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Abstract

The evaluation of natural language processing001
(NLP) systems is crucial for advancing the field,002
but current benchmarking approaches often as-003
sume that all systems have scores available for004
all tasks, which is not always practical. In real-005
ity, several factors such as the cost of running006
baseline, private systems, computational limita-007
tions, or incomplete data may prevent some sys-008
tems from being evaluated on entire tasks. This009
paper formalize an existing problem in NLP010
research: benchmarking when some systems011
scores are missing on the task, and proposes a012
novel approach to address it. Our method uti-013
lizes a compatible partial ranking approach to014
impute missing data, which is then aggregated015
using the Borda count method. It includes two016
refinements designed specifically for scenarios017
where either task-level or instance-level scores018
are available. We also introduce an extended019
benchmark, which contains over 131 million020
scores, an order of magnitude larger than ex-021
isting benchmarks. We validate our methods022
and demonstrate their effectiveness in address-023
ing the challenge of missing system evaluation024
on an entire task. This work highlights the025
need for more comprehensive benchmarking026
approaches that can handle real-world scenar-027
ios where not all systems are evaluated on the028
entire task.029

1 Introduction030

Benchmarking and system evaluation are critical031

processes for assessing the performance of AI sys-032

tems, providing a standardized means of compar-033

ing various models and techniques while keeping034

track of technological advancements (Ruder, 2021;035

Dehghani et al., 2021; Post, 2018). However, evalu-036

ating general-purpose systems, such as foundation037

models used for generative tasks (Lehman et al.,038

2023; Kocoń et al., 2023; OpenAI, 2023; Brown039

et al., 2020; Raffel et al., 2020), presents unique040

challenges. A single task, metric, or dataset may041

not be sufficient to effectively gauge their capabili- 042

ties (Herbrich et al., 2006; Novikova et al., 2018; 043

Sedoc and Ungar, 2020). Therefore, it is crucial 044

to develop tools that can benchmark these systems 045

on a multitude of tasks (Aribandi et al., 2021), en- 046

abling a comprehensive assessment of their overall 047

performance (Peyrard et al., 2021). 048

In recent years, the field of NLP has made sig- 049

nificant strides, with frequent emergence of new 050

models (Lehman et al., 2023; Kocoń et al., 2023; 051

Brown et al., 2020; OpenAI, 2023; Raffel et al., 052

2020; Liu et al., 2019; Fan et al., 2021) and tech- 053

niques (Bommasani et al., 2021; Hupkes et al., 054

2022). To evaluate the performance of these sys- 055

tems across various tasks, datasets, and metrics 056

(Colombo et al., 2022c) have been created. How- 057

ever, with the increasing complexity of these bench- 058

marks, missing scores has become a significant 059

challenge. Missing data can arise from a variety of 060

sources, such as benchmarks that are too large or 061

time-consuming to run (e.g., BigBench has recently 062

introduced MiniBench for these reasons (Srivastava 063

et al., 2022)), high costs associated with reproduc- 064

ing experiments (e.g., see Table 3 in (Artetxe et al., 065

2022)), incomplete datasets (see Table 5 in (Reid 066

and Artetxe, 2022)), data collection errors, data 067

cleaning procedures, data privacy concerns (par- 068

ticularly in-house datasets (Guibon et al., 2021)), 069

and specialized expertise required to process niche 070

datasets (Peng et al., 2019). In recent work, two 071

main approaches have been followed to deal with 072

missing scores, which are discarding data (Pfeiffer 073

et al., 2022) or ignoring certain tasks (see Table 10 074

in (Lin et al., 2022) and Table 5 in (Martin et al., 075

2020)) or evaluations. However, these approaches 076

are unsatisfactory as they can lead to biased and 077

unreliable evaluations. 078

In this work, we address benchmarking NLP 079

systems when one or several systems cannot be 080

evaluated on a specific task. We propose the de- 081

velopment of effective methods for aggregating 082
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metrics that can handle missing data and enable a083

comprehensive assessment of system performance.084

Our approach will ensure the reliability and validity085

of NLP system evaluations and contribute to the086

creation of benchmarks that can be used to compare087

and evaluate NLP systems effectively. Specifically,088

our contributions are listed below.089

1. Introducing a new problem with a direct090

impact on NLP research: benchmarking when091

there are missing system evaluations for an en-092

tire task, which has practical implications (Pfeiffer093

et al., 2022; Lin et al., 2022; Martin et al., 2020;094

Guibon et al., 2021; Peng et al., 2019).095

2. A novel method for benchmarking NLP sys-096

tems with missing system scores. We present a097

novel method that effectively tackles the issue of098

missing system evaluations for entire tasks. Our099

work includes a novel combinatorial approach for100

imputing missing data in partial rankings. It allows101

using standard rank aggregation algorithms such102

as Borda and offers two refinements tailored to the103

availability of either task-level or instance-level104

scores of the systems across different tasks.105

3. An extended benchmark for a comprehen-106

sive and accurate evaluation of NLP systems:107

previous works on score aggregation relied on a108

benchmark of 250K scores (Colombo et al., 2022a;109

Peyrard et al., 2021), and did not release the sys-110

tem’s input, output, and ground truth texts. In our111

work, we collected their scores and extended the112

benchmark by adding over 131M scores.113

4. Extensive validation of benchmarking meth-114

ods: Results show that our method effectively han-115

dles missing scores and is more robust than existing116

methods, affecting final conclusions.117

2 Formulation & Related Work118

2.1 General Considerations119

Comparing systems with benchmarks. Bench-120

marking aims to determine the ranking of sys-121

tems based on their scores to identify the best-122

performing systems. In this process, each system123

is evaluated on individual tests within a larger set124

and assigned a score according to a specific met-125

ric. Depending on the available information, two126

approaches are typically employed. When only127

task-level information is available (i.e., the system128

scores on each task), a task-level aggregation is129

utilized to obtain the final ranking. On the other130

hand, when instance-level information is avail-131

able, i.e., the system scores on each instance of132
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Figure 1: Framework for benchmarking NLP sys-
tems with two information granularity: instance-level
(red above) and task-level (purple below). The final goal
of benchmarking is to produce a ranking (green bottom).
The instance-level aggregation allows for the derivation
of task-level information, which is used to synthesize
system performance via the final ranking (in green). X
indicates the presence of missing values.

