

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SYNTHETIC BOOTSTRAPPED PRETRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce Synthetic Bootstrapped Pretraining (SBP), a language model (LM) pretraining procedure that first learns a model of relations between documents from the pretraining dataset and then leverages it to synthesize a vast new corpus for joint training. While the standard pretraining teaches LMs to learn causal correlations among tokens within a single document, it is not designed to efficiently model the rich, learnable *inter-document* correlations that can potentially lead to better performance. We validate SBP by designing a compute-matched pretraining setup and pretrain a 3B-parameter model on up to 1T tokens from scratch. We find SBP consistently improves upon a strong repetition baseline and delivers a significant fraction of performance improvement attainable by an oracle upper bound with access to 20x more unique data. Qualitative analysis reveals that the synthesized documents go beyond mere paraphrases – SBP first abstracts a core concept from the seed material and then crafts a new narration. Besides strong empirical performance, SBP admits a natural Bayesian interpretation: the synthesizer implicitly learns to abstract the latent concepts shared between related documents.

1 INTRODUCTION

Pretraining on the diverse internet texts is now seen to be bottlenecked by the rapid depletion of high-quality text data [56]. This imminent “scaling wall” motivates us to utilize existing data more effectively. Re-examining the conceptual foundation of pretraining, its success originates from the rich causal correlation among tokens *within* a document. However, this is not the only source of correlation pretraining dataset contains: a code document implementing the attention mechanism is derived from the arXiv preprint of the transformer paper; The book of Harry Potter is structurally similar to the screenplay of its movie production. Such connections suggest a weaker form of *inter-document* correlation derived from an underlying joint distribution of pretraining documents. We hypothesize that this additional signal, which is missed by the standard pretraining, can be captured by synthetic data, presenting an underexplored avenue for improving performance.

To leverage this opportunity, we introduce Synthetic Bootstrapped Pretraining (SBP), a LM pre-training procedure that operates in three steps (Figure 1). First, SBP identifies semantically similar document pairs (d_1, d_2) , such as the transformer paper and its code implementation, from the pre-training dataset. Second, SBP models the conditional probability of d_2 given d_1 , creating a “data synthesizer” that can synthesize a new, related document given a seed document. Finally, SBP applies the trained conditional synthesizer to the pretraining corpus itself, creating a vast text corpus that encodes the rich inter-document correlations that were previously missed (§2). By training a data synthesizer from the pretraining dataset itself, SBP avoids the pitfall of “bootstrapping” model performance using an external, readily available teacher LM, demonstrating a clean setup where the source of improvement stems from better utilization of the same pretraining corpus.

To test our hypothesis, we design a compute-matched, data-constrained experimental framework under which we pretrain a 3B-parameter model on up to 1T tokens from scratch [30, 64], demonstrating the potential applicability of SBP for advancing frontier LMs. We compare SBP’s performance against two crucial references: a strong repetition baseline, which represents the standard approach in data-constrained settings, and an oracle upper bound, which has access to an unlimited pool of unique internet data (§3). Our results show that SBP consistently surpasses the strong repetition baseline across different pretraining scales and closes a significant portion of the performance gap to the oracle with 20x additional unique data access (§4.1).

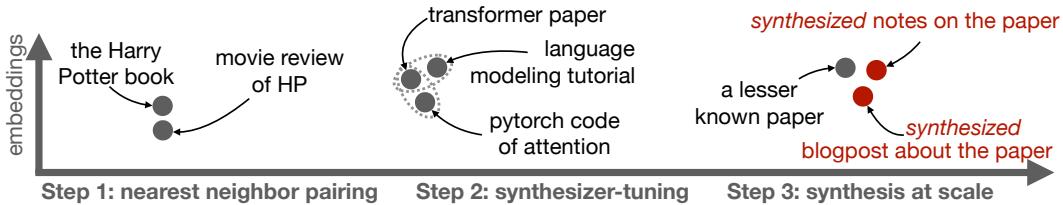


Figure 1: Data synthesis illustration of Synthetic Bootstrapped Pretraining (SBP): It first identifies semantically similar documents (**Step 1**) and then trains a conditional model that generates one element of the pair from the other (**Step 2**). Finally, SBP applies the conditional model to the pretraining corpus itself to synthesize a new, vast corpus for joint training (**Step 3**).

Besides strong benchmark performances, qualitative analysis of the synthesized documents reveals that they went beyond mere paraphrases of the real documents (§4.2). We postulate that the SBP synthesizer first abstracts latent concepts from the real document and then synthesizes a new document that expands upon the abstracted concept, incorporating diverse genres and content. We formalize this intuition through a Bayesian hierarchical concept model, where documents are related through shared concepts. From this perspective, we argue that the synthesizer implicitly learns a posterior likelihood model that abstracts latent concepts from the document – a mechanism not present in the standard LM pretraining (§5).

In summary, our contributions are threefold:

- **New pretraining framework:** We propose the Synthetic Bootstrapped Pretraining (SBP) algorithm that explicitly models inter-document correlations missed by standard pretraining practice and encodes those correlations into training via synthetic data.
- **Large-scale empirical validation:** We design a compute-matched pretraining setup that enables rigorous measurement of LM self-improvement and empirically validate SBP on a 3B-parameter model trained on up to 1T tokens from scratch.
- **Principled statistical interpretation:** We offer a natural Bayesian interpretation of SBP as implicitly learning a posterior for the latent concepts in a text document and concretize the intuition via qualitative analysis of synthesized documents.

In the remainder of the paper, we will first define the data-constrained pretraining problem we address and introduce the SBP technique we propose in §2. Then, we present the compute-matched experiment setup in §3 and results in §4. Finally, we conclude with a Bayesian interpretation of SBP that sheds light on the origin of the improved performance in §5.

1.1 RELATED WORK

Before we proceed, we review related work that highlights our contribution in three broad areas of research: LM pretraining, synthetic data for LM, and retrieval-augmented LM.

LM pretraining. The concept of pretraining, closest to its modern form, originates from a series of works including ELMo [42], ULMFiT [23], BERT [13], that propose to pretrain a neural network via an unsupervised objective and subsequently finetune for a wide range of downstream tasks. The GPT-series [43, 44, 7, 37] cemented the practice of using next-token prediction as the pretraining objective and applying it to large-scale crawled webpages as opposed to task-specific datasets (e.g., English-to-French translation). In recent years, the size of the pretraining corpora has grown rapidly, driven by the availability of massive web-crawled datasets, leading to a successful stream of dataset and pretrained model artifact: BERT [13, 33], GPT-2 WebText [44], CommonCrawl [11], CCNet [59], T5 C4 [46], the Pile [15], Gopher Massive Text [45], Llamda series [55, 14], Refined-Web [41], Dolma [50], DCLM-baseline [30], NemotronCC [51], etc. While pretraining has been tremendously successful, the rapid depletion of available internet text motivates us to shift our focus from acquiring more data to using the existing data more effectively.

Synthetic data. A natural way to overcome the limitations of scarce high-quality web data is to pretrain [16, 1, 2, 3, 54] or continually pretrain [61, 47, 63, 36] LMs on synthetic data. Existing approaches to data synthesis rely on distillation from a powerful “teacher” LM that generates compressed knowledge representation for the “student” LM to learn [22]. These teacher models must first undergo a human alignment process, which requires extensive human annotations and preference data [38]. Synthetic data from the teacher LM hints at a limited scaling trend: whilst the synthesized data from the teacher LM can be as impressive [12] as 7x more effective than real data,

108 the performance improvement quickly converges to that of the teacher LM [8]. We instead consider
 109 the scenario where the sole source of world knowledge comes from a fixed set of pretraining
 110 documents (e.g., the internet) and algorithmically learn a data synthesizer with minimal human in-
 111 tervention (e.g., generative teacher models or human writing prompts). Therefore, our experiment
 112 setup simulates a situation where the LMs can self-boost their pretraining capability by refining their
 113 understanding of the fixed collection of pretraining documents.

114 **Retrieval augmented LM.** A natural class of methods that incorporates multiple documents to-
 115 gether is retrieval augmented generation (RAG) [28, 29]. While originally introduced as a tech-
 116 nique to be used at test-time for a domain-specific downstream task [5, 31], retrieval augmented
 117 approaches have been extended in scope: [26] and [60] implement RAG at pretraining scale and
 118 show improved test perplexity; [19] incorporates RAG at pretraining time by jointly training a re-
 119 triever and the model itself for improved QA performance. [49] groups related documents into the
 120 same context window for improved long-context capability. In general, while the RAG-related ap-
 121 proach enables the model to utilize rich inter-document correlations, it is fundamentally limited by
 122 the context window of the LM. In contrast, SBP encodes correlations into synthetic data that can be
 123 iteratively learned by the LM one document at a time. Prior to the advancement of embedding mod-
 124 els that allow retrieving the entire document, [18] proposed retrieving neighboring pairs of sentences
 125 using Jaccard similarity and modeling the conditional distribution between them, similar to our con-
 126 ditional data synthesizer objective; however, they did not perform any pretraining experiments.
 127

128 2 OUR METHOD

130 In this section, we introduce the data-constrained pretraining setup (§2.1) and then present the SBP
 131 procedure in three detailed steps (§2.2). We will present SBP as a general pretraining recipe by
 132 introducing a generic setup that includes a pretraining dataset, an LM architecture, and a collection
 133 of evaluation benchmarks. We defer the concrete compute-matched experiment design to §3.

135 2.1 DATA-CONSTRAINED PRETRAINING SETUP

136 We consider a *data-constrained* setup where the goal is to train the best-performing LM given ac-
 137 cess to a fixed document collection $\mathcal{D}_{\text{pretrain}}$ (e.g., a snapshot of the entire internet). To establish
 138 a controlled experimental framework, we also choose a transformer architecture with parameters θ
 139 and a collection of held-out evaluation benchmarks Perf (e.g., perplexity, few-shot QA accuracy).
 140 Recall that a transformer takes in a sequence of tokens and outputs a sequence of conditional prob-
 141 abilities of each token given all previous tokens. Applying the chain rule for joint probability, we
 142 can use a transformer to calculate the probability $p_\theta(x)$ of observing a particular text input x , or the
 143 conditional probability $p_\theta(x|y)$ of one text x given another y .

144 Under such a setup defined by $(\mathcal{D}_{\text{pretrain}}, p_\theta, \text{Perf})$, pretraining searches for the best-performing
 145 transformer weights by maximizing the sum of the log-likelihood of pretraining documents
 146 $\arg \max_\theta \sum_{d \in \mathcal{D}_{\text{pretrain}}} \log p_\theta(d)$, and then evaluates the performance through $\text{Perf}(\theta)$. Statistically,
 147 this objective treats each document as an independent sample from a hypothetical distribution of
 148 all documents and attempts to learn this marginal distribution. However, this modeling assumption
 149 overlooks the structural similarities shared between natural language texts (e.g., Figure 1). We next
 150 present the SBP procedure that fills this gap.

152 2.2 SYNTHETIC BOOTSTRAPPED PRETRAINING

154 At a high level, SBP finds related document pairs (d_1, d_2) from the pretraining dataset $\mathcal{D}_{\text{pretrain}}$ and
 155 trains a conditional synthesizer $p_\theta(d_2|d_1)$ using the same transformer architecture parametrized by
 156 θ . It then uses it to synthesize a large collection of documents $\mathcal{S}_{\text{pretrain}}$ to perform joint pretraining on
 157 $\{\mathcal{D}_{\text{pretrain}}, \mathcal{S}_{\text{pretrain}}\}$. The fact that SBP trains a data synthesizer from $\mathcal{D}_{\text{pretrain}}$ itself also distinguishes
 158 it from extensive existing work that relies on a readily available “teacher” LM.

159 **Step 1: Nearest neighbor pairing.** In preparation for training the conditional data synthesizer,
 160 SBP first curates pairs of related documents. To efficiently perform similarity search at pretraining
 161 scale, we adopt the Approximate Nearest Neighbor (ANN) methodology [34], which embeds each
 162 document as a quantized vector normalized to the unit sphere and then performs massively paral-

lizable linear algebraic operations. In our implementation of SBP, we use inner-product similarity, which we denote by $\langle d_1, d_2 \rangle$. Then, we select a subset of pairs whose similarity score exceeds a certain threshold α : $\mathcal{D}_{\text{ST}} = \{(d_1, d_2) \in \mathcal{D}_{\text{pretrain}} \times \mathcal{D}_{\text{pretrain}}, \text{ s.t. } \langle d_1, d_2 \rangle > \alpha\}$. We provide the implementation details of paired data curation in §A.2.

