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Fig. 1: Gradient Guided Generalizable Reconstruction (G3R): Our method
learns a single reconstruction network that takes multi-view camera images and an
initial point set to predict the 3D representation for large scenes (> 10, 000m2) in two
minutes or less, enabling realistic and real-time camera simulation.

Abstract. Large scale 3D scene reconstruction is important for appli-
cations such as virtual reality and simulation. Existing neural rendering
approaches (e.g ., NeRF, 3DGS) have achieved realistic reconstructions
on large scenes, but optimize per scene, which is expensive and slow, and
exhibit noticeable artifacts under large view changes due to overfitting.
Generalizable approaches, or large reconstruction models, are fast, but
primarily work for small scenes/objects and often produce lower quality
rendering results. In this work, we introduce G3R, a generalizable re-
construction approach that can efficiently predict high-quality 3D scene
representations for large scenes. We propose to learn a reconstruction
network that takes the gradient feedback signals from differentiable ren-
dering to iteratively update a 3D scene representation, combining the
benefits of high photorealism from per-scene optimization with data-
driven priors from fast feed-forward prediction methods. Experiments
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on urban-driving and drone datasets show that G3R generalizes across
diverse large scenes and accelerates the reconstruction process by at least
10× while achieving comparable or better realism compared to 3DGS,
and also being more robust to large view changes. Please visit our project
page for more results: https://waabi.ai/g3r.

Keywords: Generalizable Reconstruction · Neural Rendering · Learned
Optimization · 3DGS · Large Reconstruction Models

1 Introduction

Reconstruction of large real world scenes from sensor data, such as urban traffic
scenarios, is a long-standing problem in computer vision and computer graphics.
Scene reconstruction enables applications such as virtual reality and high-fidelity
camera simulation, where robots such as autonomous vehicles can learn and be
evaluated safely at scale [32,37,52,68,78]. To be effective, the 3D reconstructions
must have high photorealism at novel views, be efficient to generate, enable scene
manipulation, and enable real-time image rendering.

Recently, neural rendering approaches such as NeRF [38] and 3D Gaussian
Splatting (3DGS) [18] have achieved realistic reconstructions for large scenes
using camera and optionally LiDAR data. However, they require a costly per-
scene optimization process to reconstruct the scene by recreating the input sensor
data via differentiable rendering, which may take several hours to achieve high-
quality. Moreover, they typically focus on the novel view synthesis (NVS) setting
where the target view is close to the source views and often exhibit artifacts when
the viewpoint changes are large (e.g ., meter-scale shifts), as it can overfit to the
input images while not learning the true underlying 3D representation.

To enable faster reconstruction and better performance at novel views, recent
works aim to synthesize a generalizable representation with a single pre-trained
network, which can be used for NVS on unseen scenes in a zero-shot manner.
These methods utilize an encoder to predict the intermediate scene representa-
tion by aggregating image features extracted from multiple source views accord-
ing to camera and geometry priors, and then decode the representation for NVS
via volume rendering or a transformer [7,26,69,70,87]. The encoder and decoder
networks are trained across many scenes to reconstruction priors. Most recently,
large reconstruction models (LRMs) are proposed to learn reconstruction priors
by training on large-scale synthetic datasets for generalizable single-step 2D to
3D reconstruction [14,22,30,72,88]. However, both generalizable NVS and LRMs
are primarily applied to objects or small scenes due to the complexity of large
scenes, which are difficult to predict accurately from a single step network pre-
diction. Furthermore, the computation resources and memory needed to utilize
many input scene images (> 100) with existing techniques that aggregate ray
features [69], build cost volumes [7] or perform image-based rendering [70] are
prohibitive.

