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ABSTRACT

Large language models (LLMs) demonstrate their promise in tackling complicated
practical challenges by combining action-based policies with chain of thought
(CoT) reasoning. Having high-quality prompts on hand, however, is vital to the
framework’s effectiveness. Currently, these prompts are handcrafted utilising
extensive human labor, resulting in CoT policies that frequently fail to generalise.
Human intervention is also required in order to develop grounding functions that
ensure low-level controllers appropriately process CoT reasoning. In this paper, we
take the first step towards a fully integrated end-to-end framework for task-solving
in real settings employing complicated reasoning. To that purpose, we offer a new
leader-follower bilevel framework capable of learning to ask relevant questions
(prompts) and subsequently undertaking reasoning to guide the learning of actions
to be performed in an environment. A good prompt should make introspective
revisions based on historical findings, leading the CoT to consider the anticipated
goals. A prompt-generator policy has its own aim in our system, allowing it to
adapt to the action policy and automatically root the CoT process towards outputs
that lead to decisive, high-performing actions. Meanwhile, the action policy is
learning how to use the CoT outputs to take specific actions. Our empirical data
reveal that our system outperforms leading methods in agent learning benchmarks
such as Overcooked and FourRoom.

1 INTRODUCTION

Large language models (LLMs) with Chain-of-thought (CoT) prompts (Wei et al., 2022; Wang et al.,
2022) have achieved impressive performance improvements for solving complex natural language
processing (NLP) tasks. Moreover, techniques such as reward incentives (Yao et al., 2022; Hao
et al., 2023) have been shown to enhance the quality of Chain-of-Thought prompts for addressing
intricate tasks. Two notable approaches, Tree-of-Thought (ToT) (Yao et al., 2023) and Reasoning via
Planning (RAP) (Hao et al., 2023), have emerged to be useful techniques that leverage LLM-generated
reward functions for guiding the step-by-step problem-solving process. With the increasing reasoning
capabilities of CoT, the reasoning outputs of LLMs can be used to provide useful ‘thought’ inputs
to policies that perform tasks in practical environments. This involvement of CoT reasoning has
given rise to the promise of unlocking the power of LLMs to be able to assist in performing complex
automated reasoning and acting in real-world environments.

While LLMs such as ChatGPT possess a wealth of human knowledge, in general,current methods
(Yao et al., 2023; Hao et al., 2023) heavily depend on meticulously crafted prompts designed by
humans for each specific task. Moreover, the performance of CoT reasoning can be sensitive to the
quality of the prompt input — poor prompts provided even to powerful LLMs are unlikely to generate
useful CoT outputs. Additionally, despite the obvious potential of using CoT reasoning for guiding a
low-level control policy, human-intelligible CoT reasoning can often be ambiguous for a downstream
control policy, such as a rule-based planning method (Zhang et al., 2023; Shah et al., 2023) and an
action policy implemented by a reinforcement learning (RL) algorithm (Carta et al., 2023). As such, a
natural consideration is for the need to generate CoT outputs that are interpretable to the action policy
and, provably reduce the uncertainty of the action policy. Therefore, the ambition of embedding CoT

1



Under review as a conference paper at ICLR 2024

reasoning within a generalist artifical intelligence (AI) framework has produced a series of critical
challenges that have yet to be fully resolved.

In this paper, we take the first step towards a fully unified LLM framework that learns to perform
complex tasks. In order to achieve this goal, both the prompt design and the policy that outputs
actions to be executed have to be sufficiently flexible and useful so as to adapt to the current task
at hand. Tackling this challenge necessitates learning both to generate appropriate questions (a.k.a.
prompts) given environment observations as well as learning how to perform actions that enable
the task to be solved. To this end, we introduce a decision-making framework which learns to ask
pertinent questions or perform introspection, performs CoT reasoning and then learns to take the best
actions in the environment. The first component of the framework is enacted by a prompt-generation
policy that learns a suitable prompt question given the current challenge and overall task and given its
observations of the environment. These prompts serve as inputs to a CoT process; this then allows the
framework to perform desired and complex reasoning given the prompt. The CoT thoughts are then
inserted into the action-policy that learns to find solutions to tasks that may require both interaction
experience and human knowledge embedded in CoT reasoning to solve.