Step 2: Synthesizer-tuning. SBP exploits the correlation between pairs of related documents by maximizing the conditional probability of d_2 given d_1 : $\theta_{\text{ST}} = \arg \max_{\theta} \sum_{(d_1, d_2) \in \mathcal{D}_{\text{ST}}} \log p_{\theta}(d_2 | d_1)$, which we obtain by summing over the log conditional probabilities corresponding to tokens from document d_2 . We refer to this step as “synthesizer-tuning” as we are training a conditional probabilistic model that synthesizes a related d_2 from a given d_1 . When performing synthesizer-tuning, we initialize p_{θ} at the transformer weights that has gone through normal pretraining. As a result, the model is equipped with the knowledge of individual documents at initialization, but not the conditional relation between them. Importantly, each document d_1 can be associated with multiple instances of d_2 , encouraging the synthesizer to produce diverse, high-entropy outputs rather than deterministic synthesis.

Step 3: Data synthesis at scale. Finally, SBP synthesizes $\mathcal{S}_{\text{pretrain}}$ through a hierarchical sampling process: (I) First sample the seed document d_1 from $\mathcal{D}_{\text{pretrain}}$ uniformly at random; (II) Then sample synthesized document d_2 from $p_{\theta_{\text{ST}}}(\cdot | d_1)$. This process achieves synthetic data diversity utilizing two sources of variation: first through the variation of the seed documents d_1 , which comes from the diversity of the pretraining document $\mathcal{D}_{\text{pretrain}}$ itself, and second through the entropy of the conditional distribution $p_{\theta_{\text{ST}}}(\cdot | d_1)$, which stems from the diverse inter-document correlations captured in \mathcal{D}_{ST} . While the procedure is empirically motivated, it actually admits a statistically principled Bayesian modeling of the distribution of natural language texts, which we explain in §5. For now, we focus on demonstrating the empirical effectiveness of SBP.

3 EXPERIMENT SETUP

In this section, we present the *compute-matched* experimental setup we designed to validate SBP against natural reference methods. Before diving into the details of this design, we briefly mention our choice of data, model, and evaluation: We curated a pretraining dataset by cleaning and filtering DCLM [30], implemented a 3B-parameter transformer architecture modified from Llama 3 [14], and selected nine commonly used benchmarks targeted at general world knowledge and commonsense reasoning (§A.1). Note that for MMLU [21], we find that accuracy-based evaluation yields non-smooth performance changes for small models. We therefore designed a perplexity-based MMLU to track smooth progress changes during training. Our largest experiment trains the 3B model on up to 1T total training tokens (§3.1), bringing validation at a scale relevant for frontier LM development.

3.1 COMPUTE-MATCHED COMPARISON

We use a *compute-matched* experimentation framework to rigorously compare SBP against two natural references: a repetition baseline where we repeat $\mathcal{D}_{\text{pretrain}}$ multiple times to utilize the available training compute and an oracle upper bound that enables the model to access as many unique documents as possible. Operationally, we control the training compute by controlling the total tokens seen during training, which is proportional to the training FLOPs given a fixed batch size and context window. We validate SBP across two different scales:

- **200B-scale:** In this setting, we cap the training compute to be 200B tokens and cap the data access at $\|\mathcal{D}_{\text{pretrain}}\| = 10\text{B}$ tokens.
- **1T-scale:** We also consider a larger scale closer to frontier model training, where we cap the training compute at 1T tokens and data access at $\|\mathcal{D}_{\text{pretrain}}\| = 50\text{B}$ tokens.

For each training scale, $\mathcal{D}_{\text{pretrain}}$ with different sizes is sampled uniformly at random from the 582M documents pool. Given the compute-controlled comparison scheme, we next introduce two reference methods against which we compare SBP.

Repetition baseline. Since the compute budget typically exceeds the total number of unique tokens $\|\mathcal{D}_{\text{pretrain}}\|$, a natural baseline to use the additional compute is to repeat $\mathcal{D}_{\text{pretrain}}$ over multiple epochs. By design, in both 200B-scale and 1T-scale, we repeat the pretraining dataset $\mathcal{D}_{\text{pretrain}}$ 20 times to exploit the available compute budget. In practice, when the pretraining dataset comes from a mixture of different sources, higher-quality documents can be seen as many as 30 times during

216
 217 Table 1: Computed-matched comparison of Synthetic Bootstrapped Pretraining (SBP) and oracle
 218 performance gains over the repetition baseline. On average, SBP delivers roughly **43%** of the per-
 219 formance improvement in QA accuracy attainable by an oracle with access to 20x more unique data.

Benchmark	200B-scale			1T-scale		
	Baseline	SBP	Oracle	Baseline	SBP	Oracle
<i>Perplexity on held-out data ↓</i>						
OpenWebText2	5.74	-0.53	-1.02	4.51	-0.02	-0.12
LAMBADA	6.87	-0.85	-1.86	4.33	-0.03	-0.22
Five-shot MMLU	3.83	-0.36	-0.51	3.17	-0.06	-0.05
<i>QA accuracy ↑</i>						
ARC-Challenge (0-shot)	35.32	+1.28	+2.82	42.66	+1.62	+3.84
ARC-Easy (0-shot)	68.94	+2.65	+4.29	75.63	+0.42	+2.11
SciQ (0-shot)	90.50	+1.00	+2.40	93.20	+0.80	+0.50
Winogrande (0-shot)	60.14	+1.90	+5.53	65.19	+1.42	+2.92
TriviaQA (1-shot)	22.51	+3.36	+7.37	36.07	+0.25	+0.59
WebQS (1-shot)	8.56	+3.74	+10.83	19.34	+0.54	+0.44
Average QA accuracy	47.66	+2.32	+5.54	55.35	+0.84	+1.73

239 pretraining, while lower-quality texts may appear only once. [35] systematically evaluates the repetition
 240 baseline as a proposal to scale LMs under data constraints and finds that repeating $\mathcal{D}_{\text{pretrain}}$ up
 241 to 4 times yields nearly no performance degradation compared with having access to unlimited fresh
 242 data, but after around 40 times, repetition yields rapidly diminishing returns. Therefore, our choice
 243 of 20 times repetition with compute-matched comparison strikes a reasonable balance between ef-
 244 ficient experimental execution and exhausting all possible performance gains from a fixed $\mathcal{D}_{\text{pretrain}}$
 245 via repetition.

246 **Oracle upper bound.** Besides showing improvement against the repetition baseline, we also eval-
 247 uate an oracle upper bound with unlimited data access. The motivation behind this is to contextualize
 248 the numerical improvement delivered by SBP. As we shall see in the next section, because differ-
 249 ent benchmarks respond differently to data size changes, SBP can deliver an improvement as large
 250 as 3.74% on some benchmarks but only 0.14% on others (Table 1). Also, as performance on LM
 251 benchmarks tend to scale logarithmically [39, 25] against data improvement, the numerical differ-
 252 ence quickly caps out as we move from the 200B scale to the 1T-scale. By introducing this oracle
 253 upper bound, we can contrast the SBP improvement against this “oracle” improvement.

254 **Training recipe.** For both the repetition baseline and oracle upper bound at both 200B-scale and
 255 1T-scale, we use a batch size of 2,048 and a context window of 4,096, resulting in a throughput of
 256 8M tokens per step. We apply a cosine learning rate scale with a 5% warmup to a peak learning rate
 257 of 1e-2, followed by subsequent decay to 5e-5 towards the end. Under this setup, pretraining costs
 258 11K v5p-TPU hours at 200B-scale and 59K v5p-TPU hours at 1T-scale. For a clean comparison, we
 259 adhere to this hyperparameter throughout the paper, including the SBP experiment presented next.

4 EXPERIMENT RESULTS

261 We perform SBP experiments under the compute-matched framework outlined in §3 at two levels
 262 of training compute budget: 200B-scale and 1T-scale. After joint training on real and synthetic data
 263 $\{\mathcal{D}_{\text{pretrain}}, \mathcal{S}_{\text{pretrain}}\}$, we find SBP consistently improves upon the repetition baseline throughout both
 264 scales (Table 1). In this section, we focus on presenting the performance of SBP and evaluating the
 265 quality of the synthesized pretraining data. We defer the implementation details of SBP to §A.2.

4.1 MAIN BENCHMARK PERFORMANCE

266 At the 200B-scale, we start with the source dataset of $\|\mathcal{D}_{\text{pretrain}}\| = 10\text{B}$ and curate a SBP dataset of
 267 $\|\mathcal{S}_{\text{pretrain}}\| = 75\text{B}$ tokens (detailed ablation in §A.3). We perform joint training on $\{\mathcal{D}_{\text{pretrain}}, \mathcal{S}_{\text{pretrain}}\}$

270 with the principle that we do not repeat any synthetic documents during training. This means that
 271 out of a 200B token training budget, we spent 37.5% of it on the 75B synthetic tokens from $\mathcal{S}_{\text{pretrain}}$
 272 without any repetition, and the remaining 62.5% on the real dataset $\mathcal{D}_{\text{pretrain}}$ repeated 12.5 times. As
 273 shown in Table 1, SBP consistently decreases test loss and improves QA accuracy. On average, SBP
 274 captures $2.32/5.54 = 42\%$ of the improvement in QA accuracy delivered by the oracle run with 20x
 275 additional data access.

276 The training dynamics of SBP partly reveal its core mechanism. As we can see in Figure 2, initially, the baseline
 277 performs similarly to the oracle, since their training data share the same distribution, and when the number of
 278 tokens seen is small, there is no distinction between the two. Then gradually, the oracle becomes a better model than
 279 the baseline, as it has access to unlimited unique training data. For the SBP dynamics, it initially performs worse
 280 than both the baseline and the oracle, which is expected since the quality of the synthesized data at most matches
 281 that of the real data. However, gradually, the SBP continues to scale while the baseline has plateaued. This suggests
 282 that $\mathcal{S}_{\text{pretrain}}$ offers a signal $\mathcal{D}_{\text{pretrain}}$ alone cannot capture.
 283

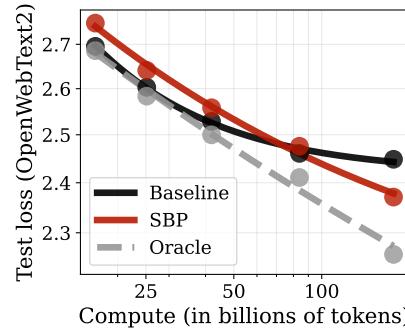
284 Lastly, to validate the benefit of SBP across different training scales, we implement a larger experiment
 285 with $\|\mathcal{D}_{\text{pretrain}}\| = 50\text{B}$ unique tokens under a compute budget of 1T total training tokens. We
 286 generate 125B total synthetic tokens $\|\mathcal{S}_{\text{pretrain}}\| = 125\text{B}$, with similar ablation presented in §A.3, and
 287 adhere to the same no-repetition-for-synthetic-data principle adopted at the 200B-scale. Examining
 288 the oracle improvement from Table 1, we can see that the perplexity-based measurements and
 289 most QA benchmarks have plateaued at this scale [32]. However, ARC-Challenge and Winogrande
 290 continue to deliver smooth performance changes, making them suitable candidates for tracking pre-
 291 training capability at large scales. In particular, in ARC-Challenge, both SBP and Oracle yield a
 292 larger performance improvement than their 200B-scale counterparts. That said, other benchmarks
 293 still provide a directional signal of capability improvement. This demonstrates the advantage of hav-
 294 ing a diverse collection of evaluation benchmarks covering a wide range of difficulties. On average,
 295 SBP delivers $0.84/1.73 = 48\%$ of the improvement in QA accuracy attained by the oracle.
 296

300 4.2 ANALYSIS OF SYNTHETIC DATA

301 In this section, we provide some qualitative and quantitative analyses of the synthesized documents
 302 to gain insight into the SBP procedure beyond what is measurable by the benchmark performance.

303 **Qualitative examples.** We start by showing some samples of synthesized documents from the
 304 200B-scale experiment (Figure 3) with more samples from 1T-scale presented in §B.4. On the left,
 305 we display a real document about a practical, first-person guide to the coffee houses in San Diego.
 306 Then, we present two synthesized texts that exhibit notable differences in both framing and depth,
 307 with varying degrees of fidelity to the seed document. Synthesis I sticks to the same topic but shifts
 308 toward an expository essay on espresso machines and bean quality, with little mention of specific
 309 coffee shops. Synthesis II adopts a promotional, comparative style, linking San Diego’s coffee
 310 culture to New York’s and praising Café Lestat in a way that departs from the original’s balanced
 311 assessments. Note that SBP provides no instructions on how the synthesizer should use the seed
 312 texts to write new documents. The model spontaneously learns to introduce new content and style
 313 into the discussion while staying on topic. In fact, it is challenging to manually craft a prompt to an
 314 instruction-tuned model that would output either Synthesis I or II with the real document as input.
 315 This example highlights how SBP differs from existing paradigms of data synthesis – the output
 316 somehow first abstracts the seed document and then synthesizes new text with more generalized
 317 narratives, genres, and intent. We provide more extensive analysis of this observation in §5.

