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ABSTRACT

Inverse design aims to recover system parameters from observed responses, a
central challenge in domains such as semiconductor manufacturing, structural
engineering, materials science, and fluid dynamics. The absence of explicit math-
ematical formulations in many systems complicates this task and prevents the
use of standard first-order optimization methods. Existing approaches, such as
generative models and Bayesian optimization, mitigate these challenges but face
notable limitations: generative models often require high-fidelity paired data, while
Bayesian optimization depends heavily on surrogate models, leading to scalability
issues, sensitivity to priors, and vulnerability to noise.
We introduce Deep Generative Prior (DGP), a new framework that enables
first-order, gradient-based inverse optimization with surrogate machine learning
models. Formally, DGP constrains the optimization of design parameters through a
pretrained prior G(q), such that gradients are propagated via the surrogate forward
model F , i.e., ∇qL(F (G(q)), u), which enforces optimization along the data
manifold induced by G. By leveraging pretrained Neural Operators as auxiliary
priors, DGP enables stable and effective gradient flow through complex surrogate
models.
We validate DGP on diverse and challenging inverse design tasks, including 2D
Darcy flow (standard), 2D Navier–Stokes fluid dynamics (ill-posed), and semicon-
ductor lithography inverse problems (ill-posed and out-of-distribution solutions).
Across these domains, DGP consistently achieves higher solution quality and
efficiency compared to existing methods.

1 INTRODUCTION

Inverse design optimization addresses the challenge of identifying system parameters or objectives
(a) from observed solutions (u∗), making it fundamental across multiple disciplines. For example,
in structural engineering, inverse design is used to infer the location and extent of damage based on
sensor data. In chip design, inverse lithography is critical for optimizing mask patterns to improve
manufacturability. Similarly, in materials science, inverse design identifies atomic or molecular
structures that achieve desired properties such as thermal conductivity or elasticity. Aerodynamics
also relies on inverse optimization for airfoil design. These examples highlight the wide-reaching
impact of inverse design and its inherent ill-posedness, where multiple solutions may satisfy the same
observations.

Limitations of MCMC and Surrogate-Based Inference. Solving inverse problems often relies
on surrogate models that approximate the forward system. Classical approaches such as Bayesian
optimization or Markov Chain Monte Carlo (MCMC) Cotter et al. (2013) repeatedly query the
surrogate. While gradient-based MCMC variants, such as NUTS, can exploit the differentiable
nature of neural surrogates, they remain computationally intensive for high-dimensional or ill-posed
problems. Moreover, even with gradient-informed sampling, MCMC requires careful tuning of
priors and step sizes to explore the solution space effectively. In contrast, data-driven surrogates
like the Fourier Neural Operator (FNO) provide orders-of-magnitude speedup Li et al. (2021). Our
proposed Deep Generative Physics prior (DGP) leverages both the differentiability of FNOs and a
learned generative manifold to efficiently guide first-order optimization. This allows DGP to rapidly
produce multiple physically plausible solutions while mitigating unphysical outputs, which remains
challenging for standard or gradient-based MCMC approaches.
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Inverse Model
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(c) Deep Generative Physics Prior

Figure 1: Comparison of inverse design optimization schemes. (a) Data-driven generative model
mapping objectives to parameters. (b) MCMC sampling using a pretrained surrogate. (c) First-order
optimization of system parameters constrained by a deep generative prior (DGP).

Limitations of Inverse Operator and Direct Generative Models. Generative models can directly
predict inverse solutions Yang et al. (2020); Huang et al. (2024); Long & Zhe (2024); Yang & Ren
(2024). While computationally efficient, their performance is highly sensitive to the underlying data
distribution. In cases where the training data is multimodal or contains mixed distributions, these
models often produce averaged or biased solutions that are noisy or physically implausible, requiring
additional fine-tuning or optimization. Recent advances in diffusion-based generative models, such
as Compositional Generative Inverse Design Wu et al. (2024), enhance robustness to multimodal
distributions and enable compositional design, but they typically incur significant computational cost
during sampling. Moreover, direct learning of an inverse operator relies on high-fidelity datasets,
which are often unavailable in real-world applications, further limiting the applicability of these
approaches.

First-Order Optimization and Its Challenges. Gradient-based methods can efficiently navigate
toward inverse solutions using differentiable surrogates. In principle, Neural Operators provide such
surrogates Azizzadenesheli et al. (2024), enabling fast first-order optimization. However, FNOs are
susceptible to adversarial examples, and naïve gradient descent often produces out-of-distribution
solutions that are physically invalid. Constraining the search within a physically plausible manifold
is therefore critical.

Deep Generative Prior (DGP). We propose DGP, a framework that combines a forward operator
surrogate with a generative functional prior to constrain gradient-based inverse optimization. The
key novelty lies in learning the manifold of physically plausible solutions directly from data and
performing Langevin Dynamics (LD) in the latent space of the prior. This allows DGP to:

1. Explore multiple valid inverse solutions, capturing the inherent uncertainty of ill-posed
problems.

2. Mitigate adversarial examples, ensuring physically plausible outputs even when the dataset
contains suboptimal or noisy solutions.