Learning how to generate in-demand prompts for the CoT process produces formidable challenges.
One such challenge is to ensure that the resulting CoT thoughts enhance the performance of an
action policy. Departing from a fixed set of pre-selected, human-crafted prompts and learning to
find useful prompts to be fed into the CoT process presents an important challenge. Specifically,
ensuring that the resulting CoT thoughts improve the performance of an action-policy that can
solve the task. We resolve this challenge by designing a leader-follower Bilevel structure, called
Bilevel-LLM and illustrated in Figure 1, that generates mutually adaptive policies. Each policy is
endowed with its own objective — the prompt-generation policy observes the effect of its prompt on
the action policy and learns to generate useful prompts, and subsequent CoT outputs that are correctly
interpreted. In particular, the prompts and CoT output are chosen so as to minimise the uncertainty of
the action policy i.e. the prompt-generation policy chooses prompts that minimise the entropy of the
action-policy. The action policy, on the other hand, learns to maximise the environmental reward
while taking into account the outputs of the CoT process. Ultimately, the generated thoughts serve
to learn a more effective action policy, providing additional information beyond the observation of
the environment. These natural language insights embody human knowledge, reducing the need
for redundant exploration compared to traditional RL algorithms, which typically require extensive
exploration of specific environments to train a competent agent.

In numerous task environments, expert prompt data for the task is available, such as a well-defined
set of subtasks (Shah et al., 2023). Making use of this in decision-making tasks requires prompts
that induce CoT reasoning for performing desirable actions at each state. Nevertheless, often, the
information in expert prompt sets is not refined to capture useful specifics at the state level producing a
challenge of how to select the appropriate prompt at a given state. In environments where such prompt
candidates are not available, the challenge becomes autonomously generating useful prompts using
only the environment observations. In Sec. 4, we demonstrate Bilevel-LLM is capable of tackling
each of these challenges. First, we demonstrate that Bilevel-LLM successfully learns to select, from a
global set of candidate prompts, the best prompt for each state. We then demonstrate that in problem
settings where prompt candidates are not available, Bilevel-LLM successfully generates desirable
prompts at each state entirely from state observations.

The contributions of this paper can be summarised as follows:
• A new framework for auto-generation of prompts for decision-making tasks. An integral component
is a prompt-policy or prompt-generator which is trained by our framework to generate prompts that
induce low uncertainty in the action-policy which receives thoughts generated by CoT reasoning
triggered by the prompts from the prompt-generator. Therefore, the prompt-generator (and hence
CoT process) behaves adaptively toward the needs of the action-policy.
• A chain-of-thought generation framework in which the thought output of the CoT process are
used to guide a policy that takes actions within an environment in order to solve practical tasks.
This leverages the benefits of natural language models and CoT reasoning that encapsulate worldly
experience and the capacity for deductive reasoning while efficiently tuning the thought pipeline
process by tuning the prompt generation policy.
• Prompt-tuning plus learning of LLM input-based policy that acts in environment (dual framework).
• A new bilevel learning algorithm that uses natural language to guide what actions and finds prompts
for this desired textual guidance.
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Figure 1: Top: Example of the workflow from Prompt candidates to CoT reasoning. Bottom: The
illustration of our bilevel optimisation framework.

2 PROBLEM FORMULATION

In this setting, an agent aims to solve some task by performing a sequence of actions in an environment.
Formally, the problem is described by a partially observable Markov decision process (POMDP),
which is defined by the following tuple hS,A, P,O, T,R, �i where S is the finite set of environment
states, A is the set of actions for the agent, P : S ⇥A ! �(S) is the state transition kernel for the
environment, O is the finite set of observations. The states and observations can be represented as
symbolic vectors, which can be translated into text descriptions conveying the information in the
vectors. The function R : S ⇥ A ! �(R) is the reward function, which returns a scalar reward
conditioned on a state-action pair whose realisation at time step t we denote by rt ⇠ R and lastly,
� 2 [0, 1] is the discount factor. We introduce an additional variable xt 2 X contained in the situation
space X . The variable xt represents observed primary information that can be encoded as text that
can help a CoT reasoning LLM to generate task relevant thoughts. Lastly, the observation function is
T : S ⇥ A ⇥X ! O which is a mapping from the environment state, action and situation to the
observation set of the agent. In challenging problems, standard methods such as RL struggle to solve
these tasks in a sample efficient way. In order to solve complex decision-problems, an agent may be
challenged with needing to perform deductive reasoning in order to resolve the challenge of finding
an optimal policy.