318 **Quantitative Analysis.** In addition to qualitative examples, we also conduct quantitative evalua-
 319 tions to assess the quality of the generated texts. We measure text distributions for the synthesized
 320 document at 200B-scale and 1T-scale. To establish a reference, we also conduct the same evaluation
 321 on the real documents. We measure five basic quality indicators:



322 Figure 2: Training dynamics (200B-scale).

324	Real document	Synthesis I	Synthesis II
325	HOME > Chowhound > California >	Coffee = Love	Discuss as:
326	Coffeehouses in SD		Coffeehouses: San Diego. The best?
327	I am always looking for good coffeehouses in San Diego. I am looking for coffeehouses with (obviously) excellent coffeebeans, baristas who know their business (good microfoam, good crema, they should know the different ratios for steamed milk, foamed milk, espresso for the cappuccino, latte etc., etc), good snacks (paninis, cakes etc), good (cold) flavored coffeedrinks and good ambience. So far I haven't found many who are good but would like to hear more suggestion.	On a recent trip to San Diego, one thing I wanted to find was coffee. I was worried it might be difficult with the huge decrease in Asian flavors, but I was pleasantly surprised. Many of the Mexican, Italian, and Cuban flavors that are pretty common in California are now in the mix. While I did find a few highly recommended spots, the majority of the locations I checked out were nothing to write home about. At the least, they were not being sold out, which I consider a plus.	Café Lestat, by far, is a stand-out. (photo by Thomas Moriarty)
328	Caffe Calabria: By far the best coffeehouse in SD. Excellent coffee and baristas (best cappuccino in SD.), great paninis. Only downside is that they close very early.	One major factor that really needs to be taken into account is the type of machine being used. There are two types of espresso machines: the cheap ones that spit out lots of pressure and don't have any control over the shot, and the expensive ones that create amazing shots and utilize the types of superfine grinds you usually find in Italy. The latter types are much harder to find and cost significantly more.	If the coffee scene in San Diego sounds like the one in New York, there's a reason. The upper echelons of NYC's drink scene are the same ones who have taken over the majority of the coffee houses in San Diego. This is probably partly due to the fact that both cities have large student populations, both are home to large coffee drinker bases, both have a large number of espresso shops, and both offer top-notch, hand-crafted cappuccinos. But if there is one city in America that deserves to have its name above that of New York, it's San Diego.
329	Café Lestat: Good example what happens with good coffee and average baristas. Lestat is also using coffeebeans from Caffé Calabria but it is sad to see that they don't know how to make excellent espresso, cappuccino.	Another factor to consider is the type of beans being used. If they are done correctly, great espresso can be made from any type of bean, but it's a rare experience to find a place that does ...	There are just under 100 coffee shops in San Diego, with almost half of them located on University Ave, alone. So finding the perfect coffee shop is crucial. We spent a whole day just roaming around the area, hunting for the best.
330	E Street Café: Average espresso but strange flavored ...		In terms of the coffee itself, it's hard to beat Café Lestat. The baristas are amazing and their methods are pristine ...
331			
332			
333			
334			
335			
336			
337			
338			
339			
340			
341			
342			
343			
344			

Figure 3: Comparison of original text with synthesized text variations.

- **Repetition:** A document may contain too many repeated sentences or patterns. Repetition rate refers to the fraction of documents that exhibit this problematic behavior.
- **Duplicate@1M:** Another failure mode of synthesis is when the documents sampled from the synthesizer distribution are nearly duplicates of each other. Duplicate@1M refers to the fraction of unique documents (determined by Jaccard similarity at a threshold of 0.6) when 1M documents are sampled from the text distribution.
- **Non-factual:** A common failure mode of synthesis is the generation of content that contradicts established knowledge or facts. Non-factual rate refers to the fraction of documents that contain verifiable factual errors, as determined by automated fact-checking tools.
- **Pair-irrelevance:** The synthesized d_2 is considered relevant to d_1 if they pertain to the same topic, event, entity, person, place, or object. Pair-irrelevance refers to the fraction of synthesized d_2 that is not relevant to d_1 , indicating the synthesis is not rightly using information from d_1 .
- **Pair-copying:** d_1 and d_2 are considered near-duplicates if they are almost identical, except for some extra white spaces, line breaks, or punctuation. Pair-copying refers to the fraction of synthesized d_2 that is a near duplicate of d_1 .

Operationally, we implement Repetition, Pair-irrelevance, and Pair-copying using LM-as-judge (prompts and more implementation details given in §B.3) by sampling 1,000 examples from each distribution and estimating the fraction of documents satisfying each criterion. For Non-factual (prompts and details given in §B.2), we sample 10,000 examples and conduct a comprehensive examination of factual errors to ensure broader coverage of the generated data. For Duplicate@1M, we use rule-based filtering to detect the fraction of duplicates based on 1M documents sampled from each distribution. We present the result in the table below. All metrics are lower for better data.

Table 2: Quantitative evaluation of documents sampled from the synthesizer at 200B-scale and 1T-scale. We can see that the synthesized documents preserve topics and are not simple duplicates.

	Repetition ↓	Duplicate@1M ↓	Non-factual ↓	Pair-irrelevance ↓	Pair-copying ↓
200B-scale	4.3%	0.8%	15.1%	25.6%	0.1%
1T-scale	3.9%	0.8%	8.7%	7.8%	0.9%
Real data	1.8%	0.7%	1.8%	n.a.	n.a.

At a high level, Repetition and Duplicate@1M measure a basic text quality that is independent of the specific pair-synthesis strategy employed by SBP. They aim to detect two simple failure modes: text

repetition, a common failure pattern in generations from small language models (3B in our case), and the lack of diversity, a common issue with synthetic data that relies on variation induced by the sampling temperature. From Table 2, we find that both 200B-scale and 1T-scale synthesis match the quality of real data as captured by these two metrics. We note that the absence of repetitions and duplicates is not, in itself, an indicator of high-quality or educational text, but rather a basic sanity check that ensures the synthesized texts are diverse. Non-factual failure stems from hallucinations that introduce non-existent entities or relations inconsistent with reality. We find that synthesis at the 1T-scale significantly reduces these errors compared to the 200B-scale. As the data synthesizer is trained on more data, the factuality of the generated outputs tends to converge toward that of real data. Pair-irrelevance and Pair-copying, on the other hand, measure how synthesized d_2 relates to the seed d_1 . There are two failure modes we would like to detect: first, when d_2 is completely irrelevant to d_1 , and second, when d_2 merely copies the content of d_1 . We observe that both 200B-scale and 1T-scale synthesis avoid simply copying and pasting d_1 . More interestingly, we observe that the 1T-scale demonstrates substantially higher relevance than the 200B-scale, which intuitively makes sense as the synthesizer learns more diverse relations among $|\mathcal{D}_{\text{pretrain}}| = 60\text{M}$ documents than $|\mathcal{D}_{\text{pretrain}}| = 12\text{M}$ corpus.

At this point, we have shared the results of the experiment. In the appendix, we present the implementation details of SBP in §A.2, ablations involving synthetic data mixture ratio in §A.3, additional analysis of synthesized documents in §B, and comparsion with a larger 6B model in §C.2.

5 STATISTICAL FOUNDATIONS OF SBP

In this section, we present a Bayesian interpretation of the SBP procedure, offering one potential explanation for the origin of the SBP improvement. We will formulate a hierarchical model of natural language texts (§5.1) and demonstrate that SBP implicitly enables LMs to learn a posterior standard pretraining cannot capture. We conclude by connecting our findings from this idealized model to the reality of LM (§5.2). We begin with the observation that the pretraining objective models the marginal likelihood of documents:

$$\arg \max_{\theta} \log p_{\theta}(\mathcal{D}_{\text{pretrain}}) = \arg \max_{\theta} \sum_{d \in \mathcal{D}_{\text{pretrain}}} \log p_{\theta}(d). \quad (1)$$

However, different natural language documents share structural similarities (Figure 1), which suggests a potentially more complex underlying joint distribution that we will explore next.

5.1 A HIERARCHICAL CONCEPT MODEL FOR NATURAL LANGUAGE

In the transformer example from Figure 1, both the arXiv preprint of the transformer paper and its code implementation are derived from the abstract concept of “transformer neural network”. From this perspective, we can view the generation process of natural language documents as a hierarchical sampling process where we first sample a collection of abstract concepts $c^{(i)}$ (e.g., the idea of a transformer) from a semantic space of all concepts \mathcal{C} and then generate new documents $d^{(i,j)}$ conditional on $c^{(i)}$.

If we adopt this view, we can think of the pretraining document as follows.

- **Concept sampling:** Sample a fixed concept collection $\{c^{(i)}\}_i \sim P(c)$.
- **Document generation:** For each concept $c^{(i)}$, generate docuemnts from $\{d^{(i,j)}\}_j \sim P(d|c^{(i)})$ constituting one part of the pretraining dataset.

Under such a model, the structural similarity between documents generated from the same concept is modeled as probabilistic *dependence*. The standard pretraining objective (1) then neglects inter-document correlation and only learns the marginal distribution $P(d) = \int_{c \in \mathcal{C}} P(d|c)P(c)dc$. In this view, the model learns to generate plausible text by first generating a core concept c and then performing the generation $P(d|c)$. In contrast, the synthesizer-tuning objective models a posterior of c given d . To see this, we additionally assume that the curated pairs (d_1, d_2) come from the same underlying concept c . Then, the synthesizer-tuning objective (§A.2) forces the LM to perform a distinct task: $P(d_2|d_1) = \int_{c \in \mathcal{C}} P(d_2|c)P(c|d_1)dc$. Here, we use Bayes’ rule and the conditional independence assumption $P(d_2|c, d_1) = P(d_2|c)$, which says that the documents from the same concept

432 are conditionally independent given that concept. As a result, to successfully model $P(d_2|d_1)$, the
 433 synthesizer must first perform posterior inference to infer the latent concept c given the document
 434 d_1 , and then use this inferred concept to synthesize a new document d_2 , a signal that is ignored
 435 by the standard pretraining objective. To illustrate this concretely, we perform a post-hoc analy-
 436 sis by prompting an LM to identify the shared concepts between the synthesized document and its
 437 seed (Table 3 in §B). We can see that while it is difficult to describe a synthesized document as the
 438 outcome of a simple transform, such as a paraphrase or summarization, it always share a common
 439 underlying concept with its seed origin.

440 The additional signal from the posterior then enables a form of self-distillation. The synthesizer, by
 441 learning a more complex conditional objective, becomes a more knowledgeable “teacher” model that
 442 has learned to infer the latent structure of data. The synthetic data it produces is then the knowledge
 443 “distilled” from this teacher [22]. The final LM training then acts as a “student” that learns from
 444 a combination of real and synthetic data, allowing it to discover information that real data alone
 445 cannot reveal.

446 5.2 FROM IDEALIZED MODELS TO LANGUAGE MODEL REALITY

447 For real text documents, we do not know the true data-generating process, and any parametric as-
 448 sumption would be incorrect. This is where the power of the transformer neural network shines. A
 449 transformer is a *mapping-first* [6] approach. It does not require explicit modeling of the underlying
 450 parametric model. Instead, as a universal function approximator [9], it directly learns the complex
 451 conditional distribution $p_\theta(d_2|d_1)$ from paired data alone.

452 In this context, the transformer’s ignorance of an explicit hierarchical model is its blessing. It by-
 453 passes the impossible step of modeling the true hierarchical distribution of language and instead
 454 brute-forces the learning of the exact transformation required: the end-to-end process of posterior
 455 inference and subsequent synthesis. The self-distillation framework – synthesizing data from this
 456 conditional model and then training on it – is all that is needed. We never need to introduce an
 457 explicit hierarchical model to perform the forward $P(d|c)$ and backward pass $P(c|d)$ in the latent
 458 space. The entire procedure is implicitly carried through the synthesizer-tuning update with the
 459 latent concept c integrated, demonstrating a powerful insight for scaling LMs in the real world.

460 6 DISCUSSION

461 **462 Document embedding with activations of pretrained LM** In our implementation of SBP, we use
 463 Qwen3-0.6B-Embedding [62] to obtain embeddings of DCLM [30] documents. An ideal implemen-
 464 tation of SBP would only rely on the 3B-parameter model and the pretraining dataset itself to curate
 465 the paired synthesizer-tuning dataset. To achieve this, we can use the activations of the self-attention
 466 layer from an intermediate transformer block as a learned representation of documents. [26] and
 467 [60] implemented this at the much smaller scale of $\sim 300M$ parameters and $\sim 3B$ tokens. However,
 468 our experiments operate at a much larger scale with a customized model. As a result, we utilize
 469 the optimized vLLM [27] inference infrastructure for Qwen3-0.6B embedding models to efficiently
 470 index the pretraining corpus. Since the SBP procedure only requires a coarse binary decision of re-
 471 le vant vs. not relevant, which is much weaker than fine-grained document ranking embedding models
 472 are optimized for, we leave the more involved inference infrastructure for future work.