In this paper, we present Gradient Guided Generalizable Reconstruction
(G3R), the first method that enables fast and generalizable reconstruction of

https://waabi.ai/g3r
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large scenes. Given a sequence of images and an approximate geometry scaffold
(e.g ., points from LiDAR or multi-view stereo), G3R can produce a modifiable
digital twin as a set of 3D Gaussian primitives in two minutes or less for large
scenes (> 10, 000m2). This representation can be directly used for high-fidelity
novel-view rendering at interactive frame rates (> 90 FPS). Our key idea is
to learn a single reconstruction network that iteratively updates the 3D scene
representation, combining the benefits of data-driven priors from fast prediction
methods with the iterative gradient feedback signal from per-scene optimization
methods. G3R can be viewed as a “learned optimizer” [4,73] for scene reconstruc-
tion. Towards this goal, we first initialize a neural scene representation which we
call 3D Neural Gaussians from the geometry scaffold that can be differentiably
rendered. Rather than select a few close-by source views for unprojection like
existing generalizable works, we propose a novel way of lifting 2D images to 3D
space by rendering and backpropagating to obtain gradients w.r.t the current
3D representation. These 3D gradients can be seen as 2D images unprojected to
3D with the current representation as the 3D proxy, which takes the rendering
procedure into account, and is thus naturally occlusion aware and contains a
useful feedback signal. Moreover, it provides a unified representation that can
efficiently aggregate as many 2D images as needed by just aggregating the gra-
dients. Then, our reconstruction network (G3R-Net) takes the 3D gradients and
current 3D representation as inputs and iteratively predicts updates to refine the
representation. Since the G3R-Net incorporates the rendering feedback signal
at each step and is trained across multiple scenes, it can significantly acceler-
ate the convergence compared to standard gradient descent algorithms (i.e, 24
iterations v.s. 1000s of iterations). G3R-Net is trained across multiple scenes,
enabling high quality reconstruction and improving robustness for NVS.

Experiments on two outdoor datasets with large-scale scenes demonstrate
the generalizability of G3R. With as little as 24 iterations, G3R reconstructs
large scenes with comparable or better realism at novel views than the per-
scene optimization approaches while being at least 10× faster. To the best of
our knowledge, this is the first generalizable reconstruction approach that can
reconstruct a faithful 3D representation for such large-scale scenes (> 10, 000m2)
in high-resolution (> 100 source images at 1080 × 1920), showing the potential
to build digital twins for the metaverse and simulation at large scale.

2 Related Work

Optimization-based scene reconstruction: The current state-of-the-art in scene
reconstruction is optimizing differentiable radiance fields, such as NeRF [38] or
3DGS [18], which model the 3D scene either as neural networks or as Gaussian
primitives, and then alpha-composite along the ray via either ray-marching or
rasterization, respectively. To extend to city-scale scenes, some works decompose
the scene into sub-components and represent each with a network to increase
model capacity [27, 62, 66, 90]. To enable realistic and controllable sensor sim-
ulation, another line of work decomposes dynamic scenes (e.g ., urban driving
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Fig. 2: Three paradigms for scene reconstruction and novel view synthesis
(NVS). (a) Existing generalizable approaches select a few reference images (usually
≤ 5) for feed-forward prediction of intermediate representation and then decode/render
the feature representation to produce the rendered images. (b) Per-scene optimization
approaches take all source images (e.g ., > 100 for large scenes) and reconstructs a 3D
representation via energy minimization and differentiable rendering. (c) G3R conducts
iterative prediction to refine the 3D representation with the 3D gradient guidance (i.e.,
learned optimization) taking all source images. Compared to the other two paradigms,
G3R leverages the benefits of both worlds (data-driven priors, gradient feedback) and
achieves the best trade-off between the reconstruction quality and time (rightmost).

scenes) into static background and moving objects [16,29,42,64,76,79,81–84,92]
or conduct inverse rendering for geometry, material, lighting and semantics de-
composition [28,43,67,71]. These works require time-consuming (hours or days)
per-scene optimization for large scenes and often exhibit artifacts at large view
changes due to overfitting. In contrast, G3R predicts a high-quality and robust
3D representation for large scenes in a few minutes or less.