each task test set, an instance-level aggregation 133

method is used to obtain the final system ranking. 134

The mean aggregation has been adopted to aggre- 135

gate at both the instance and task levels. 136

Benchmarking in the presence of missing data. 137

As benchmarks and models continue to grow in size 138

and complexity, the occurrence of missing system 139

performance of entire tasks becomes increasingly 140

common. This is particularly true in situations 141

where one or more systems cannot be evaluated on 142

a specific task due to factors such as the high cost of 143

running the model or the extensive computational 144

requirements of the benchmarks (Gehrmann et al., 145

2022a, 2021, 2022b). Fig. 1 illustrates the general 146

framework (i.e., with instance and system level). 147

2.2 Problem Formulation 148

This discussion will use notation similar to that in 149

the previously mentioned work (Colombo et al., 150

2022a). In essence, we are dealing with a sce- 151

nario where N systems are being compared based 152

on their performance on T different tasks. Each 153

task t ∈ {1, . . . , T} has a specific metric mt as- 154

sociated with it and has been evaluated on k test 155

instances with k ∈ {1, . . . ,Kt}, where Kt is the 156

test size of task t. The score of each system on 157

each instance of each test set is represented by 158
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the real number sn,t,k ∈ R. The final goal of159

benchmarking is to output a ranking of each sys-160

tem according to some objective criterion. We de-161

note by SN the symmetric group on N elements.162

With this objective in mind aggregating instance163

and task level information is equivalent to com-164

puting a permutation σ ∈ SN corresponding to165

the final ranking of the N systems. In this formal-166

ism, system i is the σi-th best system according to167

the considered aggregation. Equivalently, ordering168

π = (π1 ≻ π2 ≻ . . . ≻ πN ) denotes that πi is bet-169

ter than system πi+1 for all i. Let us first define the170

different granularity of benchmarking depending171

on whether we have access to instance scores.172

Aggregating with Missing Task Level Informa-173

tion. Given a set of scores (sn,t, 1 ≤ n ≤ Nt, 1 ≤174

t ≤ T ) where Nt is the number of systems for175

which we have access to the score on task t, find a176

proper aggregation procedure.177

Thus the problem of task-level information ag-178

gregation boils down to finding fT :179

fT : SN1 × · · · × SNT︸ ︷︷ ︸
T times

−→ SN . (1)180

where SNt = (sn,t, 1 ≤ n ≤ Nt) is the set of181

scores achieved by each system evaluated on the182

task t. Only Nt systems are evaluated on task t.183

In many cases, we not only have access to task-184

level performance but also individual instance-level185

scores. As a result, the challenge lies in effectively186

aggregating information at the instance level.187

Aggregating Missing Instance Level Informa-188

tion. Given a set of scores (sn,t,k, 1 ≤ n ≤189

Nt, 1 ≤ t ≤ T, 1 ≤ k ≤ Kt) where similarly as190

previously Nt is the number of systems for which191

we have access to the score on task t, find a proper192

aggregation procedure.193

Thus the problem of instance-level information194

aggregation boils down to finding f I :195

f I : S1N1
× · · · × SK1

N1
× · · · × SkNt

× · · · × S1NT
× · · · SKT

NT︸ ︷︷ ︸
T
∑
t
Kt times

−→ SN . (2)196

where SkNi
= (sn,t,k, 1 ≤ n ≤ Ni) is the set of197

the score achieved by each system evaluated on the198

task t for the specific instance k.199

Remark 1. In the context of complete ranking,200

which is also a classical setting for benchmarking201

NLP systems and has been addressed in (Colombo202

et al., 2022a), we have Nt = N for all t ∈ [1, T ].203

2.3 Handling Complete Scores in NLP System 204

Evaluation 205

The literature relies on two main techniques for 206

aggregating score information to benchmark ML 207

systems: mean aggregation and ranking-based ag- 208

gregation. 209

Mean aggregation (σµ) is the default choice for 210

practitioners. At the task level σµ is defined as : 211

σµ = argsort

(
argsort

[
1
T

∑
1≤t≤T

sn,t for 1 ≤ n ≤ N

])
212

and at the instance level : 213

σµ = argsort

(
argsort

[
1
T

∑
1≤t≤T

1
Kt

∑
1≤t≤Kt

sn,t,k for 1 ≤ n ≤ N

])
214

where argsort(u) is the permutation that sorts the 215

items in u. However, this approach has its limi- 216

tations, particularly when evaluating tasks of dif- 217

ferent natures or using evaluation scores that are 218

not on the same scale. Indeed in NLP, metrics 219

can have different ranges (or even be unbounded) 220

and systems are evaluated based on diverse criteria 221

such as quality, speed, or number of parameters. 222

In such cases, conventional rescaling or normal- 223

ization techniques may not sufficiently capture the 224

inherent difficulty of each task. 225

Ranking Based Aggregation To address the 226

challenges mentioned, researchers have proposed 227

ranking-based aggregations (Peyrard et al., 2021; 228

Colombo et al., 2022a). These methods aggregate 229

rankings instead of scores. In (Colombo et al., 230

2022a), the authors tackle the problem of generat- 231

ing a ranking by aggregating rankings, utilizing the 232

Borda count method (see Ssec. E.1 for more details 233

on Borda Count) known for its computational prop- 234

erties (Bartholdi et al., 1989; Dwork et al., 2001; 235

Ali and Meilă, 2012). Extending the Borda count 236

method is not a straightforward task either. Next, 237

we present our aggregation procedure that can han- 238

dle missing system scores on a whole task. 239

3 Ranking with missing system evaluation 240

In this section, we will outline our methodology for 241

ranking multiple systems in multi-task benchmarks, 242

even if some systems have not been evaluated on 243

one or more tasks. We use the ranking and ordering 244

notation interchangeably. 245

3.1 Partial Rankings 246

Mapping Scores to Partial Rankings To address 247

the challenge of benchmarking with missing sys- 248

tem evaluations, we propose a ranking-based ap- 249

proach that focuses on aggregating rankings rather 250
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than directly combining scores. Suppose we have251

a specific task t with a task-level score denoted as252

SNt , or in the case of instance-level information, a253

task t and instance k with score Sk
Nt

. In scenarios254

where there are missing evaluations at the task-level255

or instance-level, a partial ranking of systems is256

generated. A partial ordering represents an incom-257

plete ranking that includes only a subset of items258

from a larger set. We denote the partial ordering of259

systems as πNt = (π1 ≻ π2 ≻ . . . ≻ πNt) for the260

task-level scenario, and as πNt,k = (πk
1 ≻ πk

2 ≻261

. . . ≻ πk
Nt
) for the instance-level scenario. Here,262

πi represents the i-th best system according to the263

set SNt in the task-level scenario, while πk
i repre-264

sents the i-th best system according to πk in the265

instance-level scenario.266

Compatible Permutation When working with267

partial rankings, it is necessary to construct a com-268

plete ranking that respects the order of the evalu-269

ated systems, i.e., a linear extension of the partial270

ranking. This is accomplished by creating a com-271

patible permutation (Gessel and Zhuang, 2018),272

which is a permutation of all systems consistent273

with the partial ranking. To construct a compatible274

permutation, we begin with the partial ranking of275

the evaluated systems and extend it to include the276

missing systems while maintaining the order of the277

evaluated systems. For example, let’s consider a278

partial ordering π1 ≻ π2 based on the evaluation of279

only these two systems. If there is an additional sys-280

tem that has not been evaluated, we can construct281

three compatible permutations: π3 ≻ π1 ≻ π2,282

π1 ≻ π3 ≻ π2 and π1 ≻ π2 ≻ π3. These per-283

mutations ensure that the ordering of the evaluated284

systems is preserved while incorporating the miss-285

ing system into the complete ranking.286

Why use a combinatorial approach? Imputing287

missing data using compatible permutations en-288

ables us to leverage the Borda aggregation, inherit-289

ing its theoretical and practical advantages. Unlike290

classical methods like harmonic Fourier analysis291

(Kondor and Barbosa, 2010; Kondor and Dempsey,292

2012; Clémençon et al., 2011) or multi-resolution293

analysis (Sibony et al., 2015), our approach works,294

providing a distinct combinatorial solution for im-295

puting missing data in partial rankings.296

3.2 Our Ranking Procedures297

Our method can be described in two steps:298

Our ranking procedure in a nutshell

1. Matrix Representation of the rankings
(Sssec. 3.2.1). To harness the full potential
of the available information in partial rank-
ings, we efficiently generate all compatible
permutations from the given partial rank-
ings.

