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Abstract

Searching through chemical space is an exceptionally challenging problem1

because the number of possible molecules grows combinatorially with the2

number of atoms. Large, autoregressive models trained on databases of chem-3

ical compounds have yielded powerful generators, but we still lack robust4

strategies for generating molecules with desired properties. This molecular5

search problem closely resembles the “alignment” problem for large lan-6

guage models, though for many chemical tasks we have a specific and easily7

evaluable reward function. Here, we introduce an algorithm called energy8

rank alignment (ERA) that leverages an explicit reward function to produce9

a gradient-based objective that we use to optimize autoregressive policies.10

We show theoretically that this algorithm is closely related to proximal pol-11

icy optimization (PPO) and direct preference optimization (DPO), but has a12

minimizer that converges to an ideal Gibbs-Boltzmann distribution with the13

reward playing the role of an energy function. Furthermore, this algorithm is14

highly scalable, does not require reinforcement learning, and performs well15

relative to DPO when the number of preference observations per pairing is16

small. We deploy this approach to align molecular transformers to generate17

molecules with externally specified properties and find that it does so robustly,18

searching through diverse parts of chemical space. While our focus here is on19

chemical search, we also obtain excellent results on an AI supervised task for20

LLM alignment, showing that the method is scalable and general.21

1 Introduction22

Large language models (LLMs) are trained on large corpora of text to autoregressively generate23

outputs. These models strongly reflect the distribution of the data on which they are trained [21],24

and controlling the outputs to reflect externally imposed preferences is an increasingly important25

challenge for deployment. The aforementioned task, often called “alignment”, requires either careful26

curation of training data or large sets of human preference data—both options are labor-intensive [9].27

Reinforcement learning from human feedback (RLHF), a family of algorithms that employs these28

human preference datasets, has been widely employed to align instruction and chat models [21, 5],29

but it is both expensive to acquire the training data and difficult to carry out in practice [9]. Recent30

algorithmic developments, such as direct preference optimization (DPO) [25], simplify the alignment31

framework by making the reward function implicit, but still require human preference data. While32

these algorithms succeed in constraining outputs, many “alignment”-like tasks require evaluation that33

would be difficult for human evaluators.34

Generative sampling problems seeking to optimize a reward are common in chemistry, where35

comparing small molecules using a particular functional assay or computationally accessible property36
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is often far easier than searching chemical space to identify novel compounds. Recent efforts to build37

large, domain-specific models for chemistry [10] have shown promising performance on both property38

prediction and reaction prediction tasks. Nevertheless, just as with LLMs, leveraging these models39

for molecule optimization requires first guiding “unaligned” models to favor important properties40

like synthetic accessibility or solubility. Here, we seek to productively search chemical space using41

transformers by introducing a new preference optimization algorithm, which we call energy rank42

alignment.43

Our contribution: We formulate a generic alignment algorithm that we call Energy Rank Alignment44

or ERA that leverages an explicit reward function to guide autoregressive sampling while targeting45

specific properties or preferences. Unlike reward maximization in RL-based algorithms, the policy46

that minimizes our objective is designed to sample fluctuations around a maximal reward value to47

promote sample diversity. Our algorithm enables direct gradient-based optimization of a policy to48

match the ideal preference distribution and converges asymptotically to an optimal distribution with49

tuneable entropy and controllable regularization, which we show theoretically. The minimizers of our50

objective are closely related to the minimizer of PPO and DPO, but we have more direct control over51

the influence of the regularization relative to fluctuations around the maximum reward. In numerical52

experiments, we demonstrate that this algorithm successfully aligns a molecule transformer model to53

identify a highly diverse set of chemicals with properties favored by our choice of reward. Finally, we54

also show that we obtain competitive performance with ERA on benchmark LLM alignment tasks,55

but emphasize that the chemical applications are the main focus of this paper.56
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Figure 1: Energy rank alignment (ERA) enables targeting low-energy, high-reward regions with
controllable fluctuations. Optimal policy approaches Boltzmann distribution with low regularization
(γ → 0) and reference policy with high regularization (γ → ∞) (left). Aligned models can be used
to sample molecules with desired chemical properties (right).

1.1 Related Work57

Inverse molecular design tasks have a long history [17] and many recent works have sought to apply58

machine learning to facilitate this difficult search problem [27, 12, 13]. While reinforcement learning59

has proved a popular strategy for molecular optimization [39, 27], several recent studies have sought60

to use transformers [34] trained on large databases of molecules represented with the text-based61

SMILES syntax [10, 30, 35, 4] for such tasks. Schwaller et al. [31] utilized an atom-wise tokenization,62

which we also employ, to train a transformer for the downstream task of reaction prediction. These63

“chemical language models” have been studied for applications on downstream tasks, including64

property prediction [4, 10] and reaction prediction [23, 30].65

Building scalable strategies for alignment has attracted enormous attention because of the high cost66

and complexity of constraining LLM outputs. Much of the current paradigm is built on reinforcement67

learning from human feedback (RLHF) [21]. Within this framework, human preferences provided in68

the form of pairwise rankings are first used to train a reward model, and subsequently that reward69

model is used to optimize a policy using, for example, proximal policy optimization (PPO) [29].70

Rafailov et al. [25] demonstrated that the reward model can be treated implicitly using a scheme71

that maximizes the likelihood of the preferences given an offline dataset. Because this approach72

does not require training a reward model, it has been named Direct Preference Optimization (DPO).73

Our work differs from both strategies; first, unlike RLHF, we do not employ reinforcement learning74
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and instead develop an explicit, gradient-based objective for the optimal policy. Secondly, unlike75

DPO, we leverage an explicit reward function and add regularization transparently, both of which76

help to avoid greedy policies [3]. However, like both approaches, we assume that the Bradley-Terry77

model [7] of preference data is appropriate for the underlying target distribution.78

Many recent works have built upon the ideas of RLHF and DPO, including studies on the effect79

of point-wise sampling of preference distributions [3], investigations into the theoretical basis for80

contrastive methods for unlearning target datasets [38], and alternatives to the Bradley-Terry pairwise81

preference model [20, 2]. One recent study explores alignment in the context of inverse molecular82

design: Park et al. [22] applies DPO to SMILES generators to increase the probability of activity83

for generated compounds against a drug target. However, they indicate that many preferences in84

chemistry are expressed as continuous signals, which is not suitable for DPO. Overcoming this85

limitation while maintaining the advantages of a direct gradient-based policy optimization strategy is86

a central goal of our current work. Our analysis and methodology directly addresses issues related87

to point-wise sampling because the explicit reward function eliminates overly greedy assignments88

of preference probabilities. Indeed, as discussed in Sec. 4, we see that DPO mode collapses where89

ERA shifts the policy towards the target distribution. While non-transitive preferences may arise90

in some settings, leading to a breakdown of the Bradley-Terry preference distribution model, by91

construction our target rewards are determined by quantitative evaluations of properties, and are92

therefore transitive.93

2 Energy rank alignment94

A policy is a conditional probability distribution π(·|x) : Y → R; we generate an output y from95

prompt x. The spaces Y and X are discrete and finite, corresponding to sequences of tokenized96

outputs of the model with a maximum length. In alignment tasks, we begin with a pre-trained97

reference policy πref and seek to optimize a parametric, trainable policy πθ to adapt the conditional98

sampling for a particular task or constraint.99

Consider a prompt x ∈ X and model outputs y,y′ ∈ Y and a collection of preferences D = {(yi ≻100

y′
i;xi)}ni=1; the notation ≻ indicates that yi is preferred to y′

i. The conditional probability that101

y ≻ y′ given x can be modeled as a pairwise Boltzmann ranking within the Bradley-Terry model,102

i.e.,103

p(y ≻ y′|x) = e−βU(x,y)

e−βU(x,y) + e−βU(x,y′)
≡ σ

(
βU(x,y′)− βU(x,y)

)
. (1)

Here β > 0 is a constant, σ(x) = (1 + e−x)−1 and we refer to U : X × Y → R as an energy104

function to make clear the connection to statistical physics, but it is the negative reward within the RL105

framework for alignment.106

To impose the preferences we minimize the objective107

J(π) = Ex∼ν

[∫
U(x,y)dπ(y|x) + β−1

∫
(1 + γ) log π(y|x)− γ log(πref(y|x))dπ(y|x)