Generalizable reconstruction: To generalize to novel scenes, researchers train
neural networks across diverse scenes and incorporate proxy geometry like depth
maps for image-based rendering [3,20,46,47,74]. However, it is usually challeng-
ing or expensive to obtain high-quality geometry for real-world large scenes. To
address this issue, recent works adopt transformers to either directly map the
source images and camera embedding to the target view without any physical
constraints [21,49–51,53] or aggregate points from source images along the epipo-
lar lines for rendering [9, 11, 41, 44, 54, 59, 60, 65, 69, 70, 80]. Another popular ap-
proach is to lift 2D images to 3D cost volumes with geometry priors [7,9,17,26,31]
but struggles with large camera movement. These methods do not produce a uni-
fied 3D representation, suffer from noticeable artifacts under large view changes,
and are slow to render. On the other hand, some works that directly predict 3D
representations such as multi-plane images (MPI) [12, 58, 91] or implicit repre-
sentations [7,40,41,55,85] only work well on objects or small scenes. Concurrent
work [6] predicts 3D Gaussians for generalizable reconstruction, but is limited to
low-resoluation image pairs. In contrast, G3R take all available source images
and predicts a unified representation for large-scale scenes including dynamics,
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enabling scalable and realistic simulation. Most recently, large reconstruction
models [14, 22, 30, 72, 88] (LRMs) achieve strong generalizability across small
objects by training on large synthetic dataset such as Objaverse. To our best
knowledge, G3R is the first LRM that generalizes across diverse large scenes
and handles large view changes by training on large-scale real-world datasets.

Iterative networks for 3D: Our method falls under the “iterative network” frame-
work, which conduct iterative updates to gradually refine the output. Prior works
have studied iterative approaches on low-dimensional inverse problems [2, 5, 24,
35, 36] such 6-DOF pose and illumination estimation. In contrast, G3R solves
a challenging high-dimensional inverse problem (i.e., scene reconstruction) us-
ing a learned optimizer [4, 23, 73]. Specifically, we train a neural network that
exploits spatial correlation to expedite the reconstruction process. Similar to
G3R, DeepView [12] also employs an iterative network with gradient guidance
to reconstruct a 3D representation (MPI), but for small baselines only. More-
over, it unfolds the optimization through a series of distinct CNN networks and
loss-agnostic gradient components at each stage for each source image, limiting
the number of input images, and leading to large memory usage and slow speed.

3 Gradient Guided Generalizable Reconstruction (G3R)

Given a set of source camera images Isrc = {Ii}1≤i≤N and an approximate ge-
ometry scaffold M (e.g ., obtained from either LiDAR or points from multi-view
stereo) captured in-the-wild by a sensor platform moving through a large dy-
namic scene, our goal is to efficiently reconstruct a realistic and editable 3D
representation S for accurate real-time camera simulation. In this paper, we in-
troduce Gradient Guided Generalizable Reconstruction (G3R), the first method
that can create modifiable digital clones of large real world scenes (> 10, 000m2)
in two minutes or less, and that renders novel views with high photorealism at
>90 FPS. Our method overview is shown in Fig. 3. G3R combines data-driven
priors from fast prediction methods with the iterative gradient feedback signal
from per-scene optimization methods by learning to optimize for large scene re-
construction (Fig. 2-left). G3R iteratively updates a representation we call 3D
neural Gaussians, initialized from the scaffold M, with a single neural network.
The network takes the gradient feedback signals from differentiably rendering
the representation to reconstruct the source images Isrc. G3R achieves the best
trade-off between realism and reconstruction speed, achieving performance and
scalability (see Fig. 2-right).

In what follows, we first introduce our scene representation (3D neural Gaus-
sians) designed for handling dynamic and unbounded large scenes (Sec. 3.1).
Then we show how to lift 2D images to 3D space by propagating the gradients
(Sec. 3.2), followed by iterative refinements in Sec. 3.3. We describe training the
network across multiple scenes in Sec. 3.4.
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Fig. 3: Method overview. We model the generalizable reconstruction as an iterative
process, where the 3D neural Gaussians S(t) are iteratively refined with reconstruction
network Gθ. We first lift the source 2D images Isrc to 3D space by backpropogating the
rendering procedure to get the gradients w.r.t the representation ∇S(t) (blue arrow).
Then the reconstruction network Gθ takes the 3D representation S(t), the gradient
∇S(t) and the iteration step t as input, and predicts an updated 3D representation
S(t+1). To train the network, we render S(t+1) at source and novel views, and compute
loss. The backward gradient flow for training Gθ is highlighted with dashed blue arrows.

