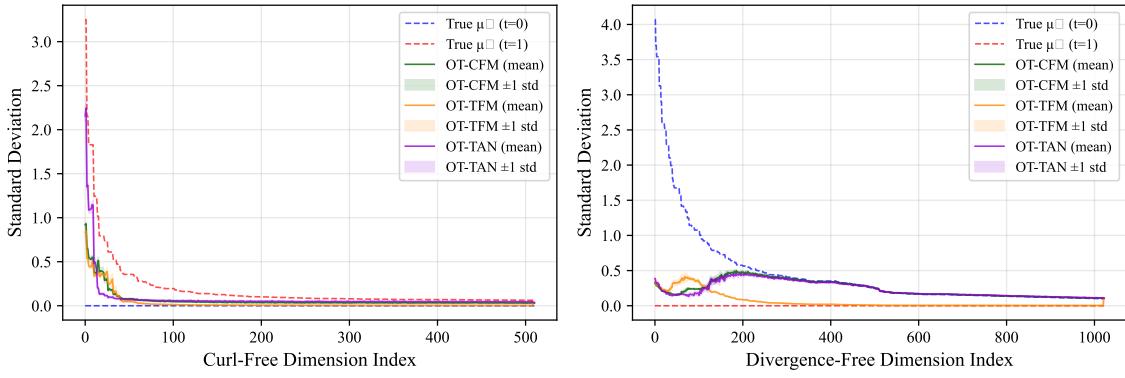


Figure 9: Standard deviation of the predicted distributions by the OT-CFM, OT-TFM, and OT-TAN models in spectral coordinates. Left plot shows the results for coordinates corresponding to curl-free eigenvectors. Right plots shows the results for coordinates corresponding to divergence-free eigenvectors.

This expression resembles the TFM vector field but lacks the topology-dependent rescaling of y_0^i via $\exp(-\kappa\lambda^2)$ that TFM introduces. For generation tasks from noise (x_0) to data (x_1), this mechanism effectively denoises low-frequency components before high-frequency ones.

Synthetic Comparison on a Triangulated Torus. To further motivate our approach and compare against this topology-aware noising (TAN) alternative, we conducted a controlled synthetic experiment on a triangulated torus. The task is to match distributions over edge signals: the initial distribution is divergence-free (no sources or sinks), and the target distribution is curl-free (no "swirls"). Specifically, the initial distribution is a Hodge-compositional Matern Gaussian process (Yang et al., 2024) with smoothness parameter $\nu = 2.5$. We make this choice, instead of choosing the heat Gaussian process, to prevent making the task by-design easy for TFM and TAN.

We find that, TFM outperforms both CFM and TAN in terms of the Wasserstein distance, as reported in Table 5. Furthermore, we can consider the standard deviation in the spectral coordinates of the final distribution modelled by each method. Specifically, by dividing the plots into the spectral dimensions corresponding

987 to the curl-free and divergence-free components, we can understand how well these FM variants interpolate
 988 these qualitative differences of the boundary distributions. As shown in Figures 8 and 9, TFM dampens the
 989 curl-free features of the initial samples, introducing divergence-free flow in the final samples. In particular,
 990 TAN and CFM struggle to interpolate between the high-frequency components of the boundary distributions.
 991 These differences are qualitatively visible in sample visualizations in Figure 10.
 992

1000 (a) Samples from the CFM (left), TFM (middle), and TAN (right) models.
 1001
 1002
 1003
 1004

1005 (b) Samples from the true initial (left) and final (right) distributions.
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018

1019 Figure 10: True and predicted samples in the synthetic matching experiment on the triangulated torus.
 1020
 1021

1022 E ADDITIONAL EXPERIMENTAL DETAILS

1023 E.1 TOPOLOGICAL SCHRÖDINGER BRIDGE MATCHING EXPERIMENT SUITE

1024 For the earthquake, traffic flow, brain fMRI, single-cell differentiation, and ocean currents experiments we
 1025 replicate the experimental setup described extensively in Yang (2025). We summarize key aspects here, and
 1026 provide additional details unspecified by Yang (2025) and ones pertain to TFM specifically.
 1027