473 **474 Parametric fit of SBP scaling law** LM pretraining follows the scaling law [25, Equation 1.4] that
 475 relates the held-out test loss $L(N, D)$ to the number of LM parameters N and the size of the pretrain-
 476 ing dataset D . In our experiments, we essentially evaluate $L(N, D)$ with $N = 3B$ at two different
 477 points $D = 10B$ and $D = 50B$. There are two obstacles to a full scaling law for SBP: First, SBP is
 478 inherently a large-scale algorithm that cannot be scaled down. Since SBP synthesizes data itself, if
 479 the model and dataset sizes are too small, the generated text may not even be coherent. In contrast,
 480 experiments in [25] involve model sizes ranging from 768M to 1.5B and dataset sizes ranging from
 481 22M to 23B, allowing for efficient experimentation. Second, varying N or D implies redoing the
 482 synthesizer-tuning and subsequent data synthesis over billions of tokens. Additionally, varying D
 483 also implies redoing the nearest neighbor matching. Obstacles aside, it would be interesting to see
 484 whether the SBP scaling law differs from the normal scaling law by a smaller multiplicative factor
 485 or a better exponent.

486 REFERENCES
487

488 [1] Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio César Teodoro Mendes, Weizhu
489 Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, Suriya Gunasekar, Mo-
490 jan Javaheripi, Piero Kauffmann, Yin Tat Lee, Yuanzhi Li, Anh Nguyen, Gus-
491 tavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Michael Santacroce, Harki-
492 rat Singh Behl, Adam Taumann Kalai, Xin Wang, Rachel Ward, Philipp Witte,
493 Cyril Zhang, and Yi Zhang. Phi-2: The surprising power of small language
494 models, 2023. URL <https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/>.

495

496 [2] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
497 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha
498 Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong
499 Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul
500 Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao,
501 Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman
502 Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Ja-
503 cobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi,
504 Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yun-
505 sheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu,
506 Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majer-
507 cak, Matt Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen,
508 Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang
509 Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji
510 Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang,
511 Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini,
512 Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin
513 Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael
514 Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jian-
515 wei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang,
516 Jianwen Zhang, Li Lyra Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-
517 3 technical report: A highly capable language model locally on your phone, 2024. URL
518 <https://arxiv.org/abs/2404.14219>.

519

520 [3] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
521 Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee,
522 Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price,
523 Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue
524 Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. Phi-4 technical report, 2024. URL <https://arxiv.org/abs/2412.08905>.

525

526 [4] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Free-
527 base from question-answer pairs. In *Proceedings of the 2013 Conference on Empirical Meth-
528 ods in Natural Language Processing*, pp. 1533–1544, Seattle, Washington, USA, October
529 2013. Association for Computational Linguistics. URL <https://aclanthology.org/D13-1160>.

530

531 [5] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
532 Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
533 Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,
534 Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving,
535 Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
536 Improving language models by retrieving from trillions of tokens. *CoRR*, abs/2112.04426,
537 2021. URL <https://arxiv.org/abs/2112.04426>.

538

539 [6] Leo Breiman. Statistical Modeling: The Two Cultures (with comments and a rejoinder by
540 the author). *Statistical Science*, 16(3):199 – 231, 2001. doi: 10.1214/ss/1009213726. URL
541 <https://doi.org/10.1214/ss/1009213726>.

540 [7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
 541 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
 542 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
 543 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
 544 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 545 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
 546 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 547 ral Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
 548 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

550 [8] Dan Busbridge, Amitis Shidani, Floris Weers, Jason Ramapuram, Eta Littwin, and Russell
 551 Webb. Distillation scaling laws. In *Forty-second International Conference on Machine Learn-
 552 ing*, 2025. URL <https://openreview.net/forum?id=1nEBAkpfb9>.

553 [9] Emmanuel J Candès. Ridgelets: Theory and applications. *Department of Statistics, Stanford
 554 University*, 1998.

556 [10] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
 557 and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
 558 challenge. *arXiv preprint arXiv:1803.05457*, 2018.

560 [11] Common Crawl. Common crawl. <https://commoncrawl.org/>, 2007.

561 [12] DatologyAI, :, Pratyush Maini, Vineeth Dorna, Parth Doshi, Aldo Carranza, Fan Pan, Jack
 562 Urbanek, Paul Burstein, Alex Fang, Alvin Deng, Amro Abbas, Brett Larsen, Cody Blakeney,
 563 Charvi Bannur, Christina Baek, Darren Teh, David Schwab, Haakon Mongstad, Haoli Yin,
 564 Josh Wills, Kaleigh Mentzer, Luke Merrick, Ricardo Monti, Rishabh Adiga, Siddharth Joshi,
 565 Spandan Das, Zhengping Wang, Bogdan Gaza, Ari Morcos, and Matthew Leavitt. Beyondweb:
 566 Lessons from scaling synthetic data for trillion-scale pretraining, 2025. URL <https://arxiv.org/abs/2508.10975>.

568 [13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
 569 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
 570 and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter
 571 of the Association for Computational Linguistics: Human Language Technologies, Volume 1
 572 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for
 573 Computational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423>.

575 [14] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
 577 Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, An-
 578 thony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur
 579 Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
 580 Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
 581 Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chun-
 582 yang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel
 583 Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
 584 Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina
 585 Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Syn-
 586 naeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Gregoire Mialon, Guan Pang,
 587 Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
 588 Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee,
 589 Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jen-
 590 nifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
 591 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun,
 592 Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li,
 593 Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu,
 Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan,
 Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke

594 de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kar-
 595 das, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si,
 596 Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Niko-
 597 lay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 598 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Kr-
 599 ishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
 600 Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Ro-
 601 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor,
 602 Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh,
 603 Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Ra-
 604 parthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya
 605 Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodin-
 606 sky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
 607 Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
 608 Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan
 609 Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xi-
 610 aodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 611 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yun-
 612 ing Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya
 613 Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo
 614 Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan,
 615 Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu,
 616 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan,
 617 Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 618 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
 619 Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
 620 Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
 621 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim,
 622 Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
 623 Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David
 624 Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang
 625 Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora
 626 Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
 627 Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco
 628 Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada
 629 Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory Sizov, Guangyi,
 630 Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
 631 Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Ibrahim
 632 Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 633 Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
 634 Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 635 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Jonathan Torres, Josh Ginsburg,
 636 Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal,
 637 Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun
 638 Huang, Kunal Chawla, Kushal Lakhota, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender
 639 A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca
 640 Wehrstedt, Madiam Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas
 641 Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov,
 642 Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
 643 tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert
 644 Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha
 645 Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Niko-
 646 lay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart,
 647 Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchan-
 dani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghatham
 Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
 Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara
 Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Ya-

648 mamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin,
 649 Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha
 650 Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve
 651 Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Sub-
 652 ramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 653 Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 654 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 655 mar, Vishal Mangla, Vitor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
 656 Vladimir Ivanov, Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xi-
 657 aocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
 658 Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
 659 Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
 660 Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
 661 URL <https://arxiv.org/abs/2407.21783>.

662 [15] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 663 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse
 664 text for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

665 [16] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno,
 666 Sivakanth Gopi, Mojgan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil
 667 Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan,
 668 Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL
 669 <https://arxiv.org/abs/2306.11644>.

670 [17] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Ku-
 671 mar. Accelerating large-scale inference with anisotropic vector quantization. In *International
 672 Conference on Machine Learning*, pp. 3887–3896. PMLR, 2020.

673 [18] Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang. Generating sentences
 674 by editing prototypes, 2018. URL <https://arxiv.org/abs/1709.08878>.

675 [19] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:
 676 Retrieval-augmented language model pre-training. In *Proceedings of the 37th International
 677 Conference on Machine Learning*, ICML’20. JMLR.org, 2020.

678 [20] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 679 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 680 arXiv:2009.03300*, 2020.

681 [21] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 682 Jacob Steinhardt. Measuring massive multitask language understanding. In *International Con-
 683 ference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

684 [22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
 685 2015. URL <https://arxiv.org/abs/1503.02531>.

686 [23] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifi-
 687 cation, 2018. URL <https://arxiv.org/abs/1801.06146>.

688 [24] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large
 689 scale distantly supervised challenge dataset for reading comprehension. *arXiv preprint
 690 arXiv:1705.03551*, 2017.

691 [25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
 692 Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
 693 language models, 2020. URL <https://arxiv.org/abs/2001.08361>.

694 [26] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Gen-
 695 eralization through memorization: Nearest neighbor language models. In *International Con-
 696 ference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=HklBjCEKvH>.

[27] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.

[28] Guillaume Lample, Alexandre Sablayrolles, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. Large memory layers with product keys. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp. 8546–8557, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/9d8df73a3cfbf3c5b47bc9b50f214aff-Abstract.html>.

[29] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[30] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Se-woong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshov, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the next generation of training sets for language models, 2024.

[31] Zonglin Li, Ruiqi Guo, and Sanjiv Kumar. Decoupled context processing for context augmented language modeling. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=02dbnEbEFn>.

[32] Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream: implicit bias matters for language models. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.

[33] Yinhua Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A robustly optimized {bert} pre-training approach, 2020. URL <https://openreview.net/forum?id=SyxS0T4tvS>.

[34] Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs, 2018. URL <https://arxiv.org/abs/1603.09320>.

[35] Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=j5BuTrEj35>.

[36] Thao Nguyen, Yang Li, Olga Golovneva, Luke Zettlemoyer, Sewoong Oh, Ludwig Schmidt, and Xian Li. Recycling the web: A method to enhance pre-training data quality and quantity for language models, 2025. URL <https://arxiv.org/abs/2506.04689>.

[37] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red

756 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 757 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
 758 pher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg
 759 Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew
 760 Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
 761 Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
 762 Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory
 763 Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve
 764 Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fe-
 765 dus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges,
 766 Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan
 767 Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei
 768 Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
 769 Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu,
 770 Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang,
 771 Roger Jiang, Haozhu Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
 772 Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan
 773 Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros,
 774 Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis,
 775 Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike,
 776 Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
 777 Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Man-
 778 ning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob Mc-
 779 Grew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Med-
 780 inia, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
 781 Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
 782 Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeon-
 783 woo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ash-
 784 ley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail
 785 Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Hen-
 786 rique Ponde de Oliveira Pinto, Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly
 787 Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae,
 788 Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted,
 789 Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sas-
 790 try, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki
 791 Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie
 792 Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie
 793 Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak,
 794 Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle,
 795 Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
 796 Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward,
 797 Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt
 798 Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
 799 Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan,
 Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
<https://arxiv.org/abs/2303.08774>.

[38] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
 Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
 man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Pe-
 ter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training language
 models to follow instructions with human feedback. In S. Koyejo, S. Mohamed,
 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-
 mation Processing Systems*, volume 35, pp. 27730–27744. Curran Associates, Inc.,
 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

[39] David Owen. How predictable is language model benchmark performance?, 2024. URL
<https://arxiv.org/abs/2401.04757>.

810 [40] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella
 811 Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The
 812 lambada dataset: Word prediction requiring a broad discourse context. *arXiv preprint*
 813 *arXiv:1606.06031*, 2016.

814 [41] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cap-
 815 pelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The re-
 816 finedweb dataset for falcon llm: outperforming curated corpora with web data, and web data
 817 only. *arXiv preprint arXiv:2306.01116*, 2023.

818 [42] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
 819 Lee, and Luke Zettlemoyer. Deep contextualized word representations, 2018. URL <https://arxiv.org/abs/1802.05365>.

820 [43] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
 821 understanding by generative pre-training, 2018.

822 [44] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
 823 guage models are unsupervised multitask learners, 2018. URL <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>.

824 [45] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
 825 John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language
 826 models: Methods, analysis & insights from training gopher. *arXiv preprint arXiv:2112.11446*,
 827 2021.

828 [46] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
 829 Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
 830 text-to-text transformer. *J. Mach. Learn. Res.*, 21(1), January 2020. ISSN 1532-4435.

831 [47] Yangjun Ruan, Neil Band, Chris J Maddison, and Tatsunori Hashimoto. Reasoning to learn
 832 from latent thoughts. *arXiv preprint arXiv:2503.18866*, 2025.

833 [48] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 834 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 835 2021.

836 [49] Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Xi Victoria Lin, Noah A.
 837 Smith, Luke Zettlemoyer, Wen tau Yih, and Mike Lewis. In-context pretraining: Language
 838 modeling beyond document boundaries. In *The Twelfth International Conference on Learning
 839 Representations*, 2024. URL <https://openreview.net/forum?id=LXVswInHOo>.

840 [50] Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell
 841 Author, Ben Beglin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An
 842 open corpus of three trillion tokens for language model pretraining research. *arXiv preprint*
 843 *arXiv:2402.00159*, 2024.

844 [51] Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa
 845 Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common
 846 crawl into a refined long-horizon pretraining dataset. *arXiv preprint arXiv:2412.02595*, 2024.

847 [52] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
 848 Enhanced transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

849 [53] Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. Soar: improved
 850 indexing for approximate nearest neighbor search. *Advances in Neural Information Processing
 851 Systems*, 36:3189–3204, 2023.