To tackle these challenges, we equip the agent with both a dual LLM structure that enables the agent
to first, generate its own pertinent prompts from its observations of the current. Then, using these
prompts, perform CoT reasoning to perform complex reasoning about the best course of action. Lastly,
an action is taken in the environment. The framework can therefore be split into three components: a
prompt-generating policy ⇡� : (O)j<1 ! T . This policy learns to generate prompts after observing
(a window of) j < 1 observations and outputs a thought in textual thought space1 Second, a thought
reasoning policy ⇡re : S ! T — an LLM that reasons about the task at that particular state by
performing CoT to generate a thought output. Denote V is the vocabulary (with finite words in it).
Each thought t 2 T 2 VM is described as a sentence with M < 1 tokens in it where T is the set of
thoughts. The thought reasoning policy ⇡re does step-by-step thought reasoning, e.g. Opening the
box requires finding the key and then unlocking it in natural language space. The CoT reasoning is
performed by an LLM, since Bilevel-LLM is a plug & play framework, any choice of LLM can be
used to perform the CoT reasoning (in our experiments we use GPT3.5 2). Lastly, an action-policy
⇡✓ : O⇥T ! �(A). The action-policy makes an observation of the environment and takes the CoT
thought as an input then executes actions in the environment.

Therefore, at times t = 0, 1, . . ., a prompt pt is generated by the prompt generation policy i.e.
pt ⇠ ⇡�(·|ot, . . . , ot�j^0). The prompt is then used by an LLM to trigger a CoT process whose
output is a thought �t 2 T . Last, the action-agent samples an action from its policy at ⇠ ⇡✓(·|ot, �t),
where t is the time immediately after querying the thought reasoning policy ⇡re at time step t.
Therefore, sequence of events proceeds as follows:
1. At time t = 0, 1, . . . the system is at an environment state st 2 S .
2. A prompt pt is produced by the prompt generation policy i.e. pt ⇠ ⇡�(·|ot, . . . , ot�j^0).

1The Markov property is ensured by setting j = 0.
2The version of GPT3.5 in this work is GPT3.5-turbo
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3. An action at ⇠ ⇡✓(·|ot, �t) is taken given the output of the CoT process �t ⇠ ⇡re(pt, xt), xt is
the observed situation of the current state.
4. The environment state transitions according to st+1 ⇠ P (·|st, at). Figure 6 shows a step by step
inference example of Bilevel-LLM on the Overcooked task.

To tackle the problem of learning how to generate prompts while learning the action-policy, we
structure the problem as a leader-follower bilevel optimisation Colson et al. (2007). This allows
the prompt-generator policy to learn how its actions affect the action-policy while action-policy
and prompt-generator policy learn concurrently. In this way, the prompt-generator policy alters its
output to produce desirable actions from the action-policy while the action-policy learns both how to
interpret the CoT outputs and take desirable actions. Since LLMs already contain a vast amount of
world knowledge, we here fix the LLM that performs the CoT reasoning, that is we assume that ⇡re

is pretrained and fixed. We update the prompt-generator policy and action-policy. The aim of the
prompt-generator policy is to generate prompts minimise the uncertainty of the action policy action.
The optimisation objective can be expressed as a bilevel optimisation problem:

(⇡⇤
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where H⇡✓ (yt) =
P

at2A ⇡✓(at|yt) log ⇡✓(at|yt), yt = (ot, �t) which is the entropy of the policy
⇡✓ and �I , � 2 [0, 1) are the discount factors and rt ⇠ R. Note that the bilevel aspect incorporates
the nested nature of the optimisation Colson et al. (2007); Dempe (2002) — in order to find the
optimal prompt, the prompt-generator policy must take into account the anticipated behaviour of both
the LLM ⇡re and the action policy ⇡✓ and thereafter make its choice accordingly.

3 METHODOLOGY

In this section we describe the training procedure of proposed the Bilevel framework. The prompt
generation policy is optimised via the policy gradient with the behavior of action policy as a reward.
The action policy is served by an LLM with PPO updater, which benefits from avoiding human-crafted
engineering by grounding the CoT reasoning to executable actions. In the bilevel framework, the
prompt generation policy and action policy are concurrently optimised until convergence.