3. Maintain computational efficiency, achieving orders-of-magnitude speedup compared to
MCMC.

The significance of using a generative FNO as a prior is that it provides a differentiable, data-
driven manifold of valid solutions, enabling robust exploration of the inverse solution space even
when high-fidelity datasets or explicit physics-based priors are unavailable. Unlike directly learning
an inverse operator, DGP allows posterior sampling over plausible solutions rather than producing
a single deterministic point estimate, and it can refine solutions guided by the forward surrogate
operator to improve physical consistency. We list the major contributions of this paper as follows:
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• FNO-Based Advantages: DGP inherits FNO’s strengths, including resolution invariance
and free super-resolution, making it versatile for diverse inverse design tasks.

• Purely Data-Driven: DGP is fully data-driven, effective even when explicit physics models
or priors are unavailable, intractable, or low-fidelity.

• Diversity and Multi-Modal Solutions: By sampling in the latent space of the generative
prior, DGP can recover multiple physically plausible solutions for a single observation,
capturing the inherent uncertainty of ill-posed problems and mitigating adversarial designs.

• Superior Performance: DGP demonstrates strong performance across a range of inverse
design scenarios, including standard (Darcy Flow), under-determined or ill-posed (2D
Navier-Stokes), and low-fidelity or out-of-distribution data (inverse lithography). It achieves
comparable or better solution quality than existing methods while offering substantial
computational speedup.

2 RELATED WORKS

Fourier Neural Operator (FNO). FNO Li et al. (2021) is a data-driven method for solving PDEs
on discretized domains, performing iterative updates via integral kernel operators in the Fourier
domain:

vt+1(x) = σ
(
F−1

op (Rϕ · (Fopvt))(x) +Wvt(x)
)
, ∀x ∈ D. (1)

Here, Fop is the Fourier Operator, σ is a nonlinear activation, W a linear transform, and Rϕ the
Fourier kernel parameterized by a neural network. FNOs are resolution-agnostic and efficient as
PDE solvers or surrogates, but they are sensitive to adversarial perturbations, which can hinder
gradient-based inverse design.

Deep Generative Models As Inverse Operator. Generative models, including GANs Goodfellow
et al. (2014a), GANOs Rahman et al. (2022), and diffusion-based models Wu et al. (2024); Ho
et al. (2020), are used to model complex data distributions for inverse design. GANOs extend
GANs to infinite-dimensional function spaces, generating functional data from Gaussian random
fields. Diffusion models improve robustness to multimodal distributions and enable compositional
design, though they are computationally intensive. All these models rely on training data quality and
distribution, which can limit performance for out-of-distribution or low-fidelity datasets.

Adversarial Sampling. Deep models are vulnerable to adversarial examples due to discrete data
and over-parameterization Goodfellow et al. (2014b). In inverse design, adversarial inputs can lead
gradient-based optimization astray. LADA Liu et al. (2023) demonstrates generating functional
adversarial designs with GANs that fool pretrained surrogate models while preserving realistic
structure. This motivates constraining optimization with generative priors to maintain physical
plausibility.

Physics-Informed Neural Networks (PINNs). PINNs Raissi et al. (2019) embed PDEs into
the learning process, producing solutions that satisfy physical laws. They are interpretable and
generalizable but can suffer from convergence issues, sensitivity to incomplete equations, and high
computational cost. Our approach complements PINNs by using data-driven surrogates and generative
priors to enable scalable, physically plausible inverse design.

Connections to Deep Generative Prior (DGP). While FNO provides a differentiable surrogate for
the forward operator, deep generative models learn a data-driven manifold of physically plausible
solutions. Diffusion or GAN-based generative models, as well as adversarial sampling studies,
highlight the need to constrain inverse optimization to valid solution spaces to avoid unphysical
or adversarial outputs. Our DGP framework integrates these insights by performing Langevin
Dynamics in the latent space of a generative prior, guided by the differentiable forward surrogate.
This combination enables efficient, physically plausible exploration of multiple inverse solutions,
even under ill-posed or low-fidelity data conditions.
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3 THE METHODOLOGY

3.1 PROBLEM FORMULATION

Forward Operator. Let A denote the input function space and U denote the output function space.
The physical forward operator F : A → U maps any input function a : DA → Rn to its corre-
sponding output response u = F(a), where u : DU → Rn′

. Examples include partial differential
equation (PDE) solvers, electromagnetic field simulators, or lithographic process simulators. Since F
is typically nonlinear and computationally expensive, we adopt a data-driven surrogate operator. In
particular, we train a Fourier Neural Operator (FNO) Fθ using supervised pairs (a, u) sampled from
PA, where a is an input function and u is the corresponding solution. The learned surrogate satisfies
Fθ(a) ≈ F(a).