852 [54] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 853 Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
 854 Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei
 855 Gao, Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo,
 856

864 Jianhang Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong,
 865 Yangyang Hu, Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhe-
 866 jun Jiang, Xinyi Jin, Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming
 867 Li, Wentao Li, Yanhao Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin,
 868 Zongyu Lin, Chengyin Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang
 869 Liu, Shaowei Liu, T. Y. Liu, Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping
 870 Liu, Yue Liu, Zhengying Liu, Enzhe Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma,
 871 Shaoguang Mao, Jie Mei, Xin Men, Yibo Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen
 872 Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie
 873 Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng Teng, Chensi Wang, Dinglu Wang, Feng
 874 Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang, Jinhong Wang, Shengjie Wang, Shuyi
 875 Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao
 876 Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu, Xingzhe Wu, Yuxin Wu, Chenjun
 877 Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing Xu, L. H. Xu, Lin Xu, Suting
 878 Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie Yan, Yuzi Yan, Xiaofei Yang,
 879 Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao, Xingcheng Yao, Wenjie
 880 Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan, Mengjie Yuan,
 881 Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun Zhang,
 882 Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang, Haotian
 883 Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou,
 884 Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025. URL
 885 <https://arxiv.org/abs/2507.20534>.

[55] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghaf Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Miaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL <https://arxiv.org/abs/2307.09288>.

[56] Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn. Will we run out of data? limits of llm scaling based on human-generated data, 2024.

[57] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=gEZrGCozdqR>.

[58] Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions. In *NUT@EMNLP*, 2017.

[59] Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Joulin, and Edouard Grave. Cnet: Extracting high quality monolingual datasets from web crawl data. *arXiv preprint arXiv:1911.00359*, 2019.

[60] Zitong Yang, MICHAL LUKASIK, Vaishnavh Nagarajan, Zonglin Li, Ankit Rawat, Manzil Zaheer, Aditya K Menon, and Sanjiv Kumar. Resmem: Learn what you can and memorize the rest. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 60768–60790. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/bf0857cb9a41c73639f028a80301cdf0-Paper-Conference.pdf.

918 [61] Zitong Yang, Neil Band, Shuangping Li, Emmanuel Candes, and Tatsunori Hashimoto. Synthetic
919 continued pretraining. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=07yvxWDS1a>.
920

921 [62] Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun
922 Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding:
923 Advancing text embedding and reranking through foundation models, 2025. URL <https://arxiv.org/abs/2506.05176>.
924

925 [63] Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pukit Agrawal. Self-
926 adapting language models, 2025. URL <https://arxiv.org/abs/2506.10943>.
927

928 [64] Zyphra. Zyda-2, a 5 trillion token high-quality dataset, 2024. URL <https://huggingface.co/datasets/Zyphra/dclm-dedup>.
929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972
973
974
CONTENTS975
A Additional details on synthetic bootstrapped pretraining **20**

976	A.1 Data, model, and evaluation	20
977	A.2 SBP implementation details	21
978	A.3 Ablation on data mixture ratio	22

979
B Additional analysis of synthesized samples **23**

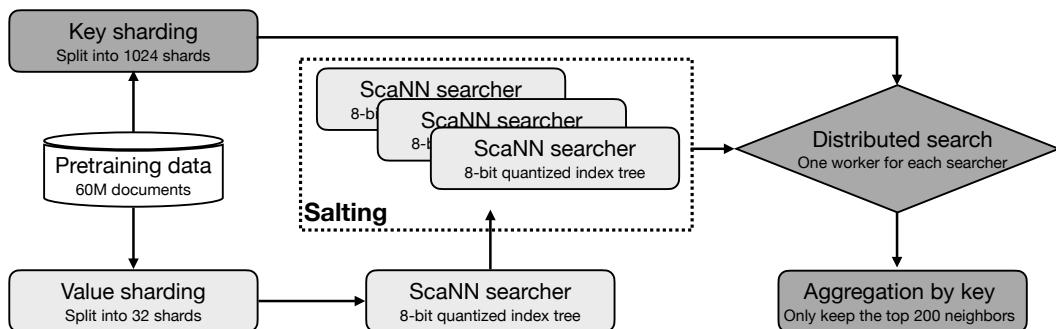
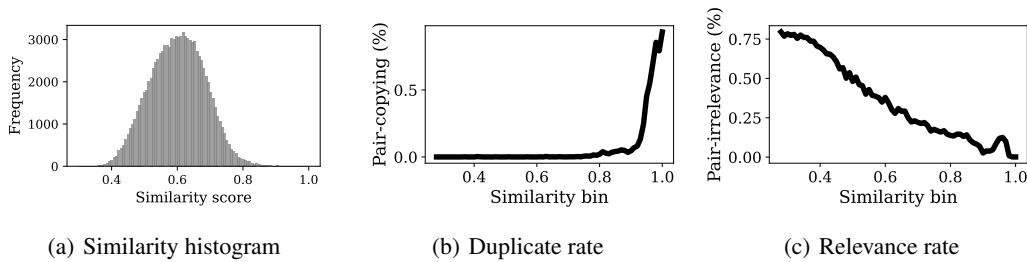
980	B.1 Analyze concepts in documents	23
981	B.2 Factuality analysis	26
982	B.3 Mideval prompts	28
983	B.4 Synthesized documents from the 1T-scale experiment	31

984
C Additional pretraining results **31**

985	C.1 Two epochs validation	31
986	C.2 Model scaling	31

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 A ADDITIONAL DETAILS ON SYNTHETIC BOOTSTRAPPED PRETRAINING
10271028 A.1 DATA, MODEL, AND EVALUATION
10291030 In this section, we present the complete details of the experiment set referenced in §3.
10311032 **Dataset.** A typical pretraining dataset is a mixture of different sources (e.g., GitHub, arXiv, Com-
1033 monCrawl, etc.) with distinct sampling weights assigned to each constituent. We simplify this real-
1034 ity by considering a fixed document collection, which is a customized version of the DCLM dataset
1035 [30]. The original 4T token DCLM-baseline split contains roughly 80% duplicates, as reported by
1036 [64]. Therefore, we begin with the de-duplicated dataset, which consists of 769B tokens. We clean
1037 the raw Zyphra de-duplicated data by normalizing repeated line breaks, removing long URL links,
1038 and fixing malformed Unicode characters. For efficiency reasons, we cap the context window of the
1039 synthesizer-tuning (§3) step at 8,192 tokens. As a result, we additionally filter out the documents
1040 whose length is above 4,096 tokens, allowing both d_1 and d_2 to fit into the context window in the
1041 worst case when both documents are 4,096 tokens long. After all the de-duplication, cleaning, and
1042 filtering procedures, we end up with a collection of 582M high-quality documents $\mathcal{D}_{\text{pretrain}}$ totaling
1043 482B tokens. We use the notation $|\mathcal{D}_{\text{pretrain}}|$ to denote the number of documents in the pretraining
1044 dataset and $\|\mathcal{D}_{\text{pretrain}}\|$ to denote the total number of tokens.
10451046 As a result of the high duplication rate in DCLM, for the 200B-scale experiment (introduced in §3),
1047 we implement the oracle upper bound as having access to 200B unique tokens from our document
1048 pool of size 482B tokens. For the 1T-scale experiment, we unfortunately do not have 1T unique
1049 documents due to the large fraction of duplicates from DCLM. As a surrogate, we utilize all 482B
1050 unique tokens as the dataset for training the oracle upper bound at the 1T-scale. We provide a partial
1051 justification for this by performing a scaled-down comparison at 400B training tokens, with one
1052 model having 400B unique tokens and the other one having 200B unique tokens repeated twice
1053 (§C.1). We find that the two models (400B unique and 200B repeated twice) yield nearly identical
1054 performance.
10551056 **Architecture.** We use the Llama 3 transformer architecture [14] to model the probability p_θ with
1057 the notable exception of implementing a QK-norm on top of the existing design, which we empir-
1058 ically find to stabilize training. Our resulting model is a 3B-parameter 26-layer transformer model
1059 with a hidden dimension of 3,072. Each layer employs grouped query attention with 24 query heads
1060 and 8 key/value heads. The position embedding is RoPE [52] for queries and keys, with frequency
1061 5e+5. The feedforward network (FFN) has hidden dimension 8,064, and we apply prenorm to both
1062 the attention and FFN blocks. For tokenization, we implement a customized BPE tokenization with
1063 a vocabulary size of 49,152. To match the 8,192 context window design for synthesizer-tuning we
1064 have mentioned, we use context window 4,096 for pretraining, so that every document in $\mathcal{D}_{\text{pretrain}}$
1065 can fit into the context window.
10661067 **Benchmarks.** To assess the pretraining capability of LM, we measure pretraining test loss and
1068 general world knowledge benchmarks. We evaluate held-out test perplexity (exponential of nega-
1069 tive log-probability) on 1) OpenWebText2 from EleutherAI [44]; 2) Narrative understanding with
1070 LAMBADA [40] and 3) Broad domain multiple-choice with MMLU [20]. We evaluate QA accu-
1071 racy on 4) Hard scientific reasoning with ARC-Challenge [10]; 5) Easy scientific reasoning
1072 with ARC-Easy [10]; 6) Scientific QA with SciQ [58]; 7) Common sense reasoning with Winogrande
1073 [48]; 8) Reading comprehension with TriviaQA [24]; 9) Openbook QA with WebQS [4]. We
1074 directly evaluate the pretrained model with either zero-shot or few-shot prompts. Although MMLU
1075 is more commonly known as a QA benchmark, we find that evaluating MMLU accuracy for weak
1076 models yields a highly non-smooth readout. As a result, for each MMLU test question, we prepend
1077 the question with a 5-shot example of QA pairs and postpend it with the correct answer. Then, we
1078 treat each such sample as a text corpus and evaluate LM’s perplexity on such a text sample. Em-
1079 pirically, we find that this perplexity-based MMLU correlates well with MMLU accuracy when the
underlying model is large enough to yield a stable readout, and also delivers smooth performance
changes for smaller models. Note that those benchmarks are known to improve significantly with
instruction finetuning [57]. However, we stick to our data-constrained setup and do not introduce
any additional data that may confound the comparison.
1080

1080 A.2 SBP IMPLEMENTATION DETAILS
10811082 In this section, we present the implementation details of SBP outlined in §2.
10831084 **Nearest neighbor pairing** Recall from §3 that we work with a 3B-parameter transformer
1085 architecture and pretraining dataset at $\|\mathcal{D}_{\text{pretrain}}\| = 10\text{B}$ and $\|\mathcal{D}_{\text{pretrain}}\| = 50\text{B}$ scale. To take advantage of
1086 efficient ANN search at pretraining scale, we embed the documents from $\mathcal{D}_{\text{pretrain}}$ as 1,024 dimen-
1087 sional vectors using Qwen3-Embedding-0.6B. Then, we use ScaNN [17, 53] with 8-bit quantization
1088 to perform efficient similarity search. We adopt an asymmetric sharding to keys and value vectors.
1089 For each value vector, we build a ScaNN search tree with \sqrt{N} leaves where N is the number of vec-
1090 tors in each value shard. To distribute the key shards across each search tree, we employ a “salting”
1091 strategy, where we create multiple copies of the ScaNN searcher and assign one key shard to each
1092 salted copy of the searcher (Figure 4). This design enables us to perform a top-200 nearest neighbor
1093 search over $|\mathcal{D}_{\text{pretrain}}| = 60\text{M}$ documents within 155M CPU hours.
10941105 Figure 4: ScaNN system design for efficient distributed search.
11061107 At both the 200B-scale and 1T-scale, after obtaining the top 200 neighbors for each sample, we
1108 select the pairs whose similarity score is greater than 0.75. We chose this cut-off as it would later
1109 lead to a tractable size of synthesizer-tuning dataset \mathcal{D}_{ST} . To access the effect of choosing a different
1110 threshold, we provide a quantitative analysis of the fraction of relevant documents around each bin
1111 of similarity threshold in Figure 5 using the same metric defined in §4.2. We can see that a larger
1112 similarity score yields pairs with higher relevance but also more duplicates. Finally, we eliminate
1113 near-duplicates using a rule-based filtering approach. The dedup process involves first normalizing
1114 text by removing punctuation, converting to lowercase, and eliminating numbers, followed by tok-
1115 enization using SentencePiece. We then generate “shingles” using 13-token sliding windows within
1116 d_1 . Training pairs are discarded if any shingle from d_1 appears in d_2 .
11171118 Figure 5: Analysis of paired data at 200B-scale. Figure 5(a): a histogram of 100K subsampled pairs
1119 grouped by their similarity score. Figure 5(b): the fraction of duplicate pairs when we sub-
1120 sample 1K pairs around a specific similarity score. Figure 5(c): same as 5(b) but showing the fraction of
1121 relevant documents.
1122

1123

1124 **Synthesizer-tuning** After we collected the cleaned pair data \mathcal{D}_{ST} (previous step), we perform the
1125 synthesizer-tuning with the objective (§3). We initialize the 3B-parameter at the baseline checkpoint
1126