1028 **Topological drift.** In all experiments we use the heat equation topological drift $-\kappa \mathbf{L}_k$ with $\kappa = 2.0$, where
 1029 the value of κ was set after initial testing on a synthetic dataset, though values from 0.5 to 4.0 performed
 1030 similarly well. Depending on the size of the graph, we approximated the eigendecomposition of \mathbf{L}_k with
 1031 m eigenpairs with the lowest eigenvalues: for earthquakes we take the full spectrum, for traffic flow the
 1032

1034 full spectrum, for brain the full spectrum, for single-cell differentiation $m = 256$, and for ocean currents
 1035 $m = 500$.
 1036

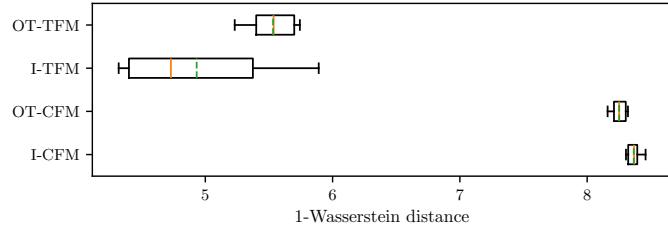
1037 **Training.** To learn the conditional control we trained a residual neural network, as well as a graph neural
 1038 network and a simplicial neural network, depending on the signal domain, implemented by Yang (2025).
 1039 Each training run consisted of up to 100 epochs with 25,600 samples each, stopping early after 10 epochs of
 1040 improvement no greater than 1% in terms of 1-Wasserstein distance on a withheld validation set. For gener-
 1041 ation experiments and ocean current experiments, where at least one distribution is analytic, we approximate
 1042 the optimal transport plan with batch-wise optimal transport Tong et al. (2024b).
 1043

1044 **Evaluation.** In generation tasks, evaluation was done by sampling 512 points X_0 from the initial distribu-
 1045 tion μ_0 , obtaining predicted samples \hat{X}_1 by simulating the flow ODE started at X_0 and computing the 1- and
 1046 2-Wasserstein distances between their distribution and the test set. Averaging the result over 16 independent
 1047 samples to obtain a final metric. For the ocean experiment we compute the metrics in the same way, except
 1048 we also resample 512 points from the target distribution 16 times. For the single-cell and brain datasets we
 1049 simply compute the Wasserstein distances exactly between the empirical distribution of the withheld target
 1050 point and the initial points transported along the flow ODE.
 1051
 1052

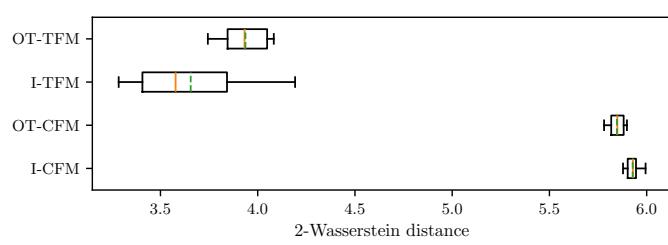
1053 E.2 IMAGE GENERATION ON CIFAR-10

1054
 1055 For image generation on the CIFAR-10 dataset we used the experimental setup of Tong et al. (2024a).
 1056 Because it is designed for CFM, we simply replaced its corresponding components according to Table 1.
 1057 After initial testing of $\kappa \in \{0.001, 0.01, 0.1, 1.0\}$, we chose the best-performing TFM variant with $\kappa = 0.01$.
 1058 We perform full eigendecomposition of the Laplacian, which can be done efficiently due to the product
 1059 structure of the grid. All other setup pertaining to training and testing is done according to Tong et al.
 1060 (2024a). In particular, we use a UNet (Ronneberger et al., 2015) for learning of the conditional control and
 1061 compute the FID scores using `clean-fid` (Parmar et al., 2021).
 1062
 1063