Inverse Design. The inverse problem is defined as finding an input a ∈ A such that the forward
response matches a target output u∗, i.e.,

a∗ = argmin
a∈A
∥F(a)− u∗∥2. (2)

This optimization is generally ill-posed and underdetermined because many different inputs may
lead to similar outputs, especially for nonlinear PDE-based operators. We propose to address this
challenge by: (1) replacing the expensive F with the learned surrogate Fθ, and (2) incorporating a
generative prior that captures the distribution of physically valid inputs.

3.2 ADVERSARIAL BEHAVIOR OF Fθ IN INVERSE DESIGN

When using the surrogate for inverse design, the natural optimization becomes

â = argmin
a∈A
∥Fθ(a)− u∗∥2. (3)

Expanding the error relative to the true operator F , we obtain

∥F(a)− u∗∥2 = ∥Fθ(a) + ∆(a)− u∗∥2

= ∥Fθ(a)− u∗∥2︸ ︷︷ ︸
Surrogate Optimization Term

+2⟨Fθ(a)− u∗,∆(a)⟩+ ∥∆(a)∥2︸ ︷︷ ︸
Residual Error

, (4)

where ∆(a) = F(a) − Fθ(a) is the surrogate error. Minimizing ∥Fθ(a) − u∗∥2 is therefore not
equivalent to minimizing ∥F(a)− u∗∥2, unless ∆(a) is negligible. In practice, ∆(a) can be large
when a lies outside the training distribution supp(PA). This phenomenon explains the existence
of adversarial designs, i.e., input functions a that minimize the surrogate loss but yield highly
suboptimal true responses. We empirically verify this effect in results, where naive maximum
likelihood estimation (MLE) yields unstable and inaccurate solutions.

3.3 DEEP GENERATIVE PRIOR

To address the limitations of directly optimizing over Fθ, we define a conditional generative operator
G that maps a Gaussian random input q ∼ N (0, I) and a conditioning observation u to a candidate
design a = G(q, u) ∈ A. In this formulation, G is trained to model the conditional distribution
PA(· | u) of valid designs given the desired response u.

We adopt a conditional extension of the GANO framework, where the discriminator d receives both
(a, u) pairs and enforces distributional alignment. The training objective follows the relaxed dual
representation of the Wasserstein distance in function spaces:

min
G

max
d

E(a,u)∼P [d(a, u)]− Eq∼N , u∼PU [d(G(q, u), u)] + λE(a,u)∼P′
[
(∥∂d(a, u)∥A∗ − 1)2

]
,

(5)

where d is a discriminator neural functional d : A → R, P denotes the joint data distribution over
(a, u) pairs, and P ′ is the interpolation distribution rG#PA + (1− r)PA used in the gradient penalty.
Similarly we assume a discretized approximation of G as Gϕ.

4
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Posterior Sampling. At inference time, given a new target u∗, the generator provides candidate
designs a = G(q, u∗) consistent with the data-driven prior. To refine these candidates toward posterior
consistency with the forward surrogate, we run Langevin dynamics in the latent space q:

q ← q − γ ∂q
(
∥u∗ − Fθ(G(q, u∗))∥2 + λ∥q∥2

)
+
√

2γN , (6)

where γ is the step size. This procedure enforces agreement between the conditional generator and
the differentiable surrogate model, producing samples that approximate the posterior distribution of
designs given u∗. Note that without the noise term, Equation (6) reduces to gradient descent with ℓ2
regularization for maximum a posteriori (MAP) estimation.

3.4 DISCUSSION

Inverse Design Error. We measure the inverse design quality via

L(a) = ∥F(a)− u∗∥. (7)

Let a∗ be the optimal solution in A, i.e., a∗ = argmina∈A L(a). Let â = Gϕ(q
∗) be the solution

obtained by our framework. We establish the following bound.
Lemma 1. Assume: (1) Gϕ can approximate a∗ within error ϵG, i.e., ∥Gϕ(q

∗)− a∗∥ ≤ ϵG for some
q∗; (2) the surrogate Fθ is LF -Lipschitz; (3) the surrogate approximates the true forward operator
within error ϵF on the generator range, i.e., ∥F(a)− Fθ(a)∥ ≤ ϵF for all a ∈ range(Gϕ).

Then the inverse design quality is bounded as

L(â) ≤ L(a∗) + LF ϵG + 2ϵF . (8)

Proof.