CoT reasoning with LLMs has proven to be effective in aiding decision-making when well-designed
prompts are used (Zhang et al., 2023; Park et al., 2023). However, the quality of CoT reasoning
heavily depends on the quality of prompts, which are typically manually designed by humans (Zhang
et al., 2023; Shah et al., 2023). In traditional Natural Language Processing (NLP) tasks such as
sentiment classification (Pang et al., 2002) and news classification (Rana et al., 2014), prompts are
usually provided through sets of input-output pairs. Unlike these NLP tasks with clearly defined
input-output examples, the desired format of prompts varies across different decision-making tasks,
often requiring substantial manual engineering.

Prompt generation policy training via policy gradient. Due to the difficulty of training a model
that is able to generate reasonable prompts from scratch automatically, we alternatively use pre-
defined prompt candidates which can be obtained by human deliberately writing or being generated
by GPT3.5. We have conducted an experiment about using GPT3.5 to generate prompts, where the
task description, state, and abstracted state situation are inputted into GPT3.5 to produce some simple
prompt questions about how to achieve the goal. Examples of prompt candidates generated from
GPT3.5 are shown in Appendix 9.2.

While human assistance is engaged in generating prompt candidates, our work focuses solely on
generating prompts about the critical subtasks, similar to the approach in (Shah et al., 2023), but
less extensive than in (Zhang et al., 2023; Park et al., 2023), where human-designed prompt formats
are required for the entire decision-making process, encompassing ensuring a subgoal, thinking and
acting.
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Algorithm 1 Bilevel-LLM
Input: Initialise parameters of policies ⇡✓, ⇡�. Set the data buffer D = ;.
Output: ⇡⇤

✓ , and ⇡⇤
�.

1: while not done do

2: #Rollout trajectories with ⇡✓,⇡re,⇡�.
3: for i = 1, 2, .., step do

4: Generate prompt given historical observation : pt ⇠ ⇡�(·|ot, . . . , ot�j^0)
5: Perform CoT process given prompt pt, generate terminal CoT thought �t
6: # Note that t is the time after querying the thought reasoning policy ⇡re.
7: Sample action according to the thought and observation: at ⇠ ⇡✓(·|ot, �t)
8: Apply action at to the environment, sample reward rt ⇠ R(st, at). The next state according

to st+1 ⇠ P(·|st, at). The next step observation is ot+1 ⇠ T (· · · |st+1).
9: Calculate the entropy of the action policy ht = H (⇡✓(·|st, �t))

10: Add to data buffer: D = D [ (ot, pt, �t, at, rt, ht, ot+1)
11: end for

12: for Epochs and Batch numbers do

13: Sample a batch of data d from D.
14: Update the prompt generation policy ⇡� by policy gradient following Eq. (??),(2).
15: end for

16: for Epochs and Batch numbers do

17: Sample a batch of data d from D.
18: Update the action policy ⇡✓ via PPO to optimise Eq. (3).
19: end for

20: end while

With a prompt candidate set P = {p1, p2, · · · pK}, we train a prompt generation policy
⇡�(·|ot, . . . , ot�j^0) over the prompt candidates according to historical observation ot, . . . , ot�j^0.
Each of these natural language prompt candidates can be represented as a high-dimensional
vector using a pre-trained and frozen BertDevlin et al. (2018) model. Denote the embedding
of prompt candidate pi as ei and the embedding of the historical observations (ot, . . . , ot�j^0)
as eo = E(ot, . . . , ot�j^0) with the encoder E(·). The prompts’ embedding and the observa-
tions’ embedding are projected into the same vector space. Denote the mapped embedding as
êi = Mp(ei), 8i = 1 · · ·K, êo = Mo(eo), where Mp and Mo are projectors for prompts and
observation sequence respectively. During the decision-making process, the prompt policy estimates
the probability of selecting a prompt candidate pi based on the similarity between the prompt
candidate embedding êi and the historical observation sequence’s embedding êo. The prompt policy
is updated via the policy gradient with the minus entropy of action policy as a reward incentive
and parameters of the observation encoder E and projectors Mp, Mo are trainable. The detailed
procedure is described as below:

• For a given decision-making task, we employ GPT-3.5, along with the provided task de-
scription, to generate appropriate prompt candidate sets. As a second case, we used human-crafted
assists to generate valuable prompt candidates.
• With these K prompts, the prompt generation policy is updated with the objective of maximising
the minus action-policy entropy. The objective function is given by:

J�(y|⇡✓,⇡�,⇡
re) = E⇡✓,⇡�,⇡re

2

4�
X

t�0

�tH⇡✓ (yt)|yt = (ot, �t), �t ⇠ ⇡re(pt, xt), y0 = y

3

5

• We use a policy gradient (Lu et al., 2022) to optimise the prompt generation policy which obeys the
following expression:

r�J(y|⇡✓,⇡�,⇡
re) ⇡ 1

N

X

t�0

r� log ⇡�(pt|ot, . . . , ot�j^0)R̂
o
t (⌧). (2)

The prompt generation policy ⇡� is updated according to N sampled trajectories from polices ⇡✓,
⇡�, and ⇡re. We denote R̂o

t (⌧) = �
P

i�t

⇥
�i�tH⇡✓ (yi)|yi+ = (oi, �i), �i ⇠ ⇡re(pi, xi)

⇤
as the

return-to-go from step t to the end for the outer loop.
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CoT reasoning with Prompts. With the selected prompt pt sampled from the prompt candidate set,
the CoT reasoning information is obtained by �t ⇠ ⇡re(·|pt, xt), where the CoT reasoning policy
⇡re is served by an LLM such as GPT3.5. The motivation of integrating the CoT reasoning into our
bilevel framework, is we hope to use the prior human experts’ knowledge to provide a high-level
guideline of how to solve complicated decision-making tasks. For example, as shown in Figure 1, in
Overcooked game, the CoT LLM can generate a sequence of intermediate steps need to be done with
a prompt about the subtasks “how to slice lettuce” given. About how to finish the intermediate steps,
previous studies (Zhang et al., 2023; Shah et al., 2023) rely on some hand-crafted and rule-based
strategies to understand CoT reasoning and perform actions. In this work, we fed CoT reasoning into
the action policy served by a small LM to automatically interpret CoT outputs. To reduce the time
and cost associated with frequent queries to GPT-3.5, we abstract situations to represent states and
stored CoT reasoning outputs for the same situations. For example, in the case of two distinct states,
even though the agent may be in different positions and neither state involves holding lettuce, they
are considered part of the same situation because the steps to slice lettuce remain the same: picking
up a lettuce, placing it on the cutting board, and then proceeding to slice it.

Action policy training via PPO with LLM. Existing works (Jang et al., 2021; Carta et al., 2023)
utilise LLMs as the action policy and fine-tune these LLMs to adapt to decision-making tasks, taking
advantage of the comprehensive capabilities of LLMs. In our work, we also utilise an LLM as the
action policy. Within our framework, in addition to considering the textual observations provided
by the environment, we also incorporate additional CoT reasoning from GPT-3.5 when performing
actions. To ground the outputs from the action LLM into executable actions, we fine-tune the
action LLM, denoted as ⇡✓, using Proximal Policy optimisation (PPO) (Schulman et al., 2017). The
objective of the action policy is to maximise environment return:

argmax
✓

E⇡✓,⇡�,⇡re

2

4
X

t�0

�t
Irt|at ⇠ ⇡✓, �t ⇠ ⇡re, pt ⇠ ⇡�

3

5 . (3)

During the training phase of the action policy ⇡✓, we freeze the prompt generation and CoT reasoning
policies and finetune the action policy with collected trajectories. Additionally, we use the pre-trained
LLM, Flan-T5 small (Rae et al., 2021) with parameters less than one billion as the action policy.

Bilevel Optimisation. In our leader-follower Bilevel LLM framework, the prompt generation policy
and the action policies are trained alternately, with the other policy being kept frozen. On one hand,
the prompt generation policy selects a prompt for the CoT reasoning LLM, which outputs are expected
to be interpreted by the action policy. Thus, the goal of the prompt generation policy is to reduce
the uncertainty of the action policy when it encounters challenging decisions. In practical terms,
the objective is to minimise the entropy of the action policy. On the other hand, the action policy is
trained to effectively solve specific decision-making tasks while benefiting from CoT reasoning and
the experience gathered during exploration. The overall training process of the Bilevel framework is
detailed in Algorithm 1.