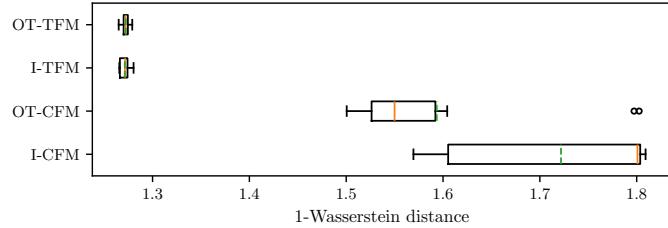
1064 E.3 ADDITIONAL RESULTS



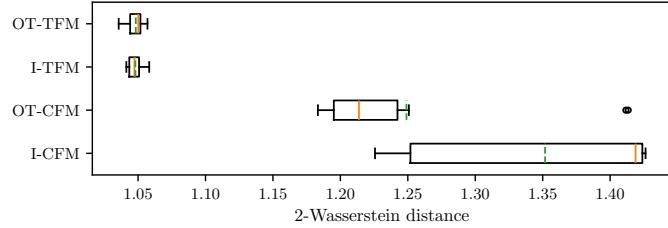
1077
 1078 Figure 11: Test performance on the earthquake magnitude generation experiment, in terms of 1-Wasserstein
 1079 distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the
 1080 mean, boxes show interquartile range, and outliers are shown as circles.



1090 Figure 12: Test performance on the earthquake magnitude generation experiment, in terms of 2-Wasserstein
1091 distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the
1092 mean, boxes show interquartile range, and outliers are shown as circles.



1106 Figure 13: Test performance of topological and Euclidean flow matching models on the traffic flow genera-
1107 tion experiment, in terms of 1-Wasserstein distance measured over 10 independent runs. Orange bars show
1108 median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as
1109 circles.



1124 Figure 14: Test performance of topological and Euclidean flow matching models on the traffic flow genera-
1125 tion experiment, in terms of 2-Wasserstein distance measured over 10 independent runs. Orange bars show
1126 median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as
1127 circles.

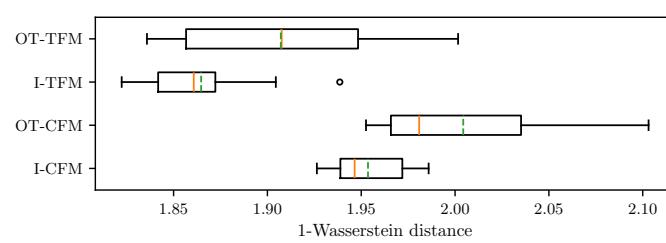


Figure 15: Test performance on the ocean current matching experiment, in terms of 1-Wasserstein distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as circles.

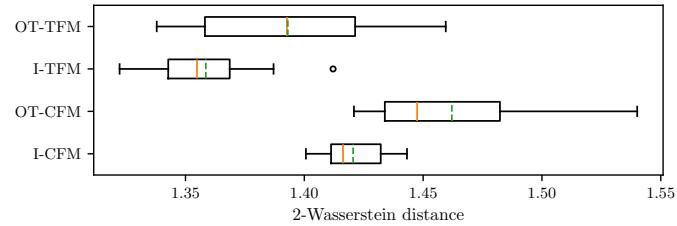


Figure 16: Test performance on the ocean current matching experiment, in terms of 1-Wasserstein distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as circles.