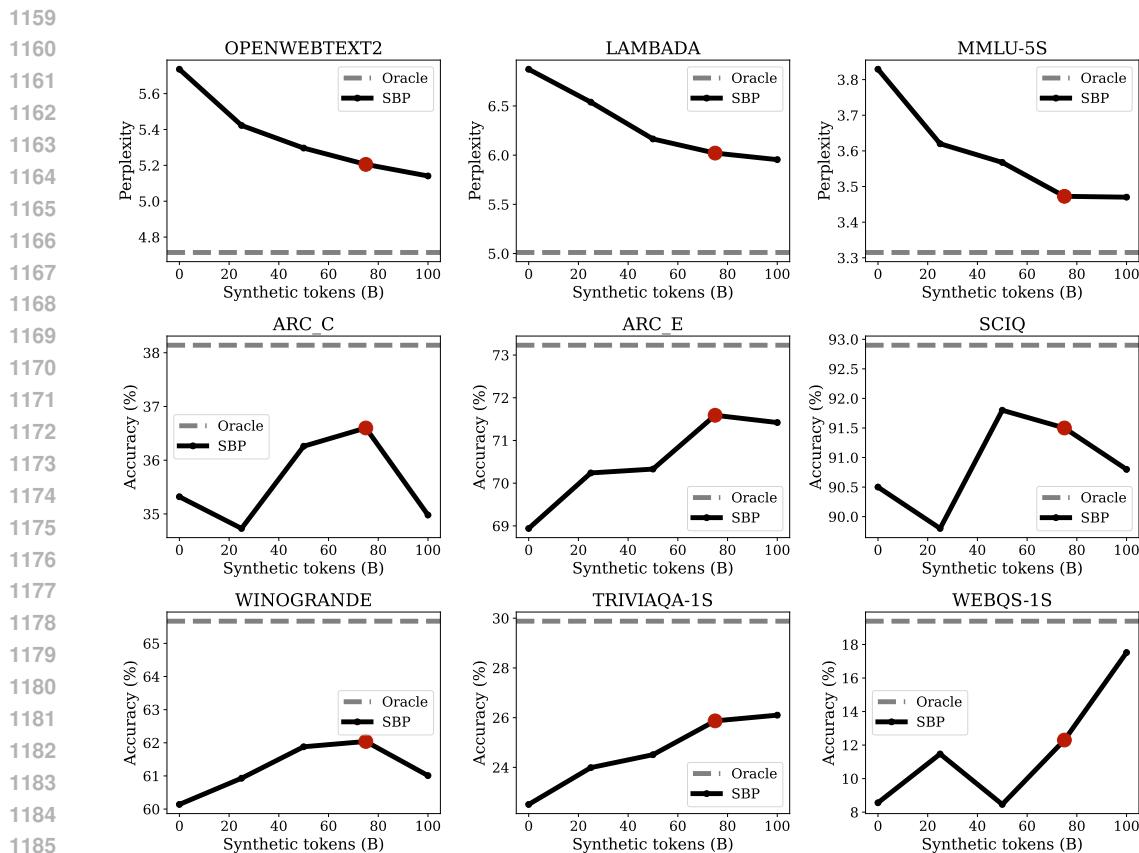
1134 and finetune the model with a constant learning rate of 5e-6 and a batch size of 16M tokens per step.
 1135 Before we settled on this learning rate schedule, we first attempted the cosine decay schedule with a
 1136 larger learning rate. We found that the generated text has lower quality than our final design with a
 1137 small, constant learning rate. We measure the Pair-novelty score (defined in §4.2) of the synthesized
 1138 example for different checkpoints of synthesizer-tuning, and find that longer training results in better
 1139 Pair-novelty.

1140
 1141 **Synthesis at scale** Finally, we perform the hierarchical sampling procedure defined in §2 with a
 1142 temperature of 1.0 and top_p threshold 0.9. We apply a rule-based filtering that removes synthesized
 1143 documents containing repeated occurrences of 13-token shingles. This effectively removes
 1144 texts with repetition failure. We use vLLM [27] and obtain a throughput of 8.3K tokens per B200
 1145 second. This amounts to 2.5K B200 hours for the 200B-scale synthesis and 4.2K B200 hours for
 1146 the 1T-scale synthesis.

1147 A.3 ABLATION ON DATA MIXTURE RATIO
 1148

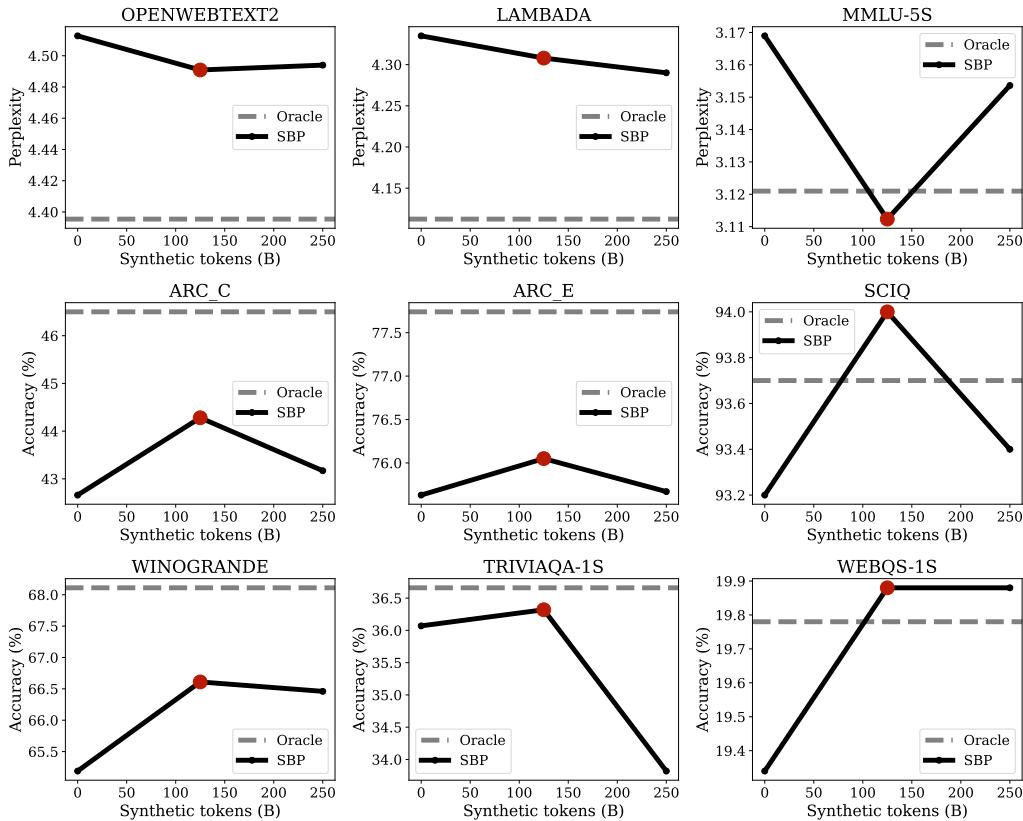
1149 When performing joint training on a mixture of real and synthesized documents for the final SBP
 1150 run, a natural question arises: how much fraction of synthesized documents to include. In §4, we
 1151 discussed that we utilized $\|S_{\text{pretrain}}\| = 75\text{B}$ for the 200B-scale experiment and $\|S_{\text{pretrain}}\| = 125\text{B}$ for
 1152 the 1T-scale experiment. In this section, we present ablation experiments for this design choice.

1153
 1154 **200B-scale** At this smaller scale, we perform a comprehensive sweep over five possible values of
 1155 $\|S_{\text{pretrain}}\| \in \{0\text{B}, 25\text{B}, 50\text{B}, 75\text{B}, 100\text{B}\}$. As seen in Figure 6, different benchmarks exhibit varying
 1156 behavior when more synthetic data is included during training: the perplexity (OpenWebText2 and
 1157 LAMBADA) decreases monotonically with increasing synthetic data, while most QA benchmarks
 1158 display a peak around $\|S_{\text{pretrain}}\| = 75\text{B}$.



1186
 1187 Figure 6: SBP performance with varying synthetic tokens at 200B-scale.

1188 **1T-scale** At the 1T-scale, both data synthesis and subsequent joint pretraining become significantly more expensive. Therefore, we evaluate SBP at three different values of the synthetic data
 1189 $\|\mathcal{S}_{\text{pretrain}}\| \in \{0\text{B}, 125\text{B}, 250\text{B}\}$. As shown in Figure 7, we find that $\|\mathcal{S}_{\text{pretrain}}\| = 125\text{B}$ produces the
 1190 best-performing model across all benchmarks except LAMBADA perplexity.
 1191



1220 Figure 7: SBP performance with varying synthetic tokens at 1T-scale.
 1221
 1222

1223 **Discussion** From this analysis, we can observe a general pattern: the best-performing model is
 1224 achieved when pretraining is conducted on a mixture of real and synthetic data. Real internet data
 1225 has higher quality and therefore merits more repetition. However, as repetition yields diminishing
 1226 returns, synthetic data could offer another source of signal that real data cannot capture. In contrast,
 1227 distillation-based research typically finds that training purely on synthetic data yields significantly
 1228 higher training efficiency. However, this finding is obscured by the fact that such a model eventually
 1229 converges to the capability of the teacher LM. This contrast reveals that the SBP mechanism does
 1230 not generate a compressed and denoised representation of knowledge that is more efficient for LM
 1231 to learn. Instead, it offers an additional source of improvement that real data alone cannot capture.
 1232

1233 B ADDITIONAL ANALYSIS OF SYNTHESIZED SAMPLES

1234 B.1 ANALYZE CONCEPTS IN DOCUMENTS

1235 In this section, we further examine the intermediate hidden mechanisms underlying the document
 1236 synthesis process. Specifically, we classify the hypothesized concepts inferred from real documents
 1237 (see Table 3 for details) along two complementary dimensions: concept domains, which denote the
 1238 broad subject areas or fields a concept belongs to (e.g., science, psychology, health, culture), and
 1239 concept types, which capture the abstract role or nature of the concept itself (e.g., theory, method,
 1240 comparison, symbol).
 1241

1242 Table 3: Examples of latent concepts c inferred by an external LM (prompts provided in §B.1).
 1243 From left to right, we provide a summary of the real document, the inferred latent concept, and a
 1244 summary of the synthesized document.

1246 Real document summary	1247 Concepts	1248 Synthesized document summary
1249 Examination of Twitter’s impact on journalism	1250 Opportunities arise from Twitter	1251 Guide on Twitter user monetization
1252 Family story about kids and doughnuts	1253 Parenting + kids’ food catering	1254 Emotional anecdotes of parents treating kids
1255 Minor parties’ challenges in the U.S. Congress	1256 Minor political parties in the U.S.	1257 Explains U.S. minor parties’ history
1258 Personal stories/questions about swollen eyes	1259 Causes/treatments of swollen eyes	1260 Non-personal guide to treating swollen eyes.
1261 Antarctic carbon fixation mechanisms	1262 How life survives in Antarctic	1263 Antarctic geography and survival adaptations
1264 Profile of a belly dancing teacher in the U.K.	1265 Belly dancing as a dance form	1266 General introduction to belly dancing
1267 Anxiety about creative work judged in a dream	1268 Dream as personal self-reflection	1269 Description and reflection of personal dreams
1270 NYC (yearly/monthly) climate extremes	1271 NYC weather and temperature	1272 QA on NYC July heat and related topics
1273 Tutorial for Minecraft block modding	1274 Block editing in Minecraft	1275 Minecraft forum question on removing blocks
1276 Cosmic airburst destroys Tall el-Hammam city	1277 Destruction of ancient cities	1278 Tall el-Hammam excavation as a news event

Table 4: Categorize extracted concepts into domains.

1260 Concept Domains	1261 Examples
1262 Culture (38.74%)	1263 Inter-community conflict in Nigeria, Family-based immigration policy, Reactions to Horrid Henry books, Interracial dating and bias
1264 Health (11.89%)	1265 Cosmetic dental appliance, Colistin toxicity in infections, Hair health tips, Portable/home medical diagnostics, Vitamin D and pregnancy outcomes
1266 Technology (9.91%)	1267 Recovering deleted phone data, Video editing app review, Flash platform pros and cons, HTML 2.0 draft process, Email attachment processing speed
1268 Politics (3.69%)	1269 Iran nuclear negotiations, Student loans policy reform, Democratic primary candidate choice, Catalan independence aftermath
1270 Psychology (3.42%)	1271 Differences in personality disorders, Exploring the strange in daily life, Aging and nostalgia, Toxic relationship breakup, Psychology research paper topics

1272 The distribution of concept domains and types in Table 4 and 5 underscores the multidimensional
 1273 nature of the knowledge space under consideration. The domains encompass macro-level socio-
 1274 cultural phenomena, such as Culture, where topics range from inter-community conflict in Nigeria
 1275 to immigration policy and interracial dating and bias, alongside micro-level issues of individual
 1276 health and wellbeing, as exemplified in Health. In parallel, the typological classification reveals not
 1277 only subject matter but also modes of conceptual engagement: Methods comprise formalized pro-
 1278 cedures (multidimensional poverty measurement, commercial real estate appraisal), Events capture
 1279 historically situated crises (Mediterranean migrant crisis, BP oil spill nationalization), and Com-
 1280 parisons and Analyses facilitate interpretive framing through juxtapositions (cancer suffering: indi-
 1281 vidual vs. family) and evaluative inquiries (Manchester United player analysis). Collectively, this
 1282 taxonomy illustrates not only topical diversity but also a spectrum of cognitive orientations.