L(â) = ||F(â)− u∗||
= ||F(â)− Fθ(â) + Fθ(â)− Fθ(a

∗) + Fθ(a
∗)−F(a∗) + F(a∗)− u∗||

≤ ||F(â)− Fθ(â)||+ ||Fθ(â)− Fθ(a
∗)||+ ||Fθ(a

∗)−F(a∗)||+ ||F(a∗)− u∗||. (9)

Considering the assumptions we have,

||F(a)− Fθ(a)|| ≤ ϵF ,∀a, (10)

and

||Fθ(â)− Fθ(a
∗)|| ≤ LF ||â− a∗|| ≤ LF ϵG, (11)

which yields

L(â) ≤ L(a∗) + LF ϵG + 2ϵF . (12)

Lemma 1 provides actionable design guidance: (i) improving the expressiveness of Gϕ reduces ϵG
and ensures access to near-optimal designs, (ii) enhancing the generalization of Fθ reduces ϵF , and
(iii) joint improvement directly reduces the practical inverse design gap between our method and the
golden solution obtained by the true forward operator.

Ill-Posed Optimization. Inverse design problems are often ill-posed: for a given observation u∗,
there may exist multiple distinct designs a ∈ A such that F(a) ≈ u∗. Our framework naturally
accommodates this setting by running Langevin dynamics (LD) in the latent space of the conditional
prior. Rather than converging to a single point estimate, LD generates multiple valid solutions that
are all consistent with the target u∗, providing a principled way to capture design diversity and
uncertainty.

Out-of-Distribution Optimization. Another important setting arises when the target u∗ lies outside
the distribution of the training data. In such cases, our method combines the conditional prior G
with the differentiable surrogate Fθ to enable controlled exploration. The soft ℓ2 regularization in
the Langevin update (Equation (6)) balances faithfulness to the surrogate physics with flexibility to
move beyond the strict data manifold. This allows DGP to generalize effectively to OOD targets, as
demonstrated in our lithography experiments with weak and noisy datasets.
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Table 1: Inverse Design on 2D Darcy Flow.

Method Continuous Clipped Throughput (s)Rel Error Max Error Rel Error Max Error

GANO 0.037 0.507 0.035 0.087 0.003
DDPM (1000-step) 0.587 121 0.227 0.315 13.63
MCMC (w/ Fθ, Gϕ) 0.038 0.477 0.011 0.042 179

LD (w/o Gϕ, random) 0.876 757 0.052 0.133 22.7
LD (w/o Gϕ, condition) 0.134 9.416 0.013 0.058 22.7

LD (w/ Gϕ, ours) 0.023 0.236 0.011 0.034 9.16

4 EXPERIMENTS

In this section, we compare our deep physics prior methodology with several representative inverse
design solutions on 2D Darcy Flow (standard PDE), Naiver-Stokes Flow (Ill-Posed Problem) and
Inverse Lithography (Ill-Posed and Out-of-Distribution Solution). All experiments are conducted
on a single NVIDIA RTX A6000 Ada with 48GB memory. Dataset and model details are provided in
Appendix A for reproducing numerical results.

4.1 DARCY FLOW

We first evaluate DGP on the Darcy flow equation, a canonical elliptic PDE describing porous media
transport:

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω, (13)
u(x) = 0, x ∈ ∂Ω, (14)

where a(x) denotes the permeability field, u(x) the pressure field, and f(x) the source term. The
inverse task is to recover a(x) given observations of u(x).

Results. Table 1 presents the inverse design results on the 2D Darcy Flow. The columns “Con-
tinuous” and “Clipped” correspond to two dataset variants based on different choices of ψ to make
the PDE elliptic (see Equations (22) and (23)). The relative error (“Rel Error”) and maximum
error (“Max Error”) are computed between the predicted pressure field U and the ground truth U∗.
We compare five baseline methods with our proposed approach. “GANO” refers to a generative
adversarial neural operator Rahman et al. (2022) trained as an inverse operator. “MCMC (w/ Fθ, Gϕ)”
employs Markov-Chain Monte Carlo using the surrogate forward model Fθ and prior Gϕ, combined
with the No-U-Turn sampler Hoffman et al. (2014). “DDPM” refers the baseline diffusion model that
becomes popular solving inverse designs Ho et al. (2020). “LD (w/o Gϕ, random)” and “LD (w/o
Gϕ, condition)” are gradient-based optimization methods that descend through running Langevin
Dynamics from Fθ without generative prior Gϕ during optimization; the former initializes inverse
design randomly, while the latter uses the sample from Gϕ. “LD (w/ Gϕ, ours) ” is our method,
which incorporates a deep generative prior into the optimization process. Our method achieves
the lowest Rel Error and Max Error among all baselines. Notably, our method reaches accuracy
comparable to MCMC while offering a 20× speedup. Visualization examples are also available in
Figure 2, where we can observe without prior model, first order inverse optimization will likely fail
due to adversarial examples (see LD (w/o Gϕ)). Also, direct inverse operator from generative model
(GANO, DDPM) tries to capture the mixed distribution from the entire challenging training dataset,
yieding a sub-optimal output.