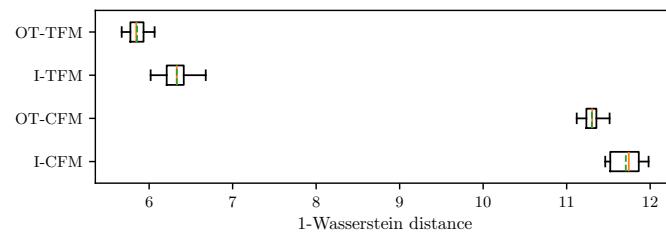


Figure 17: Test performance on the brain fMRI matching experiment, in terms of 1-Wasserstein distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as circles.

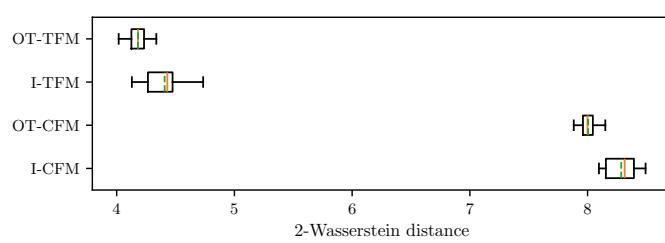


Figure 18: Test performance on the brain fMRI matching experiment, in terms of 1-Wasserstein distance measured over 10 independent runs. Orange bars show median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as circles.

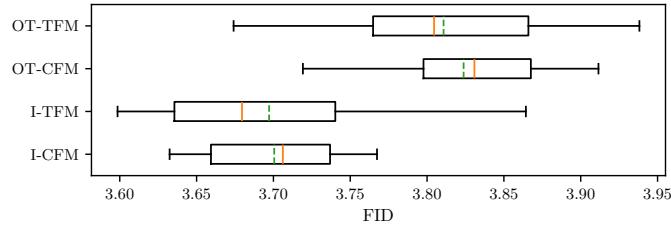


Figure 19: FID on the CIFAR-10 image generation experiment, computed over 10 independent runs. Orange bars show median value, green dashed bars show the mean, boxes show interquartile range, and outliers are shown as circles.

F SUPPLEMENTARY EXPERIMENTS AND ABLATIONS

F.1 EFFECT OF COORDINATE FRAME ON CFM PERFORMANCE

One way to attempt an incorporation of topological information into the neural network u_t^θ , is to predict the vector field in spectral coordinates $Y = \mathbf{U}_k^\top X$. Algebraically, the CFM conditional vector field in spectral coordinates takes the same form as in standard coordinates

$$u_t^{x_0, x_1}(X_t) = x_1 - x_0 = \mathbf{U}_k y_1 - \mathbf{U}_k y_0 = \mathbf{U}_k(y_1 - y_0) = \mathbf{U}_k u_t^{y_0, y_1}(Y_t).$$

Our empirical results reported in Table 6 suggest that there is no meaningful difference in performance between performing CFM in standard coordinates compared with spectral coordinates on the datasets from Yang (2025).

F.2 EFFECT OF THE INITIAL DISTRIBUTION ON PERFORMANCE

Using the heat Gaussian processes $\exp(-\kappa \mathbf{L}_k)$ can boost performance of CFM and TFM in the generation experiments with earthquake magnitudes and traffic data. The performance gain is significant for CFM and relatively small for TFM. We report the results in Table 7.

1222
 1223 Table 6: Mean 1-Wasserstein distance, ± 1 standard deviation, of CFM in spectral and standard coordinates
 1224 on real-world datasets from (Yang, 2025).