2. Final System Ranking from Matrix
Representation. To obtain the final rank-
ing of the systems, we propose a one-
level (σl) approach (see Sssec. 3.2.2) for
both task-level and instance-level informa-
tion and a two-level aggregation approach
(σ2l) for instance-level information (see
Sssec. 3.2.3).

299

3.2.1 Matrix representation of the rankings 300

Intuition. Our algorithm first summarizes the avail- 301

able information in all tasks and imputes the miss- 302

ing information in a consistent manner. To do this, 303

we use a matrix representation Mπ for each partial 304

ranking π. This matrix decomposes the ranking 305

information in pairwise variables, i.e., for every 306

pair of systems i, j there is a variable representing 307

the probability that system i outperforms system j. 308

Why using matrix representation? Using pair- 309

wise information has many advantages in ranking 310

problems with missing data since it allows decom- 311

posing the total ranking information in N(N−1)/2 312

different variables. This decomposition has been 313

used in statistical problems on partial and complete 314

rankings (Fürnkranz and Hüllermeier, 2003; Lu and 315

Boutilier, 2014a,b; Shah et al., 2017), for comput- 316

ing distances among partial rankings (Fagin et al., 317

2003), clustering (Ailon, 2010) and classification 318

(Hüllermeier et al., 2008) among others. However, 319

these problems consider specific forms of missing 320

data such as top-k rankings (Fagin et al., 2003) 321

or bucket orderings (Achab et al., 2019). Our ap- 322

proach differs from the aforementioned literature 323

in the fact that we impute the missing data in a 324

consistent manner in order to be able to deal with 325

arbitrary missing data. 326

Efficiently building Mπ. Let us consider a par- 327

tial ranking π and let Mπ ∈ [0, 1]N×N be its ma- 328

trix representation. Matrix Mπ
ij denotes the propor- 329

tion of complete rankings that are compatible with 330

π and satisfy the condition i ≻ j, where i and j 331

are distinct systems in the task. Formally, we can 332
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distinguish three cases:333

1. if system i is directly compared to system j in π.334

Set Mπ
i,j = 0 if i ≻ j else Mπ

i,j = 1.335

2. if no information is provided for either system336

i or system j in π, meaning that both systems are337

unobserved in the partial ranking. In this case,338

Mπ
i,j = 0.5, which is the natural choice when no339

information is available.340

3. if we lack direct information about the compari-341

son between system i and j in π (one system was342

evaluated and the was not), we represent this sit-343

uation by setting the corresponding matrix entry344

to the proportion of compatible permutations rank-345

ing system i higher than system j among the total346

number of compatible permutations (see Ap. E).347

A naive algorithm for generating the matrix Mπ348

from π would have factorial complexity and it is349

thus exorbitant in practice for a relatively small350

number of systems, say N > 10. One of the351

contributions of our solution is to reduce the352

complexity to O(n3) by efficiently computing353

Mπ
i,j . The closed-form expressions for Mπ

i,j as well354

as the proof for uniformity can be found in Ap. E.355

3.2.2 σl: A one level approach356

Intuition. At this stage, we have demonstrated357

the construction of a matrix Mπ for a given par-358

tial ranking. However, in benchmarking scenarios,359

systems are typically evaluated on multiple tasks360

(in the case of task-level evaluation) or on multiple361

instances and tasks (in the case of instance-level362

evaluation), requiring the combination of multiple363

partial rankings. In this section, we will describe364

our approach for performing the one-level aggrega-365

tion to address this requirement.366

Combining Multiple Partial Rankings for367

Benchmarking. To combine the different matrices368

into a single matrix M we sum over all the tasks369

(in the case of task-level information) or instances370

and tasks (in the case of instance-level informa-371

tion). Formally, this is achieved by performing the372

following operation to obtain the combined matrix373

M I =
∑

t∈[1,T ]

∑
k∈[1,Kt]

Mπrt,k , where Mπrt,k rep-374

resents the partial ranking induced on task t and375

instance k. Similarly, for the task level we define376

MT =
∑

t∈[1,T ]

Mπrt where Mπrt represents the377

partial ranking induced on task t.378

Obtaining the final system ranking In the final379

step, our goal is to obtain the final system ranking380

σl based on the matrix M I or MT . To achieve this, 381

we use the Borda Count method, which involves 382

computing the column-wise sum of the matrix and 383

return the permutation that sorts the scores in in- 384

creasing order. This step aligns with the approach 385

proposed in (Colombo et al., 2022a). Formally: 386

σl = argsort (argsort [
∑

iMi,0, · · · ,
∑

iMi,N ]) . (3) 387

Here, M represents the matrix MT for task-level 388

information, and M I for the instance-level. 389

3.2.3 σ2l: A two-level approach 390

Intuition. In the case of instance-level information, 391

we also present a two-step procedure that draws 392

inspiration from the widely adopted two-step mean 393

aggregation approach. 394

Procedure. In the first step, we apply the task- 395

level aggregation approach to generate individual 396

rankings for each task t, resulting in T different 397

permutations. In the second step, we aggregate 398

these multiple rankings using the Borda aggrega- 399

tion method. Formally σ2l can be computed as: 400

1. For each task t, compute M t =
∑

k∈[1,Kt]

Mπrt,k 401

2. For each task t, compute σ2l,t = 402

argsort

(
argsort

[∑
i

M t
i,0, · · · ,

∑
i

M t
i,N

])
. 403

3. Compute the Borda count aggregation σ2l of 404
[σ2l,1, · · · , σ2l,t, · · · , σ2l,T ].(Colombo et al., 2022b) 405

3.3 Confidence Intervals for σl 406

To evaluate systems with missing data, it is cru- 407

cial to measure the uncertainty of partial rankings. 408

In the previous section, we discussed combining 409

partial rankings into a complete ranking. In this sec- 410

tion, we analyze the confidence of our data regard- 411

ing pairwise comparisons of system performance. 412

Under any ranking model such as Mallows 413

Model (Fligner and Verducci, 1986) or Plackett- 414

Luce (Plackett, 1975), Mπ
ij are random variables of 415

known expected value. In the previous section, we 416

computed the empirical value M̂πij, approximat- 417

ing the true value Mπij. Here, we want to know 418

how close these two quantities are. Formally, we 419

are looking for a confidence interval of level δ, that 420

is the value for cij around M̂π
ij that contains Mπ

ij 421

with high probability, P (|M̂π
ij −Mπ

ij | ≥ cij) ≤ 422

1 − δ. Noting that 0 ≤ Mπ
ij ≤ 1, we can use the 423

Hoeffding inequality (Hoeffding, 1994) to compute 424

the value of the confidence interval: 425

cij =

√
− log δ

2zij
, (4) 426
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(a) GLUE (b) SGLUE (c) XTREM

Figure 2: Task-Level Robustness Experiment. We com-
pare the robustness of our method σl with the mean
aggregation method σµ by measuring the Kendall τ cor-
relation coefficient between their respective rankings
after removing a proportion η of scores and by consid-
ering the whole scores.