4 EXPERIMENTS

In this section, we verify the effectiveness of Bilevel framework on three environments. Further
details on experimental settings and ablation studies can be found in the Appendix. We perform our
empirical examinations on the following three environments:
ChainWorld. The ChainWorld game contains a linear sequence of states and the available actions
for the agent are go left or go right. The agent gains a reward 100 at a random end of the chain and
�5 at the other end, with �1 penalty for each move. At each episode, the award randomly appears
on the left or right end, and the initial position of the agent is randomized, except for the ends. There
are two situations corresponding to different sides with high rewards. We consider two settings:
ChainWorld(Full), where full observation of the situation and position information are provided, and
ChainWorld(Partial), where only partial observation of the agent’s position is available. In the case
of ChainWorld(Partial), since the position with a reward of 100 is randomized, the agent must learn
to make decisions based on historical trajectory information.
FourRoom. In this game, four rooms are circularly interconnected by four hallways, and an agent
needs to reach a goal in these rooms. The agent’s position and the goal position are randomly
initialized within these four rooms at the start of each game. The objective for the agent is to reach
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Figure 2: Results of comparison with baselines. We plot the mean and standard error of nomalized
reward over 5 seeds for trainable baselines, and over 20 episodes for GPT3.5 baselines. We normalize
the cumulative rewards within the range [0,1] and calculate the Area Under the Curve (AUC) by
averaging over all episodes during training or inference.

the goal as fast as possible. During each step, the agent receives two types of information: a global
observation of the goal’s position and its own current position, and a partial observation of the
hallways within its current room. Based on this information, the agent decides and moves one cell.
Overcooked. Overcooked has a discrete action space with 4 directions; North, East, South, and West.
This game has the following items: tomato, lettuce, two cut boards, and two plates. An agent can
pick up food items and chop them on the cutboard, or place the chopped food on a plate. The goal is
to make and deliver the desired meal. We have designed candidate prompts with which we also get
CoT examples from GPT3.5. We consider two different recipes in Overcooked: delivering a chopped
tomato and delivering a tomato-lettuce salad. We also consider a large layout with a map size of 7⇥ 7
and a recipe of tomato-lettuce salad. For the common layouts, the map size is 5⇥ 4.

We compare Bilevel-LLM with two trainable baselines and two baselines that directly prompt GPT3.5
to perform actions, namely: GFlan (Carta et al., 2023). GFlan adopts the LLM Flan-T5 large as
the foundation of action policy and optimises it via PPO algorithm. GFlan solely relies on textual
observations as input and employs this information to estimate the conditional probabilities of the
action tokens.
Vanilla PPO (Schulman et al., 2017). Unlike GFlan which leverages LLMs, Vanilla PPO employs
conventional neutral networks such as MLPs as the backbone architecture and trains the action policy
from scratch. We use the symbolic embedding of states as the input of action policy.
GPT-3.5. Previous studies (Yao et al., 2023; Hao et al., 2023) show that LLMs have impressive
reasoning capability on natural language, we test the zero-shot decision-making capability of GPT-3.5
with task descriptions, textual context, and executable action candidates as input prompt and let
GPT-3.5 infer the action at the current state.
GPT3.5 with CoT prompt. CoT prompts have the potential to substantially enhance the perfor-
mance of CPT3.5 on complex reasoning tasks. Besides the inputs used in the GPT-3.5 setting, we
further incorporate examples of human interactions with the environment or human-established task
decompositions as a part of the input prompt and instruct GPT-3.5 to think step by step.
Bilevel-LLM. We propose the Bilevel LLM framework that integrates prompt generation, CoT
reasoning, and action policies. Compared with GFlan, Bilevel-LLM leverages the additional prompt
generation policy to select a suitable question for CoT reasoning LLM relying on historical observa-
tions. With the selected question, the CoT LLM can reason the human-like high-level solution of the
question from human experts’ knowledge contained in LLMs. The CoT reasoning, i.e, high-level
solution can assist the action policy to solve the more complicated tasks.

Comparison with baselines. The results of comparisons with baselines are shown in Figure 2.
Bilevel-LLM outperforms other baselines in all environments also exhibits a smaller standard error
than the suboptimal GFlan. In most environments, GFlan also outperforms Vanilla PPO. This
suggests that using a pre-trained LLM as the backbone of the action policy improves performance
and training efficiency, due to the rich prior knowledge contained in the pre-trained LLM. In addition,
for most environments, except for ChainWorld (Full), GPT-3.5 and GPT-3.5 (CoT) struggle to solve
decision-making tasks effectively. This indicates that although GPT-3.5 is powerful in generating
useful high-level task solutions (thoughts), it faces challenges in long-term decision-making processes
due to the complexity of the world model and rules in the environment. Additionally, grounding the
output of GPT-3.5 into executable actions proves to be challenging.