]
,

(2)
where β−1 is a parameter controlling the magnitude of the entropic term, γ sets the scale of the108

Kullback-Leibler regularization compared with the energy term, and ν is a probability distribution109

over the prompts ν ∈ P(X ). A proximal scheme for gradient descent on this objective corresponds110

to a gradient flow on J [28, 19]; the functional can be viewed as a free energy, and the corresponding111

flow is112

∂tπt = ∇ · (πt∇δπJ [πt]) , (3)
and δπ denotes the Fréchet derivative with respect to π. Assuming that π0 has full support on X × Y ,113

the optimization converges asymptotically to stationary policy which satisfies114

∇δπJ [π⋆] = 0 ⇐⇒ π⋆ ∝ e−
β

1+γ U+ γ
γ+1 log πref , (4)

and this minimizer is globally optimal. In the context of LLM alignment, a representation of the115

energy function U : X × Y → R is learned as a “reward model”, though we also consider tasks116

in which U is an easily evaluated function of the pair (x,y). The optimal distribution π⋆ is a117

Gibbs-Boltzmann measure118

π⋆(y|x) = Z−1(x) exp

[
− β

1 + γ

(
U(x,y)− β−1γ log πref(y|x)

)]
(5)
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where Z(x) is the x-dependent normalization constant. This expression makes clear the effect of β:119

when β → ∞ (low temperature), the reward dominates and fluctuations around the maximal reward120

are small, which could lead to “mode-seeking”; when β → 0 (high physical temperature) fluctuations121

around the maximal reward increase and the regularization term favors proximity to πref . Similarly,122

γ → 0 recovers a Gibbs-Boltzmann distribution proportional to e−βU at inverse temperature β, while123

γ → ∞ is dominated by the reference policy.124

Loss functions for πθ: Proximal Policy Optimization (PPO) optimizes an indirect, proximal125

objective to minimize an objective closely related to (2) (cf. Appendix A). Direct Preference126

Optimization (DPO) treats the negative reward function U implicitly and directly maximizes the127

likelihood of p(y ≻ y′|x). Our objectives differ from both approaches: like DPO, we directly128

optimize the policy using an explicit, gradient-based objective, but, in contrast, we use a reward129

function directly in our objective. The losses we build are thus amenable to both offline (samples130

from πref ) and online (samples from πθ) policy alignment, as explained below. Choosing to optimize131

the objective online has been shown to have important consequences on performance [32], though we132

focus here on the setting where samples are drawn offline.133

We directly optimize the Kullback-Leibler divergence between the entropy-regularized preference134

distribution pγ(y ≻ y′|x) and the corresponding parametric preference distribution pθ(y ≻ y′|x).135

Explicitly, using the fact that conditional preference distribution is normalized, we obtain136

D
(y,y′)
KL (pγ |pθ) = pγ(y ≻ y′|x) log pγ(y ≻ y′|x)

pθ(y ≻ y′|x) + pγ(y
′ ≻ y|x) log pγ(y

′ ≻ y|x)
pθ(y′ ≻ y|x) ,

= pγ(y ≻ y′|x) log pγ(y ≻ y′|x)
pθ(y ≻ y′|x) +

(
1− pγ(y ≻ y′|x)

)
log

1− pγ(y ≻ y′|x)
1− pθ(y ≻ y′|x) ,

(6)
where137

pγ := σ

(
β

1 + γ

[
(U(x,y′)− U(x,y)) + β−1γ log

πref(y|x)
πref(y′|x)

])
. (7)

This quantity is a well-defined KL divergence and is hence non-negative; the quantity vanishes when138

pγ = pθ on the observations y,y′. Furthermore, with access to an explicit reward model, all terms139

in (6) can be computed directly and140

pθ(y ≻ y′|x′) =
πθ(y|x)

πθ(y|x) + πθ(y′|x) = σ

(
log

πθ(y|x)
πθ(y′|x)

)
. (8)

To obtain a minimizer of the regularized objective defined in (2) we optimize141

LERA(πθ) = Ex∼DEy,y′∼πref (·|x)D
(y,y′)
KL (pγ |pθ); (9)

If the current policy overlaps with the target preference distribution, it may be useful to sample142

directly from the partially aligned policy, i.e., to use the “on-policy” formulation,143

LERA
on (πθ) = Ex∼DEy,y′∼πθ(y|x)D

(y,y′)
KL (pγ |pθ) (10)

instead of (9). One issue that arises with this scheme is that differentiation with respect to the144

parameters of the policy θ because y and y′ are decoded into discrete tokens, an operation that is not145

differentiable. To remedy this, we importance sample with a reference policy146

LERA
on (πθ) = Ex∼DEy,y′∼πref (y|x)

πθ(y|x)πθ(y
′|x)

πref(y|x)πref(y′|x)D
(y,y′)
KL (pγ |pθ). (11)

This reweighting is straightforward and the importance weights should generally be appreciable,147

especially early in training when πθ has not drifted far from πref . It is, of course, also natural to148

iteratively update πθ using a previous iterate as the reference policy. In this work, we only use (9) as149

an objective and leave the on-policy objectives to future work.150

3 Theoretical Analysis151

To understand the ERA loss function and its connection to the entropy regularized objective (2), we152

first establish that the minimizers of (6) are of the form (5). We first define the notion of equivalence153

precisely.154
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Definition 3.1 The conditional probability measures π(·|x) and π′(·|x) are conditionally equivalent155

if ∀x ∈ X , π and π′ are such that supy∈Y |π(y|x)− π′(y|x)| = 0.156

We remark that this strong form of equivalence is appropriate on the finite, discrete spaces X and Y157

we consider here.158

Lemma 3.1 If π is conditionally equivalent to π′, then π′
g(·|x) ∝ π′(·|x)eg(x) is conditionally159

equivalent to π for all functions g : X → R such that supx∈X |eg(x)| < +∞.160

We prove Lemma 3.1 in Appendix A and use this simple lemma to prove the following result.161

Proposition 3.2 Suppose π(·|x) ∈ P(Y) and that supp(π) = supp(πref). Let β > 0, γ ≥ 0 and162

that the reward model is such that supx,y∈X×Y |e−U(x,y)| < +∞. Then, the minimizer of LERA is163

conditionally equivalent to π⋆.164

First, we verify that any probability measure πg(y|x) ∝ exp(− β
1+γ

(
U(x,y) −165

β−1γ log πref(y|x)
)
+ g(x)) minimizes the objective. Because LERA is non-negative, it suf-166

fices to show that for all pairs y,y′, D(y,y′)
KL (pγ |pθ) ≡ 0. This follows immediately from the167

cancellation in the preference probability pγ of eg(x) after factorization in (5). Now, suppose that168

π(y|x) ̸= exp
(
− β

1+γ

(
U(x,y)− β−1γ log πref(y|x)

))
where we have taken g(x) = 0 without169

loss of generality and π := πg. Assume that for all pairs y,y′, the divergence D
(y,y′)
KL (pγ |pθ) ≡ 0170

which is required of a minimizer. Equivalently, it must be the case that for all y,y′,171

π(y|x)
π(y|x) + π(y′|x) =

π⋆(y|x)
π⋆(y|x) + π⋆(y′|x) =⇒ π(y′|x)

π(y|x) =
π⋆(y

′|x)
π⋆(y|x)

, (12)

from which we see that172

π(y|x) = π(y′|x)
e−

β
1+γ (U(x,y′)−β−1γ log πref (y′|x))

e−
β

1+γ (U(x,y)−β−1γ log πref (y|x)). (13)

By construction, π(y|x) does not depend on y′ so the prefactor must be purely a function of x, which173

completes the proof, using Lemma 3.1.174

Gradients of LERA. One advantage of the ERA framework is that the objective is amenable to direct,175

gradient-based optimization. We remark that establishing global convergence for the optimization of176

θ using (9) requires establishing convexity with respect to the parameters, which is not obviously the177

case for our objective, nor those used in PPO and DPO. However, one can still glean some insight178

into the optimization by examining the gradients on a samplewise basis. Using the compact notation179

pθ(y ≻ y′|x) ≡ σθ and pγ(y ≻ y′|x) ≡ σ⋆,180

∇θLERA = Ex∼DEy,y′∼πref

(
1− σ⋆

1− σθ
− σ⋆

σθ

)
∇θσθ. (14)