where zij is the number of times the systems have427

been compared.428

Intuition: to determine the significance of the429

difference in performance between system i and430

j, we can compare Mij to 0.5. Thus, i performs431

better than j iff Mπ
ij > .5. If the difference between432

Mij and 0.5 is small, the performance difference433

between the two systems may not be statistically434

significant, indicating that we cannot determine435

which system performs better than the other.436

The confidence interval developed above says437

that the true parameter Mπ
ij is included in the inter-438

val [M̂π
ij − cij , M̂

π
ij + cij ] with high probability. It439

follows that if 0.5 is not in this interval then we can440

say that one of the systems is better than the other441

with a high probability. Similar approaches have442

been proposed to find complete rankings and best-443

ranked systems with high probability (Busa-Fekete444

et al., 2014; Szörényi et al., 2015).445

3.4 Baseline methods446

To date, there is no established method for bench-447

marking NLP systems with missing data. To com-448

pare our proposed algorithm to existing methods,449

we consider a baseline approach that ignores miss-450

ing data and relies on mean aggregation. This ap-451

proach has been used in previous studies (Pfeiffer452

et al., 2022; Lin et al., 2022; Martin et al., 2020;453

Guibon et al., 2021; Peng et al., 2019), and we will454

refer to it as σµ in our experiments.455

4 Synthetic Experiments456

4.1 Data Generation457

The analysis of a toy experiment involves synthetic458

scores generated from N = 20 systems, T = 20459

tasks, and K = 20 instances. Each system’s per-460

formance is modeled by a Gumbel random variable461

Figure 3: Synthetic experiment. Robustness for missing
data η and different scaling corruptions λ.

Gn with a center at ϕ × n and a scale of β = 1, 462

where ϕ is a dispersion parameter between 0 and 1. 463

The scores of each system, s (n, t, k), are indepen- 464

dent and identically distributed samples of Gn cen- 465

tered at ϕ× n with a scale of β = 1. Furthermore, 466

the scores from different systems are sampled inde- 467

pendently. Since the difference between Gn+1 and 468

Gn follows a logistic distribution with a mean of ϕ 469

and a scale of 1, the probability that system n+ 1 470

performs better than system n is at least 0.5, i.e., 471

P (Gn+1 −Gn > 0) ≥ 0.5. Thus, the ranking of 472

systems for all k and t is a realization of the true 473

ranking [1, · · · , N ], with a noise term controlled 474

by the dispersion parameter ϕ. The extreme scenar- 475

ios are ϕ = 0 and ϕ = 1, where ϕ = 0 means that 476

all scores s (n, t, k) have the same distribution and 477

ϕ = 1 results in a strong consensus and a clear sys- 478

tem ranking. Unless specifically mentioned, each 479

experiment is repeated 100 times per data point. 480

4.2 Robustness To Scaling 481

In order to conduct a more detailed comparison 482

of the ranking, we introduce a corruption in the 483

scores of a specific task by rescaling them with 484

a positive factor of λ. For this experiment, the 485

corrupted tasks are randomly chosen. Although 486

this corruption does not have any impact on our 487

ranking process (since the ranking induced by a 488

task-instance pair remains unchanged), it progres- 489

sively disrupts the mean aggregation procedure as 490

the value of λ increases (see Fig. 3 for detailed 491

results). This experiment further validates the use 492

of rankings in NLP benchmarking, as these met- 493

rics involve different natures of measurements (e.g., 494

BLEU score vs. number of parameters or speed) 495

and can have bounded or unbounded scales. 496
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Figure 4: Confidence analysis.

4.3 Pairwise Confidence Analysis497

To determine the number of system comparisons498

required to achieve a desired confidence level of499

δ, we use Eq. 4. Fig. 4 presents the results for500

two confidence levels (δ). The graph illustrates501

the number of system pairs for which 0.5 is not502

within the confidence interval, plotted against the503

number of comparisons for different values of m504

and ϕ. As expected, when the rankings are more505

concentrated (i.e., when ϕ is closer to 1), fewer506

system comparisons are needed to achieve a high507

number of valid system comparisons. Real-world508

benchmarks usually have over 500 pairs.509

5 Empirical Experiments510

In this section, we benchmark our methods on real511

rankings. We introduce a dataset with over 100 mil-512

lion scores, surpassing previous datasets by several513

orders of magnitude (see Ssec. 5.1 and Ap. C).514

5.1 A Comprehensive Collection of NLP515

System Scores516

Our dataset builds upon the one used in (Colombo517

et al., 2022a) and includes two types of datasets:518

those with task-level information and those with519

instance-level information.520

Datasets with Task Level Information Our521

datasets are based on GLUE (Wang et al., 2018),522

SGLUE (Wang et al., 2019), and XTREME (Hu523

et al., 2020), which include tasks of varying na-524

tures such as accuracy, F1-score, and mean square525

errors. In addition, we collected data from the526

GEM Benchmark (Gehrmann et al., 2021), which527

was an ideal use case for our methods as it encom-528

passes missing data by design (as shown in Table529

3 of (Gehrmann et al., 2021)) and includes evalua-530

tions of various natures such as lexical similarity,531

semantic equivalence, faithfulness evaluation, di-532

versity, and system characterization (i.e., size of533

the vocabulary).534

Datasets with Instance Level Information We535

did not use the data from (Peyrard et al., 2021)536

(a) Dial. PC (b) COCO (c) SummEval

Figure 5: Instance-Level Robustness Experiment. We
evaluate the robustness of our proposed aggregation
methods, namely σ2l, σl, and the mean aggregation
method σµ, by randomly removing a proportion η of all
instances on a specific task for a specific system.

for the datasets with instance-level information be- 537

cause they did not provide the sentence and refer- 538

ence test required to add more evaluation metrics 539

or more systems. 540

Therefore, we collected all the data from scratch 541

and extended the dataset in two ways. First, we 542

collected data from five distinct tasks - dialogue 543

(Mehri and Eskenazi, 2020), image description 544

(Young et al., 2014), summary evaluation (Dang 545

et al., 2008; Owczarzak and Dang, 2011; Bhandari 546

et al., 2020; Fabbri et al., 2021), data-to-text (Gar- 547

dent et al., 2017; Zhou and Lampouras, 2020), and 548

translation (Ranasinghe et al., 2021). For transla- 549

tion, we added datasets from WMT15 to WMT21 550

in several languages such as en, ru, ts, and others. 551

Secondly, we expanded the set of used met- 552

rics from 10 to 17, including Bleu (Papineni 553

et al., 2002), MoverScore (Zhao et al., 2019) and 554

BERTScore (Zhang et al., 2019a). 555

Overall, our benchmark grew from 250K scores 556

to over 131 M score. This extensive data work is 557

one of the core contributions of this paper, and we 558

believe it will be valuable for future research. A 559

more detailed description of the datasets can be 560

found in Ap. C. 561

5.2 Task-Level Benchmarking in Real-World 562

Scenarios 563

In this section, we explore aggregating missing 564

data with task-level information. First, we test the 565

robustness of our proposed method (σl) against the 566

mean aggregation method (σµ) and then we quan- 567

tify the difference between the two output rankings. 568

σl is more robust than σµ. To compare the effec- 569

tiveness of aggregation methods in handling miss- 570

ing values, we randomly remove a proportion η of 571

the task-level data and measure robustness by com- 572

puting the Kendall τ between the rankings obtained 573
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with and without missing values. From Fig. 2, we574

see that with no missing values (i.e., η = 0), the575

aggregation methods yield the same rankings as576

the full data, with τ = 1. Conversely, when all577

values are missing (i.e., η = 1), there is no corre-578

lation. Overall, we find that σl achieves a higher579

correlation, with a large improvement of more than580

10 points compared to other methods These results581

demonstrate that, on average, the rankings remain582

more stable when using our proposed method.583

σl outputs a different ranking than σµ. We584

evaluated the correlation between rankings in the585

robustness experiment shown in Fig. 2. We com-586

pared the rankings from σl and σµ by computing587

the averaged τ across varying proportions of miss-588

ing data. Results in Tab. 1 show a weak correla-589

tion between the rankings, indicating they produce590

different outcomes. This is further supported by591

Tab. 2, which shows the percentage of times the top592

1 and top 3 rankings differ in the 2k generated rank-593

ings. These results demonstrate that our ranking594

procedure not only is more robust but also yields595

different conclusions when benchmarking systems596

with missing tasks.597

τσl↔σµ

GLUE 0.17 ±0.24

SGLUE 0.33 ±0.27

XTREM 0.26 ±0.26

GEM 0.36 ±0.36

Table 1: Agreement mea-
sured by Kendall τ corre-
lation.