3.1 G3R’s Scene Representation

3D Gaussian Splatting [18] (3DGS) is a differentiable rasterization technique
that allows real-time rendering of photorealistic scenes learned from posed im-
ages and an intitial set of points from SfM [56]. 3DGS represents the scene with
a set of 3D Gaussians (i.e., points) G = {gi}1≤i≤M , where gi ∈ R14 consists of
position (R3), scale (R3), orientation (R4), color (R3) and opacity (R1). These
gaussian points G can be rendered to 2D images with camera poses Π using a
differentiable tile rasterizer frast(G,Π), where each point is projected and splat-
ted to the image plane based on the scale and orientation, then the color is
blended with other points based on the opacity and depth to camera. However,
3DGS’s explicit representation lacks modelling capacity useful for learning-based
optimization. Furthermore, 3DGS [18] focuses on small static scenes or individ-
ual objects, and has challenges modeling large-scale dynamic scenes, such as
self-driving scenarios. In this paper, we make two enhancements to 3DGS’s rep-
resentation. First, we augment its representation with a latent feature vector,
which we call 3D neural Gaussians, providing additional capacity for generaliz-
able reconstruction and learning-based optimization. Second, we decompose the
scene into the nearby static scene, dynamic actors, and a distant region to en-
able modelling of large unbounded dynamic scenes. We now describe these two
enhancements and then detail the rendering process.

3D Neural Gaussians: We define our scene representation S as a set of 3D
Neural Gaussians, S = {hi}1≤i≤M , where each point is represented by a feature
vector hi ∈ RC . This latent representation helps encode information about the
scene during the iterative updates in the learning-based optimization described
in Sec. 3.3. To render, we convert the 3D neural Gaussians to a set of explicit
color 3D Gaussians G = {gi}1≤i≤M , using a Multi-Layer Perceptron (MLP)
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network gi = fmlp(hi). To encode geometry and additional physical information
about the scene into hi and ensure stable optimization, we designate the first 14
channels as the 3D Gaussian attributes and add a skip connection in fmlp such
that it updates these channels to generate gi.

Representing rigid dynamic objects and unbounded scenes: We decompose the
dynamic scene and its set of 3D neural Gaussians S into a static background
SB, a set of dynamic actors SA and a distant region SY (e.g ., far-away buildings
and sky). We assume rigid motion T (SA, ξA) for dynamic actors, where T is
the rigid transformation and ξA are the actor extrinsics. The dynamic points
SA are moved across different frames using 3D bounding boxes that specify each
foreground actor’s size and location. We initialize the 3D neural Gaussians for the
static background and dynamic actors using the provided approximate geometry
scaffolds M (e.g ., aggregated LiDAR points or multi-view stereo points). We
further position a fixed number of points at a large distance to model the distant
region. See Sec. 4 and supp. for details.

Rendering: Given S and camera poses Π = {Ki, ξi}, where Ki and ξi are the
camera intrinsics and extrinsics for view i, we convert S to 3D Gaussians G and
then leverage the differentiable tile rasterizer [18] to render the images Î:

frender(S; Π) :=frast(G; Π) = frast(fmlp(S); Π) (1)

=frast(fmlp(SB,SY , T (SA, ξA)); Π) (2)

3.2 Lift 2D Images to 3D as Gradients

Previous generalizable works [7,26,69] lift a few 2D images (e.g ., ≤ 5) to 3D by
aggregating image features extracted from source views according to camera and
geometry priors (e.g ., epipolar geometry or multi-view stereo). Since each image
is processed by a neural network separately, it cannot take many source images
due to the high memory usage in both training and inference, limiting its ap-
plicability to small objects under small viewpoint changes. This is because large
scenes usually have complex topology/geometry and cannot be reconstructed ac-
curately with only a small set of source images. Moreover, it can be challenging
to select and merge source views and also ensure spatial consistency.

Instead, we propose to lift 2D images to 3D space by “rendering and backprop-
agating” to obtain gradients w.r.t the 3D representation. Compared to leveraging
networks to process images independently, 3D gradients provide a unified rep-
resentation that can efficiently aggregate as many images as needed. Moreover,
3D gradients take the rendering procedure into account, naturally handling oc-
clusions. It also enables adjustment of the 3D representation, which is not done
in traditional depth rendering for view warping. Finally, the 3D gradients are
fast to compute with modern differentiable rasterization engines.