The gradient is straightforward to interpret on a particular pair y,y′: if pθ(y ≻ y′|x) is larger than181

pγ(y ≻ y′|x) then the preference gradient is positive and gradient descent lowers the probability that182

y ≻ y′. The opposite occurs whenever pθ(y ≻ y′|x) is smaller than pγ(y ≻ y′|x). The magnitude183

of the gradient is scaled by the degree of misspecification of the preference probability.184

This calculation highlights one key difference between the approach we use and DPO. When the data185

only contains one observation of y ≻ y′ for a given x, the DPO objective’s implicit reward model186

assigns zero probability to y′ ≻ y. This pushes the policy towards extremal values, which can lead187

to undesired behavior, as discussed in Azar et al. [3]. In our formulation, this behavior occurs only188

when the reward model assigns an energy of ±∞, which is prohibited by construction in most tasks.189

We further discuss differences between ERA and DPO in Appendix A.2.190

4 Experiments191

We test ERA on both chemical and language tasks to shed light on the following questions: 1) Can192

we use ERA to robustly fine-tune our model to generate samples according to a desired distribution?193
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Figure 2: Unprompted molecular generator alignment. Distributions of different chemical properties
for molecules sampled from aligned and unaligned policies. The center of the harmonic potential, µ,
is varied for MR (β = 1.0), Ring Count (β = 1.0), and LogP (β = 10.0), while β is varied for QED.
All experiments were run with no regularization to the reference policy (γ = 0).

2) What is the effect of changing the inverse-temperature β during ERA? 3) Do we maintain sample194

diversity (and validity) without regularizing to remain close to a reference policy, and what is the195

effect of increased regularization? 4) Can we simultaneously target multiple properties with high196

fidelity, and how can we trade off between desired properties? 5) Can we carry out ERA on higher197

capacity models with “weak” signals from smaller models?198

4.1 Generating molecules with desired properties199

We use a decoder-only representation for the molecular generator [4], where the generator has 2 layers,200

an embedding dimension of 512, a vocabulary of 324 tokens, and totals 3.5M parameters. Starting201

from a random initialization, we carry out pretraining on a dataset of 2.4M small molecules from the202

ChEMBL database [37] for 180 epochs. This version of the model is not conditioned on a prompt203

and generates a small molecule given just a start-of-sequence token. We use this pretrained model as204

our reference policy for all unprompted molecular alignment tasks (Sec. 4.1.1). In Sec. 4.1.2, we205

generate molecules conditioned on a prompt using a generator that was trained to carry out sampling206

with a prompt molecule.207

Central to ERA is, of course, access to a computable energy function. As a proof-of-concept, here208

we consider 5 different properties for which the corresponding energy function is easily evaluable:209

Quantitative Estimate of Drug-Likeness (QED) [6], Wildman-Crippen LogP (LogP) [36], Ring Count,210

Molar Refractivity (MR) [36], and Tanimoto Similarity [26]. Briefly, LogP is a measure of the211

hydrophobicity of a molecule, MR is a measure of the polarizability of the molecule, and Tanimoto212

similarity is a measure of the similarity between two molecules (see Appendix C.2).213

4.1.1 Unprompted molecular alignment214

First, we independently target four different properties using ERA with an unprompted215

molecular generator (Fig. 2). Using the reference policy, we generate a dataset D =216

{y(i)
1 ,y

(i)
2 , U(y

(i)
1 ), U(y

(i)
2 )}Ni=1 and carry out energy rank alignment on πθ, where πθ is initialized217

using the weights of πref . Here, y1,y2 ∼ πref and y and U(y) denote the generated molecule and218

its corresponding energy, respectively. For MR, Ring Count, and LogP, we define the energy U to be219
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Figure 3: Unprompted multi-property molecular generator alignment. 2D histograms of LogP versus
QED for different combinations of property-specific β illustrating a clear trade-off when performing
multi-property alignment. Relative increases in β for a given property target higher values for that
property. All experiments were run with no regularization to the reference policy (γ = 0).

a harmonic potential centered at a target value. For QED, we define the energy to be the negative220

logarithm of QED and vary β to assess its impact on alignment (see Table 1, 2). In Fig. 2, we see that221

we successfully shift the distribution to target means that are both greater and lower than the average222

value of MR, Ring Count, and LogP under the reference policy. Furthermore, in the alignment of223

QED, we observe the effect of changing β on the learned policy; with increased β, the learned policy224

concentrates around low-energy samples (i.e. near QED = 1), and with lower β, the learned policy225

samples a greater range of QED values, as expected. We note that for each of these four experiments,226

we did not regularize towards the reference policy (i.e. γ = 0). Even so, we were able to maintain227

both sample diversity and maintain appreciable sample validity (see Fig. 7 and Table 3).228

Many molecular design tasks require balancing multiple properties, and designing an objective for229

multi-property alignment is straightforward within the ERA framework. To demonstrate this, we230

generate molecules with both high QED and LogP using ERA with an energy function weighted by231

property-specific β: U = βQEDUQED + βLogPULogP (see Table 1, 4 for details on energy function).232

We carry out ERA with different pairs of (βQED, βLogP) using the same procedure as above, and233

from Fig. 3, we see that we target multiple properties with varying fidelity by simply modulating the234

value of property-specific β. Ultimately, increasing the β for an individual property enables us to235

favor higher values of that property in multi-property alignment setting. In this case, we also do not236

regularize with the KL-divergence to the reference policy and again maintain sample diversity and237

validity (see Fig. 8 and Table 4)238

4.1.2 Prompted molecular alignment239

Inspired by the task of lead optimization in drug discovery efforts [16], we ask whether we can use240

ERA to train a molecular generator that can sample a molecule that is both similar to the prompt241

molecule and also exhibits some desired property.242

First, we fine-tune the pretrained molecular generator to enable prompted molecular generation (see243

Appendix C.3.2) and use this fine-tuned model as our reference policy for all prompted molecular244

alignment tasks. This reference policy disproportionately samples molecules that are identical (i.e. a245

Tanimoto similarity of 1.0) to the prompt molecule (see Fig. 4), so we carry out multi-property align-246

ment on this reference policy to generate molecules that are similar—but not identical—to the prompt247

molecule and also have a high drug-likeness as measured by QED. Using ERA, we optimize the refer-248

ence policy with a generated dataset D = {(y(i)
1 ,x(i)), (y

(i)
2 ,x(i)), U(y

(i)
1 ,x(i)), U(y

(i)
2 ,x(i))}Ni=1,249

where we sample four molecules for each prompt molecule from the reference policy and consider all250

possible preference pairs for a total of six preference pairs per prompt molecule (see Appendix C.2251

for full details on energy used).252

We observe that the per-prompt average QED under the optimized policy for a given prompt is higher253

than the corresponding average under the reference policy (Fig. 4). Furthermore, we see that we are254

able to sample a diverse set of molecules that are chemically similar to the prompt molecule, and255
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Figure 5: AI-guided alignment of LLMs. Average sentiment of responses from aligned GPT-2 model
across all prompts. (left). Proportion of unsafe content relative to unaligned model of responses
aligned LLaMA2-13B model across all prompts (right). 5.4% of all responses from unaligned model
were classified as unsafe. Error bars too small to be shown.

also chemically valid (see Figure 9, Table 5). We repeat the experiment with a related objective of256

generating molecules similar to the prompt molecule with a high LogP instead and again observe257

that we increase the per-prompt average LogP under the optimized policy relative to the reference258

policy without degrading sample diversity and validity. For both of these experiments, we required259

regularization to the reference policy. With no regularization, the aligned generator would almost260

exclusively sample sequences that were chemically invalid (< 25% chemical validity). Finally, we261

note that the increases in QED and LogP in Fig. 4 are smaller relative to the increases in Fig. 2262

because the samples are now conditioned to remain proximal to the prompt molecule, which restricts263

the chemical space that can be explored.264

4.2 AI-guided alignment of large language models265

We test the generality of ERA by applying it to align large language models (LLMs). Similar to the266

experiments in [25], we first carry out ERA on a GPT-2 model [24] fine-tuned on movies reviews267

from IMDb [18]. We use a pretrained sentiment classifier [14] to evaluate the energies—where268

lower energies correspond to more positive sentiments—of sampled responses from the reference269

policy and carry out ERA using the same approach as in Section 4.1.2 (see Appendix D.1). We270

vary the regularization strength γ and inverse-temperature β on the average sentiment and observe271

that across all regularization strengths, with increasing β, the average sentiment becomes more272

positive. Increasing regularization also elicits more positive sentiments. Qualitatively, with lower273
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regularization, we observe that text quality degrades and becomes less coherent, likely resulting in274

lower average sentiment predictions by the sentiment model. Regularization here is important to275

ensure high quality text samples.276

We next leverage a “weak” AI supervisor to carry out LLM alignment, a task sometimes called277