Dataset top 1 top 3
GEM 0.52 0.25

SGLUE 0.20 0.15
GLUE 0.10 0.07

XTREM 0.19 0.09

Table 2: Percentage of
times the top 1 and top 3
systems are the same be-
tween σl and σµ.

598

5.3 Instance-Level Benchmarking in599

Real-World Scenarios600

In this section, we evaluate the robustness of σ2l,601

σl, and the baseline σµ.602

σ2l and σl are more robust than σµ. Simi-603

larly to the previous robustness experiment, we604

randomly remove a proportion η of scores by dis-605

carding all instances of a specific task. The goal606

of this missing value sampling is to simulate how607

missing scores may occur when certain systems are608

not evaluated on specific tasks. For each method,609

Fig. 5 reports the τ correlation coefficient between610

the ranking obtained with missing values and the611

ranking obtained with complete scores.612

Both σ2l and σl produce highly correlated613

rankings, while being different from σµ. We614

conducted a replication of the agreement analysis615

presented in Ssec. 5.2 and present the findings in616

Figure 6: Confidence interval analysis on WMT en-de
for a corruption level of η = 0.2 and a confidence level
δ = 0.01. The final ranking can be seen on the x-axis:
left to right is best to worst

Tab. 3 and Tab. 4. Our results align with those of 617

our previous experiments, demonstrating that both 618

of our ranking-based procedures (σ2l and σl) are 619

more robust in the presence of missing data and 620

yield different rankings than σµ. 621

Corr.
τσ2l↔σl 0.80 ±0.22

τσl↔σµ 0.20 ±0.28

τσµ↔σ2l 0.19 ±0.28

Table 3: Agreement.

Top 1 Top 3
σ2l vs σl 0.67 0.36
σl vs σµ 0.21 0.09
σµ vs σ2l 0.19 0.09

Table 4: Top 1 & 3 analysis.

622

5.4 Statistical Analysis 623

Confidence interval for practitioners. The confi- 624

dence interval is valuable for informing additional 625

comparisons between systems i and j. A narrow 626

interval indicates a reliable comparison, while a 627

wider interval suggests more uncertainty and the 628

need for additional comparisons across tasks. For 629

example, in Fig. 6, we report the results of apply- 630

ing σl on WMT en-de with a confidence level of 631

δ = 0.1. Green value in position i < j illustrate 632

that system 0.5 ̸∈ [M̂π
ij − cij , M̂

π
ij + cij ] and i ≻ j 633

with high probability. The scale of green displays 634

the distance between 0.5 and the CI, so the greener 635

the more i ≻ j. The results reveal distinct blocks 636

where top systems (i.e., 9,1,16,15) significantly 637

outperform others with high confidence. Near the 638

diagonal, the elements indicate relatively closer 639

performance of the systems. 640

6 Conclusions 641

Our study sheds light on the limitations of the 642

conventional mean-aggregation when dealing with 643

missing data. Our novel statistical perspective and 644

aggregation procedures that are both robust and 645

grounded in social choice theory. Overral, the one- 646

level aggregation method (σl) stands out as the 647

most robust approach. 648
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7 Limitations649

The initial limitation we pinpoint is the task’s re-650

liance on the noise model applied to the data, which651

affects the outcomes. In an extreme scenario where652

a system lacks all measures, our method might not653

consistently rank it. Additional edge cases could654

be investigated, such as a system being poor in only655

one task with missing data, leading to potentially656

misleading ranking. To address this, we introduced657

the confidence interval in Section 3.3, supported658

by results in Section 5.4, to effectively recognize659

such challenging scenarios. It’s important to high-660

light that these edge cases can impact all ranking661

procedures involving missing data.662

Another limitation pertains to our ranking pro-663

cedure’s lack of consideration for user preferences664

regarding tasks. For instance, a user might em-665

phasize certain tasks, such as A, D, and H, with666

task A carrying greater importance than the others.667

A natural approach to address this issue involves668

adopting a weighted variation of the Borda count669

or drawing inspiration from (Dwork et al., 2001).670

Although this avenue remains unexplored within671

our current work, it holds promise as a captivating672

direction for future investigations.673
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A Extended Related Work and Other1260

Baselines methods1261

A.1 More on missing data in NLP.1262

Another approach to handling missing data in1263

benchmarks would be to create new datasets, how-1264

ever, it can be a sluggish, costly, and expertise-1265

demanding process (see footnote 5 in (Lin et al.,1266

2021)). Moreover, there are situations where col-1267

lection becomes infeasible, such as when working1268

with private datasets, calling for the need to develop1269

tools that can rank systems with missing scores.1270

A.2 Why not directly imputing data in the1271

score?1272

Directly imputing values as scores is not the cur-1273

rent practice in NLP. In fact, this approach would1274

be inadequate due to potential variations in metric1275

scale and difficulty, leading to a failure in accu-1276

rately capturing task difficulty (as mentioned above1277

and in (Dolan and Brockett, 2005)). To illustrate1278

this to we present some experiments.1279

(a) WMT 2018 en-ru (b) WMT 2019 zh-en

Figure 7: Imputation methods are not robust to scal-
ing. To further compare the ranking, we corrupt the
scores of a given task by re-scaling them by a factor λ.
Whereas it does not affect our ranking procedure (ev-
ery ranking induced by a task-instance pair remains the
same), it increasingly perturbs the mean aggregation and
other imputation procedures as λ increases. ˜σmed corre-
sponds to the median imputation and σ̃µ corresponds to
the mean imputation.

(a) WMT 2018 en-ru (b) WMT 2019 zh-en

Figure 8: Additional Instance-Level Robustness Ex-
periment (see Figure 17). We evaluate the robustness
of our proposed aggregation methods, namely σ2l, σl,
and the mean aggregation method σµ, by randomly re-
moving a proportion η of all instances on a specific task
for a specific system.