4.2 NAVIER-STOKES FLOW

We next evaluate DGP on the 2D incompressible Navier–Stokes equations in vorticity form:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ Ω, t ∈ [0, T ], (15)
∇ · u(x, t) = 0, x ∈ Ω, t ∈ [0, T ], (16)
w(x, 0) = w0(x), x ∈ Ω, (17)
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Ref Flow Pressure GANO MCMC DDPM

Ref Permeability LD (w/o Gϕ, cond) LD (w/o Gϕ, rand) LD (w/ Gϕ, ours)

Ref Flow Pressure GANO MCMC DDPM

Ref Permeability LD (w/o Gϕ, cond) LD (w/o Gϕ, rand) LD (w/ Gϕ, ours)

Figure 2: Visualization of inverse Darcy flow with exponentiated permeability (top) and clipped
permeability (bottom). Left column: ground-truth reference flow pressure and permeability. Right
columns: baseline methods and our deep generative prior with LD posterior sampling.

where w(x, t) denotes the vorticity field, u(x, t) the divergence-free velocity field, ν the viscosity,
f(x) the forcing term, and w0(x) the initial condition. The inverse task is to recover w0(x) given
noisy or partial observations of w(x, t) over time. Specifically, to make the inverse problem ill-posed,
we intentionally set a larger viscosity ν = 1e−2.

Table 2: Inverse Design on 2D Navier-Stokes Flow.

Method Rel Error Max Error Throughput (s)

MCMC 0.047 0.049 43.04
GANO 0.059 0.050 0.003

DDPM (1000-step) 0.569 0.641 60.50
LD (w/ Gϕ, ours) 0.047 0.045 2.05

Results. Table 2 summarizes the
inverse design performance on the
Navier–Stokes problem. We evalu-
ate reconstruction accuracy at the final
timestep T , comparing the predicted
vorticity trajectory {wt} against the
ground-truth solution {w∗

t } in terms
of relative L2 error and maximum er-
ror. The baseline methods follow the
same setup as in Section 4.1: direct
inverse models (GANO, DDPM), and
MCMC sampling with surrogate/prior (Fθ, Gϕ). Again, our method (LD w/ Gϕ) achieves the most
accurate recovery across metrics, nearly matching MCMC while being substantially faster. Visual
results are shown in Figure 3. Direct inverse operators (GANO, DDPM) produce low fidelity outputs
that fail to capture small-scale vortical structures. In contrast, our DGP method preserves coherent
flow structures while remaining consistent with the physical dynamics imposed by the surrogate
model.
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w(x, 0)

w(x, T ) MCMC GANO DDPM LD (w/ Gϕ, ours)

Figure 3: Visualization of inverse Navier-Stokes flow on vorticity field. Left column: ground-truth
reference vorticity at time step 0 (w(x, 0)) and time step T (w(x, T )). Right columns: baseline
methods and our deep generative prior with LD posterior sampling.

Rel=0.011 Rel=0.016 Rel=0.018 Rel=0.012 Rel=0.013
Max=0.011 Max=0.021 Max=0.019 Max=0.015 Max=0.017

Figure 4: Visualization of posterior sampling of five inverse solutions under ill-posed settings. Top:
sampled w(x, 0); Bottom: solver derived w(x, T ).

Solutions to Ill-Posed Problems. In the Navier–Stokes experiments, we consider a relatively large
viscosity ν, under which different initial vorticity fields w0 may evolve to nearly indistinguishable
states w(x, T ) after a period of time. This creates an inherently ill-posed inverse setting, where
multiple initial conditions are consistent with the same observations. To demonstrate the flexibility of
our approach, we perform posterior sampling within the DGP framework, which efficiently explores
diverse yet plausible initial states that reproduce the target solution. This highlights the capability
of DGP to provide meaningful uncertainty characterization and support underdetermined inverse
problems, as shown in Figure 4.

4.3 INVERSE LITHOGRAPHY

Lithography is the critical step to transfer chip physical designs onto silicon wafers. We model the
forward lithography process using Abbe’s partially coherent imaging formulation. The wafer intensity
is

I(x, y) =

∫∫
S(sx, sy)

∣∣∣∣∫∫ E
(
kout; kin(sx, sy)

)
P (px, py) e

i(pxx+pyy) dpxdpy

∣∣∣∣2 dsxdsy,
(18)

where S is the optical source distribution, P the pupil function, and E the diffracted field (requires
EM simulation) depending on the mask M . Resist development is approximated by Gaussian blur
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(a) Design (b) Mask (Data) (c) Wafer (Data) (d) Mask (ours) (e) Wafer (ours)

Figure 5: Visualization of inverse lithography solutions. (a) Snippet of the chip design. (b) The
suboptimal mask of (a) in the dataset using numerical solver. (c) The wafer image of (b). (d) The
optimized mask using LD. (e) The wafer image of (d).

and thresholding:

R(x, y) = (I ∗Gσ)(x, y), Z(x, y) = 1{R(x, y) > τ}. (19)

This defines the forward operator F :M 7→ Z. The inverse lithography task is

M∗ = argmin
M
L
(
F(M), Z∗), (20)

with L measuring pattern fidelity (e.g., edge-placement error, the difference between the wafer patten
and the original chip physical design). It is important to note that practical inverse lithography
depends on heuristics and approximations. As a result, high-fidelity datasets are rarely available,
and the true optimal mask often lies outside the training distribution (OOD).