Specifically, given the 3D representation S, we first render the scene to source
input views Îsrc = frender(S; Πsrc) using Eqn. 2. Then, we compare the ren-
dered images with the inputs Isrc, compute the reconstruction loss L, and back-
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propagate the difference to 3D representation S to get accumulated gradients
∇S := ∇SL(S, Isrc; Πsrc) as shown in Fig. 3, with

L(S, Isrc; Πsrc) =
∑
i

∥∥∥Isrci − Îsrci

∥∥∥
2
=

∑
i

∥Isrci − frender(S; Πsrc
i )∥2 , (3)

∇SL(S, Isrc; Πsrc) =
∂L(S, Isrc; Πsrc

i )

∂S
=

∑
i

∂ ∥Isrci − frender(S; Πsrc
i )∥2

∂S
. (4)

The differentiable function frender builds a connection between 2D and 3D, and
the gradient ∇S encodes the 2D images in 3D using S as the proxy.

3.3 Iterative Reconstruction with a Neural Network

We now describe how we iteratively refine the scene representation S given the
source images Isrc. At each step t, we take the current 3D representation S(t)

as a proxy to compute the gradient ∇S(t) via differentiable rendering, thereby
unprojecting 2D source images Isrc to 3D, and then feed ∇S(t) into the network
Gθ to predict the updated 3D representation S(t+1):

S(t+1) = S(t)+γ(t) ·Gθ(S(t),∇S(t)L(S(t), Isrc; Πsrc); t), t = 0, 1, . . . , T −1. (5)

γ(t) defines the update scale at different step t. Intuitively, similar to gradient
descent, we desire a decaying schedule γ(t) and a small T so that the network
can predict an initial coarse representation and then quickly refine it. We use the
cosine scheduler from DDIM [57] for γ(t). We use a 3D UNet [10] with sparse
convolution [63] as Gθ to process the neural Gaussians S. The iterative process
allows us to refine the 3D representation to achieve better quality and use a
smaller network that is more efficient and easier to learn.

3.4 Training & Inference

We now describe the training process to train the learned optimizer Gθ and
neural decoding MLP fmlp. For each scene, we initialize the scene representation
S(0) from the geometry scaffold M. We iteratively refine S with the network
prediction for T steps. To enhance the generalizability of reconstruction net-
work, we render the updated representation to both source views Isrc and novel
views Itgt during training (I = [Isrc, Itgt]), and backpropagate the gradients to
the parameters of the reconstruction network Gθ and the fmlp. Note that in
Eqn. 3 only the gradients from source views are used as input to Gθ for the next
iteration, as the target views will not be available at test time. Gθ is trained to
minimize final rendering loss for every iteration step t. We train the networks
across many large outdoor scenes. The total loss L is:

L = Lmse(Î, I) + λlpipsLlpips(Î, I) + λregLreg(G), (6)
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Table 1: Comparison to reconstruction methods on PandaSet. The methods
with best photorealism are marked using gold•, silver•, and bronze• medals. †
denotes the method needs to reconstruct the scene again with different source images
when rendering each new view.

Models Novel View Synthesis Inference Time
PSNR↑ SSIM↑ LPIPS↓ Recon Time Render FPS

Generalizable

MVSNeRFft [7] 23.68 0.659 0.482 35min 31s 0.0392
ENeRF [26] 24.43 0.736• 0.306• 0.057s† 6.93
GNT [69] 23.99 0.693 0.408 0.32s† 0.00498
PixelSplat [6] 23.21 0.653 0.490 0.74s† 147

Per-scene Opt. Instant-NGP [39] 24.34 0.729 0.436 7min 16s 3.24
3DGS [18] 25.14• 0.747• 0.372• 50min 14s 121

Ours G3R (turbo) 24.76• 0.720 0.438 31s 121
G3R 25.22• 0.742• 0.371• 123s 121

where Î is the rendered images, Lmse is the photometric loss, Llpips is the per-
ceptual loss [89], and Lreg is the regularization term applied on the shape of the
transformed Gaussians G to be flat for better alignment with the surface.

Lreg(G) =
∑
i

max(0, dmin
i − ϵ), (7)

where dmin
i is the minimal value of the 3-channel scale for each Gaussian gi. We

encourage it to be smaller than a threshold ϵ.

Inference: Given the pre-trained reconstruction network Gθ and neural Gaussian
decoder MLP fmlp, we can now reconstruct novel scenes not seen during training.
Specifically, we take all input images Isrc for the novel scene and the 3D neural
Gaussian initialization S(0) to iteratively compute the gradients ∇S and refine
the 3D representation. Finally, we export S(T ) to standard 3D Gaussians G(T )

for real-time rerasterization.