A.3 Ablation experiments 1280

An interesting experiment is checking how the 1281

performance of the different methods vary when 1282

changing the number if systems, tasks or utter- 1283

ances. In the following experiments, we take the 1284

WebNLG2020 English dataset. For each abla- 1285

tion experiment—whether it’s concerning systems, 1286

tasks, or metrics—and for each η value within the 1287

set 0.7, 0.8, 0.9, we randomly select the systems, 1288

tasks, or utterances to retain. Then, in the same 1289

way as the robustness experiment, we compute cor- 1290

relations and iterate this process 20 times. Results 1291

are presented in Figures 9, 12 and 11. As we can 1292

see, the correlations are consistent when changing 1293

the number of these parameters. 1294

(a) η = 0.7 (b) η = 0.8

(c) η = 0.9

Figure 9: Ablation experiment on the number of systems
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(a) η = 0.7 (b) η = 0.8

(c) η = 0.9

Figure 10: Ablation experiment on the number of tasks

(a) η = 0.7 (b) η = 0.8

(c) η = 0.9

Figure 11: Ablation experiment on the number of utter-
ances

Another similar experiment we investigate here1295

is when only keeping the top k systems (determined1296

for each aggregation method using the complete1297

dataset). Here are the results :1298

(a) η = 0.7 (b) η = 0.8

(c) η = 0.9

Figure 12: Ablation experiment on the top k systems

A.4 Other ideas of future work 1299

In the future, we would like to explore several re- 1300

finements of the method: 1301

• Impact of the inter-task correlation. The 1302

task correlation can impact the choice of the 1303

best system. In the future, we would like to 1304

study the impact of the choice of the ranking 1305

procedure in depth. 1306

• Impact of misleading evaluation. Evalu- 1307

ation in NLP can be noisy due to the vari- 1308

ety in language and lack of metric robustness 1309

(Al Sharou et al., 2021; Rodríguez-Cantelar 1310

et al., 2023). Future work will include the 1311

consideration of this factor when choosing the 1312

aggregation method. 1313

• Comparison with the ANOVA method (St 1314

et al., 1989). Although this is slightly out- 1315

side the scope of the paper, we would like to 1316

compare our confidence interval with the one 1317

obtained with the ANOVA method. 1318

A.5 More on the technical contribution of the 1319

algorithm. 1320

Our technical contribution boils down to extending 1321

the Borda aggregation to the case of missing data 1322

(aka incomplete rankings). In the ranking literature, 1323

two types of approaches can be identified to deal 1324

with partial rankings: Relying on top-k rankings. 1325

In this case, all the systems are evaluated but only 1326

those that are ranked in the first k positions are 1327

provided. There are many methods to aggregate 1328
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and all in this setting, for example, (Ailon, 2010).1329

This is different from our scenario where some1330

systems cannot be evaluated on particular tasks.1331

Relying on incomplete rankings. In this case, only1332

k systems are evaluated on a specific task. This1333

fits our scenario. Rank aggregation/statistical anal-1334

ysis in the case of k=2 is called pairwise ranking1335

and is well handled by the literature (Knuth, 1970;1336

Lu and Boutilier, 2014a; Plackett, 1975; Popović,1337

2017; Zhang et al., 2018). These approaches are1338

limited and only use pairwise comparisons which1339

can lead to paradoxes when ranking more systems.1340

In this paper, we introduce an aggregation proce-1341

dure for arbitrary values of k. Our main technical1342

contribution is to extend the Borda aggregation to1343

incomplete rankings. To the best of our knowledge,1344

this is the only paper dealing with aggregation -not1345

specifically Borda- of incomplete rankings.1346

B Ethical Statement & Limitation of our1347

work1348

It is important to consider the potential ethical im-1349

plications and limitations of our work. One ethical1350

concern is the potential bias in the reranking pro-1351

cess, as the selection of the "best" hypothesis may1352

favor certain perspectives or reinforce existing bi-1353

ases present in the training data. Care should be1354

taken to ensure fairness and mitigate any potential1355

bias before applying our methods.1356

C Dataset Description1357

C.1 Task Level Information1358

We provide additional details on the data collection1359

for Task Level Information.1360

We gathered data from four benchmark studies,1361

namely GLUE (General Language Understanding1362

Evaluation) (Wang et al., 2018), SGLUE (Super-1363

GLUE) (Wang et al., 2019)1, XTREME (Hu et al.,1364

2020) and GEM. In the GLUE dataset, there were a1365

total of 105 systems evaluated across nine different1366

tasks: CoLA, SST-2, MRPC, STS-B, QQP, MNLI,1367

QNLI, RTE, and WNLI (Warstadt et al., 2019;1368

Socher et al., 2013; Dolan and Brockett, 2005; Cer1369

et al., 2017; Rajpurkar et al., 2016; Williams et al.,1370

2017a; Dagan et al., 2005; Giampiccolo et al., 2007;1371

Bentivogli et al., 2009; Levesque et al., 2012). The1372

SGLUE dataset consisted of 24 systems evaluated1373

on 10 different tasks: BoolQ, CB, COPA, Mul-1374

tiRC, ReCoRD, RTE, WiC, WSC, AX-b, and AX-g1375

1Results can be accessed at https://super.
gluebenchmark.com/

(Clark et al., 2019; De Marneffe et al., 2019; Roem- 1376

mele et al., 2011; Khashabi et al., 2018; Zhang 1377

et al., 2018; Levesque et al., 2012; Pilehvar and 1378

Camacho-Collados, 2018). The XTREME bench- 1379

mark comprised 15 systems and included tasks 1380

such as sentence classification (XNLI and PAXS- 1381

X), structured prediction (Universal Dependen- 1382

cies v2.5 and Wikiann), sentence retrieval (BUCC 1383

and Tatoeba), and question answering (XQuAD, 1384

MLQA, TyDiQA-GoldP) (Conneau et al., 2018; 1385

Williams et al., 2017b; Yang et al., 2019; Zhang 1386

et al., 2019b; Nivre et al., 2018; Rahimi et al., 2019; 1387

Pan et al., 2017; Zweigenbaum et al., 2018, 2017; 1388

Artetxe and Schwenk, 2019; Artetxe et al., 2019; 1389

Rajpurkar et al., 2016; Lewis et al., 2019; Clark 1390

et al., 2020). 1391

Each benchmark employed a variety of metrics 1392

with different scales, including accuracy, f1, and 1393

correlation. Additionally, the GEM benchmark in- 1394

volved 22 systems evaluated using diverse metrics 1395

such as prediction length, vocabulary size, entropy, 1396

Rouge, NIST, Bleu’, Meteor’, Bleurt, Nubia, and 1397

Bertscore. 1398

C.2 Instance Level Information 1399

In this particular setting, our primary focus is on 1400

evaluating the performance of natural language 1401

generation (NLG) systems, as these scores are 1402

among the easiest to collect. We concentrate on 1403

five different tasks: summary evaluation, image 1404

description, dialogue, and translation. For sum- 1405

mary evaluation, we utilize the TAC08 (Dang 1406

et al., 2008), TAC10, TAC11 (Owczarzak and 1407

Dang, 2011), RSUM (Bhandari et al., 2020), and 1408

SEVAL (Fabbri et al., 2021) datasets. Regarding 1409

sentence-based image description, we rely on the 1410

FLICKR dataset (Young et al., 2014). For dialogue, 1411

we make use of the PersonaChat (PC) and Topi- 1412

calChat (TC) datasets (Mehri and Eskenazi, 2020). 1413

For the translation part, we added datasets from 1414

WMT15 (Stanojević et al., 2015), WMT16 (Bojar 1415

et al., 2016), WMT17 (Bojar et al., 2017), WMT18 1416

(rej Bojar et al., 2018), WMT19 (Barrault et al., 1417

2019), WMT20 (Loïc et al., 2020), and WMT21 1418

(Farhad et al., 2021) in several languages such as 1419

en, ru, ts, and others. For all datasets except MLQE, 1420

we consider automatic metrics based on S3 (both 1421

variant pyr/resp) (Peyrard et al., 2017), ROUGE 1422

(Lin, 2004) (including five of its variants (Ng and 1423

Abrecht, 2015)), JS [1-2] (Lin et al., 2006), Chrfpp 1424

(Popović, 2017), BLEU, BERTScore (Zhang et al., 1425

2019a), and MoverScore (Zhao et al., 2019). For 1426

17
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the MLQE dataset, we solely consider several1427