1283 While real and synthesized documents share the same underlying concept, they differ in multiple
 1284 ways that merit closer examination. We categorize these differences into a taxonomy of relations
 1285 using a small ontology. Table 6 illustrates several relationship types, highlighting how synthesized
 1286 data can reflect multiple facets that vary from real data. These relations range from scope-based
 1287 distinctions (e.g., specific vs. general), to causal connections (e.g., corruption leading to reform),
 1288 and to contrastive contrasts (e.g., Constitution articles vs. Articles of Confederation). This diversity
 1289 demonstrates the rich variation structure that the synthesizer captures and learns.

1296
1297
1298
1299
1300

1301 Table 5: Categorize extracted concepts into abstract types.
1302

1303 Concept Types	1304 Examples
1305 Method (9.17%)	Multidimensional poverty measurement, Commercial real estate appraisal, Stop words search duplicates, DAT chemistry exam preparation
1306 Event (6.98%)	Mediterranean migrant crisis, BP oil spill nationalization, Paula Abdul stalked, Eminem-Apple music rights lawsuit, Presidents Cup U.S. golf
1307 Comparison (5.54%)	Hobbit film adaptation length/cost, Biking as superior transport, Cancer suffering, individual vs. family, Progress critique: 4G vs. alternatives
1308 Analysis (5.20%)	Health effects of substances, Thai massage benefits, Scrabble word breakdown, Relationship roles and challenges, Manchester United player analysis
1309 Phenomenon (4.95%)	Secret pain; self-destruction, Car-related online humor/pranks, Transnational corporations in globalization, Hippie identity and lifestyle

1310
1311
1312
1313
1314
1315

1316 Table 6: Categorize relations between real documents d_1 and synthesized documents d_2 .
1317

1318 Relation Categories	1319 Examples
1320 Scope relation (8.14%)	d_1 : Probiotics' possible effects on H1N1 infection d_2 : Probiotics' general digestive and immune benefits Relation: specific application vs general health benefits of probiotics
1321 Perspectival relation (5.51%)	d_1 : Personal , humorous struggles of new bloggers d_2 : Objective guide to pros and cons of blogging Relation: subjective experiences vs objective guidance about blogging
1322 Functional relation (4.70%)	d_1 : Reviews and feedback on "Space Bound" game d_2 : Forum troubleshooting for bugs in "Space Bound" Relation: reviews/feedback vs troubleshooting for the same game
1323 Causal relation (2.05%)	d_1 : DTEK faces corruption probe, financial risk d_2 : DTEK nationalized for state-driven energy reform Relation: corruption/financial issues vs nationalization/energy reform
1324 Contrastive relation (1.65%)	d_1 : Detailed summary of Constitution articles d_2 : Overview, flaws of Articles of Confederation Relation: U.S. Constitution articles vs Articles of Confederation: different foundational documents

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 Document Summarize and Concept Analysis Instructions
 1351
 1352 In the following, you are given two documents, doc1 and doc2. Doc2 is generated from doc1.
 1353 The principle of generation is to first abstract a concept from doc1, and then starting from this concept,
 1354 generate doc2. Can you guess what this concept is and how doc2 was generated?
 1355 Please keep the summary and concepts to be LESS OR EQUAL TO 10 WORDS and format your answer
 1356 as follows. Highlight the difference between doc2 and doc1 in your doc2_summary:
 1357 <doc1_summary> summary of doc1 </doc1_summary>
 1358 <concept_c> abstract concept from doc1 </concept_c>
 1359 <doc2_summary> summary of doc2 built on doc1 given the concept </doc2_summary>
 1360 Example 1:
 1361 <doc1_summary> recommendation of local coffee shops in San Diego </doc1_summary>
 1362 <concept_c> coffee + San Diego </concept_c>
 1363 <doc2_summary> comparison of coffee culture in SD and NYC </doc2_summary>
 1364 Example 2:
 1365 <doc1_summary> Patient with swollen eye discusses pain causes & symptoms and seeks for
 1366 advice </doc1_summary>
 1367 <concept_c> medical symptom of swollen eye </concept_c>
 1368 <doc2_summary> A wiki-style article introducing causes and cures for swollen eye
 1369 Now, give your answer for the following documents:
 1370 <doc1>
 1371 {real_document}
 1372 </doc1>
 1373
 1374 <doc2>
 1375 {synthesized_document}
 1376 </doc2>

1375 B.2 FACTUALITY ANALYSIS

1377 Table 7: Estimation of the ratio of non-factual documents. We can see that the occurrence factuality
 1378 error decays as the SP scales up.

	Factuality undefined	No factual error	Factual error
Real data	31.44%	66.74%	1.81%
Synthetic data (200B-scale)	34.43%	50.47%	15.09%
Synthetic data (1T-scale)	31.91%	59.43%	8.65%

1386 All LM generated synthetic data face the limitation of potentially generating non-factual content due
 1387 to their probabilistic modeling nature. Moreover, because the internet inherently contains factual
 1388 inaccuracies, LMs are likely to absorb these errors unless the data is carefully cleaned. During
 1389 post-training, factuality must also be recalibrated alongside other objectives such as data safety.

1390 SBP relies solely on document-level correlations and does not incorporate human intervention to
 1391 filter non-factual content. As a result, the generated outputs are also expected to contain factual
 1392 errors. Interestingly, we observe that the frequency of such errors correlates with the amount of data
 1393 used in the SBP pipeline. We define a document as having **undefined factuality** if it is primarily
 1394 subjective or opinion-driven, or if it concerns personal, obscure, or unverifiable entities. In all other
 1395 cases, the document's factuality is considered **well-defined** and verifiable.

1396 In Table 7, we analyze both the real data and the synthesized data used in the main experiment
 1397 presented in Section 4.1. Specifically, we consider two types of synthetic datasets: a smaller-scale
 1398 set initialized with 10B seed tokens, and a larger-scale set initialized with 50B seed tokens. From
 1399 each source: real data, smaller-scale synthetic data, and larger-scale synthetic data, we randomly
 1400 sample 10k documents. Each document is then categorized into three bins: **factuality undefined**,
 1401 **no factual error**, and **factual error**, using LM-as-a-judge. Our analysis shows that synthetic data
 1402 contains more factual errors than real data. However, as the amount of seed data increases, the
 1403 factuality of synthetic data improves significantly, approaching that of real data. This finding is
 consistent with our mideval results in Table 2, where greater seed data availability enables the LM

Table 8: Factuality undefined synthetic text.

1404	Sunday, December 28, 2008
1405	
1406	Synthetic Tante Leni
1407	
1408	Tante Leni is not only my Aunt Leni; she is my Eternity. When my Aunt Leni died a few years ago, she was deeply saddened and I was devastated. She was not the first family member to die, but she was the first I felt so strongly about. Tante Leni was all my parents really had to show for the 25 years they worked as public school teachers and she was the one who had been with them the longest. There was a special place in her heart for my parents. In addition to all that, she was the kind of person who always had a smile and a funny story to share. She was kind and funny and generous. The story that always comes to mind when I think about her is the time she was working at the bank and someone dropped something from the top floor. It was a very large parcel and the workers on the ground floor didn't have the tools to open it. She jumped down to see what was in it. A very large package of champagne appeared and she began gulping it down. Tante Leni and my mother in a portrait they took when my mom was 20. Tante Leni and my parents in a family portrait she took for my mom at 22. Tante Leni and my dad at home when he was working as a dance instructor. When my mom died, she had all the people who had known her since she was a child living in the house. Tante Leni was the oldest, but she was also the best at cleaning, cooking and taking care of the house. When my mom passed away, she went to a rehab center and Tante Leni stayed in the house.
1424	
1425	
1426	
1427	

1428 to capture more factual knowledge and the synthesizer tuning to generate more relevant documents,
 1429 thereby reducing hallucinations and producing more realistic outputs.

1430 We extend our analysis of factuality errors in synthesized data in Table 9, highlighting the inaccuracies
 1431 present in the synthetic texts. These include false transfer and timeline claims in football, as
 1432 well as incorrect institutional, company location, and certification details in the ecolabel example.
 1433 This underscores the importance of rigorous fact-checking, particularly in areas such as historical
 1434 events (e.g., sports) and certification standards (e.g., eco-labels).

1435

1436 **Factuality detection instructions**

1438 You are a helpful AI assistant. Your task is to evaluate whether the given document has well-
 1439 defined factuality.

1440 **Definitions:**

1441 Not well-defined factuality: The document is primarily subjective or opinion-based (e.g., express
 1442 disapproval of a politician in social media). The document discusses personal, unknown, or
 1443 unverifiable entities (e.g., a private diary).

1444 Well-defined factuality: The document refers to well-known, identifiable entities (e.g., famous
 1445 people, historical events, popular movies). Its factual claims can be checked or verified.

1447 **Output format:**

1448 If the document's factuality is not well-defined, output:

1449 <not well defined></not well defined>

1450 If the document's factuality is well-defined and factual, output:

1451 <well defined>True</well defined>

1452 If the document's factuality is well-defined but non-factual, output:

1454 <well defined>False</well defined>

1455 Now, analyze the following document and provide your answer:

1456 {document}

1457

1458 B.3 MIDEVAL PROMPTS

1459

1460

1461

1462

1463 Before each large-scale synthesis run (on the order of billions of tokens), we begin by synthesizing
 1464 a small subset of data to evaluate its overall quality, a step we refer to as “mideval”. The goal is to
 1465 maximize the Pair-relevance of the generated data while monitoring Pair-novelty and Non-repetition
 1466 rates. Although near-duplicates may not directly degrade quality, they reduce the data’s overall
 1467 utility, so we aim to minimize their occurrence. While self-repetition can be removed via rule-based
 1468 filtering, we still track it as an indicator of the synthesizer’s quality. The quality of both the paired
 1469 training data for synthesizer-tuning and the synthesized document influences the performance of the
 1470 final model.

1470 We have cited mideval results in many sections throughout the paper. In this section, we present the
 1471 prompt that was used for Pair-novelty, Pair-relevance, and Non-repetition.

1472

1473

1474

1475

1476

1477

1478

Pair-relevance detection

1479

1480 You are a helpful AI assistant helping the user to determine if two provided texts are relevant to
 1481 each other.

1482 The user will provide you two texts in the following format:

1483

```
## Text 1
{text1}
```

1485

```
## Text 2
{text2}
```

1487

1488 Your job is to determine if the two texts are relevant enough to be considered as a pair. Relevance means
 1489 that the two texts are about the same topic, event, entity, person, place, or thing. If two texts talks about
 1490 completely unrelated topics, they are not relevant.

1491

1492 Please explain your reasoning in your response, and conclude the response in a new line with either “Yes”
 1493 or “No”. Do not end with any other text including punctuation.

1494

1495

1496

1497

1498

Pair-novelty detection

1499

1500 You are a helpful AI assistant helping the user to determine if two provided texts are near dupli-
 1501 cates.

1502 The user will provide you two texts in the following format:

1503

```
## Text 1
{text1}
```

1505

```
## Text 2
{text2}
```

1507

1508 Your job is to determine if the two texts are near duplicates, which means they are almost identical, except
 1509 for some extra white spaces, line breaks, or punctuation. Two texts are not near duplicates if they talk about
 1510 the same topic but use different language, words, or style.

1511

1512 Please explain your reasoning in your response, and conclude the response in a new line with either “Yes”
 1513 or “No”. Do not end with any other text including punctuation.

1512
1513

Non-repetition detection

1514
1515

You are a helpful AI assistant helping the user to determine if the provided text has repetition issues.

1516

The user will provide you a text in the following format:

1517

```
## Text
{text}
```

1519
1520

Your job is to determine if the text has repetition issues, which means some particular sentence or pattern are repeated more than three times. Some examples of problematic text:

1521

```
## Example 1 of problematic text
I have a list of users in a SharePoint 2010 site.
I want to send an email to all of them.
I have tried the following code:
var email = new MailMessage();
email.From = new MailAddress("");
email.To = new MailAddress("");
email.Subject = "Test";
email.Body = "Test";
var smtp = new SmtpClient();
smtp.Host = "";
smtp.Port = 25;
smtp.Credentials = new NetworkCredential("", "");
smtp.Send(email);
I get the following error:
The server could not send the message.
The server could not send the message.
The server could not send the message.
...
## Example 2 of problematic text
my Profile
Product Reviews - Send Message
You are responding to the following review:
Submitted: 02-11-2006 by mikeschmid
I have been paddling for 10 years and have owned 10 kayaks.
I have been paddling in the ocean for 5 years and have owned 3 kayaks.
I have been paddling in the ocean in the Pacific Northwest for 3 years and have owned
2 kayaks.
I have been paddling in the ocean in the Caribbean for 2 years and have owned 1 kayak.
I have been paddling in the ocean in the Mediterranean for 1 year and have owned 1 kayak.
I have been paddling in the ocean in the South Pacific for 1 month and have owned 1 kayak.
I have been paddling in the ocean in the South Atlantic for 1 month and have owned
1 kayak.
I have been paddling in the ocean in the Indian Ocean for 1 month and have owned 1 kayak.
I have been paddling in the ocean in the Arctic Ocean for 1 month and have owned 1 kayak.
I have been paddling in the ocean in the Antarctic Ocean for 1 month and have owned
1 kayak ...
```

1547
1548
1549

Please explain your reasoning in your response, and conclude the response in a new line with either “Yes” (which means the text has repetition issues) or “No” (which means the text does not have repetition issues). Do not end with any other text including punctuation.