4 Experiments

We compare G3R against state-of-the-art (SoTA) generalizable and per-scene
optimization approaches, ablate our design choices, and demonstrate the capa-
bility of generalization across datasets. Finally, we show that G3R-predicted
representation is editable and we can generate realistic multi-camera videos.

4.1 Experimental Setup

Datasets: We conduct experiments on two public datasets with large real-world
scenes: PandaSet [77], which contains dynamic actors in driving scenes and
BlendedMVS [86], which contains large static infrastructure. We select 7 diverse
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Fig. 4: Qualitative comparison to generalizable approaches on PandaSet.

scenes for testing with each covering around 200×80m2, and the rest (96 scenes)
for training. BlendedMVS-large is a collection of 29 real-world scenes captured
by a drone, ranging in size from 10, 000m2 to over 100, 000m2, and also includes
reconstructed meshes from multi-view stereo [1]. We select 25 scenes for training
and 4 for testing. For both datasets, we use every other frame as source and
the remaining for test. BlendedMVS has more challenging novel views, as the
distance between two nearby views can be large (See supp. for more anlaysis).

Implementation details: We initialize the 3D neural Gaussians’ S(0) positions
using downsampled 3D points from LiDAR points in PandaSet or mesh faces
in BlendedMVS. To ensure geometry coverage, the scale for each Gaussian is
initialized isotropically as the distance to its third nearest point. The rotation is
set to identity and the opacity to 0.7. The other feature channels are randomly
initialized. We disable view-dependent spherical harmonics from the original
3DGS [18] for simplicity and improved memory usage. We normalize the 3D
gradients ∇S(t)L(S(t)) by channel across all the points before feeding to the
network. For dynamic scenes, we adopt 3 separate networks for the background,
actors, and the distant region. tanh activation is applied in the output layer. The
per-scene reconstruction step T is set as 24 during training. We train for 1000
scene iterations in total using Adam optimizer [19] with learning rate 1e-4. This
takes roughly 30 hours on 2 RTX 3090 GPUs. We adopt a warm-up strategy
during training that gradually increases the scene reconstruction steps in the
first few scene iterations. The network is updated at each reconstruction step.
We provide two variants during evaluation, where the faster model, G3R (turbo),
uses fewer iterations and fewer 3D neural Gaussians. See supp. for more details.

Baselines: We compare G3R against both generalizable NVS (Fig. 2a) and
per-scene optimization approaches (Fig. 2b). For generalizable NVS, we com-
pare against MVSNeRF [7], ENeRF [26], GNT [69] and concurrent work Pix-
elSplat [6]. MVSNeRF warps 2D image features onto a plane sweep and then
applies a 3D CNN to reconstruct a NeRF which can be finetuned further. Sim-
ilarly, ENeRF also warps multi-view source images and leverages depth-guided
sampling for efficient reconstruction and rendering. GNT samples points along
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each target ray and predicts the pixel color by learning the aggregation of view-
wise features from the epipolar lines using transformers. PixelSplat predicts 3D
Gaussians with a 2-view epipolar transformer to extract features and then pre-
dict the depth distribution and pixel-aligned Gaussians. Except for MVSNeRF,
which finetunes the predicted representation on new scenes, all generalizable
methods need to reconstruct the scene again with different nearest neighboring
source images when rendering a new view. Unless stated otherwise, we train and
evaluate all generalizable models using the same data as G3R. For per-scene
optimization approaches, we compare against Instant-NGP [39] and 3DGS [18].
Instant-NGP is an efficient NeRF framework with multi-hash grid encoding and
tiny MLP for fast reconstruction. We enhance Instant-NGP with depth supervi-
sion for better performance. 3DGS models the scene with 3D Gaussians and uses
a differentiable rasterizer for fast scene reconstruction and real-time rendering.
We enhance 3DGS to support dynamic actors and unbounded scenes with the
same implementation as G3R. We optimize each test scene separately using all
source frames. Please see supp. for additional details.