versions of BERTScore, MoverScore, and Con-1428

trastScore. Additionally, we incorporate human1429

evaluation, which is specific to each dataset.1430

C.3 Data Statistics1431

To give to the reader a better sense of the richness of1432

our benchmark, we report in Fig. 13 the statistics on1433

our dataset. We demonstrate a diverse distribution1434

of system counts across various datasets, ranging1435

from a minimum of 2 systems to a maximum of 601436

systems. Regarding the total number of sentences1437

(instances) and the average number per system, as1438

depicted in Fig. 14 and Fig. 15, the smaller datasets1439

consist of several hundred sentences in total, while1440

the larger datasets encompass up to several hundred1441

thousand sentences in total.1442

D Additional Real-Data Experiments1443

In this dedicated section, we aim to provide curious1444

readers with a deeper understanding of the capabili-1445

ties of our methods by presenting additional figures1446

and experimental results. Through these supple-1447

mentary materials, we intend to shed more light on1448

the effectiveness and potential of our approaches,1449

enabling readers to gain valuable insights into our1450

methods.1451

D.1 Example of Ranking with missing data on1452

XTREM1453

In this section, we aim to illustrate the distinction1454

between different rankings obtained using σl and1455

σµ on XTREM dataset for a specific noise real-1456

ization. Using Tab. 5, we obtain the following1457

rankings:1458

• σl gives the following ranking : M0 > M3 >1459

M2 > M1 > M7 > M5 > M4 > M8 >1460

M91461

• σµ gives the following ranking : M7 >1462

M4 > M0 > M6 > M9 > M2 = M3 >1463

M1 > M8 > M5.1464

We can see that the two methods disagree on the1465

best systems in this case. However, as can be seen1466

in our experiments, the ranking-based method is1467

more robust.1468

D.2 Additional Robustness Experiment on1469

task level datasets1470

In this section, we report additional experiments on1471

the task level robustness.1472

(a) XTREM

(b) GEM

Figure 16: Robustness experiments on XTREM and
GEM
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Model Classification Structured Prediction Question Answering Sentence Retrieval

M0 90.3 X 76.3 93.7
M1 90.1 X 75.0 X
M2 89.3 75.5 75.2 92.4
M3 89.0 76.7 73.4 93.3
M4 88.3 X X X
M5 X X X X
M6 87.9 75.6 X 91.9
M7 X X X 92.6
M8 X 75.4 X X
M9 88.2 74.6 X 89.0

Table 5: XTREM dataset with 10 systems and 18 missing values (η = 0.45)

D.3 Additional Robustness Experiment on1473

instance level datasets1474

(a) Dialogue PC (b) Dialogue TC

(c) Flickr (d) COCO

(e) SummEval (f) TAC 08

(g) TAC 09 (h) TAC 11

(i) WebNLG2017 (j) WebNLG2020 en

(k) WebNLG2020 ru (l) WMT20 cs-en

(m) WMT20 pl-en (n) WMT21 en-de
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(o) WMT21 en-ru (p) WMT21 challengeset
de-en

(q) WMT21 challengeset
en-de

(r) WMT21 challengeset
zh-en

(s) WMT21 florestest
bn-hi

(t) WMT21 florestest
hi-bn

(u) WMT21 florestest
xh-zu

(v) WMT21 florestest
zu-xh

(w) WMT21 cs-en (x) WMT21 en-cs

(y) WMT21 de-fr (z) WMT21 en-ha

(aa) WMT21 en-is (ab) WMT21 fr-de

(ac) WMT21 ha-en (ad) WMT21 is-en

(ae) WMT21 ja-en (af) WMT21 ru-en

(ag) WMT21 zh-en (ah) WMT21 tedtalks
en-de
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(ai) WMT21 tedtalks
en-ru

(aj) WMT21 tedtalks
zh-en

Figure 17: Instance-Level Robustness Experiment. We
evaluate the robustness of our proposed aggregation
methods, namely σ2l, σl, and the mean aggregation
method σµ, by randomly removing a proportion η of all
instances on a specific task for a specific system. Each
experiment is repeated 100 times for each proportion.

D.4 Additional Confidence Analysis on Task1475

Level1476

In this section, we present additional experiments1477

conducted on four instance-level datasets. We com-1478

puted confidence intervals for the instance-level,1479

similar to the approach used in Section ??. Con-1480

sistent with the main findings in the paper, our1481

observations reveal that closer performance among1482

systems is indicated near the diagonal and we can1483

clearly observe group of systems. This analysis of1484

confidence intervals provides valuable insights into1485

the relative performance of different systems.1486

(ak) TAC08

(al) WMT21 en-de

(am) WMT21 en-ha

(an) WMT21 en-zh

Figure 18: Confidence intervals for various instance
level datasets with η = 0.2 and δ = 0.01

E On the Rankings 1487

This section gathers technical considerations on the 1488

ranking methods used in our algorithm. 1489

E.1 Borda Count on permutations (in vector 1490

notation) 1491

Remark 2. The Borda count is a ranking system 1492

that aggregates a set of permutations σ1, . . . , σL ∈ 1493
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SN by summing the ranks of each system and then1494

ranking the obtained sums. The procedure is as1495

follows:1496

1. Compute sumn :=
L∑
l=1

σl
n for every 1 ≤ n ≤1497

N ,1498

2. Output σ := Borda(σ1, . . . , σL) ∈1499

SN that ranks the sums, sumn1500

(argsort(argsort(sum1, . . . , sumT ))).1501

E.2 Borda Count on permutations in pairwise1502

matrix notation1503

In Sssec. 3.2.1 we argue that a ranking σ ∈ SN1504

can also be written as a pairwise matrix and in1505

Sssec. 3.2.2 and Sssec. 3.2.3 we further elaborate1506

on how to write ranking data-set D in pairwise1507

matrix form MD ∈ [0, 1]N×N . Under this notation,1508

the final aggregated ranking σ for the Borda count1509

algorithm can be shown to be equivalent to the1510

permutation that sorts the sum of the columns in1511

MD,1512

σ = argsort
(
argsort

[∑
iM

D
i,0, · · · ,

∑
iM

D
i,N

])
. (5)1513

E.3 Generating all compatible rankings1514

In this section, we detail the computation of the1515

Mπ
i,j when item i is not evaluated and item j is1516

evaluated. Let us fix some notation first. For the1517

following, k is the number of observed systems in1518

π, item i is not evaluated, item j is evaluated and1519

r is the (partial) rank of item j. Under this setting,1520

we set Mπ
i,j = p(n, k, r), i.e., the proportion of1521

compatible rankings that rank i before j when π1522

has k items. The closed-form expressions for these1523

quantities are given in Eq. 6. Here we note that1524

t(n, k) is the total number of rankings of n items1525

compatible with π, Sa
b is the number of shuffles1526

of two lists of lengths a and b and V a
b denotes the1527

variations of a out of b items, i.e., the number of1528

possible arrangements of selections of a objects1529

out of b, where the order of the selected objects1530

matters.1531

p(n, k, r) =
n−k−1∑
i=0

V i
n−k−1 ∗ (i+ 1)

∗ Sr
i+1(n− k − i− 1)!