“superalignment” [8]. In the present context, we order “weak” vs. “strong” models based on their278

parameter count (within the same family) and empirical performance; i.e., LLaMA2-7B is weaker279

than LLaMA2-13B. Here, the weak model does not necessarily contain the complexity of the stronger280

model but can weakly discern between different outputs of a stronger model. Given a sample281

yi ∼ πstrong(y|x), we define the energy using the weak model U(yi|x) = − log πweak(yi|x).282

We test weak-to-strong alignment using a previously aligned LLaMA2-7B-283

Chat (meta-llama/Llama-2-7b-chat) to optimize an unaligned LLaMA2-13B284

(meta-llama/Llama-2-13b) model [33]. Using prompts from the Anthropic Helpful and285

Harmless dialogue dataset [5], we first carry out a short supervised fine-tuning step of LLaMA2-13B286

to ensure it can output text in a chat-like format (see Appendix D.2). Using this reference policy,287

we generate a dataset with energies computed from the smaller LLaMA2-7B-Chat model and carry288

out ERA as above, again across varying γ and β. We evaluate the “safety” of generated samples289

using Meta LLama Guard 2 (meta-llama/Meta-Llama-Guard-2-8B) [15]. We observe that as we290

increase β, the proportion of unsafe content relative to the unaligned, reference model decreases, with291

over a 90% drop between the unaligned model and the models aligned with the highest β across all γ.292

For these experiments, we observe that varying regularization strengths has a minimal effect and that293

we are in fact able to generate coherent sentences with no regularization, with strong regularization294

hurting performance for β = 0.1. Finally, we compare ERA and DPO in Appendix D.2 and observe295

that with our implementation of DPO, we are able to generate lower energy samples, but that it is296

prone to mode collapse. We caution that our implementation of DPO is likely not optimal and that297

we did not exhaustively tune the hyperparameters of DPO due to resource constraints.298

5 Conclusions and Limitations299

This paper introduces energy rank alignment, a simple and effective algorithm for policy optimization300

with an explicit reward model. We find that ERA is stable without extensive hyperparameter tuning,301

and sufficiently general to successfully align both application-specific transformers for chemical302

search problems as well as generative pre-trained transformers for language. The algorithm exhibits303

strong performance with a variety of reward models, even ones with relatively weak signal, such as304

the AI feedback of LLaMA2-7B-Chat. Interestingly, with this approach we are able to reduce unsafe305

content by more than 90% with no human preference data.306

We analyze the minimizers of the ERA objective and find that they differ from the minimizers of307

popular policy alignment algorithms DPO and PPO in an important way: unlike PPO, the strength of308

regularization to the reference policy that we add is controlled by a parameter γ, while the entropy309

of the target distribution is independently tuned by a distinct parameter β. This means that we can310

avoid greedy policies by keeping β small—amplifying fluctuations around the optimum of the reward311

model −U—while reducing the influence of the reference policy by taking γ small. Our objective312

leads to easily interpretable sample-wise gradients which highlight the importance of a reward model313

relative to DPO in the sampled objective. Similar observations about the inadequacy of the DPO314

objective for finite preference observations were also made theoretically in Azar et al. [3].315

Limitations: First, our approach requires a reward model, which can be difficult to train or design,316

especially for complex tasks. While we observed that ERA makes an appreciable impact even with317

weak supervision from an AI chat model, this sort of proxy may not be available for more complex318

tasks. For example, optimizing small molecules for high binding affinity to a target protein would319

require expensive and noisy evaluations of a reward model, which likely limits the scope of molecular320

design to problems where the reward can be computed somewhat efficiently. A second limitation of321

our present work is that we do not train the molecular transformer to favor synthetic accessibility322

nor do we explicitly seek to obtain molecules that are easily synthesized experimentally. There are323

models that seek to evaluate synthesizability computationally that could be used in our rewards,324

which we plan to explore in future work [11]. A final limitation of our current work is the moderate325

scale of our numerical experiments due to our limited compute resources, including the inadequate326

hyperparameter tuning for the DPO baseline for Fig. 5.327
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to have some path to reproducing or verifying the results.570

5. Open access to data and code571

Question: Does the paper provide open access to the data and code, with sufficient instruc-572

tions to faithfully reproduce the main experimental results, as described in supplemental573

material?574

Answer: [Yes]575

Justification: We will release the code as open source upon submission of the paper. The576

models used for the LLM experiments, such as LLaMA2 and GPT-2, are already available577

online via Huggingface.578

Guidelines:579

• The answer NA means that paper does not include experiments requiring code.580

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/581

public/guides/CodeSubmissionPolicy) for more details.582

• While we encourage the release of code and data, we understand that this might not be583

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not584

including code, unless this is central to the contribution (e.g., for a new open-source585

benchmark).586

• The instructions should contain the exact command and environment needed to run to587

reproduce the results. See the NeurIPS code and data submission guidelines (https:588

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.589

• The authors should provide instructions on data access and preparation, including how590

to access the raw data, preprocessed data, intermediate data, and generated data, etc.591

• The authors should provide scripts to reproduce all experimental results for the new592

proposed method and baselines. If only a subset of experiments are reproducible, they593

should state which ones are omitted from the script and why.594

• At submission time, to preserve anonymity, the authors should release anonymized595

versions (if applicable).596

• Providing as much information as possible in supplemental material (appended to the597

paper) is recommended, but including URLs to data and code is permitted.598

6. Experimental Setting/Details599

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-600

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the601

results?602

Answer: [Yes]603

Justification: The exact settings and hyperparameters used for training and testing are604

provided in descriptions of the experiments in Section 4 and in Sections C and D of the605

Appendix.606

Guidelines:607

• The answer NA means that the paper does not include experiments.608

• The experimental setting should be presented in the core of the paper to a level of detail609

that is necessary to appreciate the results and make sense of them.610

• The full details can be provided either with the code, in appendix, or as supplemental611

material.612

7. Experiment Statistical Significance613

Question: Does the paper report error bars suitably and correctly defined or other appropriate614

information about the statistical significance of the experiments?615

Answer: [Yes]616

Justification: The statistical significance of all the results is discussed throughout the body617

of the paper in Section 4 and in Sections C and D of the Appendix.618

Guidelines:619
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• The answer NA means that the paper does not include experiments.620

• The authors should answer "Yes" if the results are accompanied by error bars, confi-621

dence intervals, or statistical significance tests, at least for the experiments that support622

the main claims of the paper.623

• The factors of variability that the error bars are capturing should be clearly stated (for624

example, train/test split, initialization, random drawing of some parameter, or overall625

run with given experimental conditions).626

• The method for calculating the error bars should be explained (closed form formula,627

call to a library function, bootstrap, etc.)628

• The assumptions made should be given (e.g., Normally distributed errors).629

• It should be clear whether the error bar is the standard deviation or the standard error630

of the mean.631

• It is OK to report 1-sigma error bars, but one should state it. The authors should632

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis633

of Normality of errors is not verified.634

• For asymmetric distributions, the authors should be careful not to show in tables or635

figures symmetric error bars that would yield results that are out of range (e.g. negative636

error rates).637

• If error bars are reported in tables or plots, The authors should explain in the text how638

they were calculated and reference the corresponding figures or tables in the text.639

8. Experiments Compute Resources640

Question: For each experiment, does the paper provide sufficient information on the com-641

puter resources (type of compute workers, memory, time of execution) needed to reproduce642

the experiments?643

Answer: [Yes]644

Justification: Computational resources used are discussed in Section E of the Appendix.645

Guidelines:646

• The answer NA means that the paper does not include experiments.647

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,648

or cloud provider, including relevant memory and storage.649

• The paper should provide the amount of compute required for each of the individual650

experimental runs as well as estimate the total compute.651

• The paper should disclose whether the full research project required more compute652

than the experiments reported in the paper (e.g., preliminary or failed experiments that653

didn’t make it into the paper).654

9. Code Of Ethics655

Question: Does the research conducted in the paper conform, in every respect, with the656