Does Bilevel-LLM learn to automatically generate prompts? We tested the case for when prompt
information is not available which requires our method to learn its own prompts. Bilevel-LLM-Auto is
displays the performance of Bilevel-LLM when the prompt candidates are automatically generated
by GPT3.5 using only the observation and situation (which may be limited for a task) descriptions.
As shown in Figure 3(c), Bilevel-LLM (combined with GPT3.5) automatically generated prompts
that learn to successfully induce desirable prompts, CoT reasoning, and actions that solve the
task well in the ChainWorld(Full). We also verify the automatically generated prompt candidates
on Overcooked. As shown in Figure 4, Bilevel-LLM-Auto achieve similar rewards compared to
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(a) Ablation on prompt policy (b) Ablation on multimodal (c) Ablation on auto prompt

Figure 3: Ablation studies. (a) The effect of different prompt generation strategies. (b) Verficiation
of the effectiveness of Bilevel-LLM under multimodal state representations on ChainWorld (Partial).
(c)We verify the prompt candidates that are automatically generated from GPT3.5 with the state
observations and situations given on ChainWorld(Full).

Bilevel-LLM with human-designed prompt candidates. In addition, Bilevel-LLM and Bilevel-LLM-
Auto both outperform GFlan and exhibit lower variance. Specifically, after training the same number
of episodes, Bilevel-LLM reaches a normalized reward around 1.0 but GFlan only reaches around
0.9. This suggests that CoT thoughts induced by appropriately selected prompts are helpful in solving
complex decision-making tasks and that our framework is plug-and-play and can learn to use the
automatically generated valuable prompts from GPT3.5. Examples of automatically generated
prompts relying on state and situation descriptions can be found in Section 9.2 of the Appendix.

4.1 ABLATION STUDIES

Figure 4: Automatically generate prompts on
Overcooked(Salad). Left: Normalized AUC
reward. Right: Rewards during training.

We conducted a series of ablation studies to confirm
the usefulness of the components of Bilevel-LLM .
In the following, we modified components of
Bilevel-LLM in order to validate the following
claims:

Does the prompt policy with policy gradi-

ent improve performance? In order to val-
idate the claim that the prompts generated by
Bilevel-LLM lead to improved performance, we

tested Bilevel-LLM against the baseline Bilevel-LLM (Random), which is Bilevel-LLM but with
the prompt policy replaced so that we randomly select a prompt from the candidate set at each
time step. In addition, Bilevel-LLM (UCB) views the prompt selection from a candidate set as the
multi-armed bandit problem and uses Upper Confidence Bound (UCB) to select the prompt. In
this setting, the UCB algorithm does not consider the historical observation but only relies on the
environment rewards, i.e., the minus entropy of the action policy to select a prompt. In addition,
the UCB counts are reset for each episode. As shown in Figure 3(a), Bilevel-LLM outperforms
all other prompt policy versions on all environments. The bad performance of Bilevel-LLM (UCB)
might be due to the lack of consideration of environmental state when performing prompt selection.
Does the entropy objective improve performance? To validate the claim that the entropy objective
leads to better performance we tested Bilevel-LLM against the baseline Bilevel-LLM (Env), which
replaces the negative entropy with the reward from the environment. As shown in Fig. 5, Bilevel-LLM
with entropy objective outperforms Bilevel-LLM (Env) and exhibits lower entropy of the aciton policy.
Can the Bilevel-LLM framework accommodate multimodal state representation? We design
a baseline Bilevel-LLM-Symbolic, where the action policy is replaced by that of Vanilla PPO, but
taking both the embedding of the CoT output and symbolic environment observations as the input.
As shown in Figure 3(b), Bilevel-LLM outperforms GFlan and Bilevel-LLM-Symbolic outperforms
Vanilla-PPO, which indicates that the utilization of prompt questions and CoT reasoning is helpful to
improve the capability of action policies with both textual and symbolic state representation.

5 RELATED WORK

Figure 5: Ablation of the entropy objective on
Chainworld (Partial). Left: Normalized AUC
reward. Right: Entropy of the action policy.