4.2 Generalizable Reconstruction on Large Scenes

Scene Reconstruction on PandaSet: We report scene reconstruction results on
PandaSet in Tab. 1 and Fig. 4. Compared to SoTA generalizable approaches,
G3R achieves significantly better photorealism and real-time rendering with an
affordable reconstruction cost (2 min or less). In contrast, baselines conduct
image-based rendering and result in noticeable artifacts for dynamic actors due
to the lack of explicit 3D representation that can model dynamics. Moreover,
they often produce blurry rendering results, especially in nearby regions where
there are large view changes, due to flawed representation prediction and poor ge-
ometry estimation for view warping. We note that ENeRF achieves good LPIPS
with image warping, but has severe visual artifacts and low PSNR. We also com-
pare G3R with SoTA per-scene optimization approaches including Instant-NGP
and 3DGS. Our approach achieves on par or better photorealism while short-
ening the reconstruciton time to 2 minutes. We note that PixelSplat leads to a
higher FPS since it can only process low-resolution images and predicts a smaller
number of 3D Gaussian points compared to G3R due to memory limitations.

Scene Reconstruction on BlendedMVS: We further consider BlendedMVS to
evaluate the robustness of different methods to handle many source inputs
and large view changes. As shown in Fig. 5 and Tab. 2, existing generalizable
approaches including ENeRF, GNT and PixelSplat cannot handle large view
changes and produce bad rendering results with significant visual artifacts due
to bad geometry estimation (e.g ., blurry appearance, unnatural discontinuity,
wrong color palette, etc). To address this issue, we adapt PixelSplat, named
PixelSplat++, to leverage the 3D scaffold to reduce ambiguity and take all
available source images for good coverage. Please see supp. for details. While
achieving signficiant performance boost over existing generalizable methods, Pix-
elSplat++ is still far from per-scene optimization approaches due to the challenge
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Fig. 5: Qualitative comparison to generalizable approaches on BlendedMVS.

Table 2: Comparison on BlendedMVS. The methods with best photorealism are
marked using gold•, silver•, and bronze• medals. † denotes the method needs to
reconstruct the scene again with different source images when rendering each new view.

Models Novel View Synthesis Inference Time
PSNR↑ SSIM↑ LPIPS↓ Recon Time Render FPS

Generalizable

ENeRF [26] 15.21 0.270 0.660 0.11s† 2.65
GNT [69] 16.42 0.366 0.707 0.35s† 0.00249
PixelSplat [6] 16.24 0.344 0.781 1.14s† 176
PixelSplat++ 19.60 0.404 0.601 69s 158

Per-scene Opt. Instant-NGP [39] 24.86• 0.639 0.459• 26min 48s 1.65
3DGS [18] 25.12• 0.668• 0.462 39.5min 97.0

Ours G3R (turbo) 24.56 0.674• 0.421• 98s 97.0
G3R 25.22• 0.707• 0.390• 210s 97.0

of one-step prediction with limited network capacity. Our method results in the
best photorealism, minimal reconstruction time and enables real-time rendering
speed, which again verifies the effectiveness of our proposed paradigm. Moreover,
G3R outperforms per-scene optimization methods especially in perceptual qual-
ity. We hypothesize this is because the learned data-driven prior helps handle
large view changes better.

Robust 3D Gaussian Prediction: We compare with the rendering performance of
3DGS at novel views in Fig. 6. We observe that while 3DGS has sufficient capac-
ity to memorize the source frames, it suffers a significant performance drop when
rendering at novel views due to poor underlying geometry [8, 13]. In contrast,
G3R predicts 3D gaussians in a more robust way because G3R is trained with
novel view supervision across many scenes (Eq. 6) and this supervision helps
regularize the 3D neural Gaussians to generalize rather than merely memorize
the source views. We also consider a more challenging extrapolation setting
where we select 20 consecutive frames as source views and simulate the future 3
frames (e.g ., 3 - 6 meters of shift) to evaluate the robustness when rendering at
extrapolated views. As shown in Fig. 6, G3R results in more realistic rendering
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3DGS G3R (ours) 3DGS G3R (ours)

Interp.

Extrap.

GTGT

Fig. 6: Robustness of G3R vs. 3DGS. 3DGS is sharper on interpolation views
(Interp.), but has artifacts on extraopolation views (Extrap.).