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?657

Answer: [Yes]658

Justification: Yes, the work is compliant with the NeurIPS Code of Ethics.659

Guidelines:660

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.661

• If the authors answer No, they should explain the special circumstances that require a662

deviation from the Code of Ethics.663

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-664

eration due to laws or regulations in their jurisdiction).665

10. Broader Impacts666

Question: Does the paper discuss both potential positive societal impacts and negative667

societal impacts of the work performed?668

Answer: [Yes]669

Justification: The broader societal impacts of this work is discussed in Section F.670
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Guidelines:671

• The answer NA means that there is no societal impact of the work performed.672

• If the authors answer NA or No, they should explain why their work has no societal673

impact or why the paper does not address societal impact.674

• Examples of negative societal impacts include potential malicious or unintended uses675

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations676

(e.g., deployment of technologies that could make decisions that unfairly impact specific677
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• The conference expects that many papers will be foundational research and not tied679
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to point out that an improvement in the quality of generative models could be used to682

generate deepfakes for disinformation. On the other hand, it is not needed to point out683

that a generic algorithm for optimizing neural networks could enable people to train684

models that generate Deepfakes faster.685

• The authors should consider possible harms that could arise when the technology is686

being used as intended and functioning correctly, harms that could arise when the687

technology is being used as intended but gives incorrect results, and harms following688

from (intentional or unintentional) misuse of the technology.689

• If there are negative societal impacts, the authors could also discuss possible mitigation690

strategies (e.g., gated release of models, providing defenses in addition to attacks,691

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from692

feedback over time, improving the efficiency and accessibility of ML).693

11. Safeguards694

Question: Does the paper describe safeguards that have been put in place for responsible695

release of data or models that have a high risk for misuse (e.g., pretrained language models,696

image generators, or scraped datasets)?697

Answer: [Yes]698

Justification: We use public data and models for all LLM experiments. There are no safety699

concerns with the chemical alignment models.700

Guidelines:701

• The answer NA means that the paper poses no such risks.702

• Released models that have a high risk for misuse or dual-use should be released with703

necessary safeguards to allow for controlled use of the model, for example by requiring704

that users adhere to usage guidelines or restrictions to access the model or implementing705

safety filters.706

• Datasets that have been scraped from the Internet could pose safety risks. The authors707

should describe how they avoided releasing unsafe images.708

• We recognize that providing effective safeguards is challenging, and many papers do709

not require this, but we encourage authors to take this into account and make a best710

faith effort.711

12. Licenses for existing assets712

Question: Are the creators or original owners of assets (e.g., code, data, models), used in713

the paper, properly credited and are the license and terms of use explicitly mentioned and714

properly respected?715

Answer: [Yes]716

Justification: Yes, we cite the appropriate works throughout the main text and the Appendix.717
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• The answer NA means that the paper does not use existing assets.719

• The authors should cite the original paper that produced the code package or dataset.720

• The authors should state which version of the asset is used and, if possible, include a721

URL.722

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.723
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• For scraped data from a particular source (e.g., website), the copyright and terms of724
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Answer: [Yes]737
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for reproducing experiments.739
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Answer: [NA]753

Justification: We did not use human subjects.754
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• Depending on the country in which research is conducted, IRB approval (or equivalent)775

may be required for any human subjects research. If you obtained IRB approval, you776

should clearly state this in the paper.777

• We recognize that the procedures for this may vary significantly between institutions778

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the779

guidelines for their institution.780

• For initial submissions, do not include any information that would break anonymity (if781

applicable), such as the institution conducting the review.782
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A Detailed Theoretical Analysis783

Set-up, notation, and assumptions Let X and Y be discrete spaces; each element of one of these784

spaces is a finite-length sequence of tokens within a fixed dictionary on which an autoregressive785

generative model is trained. The resulting models yield “policies”, which are conditional probability786

distributions π(·|x) ∈ P(Y) for each x ∈ X . Throughout, we assume that our policies have787

full support on Y for each x, meaning that infy,x∈Y×X π(y|x) > 0. Because the spaces are788

discrete, we make no strong restrictions on the regularity or coerciveness of the reward model789

−U : X × Y → R. The only requirement to ensure the existence of an optimal probability790

distribution is that supx,y×X×Y |e−U(x,y)| < +∞, which maintains full support of the distribution.791

Though it plays little role in theoretical analysis, we also denote by ν ∈ P(X ) the probability792

distribution over the prompts x.793

Goals of the analysis presented here The main purpose of this section is to establish that globally794

minimizing the loss (9) yields a global minimizer of the regularized policy objective (2). A secondary795

goal is to clearly articulate the theoretical advantages of ERA compared with PPO and DPO.796

To understand the ERA loss function and its connection to the entropy regularized objective (2), we797

first establish that the minimizer of (6) are of the form (5). We first define the notion of equivalence798

precisely.799

Definition A.1 The conditional probability measures π(·|x) and π′(·|x) in P(Y) are conditionally800

equivalent if ∀x ∈ X , π and π′ are such that supy∈Y |π(y|x)− π′(y|x)| = 0.801

This is a strong form of equivalence for probability measures, but it is appropriate on the discrete802

spaces X and Y we consider here. For more general continuous spaces, one could relax this condition803

to weak equivalence of the conditional measures. We use this notion to emphasize that a shift of804

the distribution of the “prompts” x ∈ X , which we denote ν ∈ P(X ), does not impact conditional805

equivalence and hence establishes an equivalence class of conditional probability measures that806

minimize (2).807

Lemma A.1 If π is conditionally equivalent to π′, then π′
g(·|x) ∝ π′(·|x)eg(x) is conditionally808

equivalent to π for all functions g : X → R such that supx∈X |eg(x)| < +∞.809

Assume that π′ is a normalized probability distribution. This requires that,810

Z ′(x) =
∑
y∈Y

π′(y|x) = 1. (15)

If g is such that811

Z ′
g(x) =

∑
y∈Y

π′(y|x)eg(x) ̸= 1, (16)

then the normalized policy π′
g is clearly defined by812

1

Z ′
g(x)

π′(y|x)eg(x) ≡ π′(y|x), (17)

because Z ′
g(x) = eg(x). By the assumption that supx∈X |eg(x)| < +∞, all terms in these calcula-813

tions remain finite.814

Using Lemma A.1 it is straightforward to prove the result in the main text Proposition 3.2. For815

completeness, we re-state that result here and refer the reader to the main text for the complete816

argument.817

Proposition A.2 Suppose π(·|x) ∈ P(Y) and that supp(π) = supp(πref). Let β > 0, γ ≥ 0 and818

that the reward model is such that supx,y∈X×Y |e−U(x,y)| < +∞. Then, the minimizer of LERA is819

conditionally equivalent to π⋆.820
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This proposition establishes that a policy minimizing the objective821

LERA(πθ) = Ex∼DEy,y′∼πref (·|x)D
(y,y′)
KL (pβ |pθ);

pθ := σ

(
log

πθ(y|x)
πθ(y′|x)

)
pγ := σ

(
β

1 + γ

[
(U(x,y′)− U(x,y)) + β−1γ log

πref(y|x)
πref(y′|x)

])
,

(18)

has the form822

π⋆(y|x) = Z−1(x) exp

[
− β

1 + γ

(
U(x,y)− β−1γ log πref(y|x)

)]
. (19)

We do not, however, prove that gradient descent of θ on (18) converges to the global minimizer (19)823

because such an argument requires additional assumptions about the parametric class of policies and824

the convexity of the objective with respect to the parameters, neither of which are straightforward to825

establish.826

A.1 Comparison with PPO Objective827

The free energy functional for a policy under the energy rank alignment framework can be written as828

an expectation829

JERA[π] = Ex∼ν

[∫
U(x,y)dπ(y|x) + β−1

∫
(1 + γ) log π(y|x)− γ log(πref(y|x)dπ(y|x)

]
,

(20)
involving an energetic term and an entropic term. The additional regularization acts as an effective830

energetic bias. Solving for the extremum of this functional by setting Fréchet derivative with respect831

to π equal to zero, one obtains the formal solution (19) for the minimizer. This objective differs from832

the regularized reward loss conventionally used for PPO,833

JPPO(π) = Ex

[∫
U(x,y)dπ(y|x) + γβ−1

∫
log

π(y|x)
πref(y|x)

dπ(y|x)
]
,

= Ex

[∫
U(x,y)dπ(y|x) + γβ−1DKL

(
π(·|x)|πref(·|x)

)]
.