Table 3: EPE violation and throughput (patterns/sec).

Method EPE Violation Throughput

Numerical Solver 0.21 4.0
ILILT-130K 0.25 0.4
ILILT-45M 0.08 0.8
GANO 0.51 0.06
LD (w/ Gϕ, ours) 0.007 0.4

Results. Table 3 summarizes the per-
formance of different inverse lithogra-
phy approaches on representative bench-
marks. Numerical Solver Sun et al. (2023)
achieves moderate EPE but is both slow
and prone to local minima due to the
highly non-convex nature of the optimiza-
tion. Learned direct inverse methods, in-
cluding ILILT and GANO, are trained on
low-fidelity data, which makes it difficult
for the models to reach the true optimal mask; as a result, they either produce inaccurate masks or
fail to capture fine pattern details. In contrast, our approach (LD w/ Gϕ) performs exploration on
the mask manifold, leveraging the generative prior to guide optimization. This enables our method
to achieve the lowest EPE violation (0.007), producing masks with high fidelity, while maintaining
competitive throughput. Example results in Figure 5 show that LD masks closely match the intended
patterns with minimal artifacts, demonstrating the effectiveness of combining generative modeling
with inverse design exploration for out-of-distribution solutions.

5 CONCLUSION AND DISCUSSION

In this paper, we propose Deep Generative Prior, a data-driven methodology for first-order inverse
design optimization. By jointly learning a forward surrogate operator Fθ that approximates the
physical forward mapping F : A → U , and a generative model Gϕ that maps latent variables q to the
design space A, we enable differentiable, efficient, and physically consistent inverse optimization.
We validate our approach on three representative case studies: 2D Darcy flow (standard PDE), 2D
Navier-Stokes flow (Ill-Posed), and inverse lithography (Ill-Posed and out-of-distribution solutions).
Across all cases, our method produces higher-quality solutions and demonstrates greater robustness
compared to existing state-of-the-art techniques. The performance of DGP relies on the quality of
both forward and generative operators which pose a trade-off of the optimization efficiency and
performance. Future directions include case studies on more use cases and enabling deep physics
prior on unstructured designs (e.g. graphs) to broaden the application scenario of this methodology.
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Reproducibility Statement While the code for our experiments is not publicly available at this
time due to ongoing internal approval processes, we provide detailed descriptions of our data
generation procedures, model architectures, and training protocols in the Appendix A. These details
include dataset preparation, model hyperparameters, and training schedules, which are sufficient for
reproducing the numerical results reported. We are committed to releasing the code once approvals
are granted, ensuring full reproducibility of our methods.

REFERENCES

Tutu Ajayi, David Blaauw, Tuck-Boon Chan, Chung-Kuan Cheng, et al. OpenRoad: Toward a
self-driving, open-source digital layout implementation tool chain. In Proceedings of Government
Microcircuit Applications and Critical Technology Conference, 2019.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, 6(5):320–328, 2024.

Shayak Banerjee, Zhuo Li, and Sani R. Nassif. ICCAD-2013 CAD contest in mask optimization and
benchmark suite. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 271–274, 2013.

SL Cotter, GO Roberts, AM Stuart, and D White. Mcmc methods for functions: Modifying old
algorithms to make them faster. Statistical Science, 28(3):424–446, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. Journal of Machine Learning Research (JMLR), 15(1):1593–1623,
2014.

Jiahao Huang, Yinzhe Wu, Fanwen Wang, Yingying Fang, Yang Nan, Cagan Alkan, Daniel Abraham,
Congyu Liao, Lei Xu, Zhifan Gao, et al. Data-and physics-driven deep learning based reconstruc-
tion for fast mri: Fundamentals and methodologies. IEEE Reviews in Biomedical Engineering,
2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
International Conference on Learning Representations (ICLR), 2021.

Mingjie Liu, Haoyu Yang, Brucek Khailany, and Haoxing Ren. An adversarial active sampling-based
data augmentation framework for ai-assisted lithography modeling. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–9, 2023.

Da Long and Shandian Zhe. Invertible fourier neural operators for tackling both forward and inverse
problems. arXiv preprint arXiv:2402.11722, 2024.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Md Ashiqur Rahman, Manuel A Florez, Anima Anandkumar, Zachary E Ross, and Kamyar Aziz-
zadenesheli. Generative adversarial neural operators. arXiv preprint arXiv:2205.03017, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shuyuan Sun, Fan Yang, Bei Yu, Li Shang, and Xuan Zeng. Efficient ilt via multi-level lithography
simulation. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, 2023.