Table 3: Ablation study on PandaSet.
Models PSNR SSIM LPIPS

Ours 25.22 0.742 0.371
− 3D neural Gaussian representation 24.72 0.718 0.420
− iterative reconstruction 20.03 0.510 0.623
− training with novel views 24.59 0.715 0.419
− update schedule γ(t) 25.03 0.732 0.400

Table 4: Cross-dataset General-
ization. Pandaset-pretrained model
outperforms baselines trained on
BlendedMVS (see Tab 2).

PSNR SSIM LPIPS

Zero-short transfer 24.11 0.653 0.448
Finetune on 2 scenes 24.99 0.676 0.428

performance. In contrast, 3DGS has severe visual artifacts highlighted by pink
arrows (e.g ., black holes or wrong colors in road, sky and actor regions). Please
refer to supp. for more analysis.

Ablation study: In Tab. 3, we ablate the key components proposed in G3R on
PandaSet, including replacing the 3D neural Gaussians with the standard 3D
Gaussian representation, conducting one-step prediction in both training and
inference, training the network only with source view supervision, and switching
decaying schedule γ(t) to a constant update scale (0.3) at each step. As shown
in Tab. 3, our proposed neural Gaussian representation is more expressive, thus
easing the network prediction. The iterative refinement is critical in the proposed
paradigm and single-step prediction fails to generate high-quality reconstruction
results. We notice that single-step G3R is worse than PixelSplat as we enforce
smaller updates per step for stable convergence. Moreover, we show training the
network with novel views on many scenes is necessary to enhance the robustness
of 3D representation for realistic novel view rendering. Finally, a proper update
schedule further improves performance.

Generalization study: We further evaluate the PandaSet-trained G3R model
(static background module) on BlendedMVS (self-driving → drone). The results
in Tab. 4 show that G3R trained only on PandaSet achieves significantly better
performance in BlendedMVS than generalizable baselines trained on Blended-
MVS directly. We further finetune the G3R model with only 2 BlendedMVS
scenes, achieving comparable results as directly training on full BlendedMVS.
We also showcase applying a Pandaset-pretrained G3R model to Waymo Open
Dataset (WOD) [61] scenes in Fig. 7, unveiling the potential for scalable real-
world sensor simulation. See supp. for more analysis.

Realistic and controllable camera simulation: We now showcase applying G3R
for high-fidelity multi-camera simulation in large-scale driving scenarios. Com-
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Fig. 7: PandaSet-pretrained model generalizes to Waymo Open Dataset.

Original full 360° replay

Panorama image rendering

Scene manipulation

Fig. 8: Realistic and controllable multi-camera simulation on PandaSet. G3R
reconstructs a manipulable 3D scene representation.

pared to previous generalizable approaches, our method can reconstruct a stan-
dalone representation, which allows us to control, edit and interactively render
the scene for various applications. In Fig. 8, we show G3R-reconstructed scene
can synthesize consistent and high-fidelity multi-camera videos from one single
driving pass (top row). Moreover, we can manipulate the scene by freezing the
sensors and changing the positions of dynamic actors, and render corresponding
multi-camera (second row) or panorama images (bottom row).

Limitations: Our approach has artifacts in large extrapolations, which may re-
quire scene completion. Better surface regularization [8,13] and adversarial train-
ing [48,82] may mitigate these issues. G3R’s performance suffers when initialized
with sparse points, but can leverage LiDAR or fast MVS techniques [75] to miti-
gate this. We also do not model non-rigid deformations [34] and emissive lighting.
See supp. for details.

5 Conclusion

In this paper, we introduce G3R, a novel approach for efficient generalizable
large-scale 3D scene reconstruction. By leveraging gradient feedback signals from
differentiable rendering, G3R achieves acceleration of at least 10× over state-
of-the-art per-scene optimization methods, with comparable or superior photo-
realism. Importantly, our method predicts a standalone 3D representation that
exhibits robustness to large view changes and enables real-time rendering, mak-
ing it well-suited for VR and simulation. Experiments on urban-driving and
drone datasets showcase the efficacy of G3R for in-the-wild 3D scene recon-
struction. Our learning-to-optimize paradigm with gradient signal can apply to
other 3D representations such as triplanes with NeRF rendering, or other inverse
problems such as generalizable surface reconstruction [15,25,33,45].
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