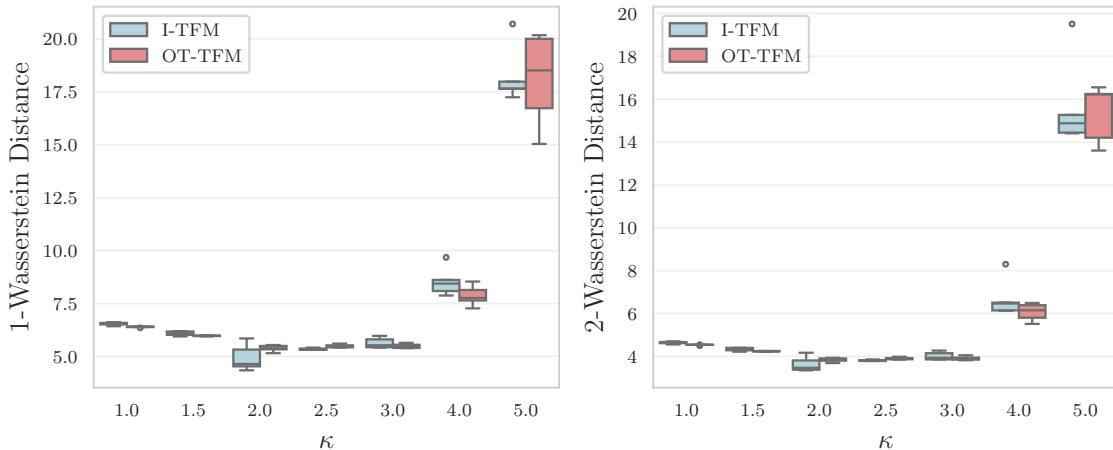
Method (coordinates)	Earthquakes	Traffic	Brain	Single Cell	Ocean Currents
I-CFM (Spectral)	8.37 ± 0.05	1.72 ± 0.01	11.71 ± 0.02	0.022 ± 0.001	1.95 ± 0.02
I-CFM (Standard)	8.29 ± 0.05	1.76 ± 0.01	11.86 ± 0.23	0.020 ± 0.001	1.93 ± 0.02
OT-CFM (Spectral)	8.25 ± 0.06	1.59 ± 0.01	11.30 ± 0.01	0.019 ± 0.001	2.00 ± 0.05
OT-CFM (Standard)	8.26 ± 0.07	1.47 ± 0.18	11.50 ± 0.05	0.019 ± 0.001	1.98 ± 0.02

1231
 1232 Table 7: 1-Wasserstein distance for TFM and CFM with compared across the normal and heat Gaussian
 1233 process (GP) initial distribution on the traffic flows and earthquake magnitudes experiments.

Dataset	Initial Distribution	I-TFM	OT-TFM	I-CFM	OT-CFM
Traffic	Normal	1.30 ± 0.01	1.28 ± 0.01	1.72 ± 0.01	1.59 ± 0.01
	Heat GP	1.27 ± 0.01	1.27 ± 0.00	1.47 ± 0.01	1.45 ± 0.01
Earthquakes	Normal	5.35 ± 0.07	5.49 ± 0.10	8.37 ± 0.05	8.25 ± 0.06
	Heat GP	4.93 ± 0.06	5.53 ± 0.02	7.02 ± 0.07	7.39 ± 0.17

F.3 EFFECT OF κ ON PERFORMANCE

The parameter κ in the topological drift $-\kappa \mathbf{L}_k X_t dt$ may be further tuned to improve performance of TFM. This is shown for a range of κ values in across the earthquake magnitude, traffic flow, brain fMRI, single-cell differentiation, and ocean current experiments in Figures 20 to 24. Except for the single-cell experiment, it appears that the 1- and 2-Wasserstein distance is approximately convex in κ .



1263 Figure 20: Test performance of I-TFM and OT-TFM across a range of κ choices on the earthquake magnitude
 1264 generation experiment over 5 independent runs. Bars show median value, boxes show interquartile range,
 1265 and outliers are shown as circles.