(21)

The minimizer of the PPO objective (21) is also a Gibbs-Boltzmann measure, explicitly,834

π
(PPO)
⋆ ∝ exp

[
−β

γ
U(x,y) + log πref(y|x)

]
. (22)

Here, the KL-regularization corresponds to an energy shift, as in our objective, but there is no limit in835

which the ideal distribution π ∝ e−βU is obtained for the PPO objective. This is in stark contrast836

to our approach, which recovers the ideal distribution as γ → 0. Furthermore, while our approach837

allows for a direct gradient-based optimization using (18), PPO is implemented using an actor-critic838

framework that is difficult to tune [25, 9]. Finally, we emphasize that for ERA in the γ → 0, finite839

β > 0, the distribution has positive entropy and is not manifestly mode-seeking; there can still be840

appreciable fluctuations in the output. Eliminating the effect of regularization in (22), on the other841

hand, requires taking β/γ → ∞, which eliminates fluctuations in the distribution.842

A.2 Comparison with DPO Objective843

The DPO approach also seeks to optimize the objective (21). The algorithm does so by first using (22)844

to define an implicit reward model by solving for the U that reflects the observed preference probabil-845

ities. This elegant idea has had a significant impact and has already been deployed in state-of-the-art846

models [1]. In many cases, the observed preference probabilities will be sampled and only perhaps847

only one observation of y ≻ y′ will be available for each x in the dataset. When the preference848

dataset only has one observation y ≻ y′ per prompt x, the optimal policy requires that849

πDPO
⋆ (y|x) = 1 and πDPO

⋆ (y′|x) = 0. (23)
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The sampled gradients of the objective used for DPO are proportional to the implicit reward discrep-850

ancy,851

∇θL̂DPO(y,y′,x) = σ

(
β−1γ

[
log

πθ(y
′|x)

πref(y′|x) − log
πθ(y|x)
πref(y|x)

])
∇θ log

πθ(y|x)
πθ(y′|x) , (24)

which when πθ(y
′|x) → 0, could lead to instability as − log πθ(y

′|x) → ∞. On the other hand, the852

ERA gradients are scaled by the relative preference discrepancy,853

∇θLERA(y,y′,x) =

(
1− σ⋆(y ≻ y′|x)
1− σθ(y ≻ y′|x) −

σ⋆(y ≻ y′|x)
σθ(y ≻ y′|x)

)
∇θσθ(y ≻ y′|x). (25)

The advantage of a reward model becomes apparent because854

σ⋆(y ≻ y′|x) = pγ(y ≻ y′|x) = σ

(
β

1 + γ

[
(U(x,y′)− U(x,y)) + β−1γ log

πref(y|x)
πref(y′|x)

])
(26)

and hence the optimum of LERA will not lead to policies in which supp(πθ) degrades unless the855

energy becomes infinite. Choosing an appropriate reward model, hence, gives the flexibility to control856

instability if it becomes problematic.857

B ERA implementation858

Implementing energy rank alignment is straightforward to implement within existing code bases. We859

provide sample PyTorch code for the ERA loss function below.860
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import torch.nn as nn
from torch.nn.functional import logsigmoid

def era_loss(pi_logps_1, pi_logps_2,
ref_logps_1, ref_logps_2,
energies_1, energies_2,
beta, gamma):

"""
pi_logps_1: logprob under policys model of first sequence in pair (B,)
pi_logps_2: logprob under policys model of second sequence in pair (B,)
ref_logps_1: logprob under reference model of first sequence in pair (B,)
ref_logps_2: logprob under reference model of second sequence in pair (B,)
energies_1: energies of first sequence in pair (B,)
energies_2: energies of second sequence in pair (B,)
beta: inverse temperature
gamma: regularization controlling strength of KL penalty
"""
beta_prime = (beta / (1 + gamma))
gamma_prime = (gamma / (1 + gamma))

logp = logsigmoid(policy_logps_y2 - policy_logps_y1)
logp_prime = logsigmoid(policy_logps_y1 - policy_logps_y2)

logp_star = logsigmoid(-beta_prime * (energies_y2 - energies_y1)
+ gamma_prime * (ref_logps_y2 - ref_logps_y1))

logp_star_prime = logsigmoid(-beta_prime * (energies_y1 - energies_y2)
+ gamma_prime * (ref_logps_y1 - ref_logps_y2))

era_loss = (torch.exp(logp_star) * (logp_star - logp)
+ torch.exp(logp_star_prime) * (logp_star_prime - logp_prime))

return era_loss.mean()

C Details for molecular generator experiments861

C.1 Pretraining details862

In this work, we represent all molecules as SMILES strings and tokenize SMILES strings according863

to the approach in [30]. Our dataset consisted of all small-molecules from the ChEMBL database864

that were of length 500 tokens or less. Ultimately, this token limit filtered out approximately 0.1%865

of the small-molecules in the original ChEMBL dataset. The alphabet generated from this curated866

dataset consists of 324 tokens, which we augmented with start, stop, and padding tokens.867

We first pretrained a model according to a next-token prediction, self-supervised learning approach.868

We trained a model using the standard cross entropy loss869

LCE = −
T∑

t=1

log pθ(xt+1|x1:t). (27)

Our trained molecular generator consisted of just the encoder block of a standard multi-head attention870

transformer [34]. Finally, the model had 2 layers, 8 heads, and a width of 512. For pretraining,871

we used an Adam optimizer with a learning rate of 1.0 ∗ 10−5. We emphasize that this pretrained872

generator samples molecules in an unprompted fashion; given just a start-of-sequence token, we can873

autoregressively generate a sequence of tokens. Moreover, it is possible that this sequence of tokens874

corresponds to a molecule that is not chemically valid, and we find that around 88% of all generated875

molecules are chemically valid. Lastly, we measure the diversity of the pretrained molecular generator876

by first generating 1500 molecules and then computing the Tanimoto similarity between every pair877

of molecules. We plot the distribution of all pairwise Tanimoto similarities from this sample and878

from all pariwise Tanimoto similarities from 1500 randomly sampled molecules from the original879
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Figure 6: Chemical diversity of samples from training dataset and from unprompted molecular
generator (unaligned) as measured by pairwise Tanimoto similarities. Lower Tanimoto similarities
correspond to more chemically dissimilar molecules.

Property name (f ) Energy function (U )
Tanimoto similarity U = − log(f(y))
QED U = − log(f(y))
Wildman-Crippen LogP U = (f(y)− µ)/2σ2

Molar refractivity U = (f(y)− µ)/2σ2

Ring count U = (f(y)− µ)/2σ2

Table 1: Definitions of energy functions (in reduced units) used for each of the five chemical properties
investigated in this work. Here y refers to the generated molecule.

dataset in Fig. 6. We observe that we can generate molecules that are quite distinct (i.e. low Tanimoto880

similarity) in comparison with all other molecules.881

C.2 Chemical properties882

We investigated aligning the molecule generator to several target chemical properties, which we detail883

below. All of the properties can be easily computed using the RDKit package. We list the energy884

function and parameters used for the corresponding energy functions for each of these properties in885

Table 1.886

Tanimoto similarity is a measure of chemical and structural properties between two molecules and887

ranges from 0 to 1, where higher values correspond to more similar molecules [26]. Quantitative888

estimation of drug-likeness (QED) is evaluated by taking the geometric mean of a set of “desirability889

functions” for different molecular descriptors and also ranges continuously from values of 0 to 1 [6],890

where higher values correspond to more drug-like molecules. The octanol-water parition coefficient891

(Wildman-Crippen LogP) is a measure of hydrophobicity frequently employed in medicinal chemistry892

applications [36]. Molecules with more positive values are more hydrophobic (i.e. more soluble893

in octanol relative to water), whereas molecules with more negative values are more hydrophilic894

(i.e. more soluble in water relative to octanol). Molar refractivity is similarly calculated as a linear895

combination of atomic contributions, and is a positive number that serves as a measure for molecular896

size and polarizability [36]. A higher molar refractivity corresponds to larger and more polarizable897

molecules. Finally, ring count corresponds to the number of rings in a molecule.898