∗ Sn−k−i−1
k−r−1 /t(n, k)

t(n, k) = (n− k)! ∗ Sk
n−k

Sa
b = (a+ b)!/(a! + b!)

V a
b = a!/(b− a)!

(6) 1532

Remark 3. A naive algorithm for generating the 1533

matrix Mπ from σ ∈ SN−rtk would have factorial 1534

complexity and it is thus exorbitant in practice for 1535

a relatively small number of systems, say N > 10. 1536

However, our solution has a complexity of O(n3) 1537

and can be precomputed once at the beginning of 1538

the benchmarking process to efficiently generate 1539

the pairwise matrix Mπ from partial ranking π. 1540

E.4 Proof of uniformity 1541

In this section, we give the intuition and the proof 1542

for Eq. 6. This section follows a classic strategy on 1543

Enumerative Combinatorics (Stanley, 1986; Wilf, 1544

1999): if we can define an algorithm to gener- 1545

ate compatible permutations uniformly at random 1546

(such as that in Algorithm 2), we can easily adapt 1547

it to count those permutations to yield an efficient 1548

counting expression, as we do in Eq. 6. 1549

We start by introducing 2 basic operations of 1550

permute and shuffle, along with the number of 1551

possible outcomes of these operations. 1552

Permute a list - permute(l) Given a list of n ob- 1553

jects, generate a permutation of these items. There 1554

are n! possible ways of permuting n items. An 1555

efficient way for generating random permutations 1556

is the Fisher-Yates-Knuth algorithm (Knuth, 1970). 1557

Shuffle two lists - shuffle(A,B) Given two 1558

disjoint lists of distinct elements A,B of lengths 1559

a, b respectively, generate a permutation σ of the 1560

two lists of length a + b in such a way that the 1561

relative order of the items in the lists A and B is 1562

respected in σ. This name and idea is based on 1563

the popular way of shuffling two decks of cards 1564

(Bayer and Diaconis, 1992). Its easy to see that 1565

Algorithm ?? generates every possible shuffling 1566

with equal probability. The total number of shuffles 1567

of lists A,B is given in Eq. 6 as Sa
b . 1568

Counting complete, compatible rankings At 1569

this point, we are ready to detail the expression of 1570

p(n, k, r) in Eq. 6, both the intuition and the proof 1571

of uniformity. For this, we propose in Algorithm 2 1572
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Algorithm 1: Generate a random shuffle of
lists A and B

1 for i ∈ [a+ b] do
2 rand← random number in [0, 1];
3 if rand > 0.5 ∨B is empty ∧ A is non

empty then
4 σ(i) = pop(A);
5 else
6 σ(i) = pop(B);
7 end
8 end

to sample complete, compatible rankings and then1573

adapt this sampling algorithm to a counting algo-1574

rithm in Theorem 1.1575

Notation We start by fixing the notation. Let1576

β be a partial ranking of length k which includes1577

item j in rank r, β1 ≻ . . . ≻ βr = j ≻ . . . ≻ βk.1578

Let η be a disjoint set of n− k items that have not1579

been ranked and which includes the unobserved1580

item i. The goal is to generate (i) a compatible1581

ranking with β (a ranking σ of all the items in such1582

a way that the relative ordering of the items of β is1583

maintained) and (ii) which ranks item i before item1584

j. We denote the "s-head" of a list to the items in1585

the first s positions in that list.1586

Intuition We are now ready to explain the intu-1587

ition. Each of the possible compatible permutations1588

that rank i before j is generated in the following1589

way:1590

Algorithm 2 generates permutations that rank1591

item j at position s, item i before j and we iterate1592

for all possible values of s. First, in line line 21593

we select s− 1 items randomly from η, where the1594

order of the items matter (i.e., a variation). Then,1595

we insert item i in a random position of this list,1596

denoted ηhead in line 3. In line 4 we shuffle these1597

two lists, i.e., ηhead and the r−head of β, βhead,1598

i.e., the sublist with the items that are ranked before1599

j. The result of the shuffling process is the s+ r-1600

head of the output permutation σ. We permute1601

the rest of the unobserved items denoting these list1602

ηtail, in line 6. Finally, we shuffle this list ηtail1603

and the k − r-tail of η in line 7. The result of1604

this shuffle is the tail of σ. Finally, in line 8 we1605

return the concatenation of σhead, j, σtail, which1606

is clearly a compatible permutation with β as the1607

relative order of the items in β is maintained in the1608

output.1609

It is easy to see that Algorithm 2 generates the1610

Algorithm 2: Generate a random ranking
among those compatible with β

1 for s ∈ [n] do
2 ηhead ← s− 1 items from η where the

order matters ;
3 ηhead ← insert i in ηhead ;
4 σhead ← shuffle(ηhead, βhead) ;
5 ηtail ← η \ ηhead ;
6 ηtail ← permute(ηtail) ;
7 σtail ← shuffle(ηtail, βtail) ;
8 return (σhead ≻ j ≻ σtail) ;
9 end

target permutations uniformly at random. Follow- 1611

ing a classic strategy on Enumerative Combina- 1612

torics (Stanley, 1986; Wilf, 1999) we use this algo- 1613

rithm as a proof for p(n, k, r). 1614

Theorem 1. The number of complete permutations 1615

of n items compatible with partial ranking β that 1616

rank the unobserved item i before the observed 1617

item j is given by the following expression, 1618

p(n, k, r) =

n−k−1∑
i=0

V i
n−k−1 ∗ (i+ 1) (7) 1619

∗ Sr
i+1(n− k − i− 1)! (8) 1620

∗ Sn−k−i−1
k−r−1 /t(n, k). (9) 1621

1622

Proof. It is easy to see that in Algorithm 2 there is 1623

a bijection between the permutations in the target 1624

(that is, the permutations compatible with β for 1625

which i ≻ j) and each outcome of Algorithm 2. 1626

Clearly, for uniform at random outcomes of the 1627

shuffle and permute operations, the outcome of 1628

Algorithm 2 will be random as well. Therefore, 1629

the number of possible outcomes of the algorithm 1630

equals the number of permutations in the target. 1631

It follows that each term in p(n, k, r) Each term 1632

in the previous expression comes from a different 1633

line in 2: 1634

• Line 2: The number of variations of i items 1635

out of n− k − 1 is V i
n−k−1. 1636

• Line 3: There are s+1 ways of inserting item 1637

i, thus the term (r + 1). 1638

• Line 4: There are Sr
s+1 ways of shuffling 1639

ηhead and βhead. 1640
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• Line 6: There are (n − k − s − 1)! possible1641

permutations of the items in ηtail.1642

• Line 7: There are Sn−k−s−1
k−r−1 ways of shuffling1643

the two tails.1644

• Line 8: Finally, since we compute the propor-1645

tion by dividing among the total number of1646

compatible permutations.1647

By repeating this process for all s < n− k − 11648

the proof is completed.1649

1650
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Figure 13: Number of systems in each dataset (log scale)
25



Figure 14: Number of sentences in each dataset (log scale)
26



Figure 15: Average number of sentences per system in each dataset (log scale)
27
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