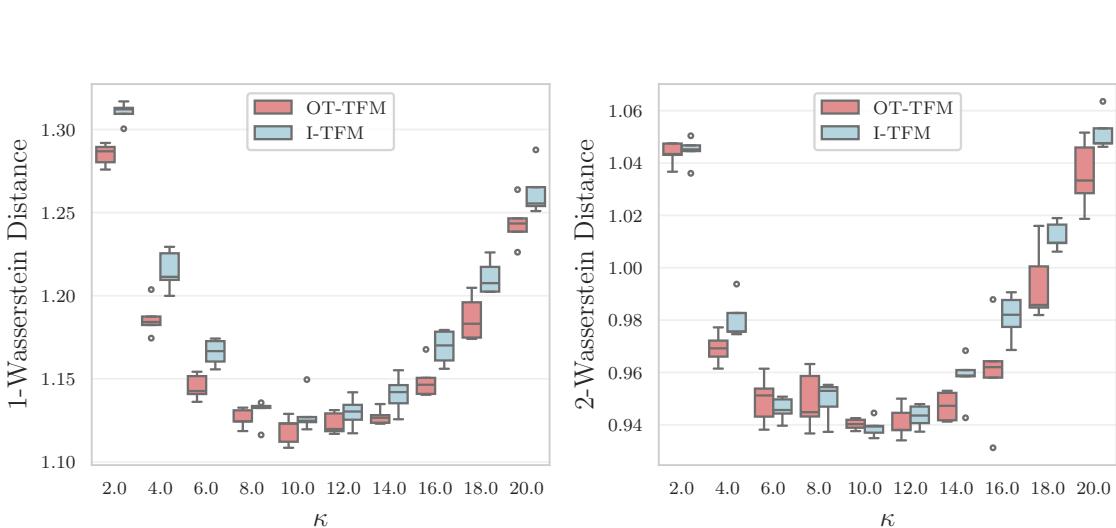


Figure 21: Test performance of I-TFM and OT-TFM across a range of κ choices on the traffic generation experiment over 5 independent runs. Bars show median value, boxes show interquartile range, and outliers are shown as circles.