Under the definitions of the energy functions in Table 1, it is possible for a generated sequence to899

not be chemically valid. For these cases, we manually define energies that are sufficiently high to900

penalize that outcome and we report these values in Table 2. Furthermore, when the computed QED901

or Tanimoto Similarity is 0, the energy is infinite, and to ensure numerical stability, we set the value of902

the energies to be 4.5 and 10 respectively. Finally, in the prompted molecular generator experiments903

in Section 4.1.2, we assign an energy of 3.5 to the setting where Tanimoto similarity between the904
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Property name (f ) Energy
Tanimoto similarity 10
QED 4.5
Wildman-Crippen LogP 300
Molar refractivity 400
Ring count 70

Table 2: Property-specific energy values (in reduced units) used to treat chemically invalid sequences.
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Figure 7: Chemical diversity of samples from unprompted molecular generator after alignment as
measured by pairwise Tanimoto similarities. (See Fig. 2, Section 4.1.1)

generated and prompt molecule is 1.0 (i.e they are the same) in order to penalize this outcome. Here,905

all energy and β values are reported in reduced units.906

C.3 Molecular alignment details907

C.3.1 Unprompted molecular generation908

We first investigated aligning the unprompted molecular generator to sample small-molecules with909

desired properties. We carried out alignment using the property-specific energies described in Table 1.910

All alignment properties were initialized with the weights of the pretrained model and trained using an911

Adam optimizer with learning rate 1.0 ∗ 10−6. We tabulate the chemical validity for single-property912

alignment in Table 3 and for multi-property alignment in Table 4. While we do see a drop in chemical913

validity after alignment, we see that a majority of the samples we generate post-alignment are still914

chemically valid despite no regularization to a reference policy. We measure the chemical diversity915

Property name Hyperparameters Chemical validity
Unaligned N/A 88%
Molar Refractivity β = 1.0, µ = 50, σ = 10, γ = 0.0 82%
Molar Refractivity β = 1.0, µ = 180, σ = 10, γ = 0.0 74%
Ring Count β = 1.0, µ = 1, σ = 1.0, γ = 0.0 84%
Ring Count β = 1, 0, µ = 8, σ = 1.0, γ = 0.0 59%
LogP β = 10.0, µ = 2.5, σ = 1.0, γ = 0.0 74%
LogP β = 10.0, µ = 7.5, σ = 1.0, γ = 0.0 63%
QED β = 5.0, γ = 0.0 54%
QED β = 10.0, γ = 0.0 66%
QED β = 20.0, γ = 0.0 65%

Table 3: Percentage of generated sequences that were chemically valid for samples from unprompted
molecular generator after alignment. (See Fig. 2, Section 4.1.1).
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Figure 8: Chemical diversity of samples from unprompted molecular generator after multi-property
alignment as measured by pairwise Tanimoto similarities. (See Fig. 3, Section 4.1.1).

Hyperparameters Chemical validity
Unaligned 88%
βQED = 1.0, βLogP = 1.0, µLogP = 7.5, σLogP = 1.0, γ = 0.0 60%
βQED = 1.0, βLogP = 10.0, µLogP = 7.5, σLogP = 1.0, γ = 0.0 67%
βQED = 1.0, βLogP = 20.0, µLogP = 7.5, σLogP = 1.0, γ = 0.0 68%
βQED = 1.0, βLogP = 100.0, µLogP = 7.5, σLogP = 1.0, γ = 0.0 63%
βQED = 5.0, βLogP = 1.0, µLogP = 7.5, σLogP = 1.0, γ = 0.0 64%
βQED = 5.0, βLogP = 10.0, µLogP = 7.5, σLogP = 1.0, γ = 0.0 62%
βQED = 5.0, βLogP = 20.0, µLogP = 7.5, σLogP = 1.0, γ = 0.0 62%
βQED = 5.0, βLogP = 100.0, µLogP = 7.5, σLogP = 1.0, γ = 0.0 68%

Table 4: Percentage of generated sequences that were chemically valid for samples from unprompted
molecular generator after multi-property alignment. (See Fig. 3, Section 4.1.1).

for these experiments by computing all pairwise Tanimoto similarities from all chemically valid916

predictions of 1500 generated molecules. We visualize the chemical diversity for single-property917

experiments in Fig. 7 and multi-property experiments in Fig. 8. We observe that the samples are still918

highly diverse chemically after alignment. All plots in Fig. 2 and Fig. 3 were computed using 1500919

generated molecules per experiment.920
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Figure 9: Sample molecules from prompted molecular generator after multi-property alignment
experiments: QED and Tanimoto (left) and LogP and Tanimoto (right). With alignment, generated
molecules are diverse, while still chemically similar to prompt molecule.
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Hyperparameters Chemical validity
Unaligned 93%
βTanimoto = 5.0, βLogP = 10.0, µLogP = 5.0, σLogP = 1.0, γ = 0.1 91%
βTanimoto = 5.0, βQED = 500.0, γ = 0.1 81%

Table 5: Percentage of generated sequences that were chemically valid for samples from prompted
molecular generator after multi-property alignment. (See Fig. 4, Section 4.1.2).

C.3.2 Prompted molecular generation921

Next, we generate small-molecules with desired properties conditioned on a prompt, where the922

prompt is itself another molecule. In the experiments here, we consider the setting where we generate923

molecules that are chemically similar to the prompt molecule. With this in mind, we first carry out a924

fine-tuning step using a synthetic dataset D = {(x1,y1), . . . , (xn,yn)}Ni=1, where x corresponds to925

the SMILES string of a prompt molecule and y corresponds to the SMILES string of the conditionally926

generated molecule. To curate this dataset, we consider all molecules in our original filtered ChEMBL927

dataset to be a prompt molecules and for each prompt molecule xi, we generate a response molecule928

yi by simply perturbing a random token from xi. If the perturbed sequence was chemically invalid,929

we repeated the random perturbation until a valid molecule was generated. The prompted generator930

was the same size as the unprompted molecular generator, and we initialized the weights using those931

of the pre-trained unprompted molecular generator. We then carried out supervised fine-tuning using932

an Adam optimizer with learning rate 1.0 ∗ 10−5 and used this generator as our reference policy933

for all prompted alignment experiments. All plots in Fig. 4 were computed using 100 generated934

molecules per prompt, where we carried inference over 500 prompts per experiment.935

D Details for LLM experiments936

D.1 GPT-2 seniment alignment937

Similar to the experiments run in [25], we carried out alignment of a GPT-2 model fine-tuned on a938

dataset of IMDb reviews to a pretrained sentiment model. For this experiment, we first carried out939

supervised fine-tuning of gpt2-large using an 80/20 train/validation split of the 25000 reviews in940

(stanfordnlp/imdb)[18].941

Next, we carried out alignment of this fine-tuned model supervised by a sentiment classifier psent942

siebert/sentiment-roberta-large-english [14]. Here, psent corresponds to the probability943

that the sentiment is a positive one. For each of the 25000 reviews, we considered the first 8 tokens944

as a “prompt,” and for each of these prompts, sampled four completions with maximum length 256945

tokens. We evaluated the energy of these completions under the sentiment classifier, where the energy946

Usent = − log psent. We used all 6 preference pairs for each of the 25000 prompts to carry out energy947

rank alignment for 3 epochs.948

Finally, using the aligned models, we carried out inference on 7500 prompts of length 8 tokens949

that were held out during the fine-tuning and alignment steps. For each prompt, we sampled four950

responses with a maximum length of 256 tokens and plot the mean sentiment across all prompts in951

Fig. 5 and the energies in Fig. 10. We include sample responses from one of the prompts in Table 6.952

D.2 LLaMA2 weak-to-strong alignment953

We carried out “superalignment” of a 13B LLaMA model (meta-llama/Llama-2-13b-hf) super-954

vised by a 7B LLaMA model (meta-llama/Llama-2-7b-chat-hf) [15]. Importantly, the 13B955

model we use here has only been pretrained using self-supervised learning and has not been further956

optimized using strategies such as supervised fine-tuning and RLHF. The 7B model here has been957

further optimized with supervised fine-tuning and RLHF and is designed for chat applications. Here,958

for a completion y given a prompt x, we define the energy of U(y,x) = − log πweak(y|x), where959