Tailin Wu, Takashi Maruyama, Long Wei, Tao Zhang, Yilun Du, Gianluca Iaccarino, and Jure
Leskovec. Compositional generative inverse design. arXiv preprint arXiv:2401.13171, 2024.

Haoyu Yang and Haoxing Ren. Ililt: Implicit learning of inverse lithography technologies. In
International Conference on Machine Learning (ICML), 2024.

Haoyu Yang, Shuhe Li, Zihao Deng, Yuzhe Ma, Bei Yu, and Evangeline F. Y. Young. GAN-OPC:
Mask optimization with lithography-guided generative adversarial nets. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2020.

Su Zheng, Haoyu Yang, Binwu Zhu, Bei Yu, and Martin DF Wong. Lithobench: Benchmarking ai
computational lithography for semiconductor manufacturing. In Conference on Neural Information
Processing Systems (NIPS), 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DETAILS OF DATA GENERATION AND MODEL TRAINING

A.1 DARCY FLOW

Dataset Generation. The Darcy flow equation is given in Eq. (14) of the main text. We construct
datasets by sampling the permeability field u(x) from a Gaussian random field (GRF) distribution:

A ∼ ψ#N (0, (−∆+ τ2I)−α), (21)
where ∆ is the Laplacian with Neumann boundary conditions. Following Li et al. (2021), the
transformation ψ enforces ellipticity of the coefficients. We consider both the clipped form and the
exponentiated form.

• A clipping function Li et al. (2021):

ψ(x) =

{
12, if x ≥ 0,

4, otherwise.
(22)

• An exponentiation function Rahman et al. (2022):
ψ(x) = ex. (23)

Unlike Li et al. (2021), where the hyperparameters (τ, α) are fixed, we introduce variability to
increase distributional diversity and hence challening the task. Specifically, we sample

α ∼ U(1, 2.5), τ ∼ U(0.5, 1.5).
This produces permeability fields with heterogeneous correlation structures. We generate 6000
samples for training the surrogate and prior models and an additional 100 test samples for inverse
optimization. We are focusing on a spatial resolution of 128× 128 across the darcy flow experiments.
Thanks to the properties of FNO, our flow extends to any resolution discretization.

Model Architecture. Both the surrogate operator F (·; θ) and the generative prior G(·;ϕ) are
implemented as Fourier Neural Operators (FNOs) with:

• Four Fourier layers,
• 32 feature channels,
• Maximum of 25 truncated Fourier modes.

Training Setup. Both F and G are trained for 50 epochs using the Adam optimizer with an initial
learning rate of 0.001 and cosine annealing scheduler. During inverse optimization, the surrogate and
prior weights (θ, ϕ) are frozen. Optimization is performed with the Prodigy optimizer Mishchenko
& Defazio (2023), with a maximum of 100 iterations at fixed learning rate 1.0. The expected target
pressure field is denoted as U∗.

A.2 NAVIER-STOKES FLOW

Dataset. The initial condition w0(x) is sampled from a Gaussian random field (GRF) distribution
with spectral density

w0 ∼ N
(
0, (−∆+ τ2I)−α

)
, (24)

where α and τ control the smoothness and correlation length of the field. Unlike standard benchmarks
with fixed parameters, we introduce variability by sampling α ∼ U(2, 2.5) while fixing τ = 7,
thereby generating diverse initial states.

The forcing function is defined as
f(x, y) = 0.1

(
sin(2π(x+ y)) + cos(2π(x+ y))

)
. (25)

We set the viscosity to ν = 10−2 and the final simulation time T = 2.0. Each trajectory is integrated
using a pseudo-spectral solver with dealiasing and a Crank–Nicolson time-stepping scheme. We use
an internal solver time step of ∆t = 10−3 and record 10 equally spaced snapshots in time.

The test dataset consists of 100 trajectories at a spatial resolution of 256× 256. For each trajectory,
we store the initial vorticity field w0(x) and the temporal sequence {w(x, tj)}10j=1.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 6: Measurement of inverse lithography performance using edge placement error.

Model Architecture and Training. We adopt the same Fourier Neural Operator (FNO) backbone
as in the Darcy experiments, using four Fourier layers with 32 channels and 25 truncated modes. The
surrogate forward model F (·;ws) and the generative prior G(·;wp) are trained for 50 epochs with
cosine annealing and a maximum learning rate of 0.001. Inverse optimization is performed with the
Prodigy optimizer Mishchenko & Defazio (2023), up to a maximum of 100 iterations.

This setup evaluates DGP in an ill-posed regime, since different initial states w0 can evolve to similar
final states w(x, T ) due to dissipative diffusion. This makes the problem particularly challenging
compared to Darcy flow.