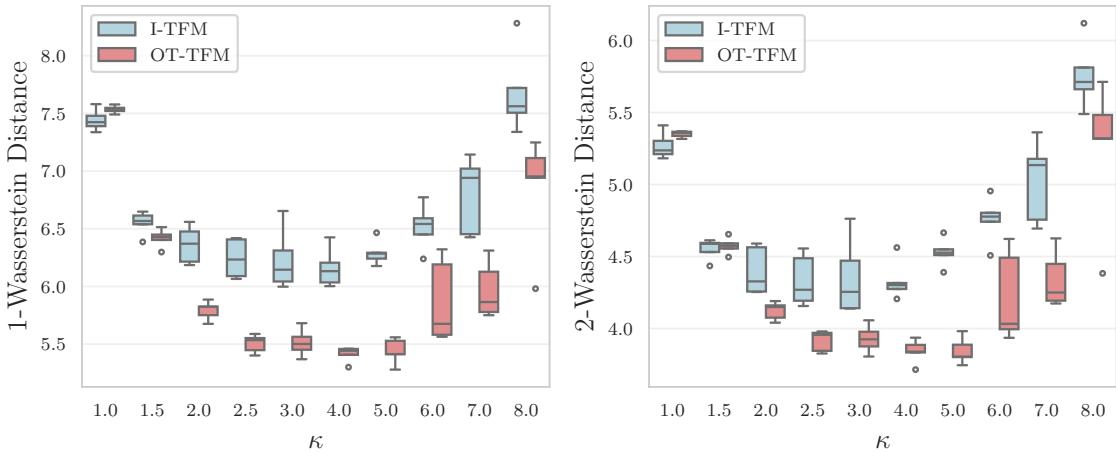
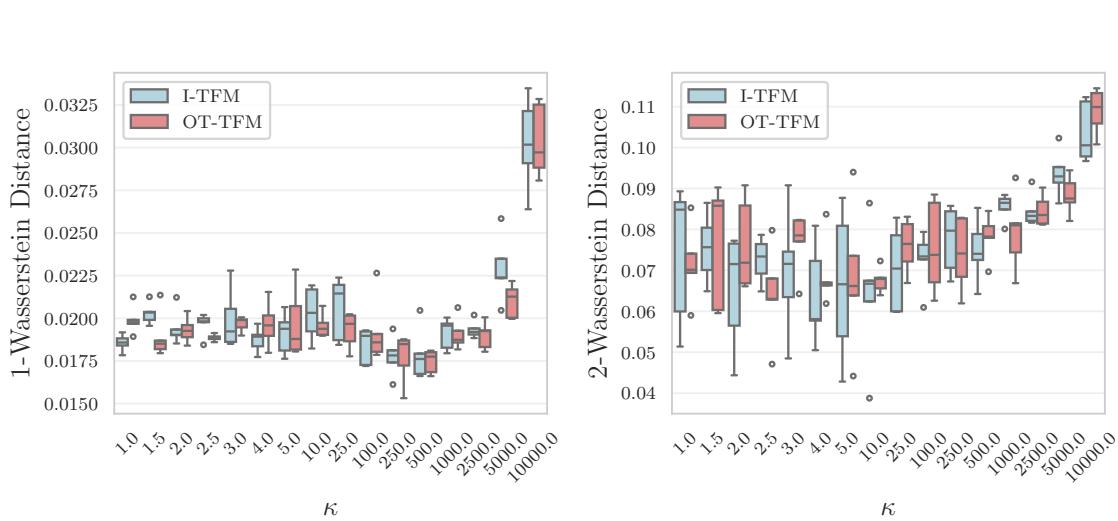
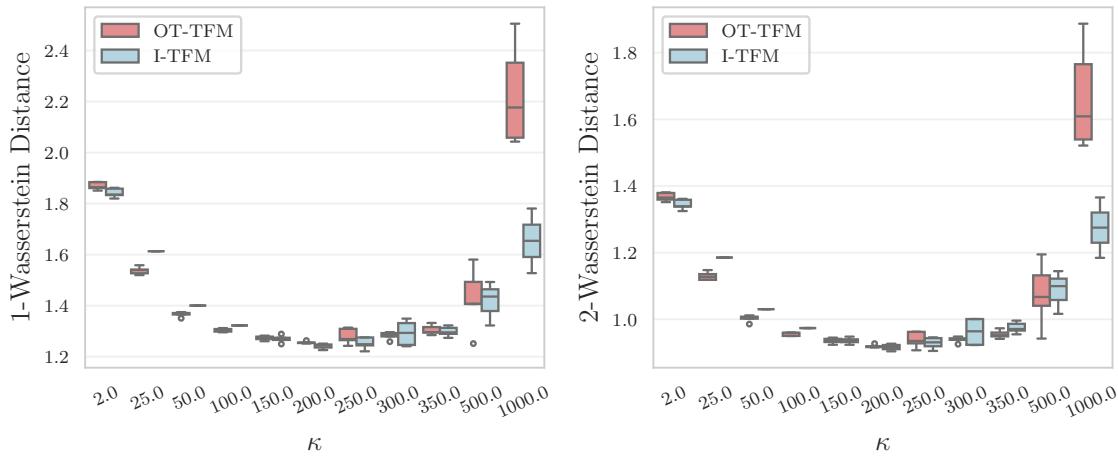


Figure 22: Test performance of I-TFM and OT-TFM across a range of κ choices on the brain fMRI matching experiment over 5 independent runs. Bars show median value, boxes show interquartile range, and outliers are shown as circles.



1334 Figure 23: Test performance of I-TFM and OT-TFM across a range of κ choices on the single cell differ-
1335 entiation matching experiment over 5 independent runs. Bars show median value, boxes show interquartile
1336 range, and outliers are shown as circles.



1358 Figure 24: Test performance of I-TFM and OT-TFM across a range of κ choices on the ocean current
1359 matching experiment over 5 independent runs. Bars show median value, boxes show interquartile range, and
1360 outliers are shown as circles.