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566

1567

1568

1569

Table 9: Factuality errors detected in synthetic text.

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Synthetic Text	<p>So just how much has Chelsea been prepared to pay for the 34-year-old midfielder? Realistically, the clubs involved should be keeping in the region of £25 million (\$38.8 million) and around £30 million (\$45.5 million) being bandied about for the player in Italy. With the Blues expected to complete the sale of Cesc Fabregas to Arsenal this week, Lampard appears the logical replacement in midfield, but his bid to extend his contract has hit a roadblock with Chelsea's owners Roman Abramovich and the club being unable to agree to an increase in salary.</p> <p>Lampard, who played in the Champions League final in Lisbon for Chelsea in 2007, has been linked with a move away from Stamford Bridge this summer, after having his contract with the club indefinitely extended in 2010. There were rumours that he was to leave on a free transfer in the summer of 2011, but it appears that those are again being placed to the side.</p> <p>Miguel Delaney, from Sky Sports, believes that Lampard could be the highest paid player in the Premier League, and puts the bid that Chelsea are offering him in the region of £6 million (\$8.9 million) per year. If Lampard is to join a team in Italy, it seems that this sum would be realistic, but the Premier League is a different beast, and it would be unrealistic for Chelsea to splash out that amount.</p> <p>As the speculation around his future continues, you can watch the pair discussing the topic in the video below.</p>
Factual Errors	<p>Cesc Fabregas to Arsenal – Fabregas moved from Arsenal to Barcelona in 2011, then to Chelsea in 2014, not back to Arsenal.</p> <p>2007 – The 2014 Champions League final in Lisbon did not involve Chelsea or Lampard; Chelsea won in 2012.</p> <p>indefinitely extended in 2010 – Lampard did not get an indefinite contract extension in 2010 with Chelsea.</p>
Synthetic Text	<p>Swanee Glue Brand: First Glue to be Awarded the Swan Ecolabel Published:27 July 2022</p> <p>The global glue stick market is expected to reach USD 3.45 billion by 2028. Adhesives are the first choice of manufacturers in all industries such as food, pharmaceuticals, automotive, aerospace, construction, and packaging. As consumers are increasingly conscious of their carbon footprint and environmental issues, glue manufacturers are aiming to produce products that comply with environmental standards and are effective and cost-effective in their applications. This is why the Swan Ecolabel was established by the Swedish Environment Agency as a certification for sustainable adhesive products. Swanee Glue is one of the world's leading glue brands in glue sticks, and this year its brand received the Swan Ecolabel. UHU is an adhesive brand owned by Bolton Adhesives in the Netherlands, and part of the Italian Bolton Group with a strong agenda for sustainability.</p> <p>Glue sticks, specifically glue sticks with a wider applicator and swan neck applicators, have the most impact on the environment because they are a consumable item and their impact is greatest when thrown away. Therefore, the Swanee Swan Ecolabel ensures that UHU is part of the solution to the growing demand for sustainable adhesive products.</p> <p>In order to obtain the Swan Ecolabel, the adhesive must have at least 50% renewable content. Besides this, the glue stick should also contain a higher percentage of recyclable content. UHU meets all these criteria and has a permanent and multi-use applicator. For further information, you can contact UHU receives the Swan Ecolabel</p>
Factual Errors	<p>Swan Ecolabel was established by the Swedish Environment Agency – The Nordic Swan Ecolabel was established by the Nordic Council of Ministers, not only Sweden.</p> <p>Netherlands – UHU is based in Germany, not the Netherlands.</p> <p>50% renewable content – The Swan Ecolabel requires at least 20% renewable content in adhesives, not 50%.</p>

1620
1621

B.4 SYNTHESIZED DOCUMENTS FROM THE 1T-SCALE EXPERIMENT

1622
1623

In this section, we present additional examples of synthesized documents at the 1T-scale to complement the example given at the 200B-scale in Section 4.2.

1624

1625

Real document

The Karate Kid
From Wikipedia, the free encyclopedia
(Redirected from Karate Kid)
Jump to: navigation, search
For other uses, see Karate Kid (disambiguation).
The Karate Kid Karate kid.jpg
Directed by John G. Avildsen
Produced by Jerry Weintraub
Written by Robert Mark Kamen
Music by Bill Conti
Cinematography James Crabe
Distributed by Columbia Pictures
Release dates • June 22, 1984 (1984-06-22)
Running time 127 minutes[1]
Country United States
Language English
Budget \$8 million[2]
Box office \$90.8 million[3]

The Karate Kid is a 1984 American martial arts drama film produced by Jerry Weintraub, directed by John G. Avildsen, written by Robert Mark Kamen, that stars Ralph Macchio, Noriyuki "Pat" Morita and Elisabeth Shue.[4][5] It is an underdog story in the mold of a previous success, Avildsen's 1976 film Rocky ...

Real document

Skip to main content
Are you craving some beach time? If you're escaping down south for spring break, we have some tunes for you. But even if you aren't lucky enough to sprawl in the sand or bask in golden sunshine right now, we'll bring the beach to you! Until your next break, enjoy listening to The Beach Boys and Jack Johnson.
If you're stuck in the cold—or somewhere where the sun is indecisive (I'm looking at you, Midwest)—use this playlist to take you back to sunnier days and remind you that the winter is almost over; soon the sun will last!

Synthesis I

The Karate Kid (2010)
The Karate Kid (2010) movie poster
• 115 minutes • Rated PG-13 • Directed by Harold Zwart • Starring: Will Smith, Jackie Chan, RZA, Jaden Smith • More info on IMDB
It's ironic that Daniel LaRusso (Ralph Macchio) and Johnny Lawrence (Jaden Smith) appear in The Karate Kid in their middle ages, because what's most interesting about this remake is the way it updates an old, familiar storyline for a new generation of moviegoers.
Perhaps I shouldn't say "updates" — because that implies that the new version is a significant departure from the 1984 classic. If you're one of those folks who thinks the 1984 version of The Karate Kid is sacrosanct, don't expect anything different here. Just watch both movies and compare the stories and characters.
The story is basically the same as before — young Daniel LaRusso moves to Los Angeles, and soon finds himself beset by Johnny Lawrence and his gang of students from the Cobra Kai karate school, which bullies Daniel whenever it gets the chance ...

Synthesis I

Beach Vibe
Any traveller will tell you that if you get on a plane and actually arrive somewhere where the weather is the same for weeks or months, you know you've made a mistake. I've experienced this time and again — it's one of the many things that you just can't fully appreciate or appreciate to the fullest until you feel it in your bones.
My latest trip was to Vietnam last week. I had been planning this trip for a little over a year now and I really hoped it would be everything I had imagined. It was exactly what I'd wanted. The people, the culture, the food, the scenery — it was all perfectly delved into. I'd never been to an Asian country before and so the whole trip was just like discovering a new continent.
It was one of the best places I've ever been ...

Synthesis II

The Karate Kid
Trivia: When Daniel and his mom were drinking ice cream and talking about him not talking to them, Daniel turns to his mom and says "We're not just a family. We're a family of good people." After Daniel was sent away, on the front of his underwear (that was on fire), it said "Daniel don't quit on family." The script for this movie originally said that Daniel's mom was in the film but she was cut because the film makers thought she would not look like Elisabeth Shue and they thought the characters could have a less motherly character. Elisabeth Shue actually called the director John Avildsen, and insisted on being in the film. John Avildsen replied that he didn't know whether or not he wanted to add a less motherly character to the film. Shue replied "If you don't, I'm not playing in the movie." The director of the film was also impressed that she did this and he was going to hire her in any case.

Revealing mistake: When Daniel is throwing the bucket at Johnny's head while on the bus, he is supposed to do it several times, yet when he hits Johnny the first time, you can see Johnny fall on the ground ...

Synthesis II

Here's a playlist to warm your heart and get you ready to leave for the beach in a few weeks. So many classics from your youth, this playlist packs an emotional punch.
It's kind of a lame playlist. I'm sure a better one exists somewhere on the internet. But on this most northern of days, I like to get a warm chill going and use it as a positive recharge before going outside. This warm chill is a hit with my dogs and they are the best cuddlers in the world, so that makes it perfect for me. This playlist will make your winter that much more bearable and then hopefully you can head to the beach!
You know you want it!
Here's the playlist:
[credit provider="YouTube" url="]
Get our free mobile app

1655

1656

1657

1658

1659

Figure 8: Comparison of original text with synthesized text variations. On the first row, the real document provides factual information about the 1984 film's production and release. In contrast, the synthesized documents offer subjective commentary, opinions, and behind-the-scenes anecdotes about both the 1984 film and its 2010 remake. On the second row, the synthesized documents are continuations of the real document.

1660

1661

1662

1663

C ADDITIONAL PRETRAINING RESULTS

C.1 TWO EPOCHS VALIDATION

1664

1665

1666

1667

1668

1669

1670

When designing the oracle experiment for 1T-scale, we noted that we use 482B tokens repeated twice as a proxy for training on 1T unique tokens. This is because the DCLM-baseline [30] dataset contains 80% duplicates, which hinders our evaluation. We validate our choice by scaling down the experiment to a 400B scale, where we had sufficiently many unique tokens. As seen in Table 10, 200B tokens repeated twice yield nearly identical performance to 400B unique tokens. This finding is consistent with the observation from [35] where repetition up to 4 times yields nearly no performance degradation.

C.2 MODEL SCALING

1671

1672

1673

An alternative approach to leveraging additional compute is to use a larger model. In this section, we examine the benefits of fixing a training token budget, but using a 6B-parameter model (Table 11).

1674 Table 10: Performance comparsion with 200B tokens repeated twice vs. 400B unique tokens for the
 1675 3B model. We can see that the two models yield similar performance.

Benchmark	2x200B	1x400B
<i>Perplexity on held-out data ↓</i>		
OpenWebText2	4.55	4.54
LAMBADA	4.49	4.46
Five-shot MMLU	3.19	3.17
<i>QA accuracy ↑</i>		
ARC-Challenge (0-shot)	38.31	41.47
ARC-Easy (0-shot)	73.11	75.29
SciQ (0-shot)	93.80	93.30
Winogrande (0-shot)	64.96	63.93
TriviaQA (1-shot)	32.51	34.35
WebQS (1-shot)	18.75	13.58
Average QA accuracy	53.57	53.65

1696 We conduct a pretraining experiment in a 200B-scale
 1697 setting, replacing a 3B-parameter model with a 6B-
 1698 parameter model. In Table 12, we observe that the
 1699 6B-parameter model consistently outperforms the base-
 1700 line method, indicating that it effectively utilizes the ad-
 1701 dditional computational resources available. Comparing
 1702 SBP with the 6B-parameter model, we see that one per-
 1703 forms better on some benchmarks while the other per-
 1704 forms better on others. This suggests the benefits offered
 1705 by SBP are orthogonal to the benefits provided by hav-
 1706 ing a larger model, offering the potential to combine both
 1707 approaches to obtain an even better model.

1708 Table 12: 200B-scale experiments with model scaling. The first three columns are identical to
 1709 Table1. The last column shows the performance of training a 6B model under 200B training token
 1710 budget with 10B unique tokens.

Table 11: 6B-parameter model setup.

Total Params.	3B	6B
ℓ_{context}	4096	4096
n_{vocab}	49152	49152
n_{layers}	26	32
d_{model}	3072	4096
d_{ffn}	8064	13056
n_{heads}	24	32
$n_{\text{kv_heads}}$	8	8

Benchmark	Baseline	SBP	Oracle	6B-model
<i>Perplexity on held-out data ↓</i>				
OpenWebText2	5.74	-0.53	-1.02	-0.36
LAMBADA	6.87	-0.85	-1.86	-1.10
Five-shot MMLU	3.83	-0.36	-0.51	-0.13
<i>QA accuracy ↑</i>				
ARC-Challenge (0-shot)	35.32	+1.28	+2.82	+3.42
ARC-Easy (0-shot)	68.94	+2.65	+4.29	+0.67
SciQ (0-shot)	90.50	+1.00	+2.40	+0.80
Winogrande (0-shot)	60.14	+1.90	+5.53	+2.92
TriviaQA (1-shot)	22.51	+3.36	+7.37	+3.11
WebQS (1-shot)	8.56	+3.74	+10.83	+5.22
Average QA accuracy	47.66	+2.32	+5.54	+2.69