A.3 INVERSE LITHOGRAPHY

Dataset. We adopt LithoBench Zheng et al. (2023) as our benchmark. The training set contains
over 100K triplets of target layouts Z∗, optimized masks M (obtained from numerical ILT solvers),
and corresponding simulated intensity images I generated by the optical and resist models in Equa-
tions (18) and (19). In addition, LithoBench provides real-world layouts from the Nangate45
standard cell library in the OpenROAD flow Ajayi et al. (2019), which we use to evaluate the gen-
eralization ability of our inverse lithography solutions. Due to the high accuracy demand, for the
lithography tasks, we are dealing with data at 2048×2048 resolution discretized over 2µm× 2µm
chip area, posing additional challenges on resources and convergence.

Model Architecture and Training. The forward surrogate Fθ is instantiated as a Fourier Neural
Operator with 64 channels and 35 truncated Fourier modes, mapping masks to aerial images. For
the prior model Gϕ, we adopt the convolutional FNO backbone from ILILT Yang & Ren (2024),
which learns to generate plausible mask candidates given a target layout. Both F and G are trained
with Adam optimizer under cosine annealing for 50 epochs with initial learning rate 0.001. During
inverse optimization, F and G are frozen, and we perform Langevin dynamics in the mask space with
Prodigy optimizer Mishchenko & Defazio (2023), using a maximum of 200 steps at fixed learning
rate 1.0.

Evaluation. We report Edge Placement Error (EPE) violations and throughput as our primary
metrics (see Figure 6). EPE counts the number of locations where printed edges deviate from the
target beyond a tolerance, while throughput measures runtime efficiency. These metrics allow a
balanced comparison between numerical solvers, data-driven baselines, and our proposed DGP
framework.

A.4 BASELINE MODELS

DDPM Baseline. As a baseline, we implement a denoising diffusion probabilistic model (DDPM)
using a U-Net backbone from diffusers package. The model takes as input a 4-channel tensor,
consisting of one channel for the permeability (or vorticity in NS2D) and three auxiliary channels
for physical states and coordinates, and predicts a 1-channel update to the physical field. The U-Net
consists of six hierarchical resolution levels, each with two convolutional layers per block. The
channel widths across levels are (128, 128, 256, 256, 512, 512), and attention is applied once in the
down path and once in the up path at the bottleneck resolution. The downsampling is performed
with DownBlock2D modules (including one AttnDownBlock2D), and the decoding path mirrors
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this structure with UpBlock2D modules (including one AttnUpBlock2D). This design allows
the baseline to combine local convolutional features with long-range attention, providing a fair and
competitive comparison for PDE inverse modeling tasks such as Darcy flow and 2D Navier–Stokes.

MCMC Baseline. Across all tasks, we implement a Bayesian baseline using Markov Chain Monte
Carlo (MCMC) with the No-U-Turn Sampler (NUTS) using pyro. The procedure introduces Gaus-
sian perturbations on the observed output (e.g., w(x, T ) in PDEs or wafer image Z in lithography),
which are processed by a pretrained inverse model G to propose candidate inputs. These candidates
are propagated through a pretrained forward surrogate F to obtain predicted outputs. A Gaussian
likelihood enforces consistency between predicted and observed outputs, yielding a posterior distribu-
tion over perturbations and corresponding candidate inputs. Posterior samples are drawn via NUTS,
and the posterior mean is used for evaluation. This likelihood-based baseline provides a principled
inference framework, in contrast to direct optimization or score-based methods.

B ADDITIONAL RESULTS

B.1 TRAINING EFFORT.

Compared to generative approach or MCMC, our flow requires training of two networks. To provide
a clear view of the computational cost associated with training our models, we summarize the
training times for both the generative prior Gϕ and forward surrogate Fθ across our case studies. All
experiments were performed on a single RTX 6000 Ada GPU with 48 GB VRAM.

Table 4: Training time for generative prior (Gϕ) and surrogate (Fθ).

Case Study Gϕ Training Fθ Training

Darcy 2D 1 h 1 h
Navier–Stokes 2D 35 min 35 min
Lithography 12 h 8 h

Notes:

• Training is a one-time offline effort, enabling substantially faster and more stable inference
during inverse design.

• Lithography training is longer due to the dataset size (over 100K training samples).
• WGAN (Wasserstein GAN) is used for generative model training to improve stability,

mitigate mode collapse, and enhance generalization across varying data quality.

B.2 STATISTICAL CONSISTENCY OF GENERATIVE MODELS.

To quantify the stability and reproducibility of inverse designs generated by our GAN-like models,
we ran multiple experiments on inverse lithography using GANO with different random seeds. The
following table reports the EPE violation on a subset of validation data:

Table 5: EPE violation for multiple random seeds.

Seed EPE Violation

1 0.06
2 0.07
3 0.05
4 0.09
5 0.06

Observation:

• Results indicate consistent convergence across seeds, with low variance in solution quality.
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• The training procedure, including WGAN stabilization, produces reliable inverse designs
without significant mode collapse or instability.

C USE OF LARGE LANGUAGE MODELS

We note that a large language model (LLM) was used only to assist in polishing the wording,
improving clarity, and formatting the paper. All technical content, ideas, experiments, and results
were generated solely by the authors.
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