Reasoning with LLMs. Previous studies have con-
firmed that stage-by-stage reasoning significantly en-
hances the capability of LLMs to solve complex tasks
such as mathematical and logistic reasoning problems.
Chain-of-Thought (CoT)(Wei et al., 2022) prompts
containing a series of intermediate reasoning steps
which is shown to improve the inference ability of
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LLMs. Self-consistency (Wang et al., 2022) marginalizes over several independent CoT reasoning
paths and then selects the most consistent answer. PAL (Gao et al., 2023) integrates executable
programs into the CoT reasoning, addressing computation-related problems. Besides using the prior
world knowledge contained in LLMs, ReAct (Yao et al., 2022), Tree-of-Thought (ToT) (Yao et al.,
2023) and RAP (Hao et al., 2023) make use of from external environments or internal LLMs to
produce reasoning traces. ToT (Yao et al., 2023) and RAP (Hao et al., 2023) explore extensively
compared to CoT. Both engage in multiple reasoning paths and construct a reasoning tree to de-
termine the next crucial reasoning action through self-evaluation. In this work, LLMs are applied
to address natural multi-step decision-making problems, such as the game of Overcooked, where
rational reasoning is essential for each action.

LLMs for RL. Due to the impressive reasoning capabilities of humans and the wealth of knowledge
preceding LLMs, a series of studies have attempted to incorporate LLMs into planning algorithms to
address decision-making tasks. ICPI (Brooks et al., 2022) solves a number of simple interactive RL
tasks (such as Maze) without the need for expert demonstrations or gradient computations, which is
achieved by using LLMs as the world model and the rollout policy with historical interactions as in
context examples. Chen et al. (2023) leverage historical trajectories to prompt LLM to generate the
next step actions on the textWorld game. GFlan(Carta et al., 2023) aims to ground the LLM Flan-T5
(Rae et al., 2021) on solving a textual interactive task named BabyAI-Text. In this approach, Flan-T5
serves as the action policy and is fine-tuned via online PPO (Schulman et al., 2017). LFG (Shah et al.,
2023), utilise an LLM with a polling strategy to recommend and subsequently rank subgoals. In our
work, we integrate complex CoT reasoning with LLMs into RL to enhance interpretability and the
value of each action while eliminating the need for meticulous engineering to interpret LLM outputs.

Entropy in RL. Entropy has been used extensively in RL as a tool for regularisation (Mnih et al.,
2016; Albrecht et al., 2023). The policy in actor-critic methods is often trained with an additional term
that aims to maximise the entropy of the learned actions, with the goal of exploring the environment
without having a policy collapse early to suboptimal actions (e.g. Mnih et al., 2016). A more formal
use of entropy is explored in maximum entropy reinforcement learning (Haarnoja et al., 2018;
Eysenbach & Levine, 2021), where the optimisation objective aims to learn the optimal policy that
has the maximum entropy. In this work, we take a different approach, and look at finding prompts
that minimise the entropy of the action policy. Intuitively, this would push the CoT process to provide
reasoning that makes the policy sure about its action. Such minimization of the entropy has also been
explored: Zhang et al. (2021) formulate a hierarchical approach to intrinsic options, where entropy is
minimised to improve the option sub-trajectories, and Allahverdyan et al. (2018) consider entropy for
decision making in the exploration-exploitation trade-off.

Automated Prompt Engineering. The quality of prompts plays a crucial role in determining the
output quality of LLMs. Many works hand-craft quality prompts such as the Generative Agents (Park
et al., 2023) and ProAgent (Zhang et al., 2023). Apart from completely using human-crafted prompts,
there are other studies that adopt different degrees of automation when generating meaningful prompts.
For example, APE (Zhou et al., 2022) and DLN (Sordoni et al., 2023) generate prompts from multiple
examples and utilise LLM to rank the prompt candidates. PromptPG (Lu et al., 2022) trained an
additional prompt selection network using the policy gradient technique, where the deep network
generation probability distribution over a predefined set of prompt examples. We also aim to minimise
human-labor on prompt engineering, we therefore adopt the PromptPG method where we preset a
group of prompts and let the algorithm choose for itself depending on the environment state.

6 CONCLUSION

We introduce Bilevel-LLM, a bilevel framework that is capable of learning introspective questions
(in the form of prompts), then performing complex reasoning for guiding actions executed by an
action-policy. The bilevel nature of the framework enables the accommodation of separate objectives
for the two learning components, namely the prompt-generation policy uses an action-policy entropy
minimisation objective which enables it to induce unambiguous and useful prompts to be fed to the
action-policy. Meanwhile, the action-policy learns how to perform actions in the environment while
making use of the CoT thoughts which it learns to interpret. We showed that this leads to a powerful
framework that outperforms leading baselines in complex benchmark environments. We believe
our framework takes an important step towards generalist artificial intelligence that is capable of
introspection and complex decision-making.
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