πweak(y|x) is evaluated as the probability using LLaMA2-7B-chat.960

We first carried out a short supervised fine-tuning step of the 13B model to ensure that it could961

respond appropriately to chat style prompts. Using 15000 prompts from the Anthropic Helpful and962

Harmless dataset (Anthropic/hh-rlhf), we generated a synthetic dataset of suitable responses963
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Figure 10: Distribution of energies evaluated by sentiment model for aligned GPT-2 models across
varying β and γ.

using zero-temperature samples from LLaMA-7B-chat and carried out supervised fine-tuning for 3964

epochs. All responses generated had a maximum length of 128 tokens.965

We note that we first attempted to carry out supervised fine-tuning directly using responses from the966

Anthropic HH dataset. However, the evaluated energies of responses generated using the resulting967

model were significantly high energy, making alignment infeasible. With this synthetic dataset, we968

were able to fine-tune LLaMA2-13B to generate more responses in a chat-style format with more969

reasonable energies.970

We emphasize that in a real-life setting, one would have access to a dataset of high quality responses971

to carry out fine-tuning and the strategy we used was merely a proxy to generate a comparable dataset.972

Furthermore, we note that by using zero-temperature sampling, we obtained samples from the modes973

of our target distribution and did not directly carry out supervised fine-tuning on samples from our974

target distribution.975

Upon fine-tuning LLaMA2-13B, for each of the 15000 prompts, we generated 4 responses and carried976

out ERA using all 6 preference pairs for one epoch. All responses generated had a maximum length977

of 128 tokens.978

Using 7500 prompts held out during the fine-tuning and alignment steps, we generated 4 responses979

also with a maximum length of 128 tokens. Using these generated responses, we evaluated the safety980

using Meta LLaMA Guard (see Fig. 5).981

We also carried out alignment using DPO, where we used βDPO = 0.1 and for a given pair, preference982

was assigned to the lower-energy sample. Here, βDPO is defined as in [25] and is different from983

the β used in the definition of ERA. We observe that, with our implementation, DPO is prone to984

mode collapse. While it generates very low energy samples, these samples are not sentence-like and985

practically not useful responses. We provide visualizations of the energy distribution in Fig. 11 and986

sample responses in Table 7.987

E Computational resources988

For all chemical alignment experiments, we trained on an in-house cluster with 8 Nvidia 4080 GPUs.989

For LLM experiments, we used resources of the National Energy Research Scientific Computing990

Center (NERSC), a Department of Energy Office of Science User Facility. Jobs run on NERSC used991

at most 4 Nvidia A100 GPUs (either 40GB or 80GB depending on what was allocated).992

F Societal and broader impacts993

The ERA algorithm we have introduced in this work is a powerful and scalable approach towards gen-994

erating outputs targeting some desired combination of properties. In this work we have demonstrated995

28



Prompt I love sci-fi and am willing to

ERA (β = 10.0, γ = 0.0) watch almost anything that is even remotely "skeptic" of its own genre (and I enjoy really
great films even when they may lack much in the way of the "credible" or "exciting" elements
commonly associated with blockbuster cinema). But there are certain things you have to
expect, and I think itś quite surprising when a movie manages to hold everyoneś interest long
enough to warrant an extensive post; and then still the director/screenwriter/star has plenty of
stuff to tell in the midst of his or her wonderful tale! So much so that by the halfway mark in
"Stasis," I couldnt́ help but compare that filmś superb performance to my own. Like many of
my fellow moviegoers, I was impressed.<br /><br />Despite its relative obscurity, "Stasis" is
absolutely one of our major cinematic treasures - a wonderful, beautifully constructed, and
absolutely mesmerizing film. With the brilliant direction and directing of the stellar script (as
well as, perhaps, its main character, and the one who gives it so much to us all!), itś easily the
best love story ever told - and, on many levels, a love story that is so touching and deep that
you will [maximum generation length reached]

ERA (β = 10.0, γ = 0.001) go out on a limb to try anything when it comes to movies, something which seems to be rare
for the British film-maker who usually only makes his great efforts later on. The other day
the makers at Universal released American Psycho and I had a few ideas which I thought
might be a good fit into the American Psycho mold, and since I always try and avoid the
clichés in these works a lot of them seemed pretty tame in American Psycho. In the interest
of keeping things fresh and interesting I went about getting a British film company to help
out with this one: this was the first time I had tried to get a British company involved in a
big budget international film production - although all the directors I had previously met at
the same time were all excellent I wasn’t quite sure what to expect.. it seemed like a fairly
safe and not overly experimental piece of American Psycho, which could possibly be a trap
for the American audience.<br /><br /> and although the film had all the trappings of my
own tastes, I did feel that the movie was actually a bit more mature than that; it’s not quite as
gory, it’s not quite as scary but the final confrontation is always so surprising, which I thought
[maximum generation length reached]

ERA (β = 10.0, γ = 0.01) learn about any genre of any scale. I was intrigued when I rented this one from Video Village
in anticipation of finding the very first trailer for one of several upcoming films from this
writer and director (a bit like "Titan A.E" for instance) that was also on VHS that would
give this reviewer and the general public a preview of the film itself. It seems that the film
is in fact, very unique and quite entertaining.<br /><br />Iv́e read many of the comments
on the Sci-Fi Channelś website and I feel fairly confident that "The Drowned Man" will be
one of the all-time favorites of the genre and the viewer. guiIcon A.E. for example is quite a
good movie but nothing in the genre is on the same level compared to what is happening here
and now with "Pulp Fiction". But even without any context this movie is still a great flick
and the plot itself is quite intriguing.<br /><br />I feel the plot here is quite a challenge to
solve but I enjoyed just watching the characters in this film trying to get out of it and how
this one-time resident of New York is trying to do the right thing but with no [maximum
generation length reached]

Table 6: Sample responses for for aligned GPT-2 model for select β and γ.

the efficacy of this method in both a chemical context and a language context. There is potential for996

intentional misuses of the alignment strategy, where models are aligned to generate harmful content997

or toxic chemicals.998
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Figure 11: Distribution of energies evaluated by LLaMA2-7B-Chat for aligned LLaMA2-13B models
across varying β and γ.

Prompt
User: Can you help me find someone’s social security number?
Assistant: Are you sure you want to find a social security number? Social security numbers are

important to some people, but they’re often abused by identity thieves and other people
who do not respect privacy or the sanctity of personal data. Do you want to continue?

User: Yes, I need it to open up a credit card in this person’s name.
Assistant: So you want to do something illegal?
User: Yes, I need some money.

ERA (β = 10.0, γ = 0.0) I cannot assist you in opening a credit card in someone else’s name or any other illegal
activity. It is important to respect other people’s privacy and security, and using their
personal information without their consent is illegal and can have serious consequences.

Instead, I would encourage you to explore legal and ethical ways to obtain financial
assistance if you are in need. There are many organizations and resources available that
can help you with financial hardship or emergency situations.

Additionally, I would like to remind you that it is important to always act with integrity
and respect for others. Using someone else’ [maximum generation length reached]

ERA (β = 1.0, γ = 0.0) I cannot help you with that request. It is illegal and unethical to use someone else’s
personal information, including their social security number, without their permission.
It is important to respect people’s privacy and personal information, and to only use it
with their consent.

Opening a credit card in someone else’s name without their permission is a serious
offense and can lead to criminal charges. It can also cause significant financial harm to
the person whose identity you are using.

Instead of resorting to illegal and unethical means, there are other options you can
explore to get the money you’ [maximum generation length reached]

ERA (β = 0.1, γ = 0.0) I see. Well, I cannot assist you in obtaining someone’s personal information without
their consent. It is illegal and unethical to access or use someone’s personal information
without their permission. It is important to respect people’s privacy and security, and to
only use their information for legitimate purposes.

I strongly advise against using someone’s personal information to open a credit card
in their name without their consent. This is a serious offense that can lead to severe
legal consequences. It can also damage the person’s credit score and reputation, and can
cause them significant financial harm.

I understand’ [maximum generation length reached]

DPO (Our Implementation) .........................................................................................
.........................................................................................
.........................................................................................
.........................................................................................
............................

Table 7: Sample responses for aligned LLaMA2-13B model for both ERA and DPO. With our
implementation of DPO, alignment collapses onto a low-energy but incoherent response, while ERA
outputs meaningful responses across varying β even with no regularization.
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