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Abstract

The “pre-training then fine-tuning (FT)” paradigm is widely adopted to boost the model
performance of deep learning-based methods for medical volumetric segmentation. How-
ever, conventional full FT incurs high computational and memory costs. Thus, it is of
increasing importance to fine-tune pre-trained models for medical volumetric segmentation
tasks in a both effective and parameter-efficient manner. In this paper, we introduce a
new framework named Med-Tuning to realize parameter-efficient tuning (PET) for medical
volumetric segmentation task and an efficient plug-and-play module named Med-Adapter
for task-specific feature extraction. With a small number of tuned parameters, our frame-
work enhances the 2D baselines’s precision on segmentation tasks, which are pre-trained
on natural images. Extensive experiments on three benchmark datasets (CT and MRI
modalities) show that our method achieves better results than previous PET methods on
volumetric segmentation tasks. Compared to full FT, Med-Tuning reduces the fine-tuned
model parameters by up to 4×, with even better segmentation performance. Our project
webpage is at https://rubics-xuan.github.io/Med-Tuning/.

Keywords: Parameter-Efficient Tuning, Medical Volumetric Segmentation, Transformer.

1. Introduction

Medical volumetric segmentation (MVS) task is to identify tumors and organ sub-regions in
biomedical images, aiding accurate clinical diagnoses and treatment planning. It is crucial
in medical research, due to the widespread use of 3D imaging like computed tomogra-
phy (CT) and magnetic resonance imaging (MRI). In the last decades, a large number
of deep neural network architectures have been proposed, including convolutional neural
networks (CNNs) (e.g., (Milletari et al., 2016; Çiçek et al., 2016; Isensee et al., 2021))
and Transformer-based networks (e.g., (Cao et al., 2022; Hatamizadeh et al., 2022b,a;
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Zhou et al., 2023; Peiris et al., 2022)). Recently, the “pre-training then fine-tuning”
paradigm (Yosinski et al., 2014) has gained much popularity to enhance model performance
in downstream tasks. As in (Cao et al., 2022), the conventional full fine-tuning scheme
updates all parameters of the pre-trained models. Yet, as models continuously improve
in performance, particularly Transformer-based ones like (Cao et al., 2022; Hatamizadeh
et al., 2022b,a), their tuned parameter count escalates significantly. Thus, full fine-tuning
involves a lot of tuned parameters and entails great training costs. To reduce tuned pa-
rameters, head-tuning (Head) was proposed (He et al., 2022), focusing solely on optimizing
the task-specific decoder, albeit resulting in decreased model performance. Meanwhile, re-
cent studies (Jia et al., 2022; Chen et al., 2022; Pan et al., 2022; Sung et al., 2022; Yu
et al., 2022; Zhang et al., 2023; Xu et al., 2023; Wu et al., 2023; Fischer et al., 2024) focus
on parameter-efficient tuning (PET) to balance model performance and tuned parameters.
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Figure 1: The two-fold gaps between upstream pre-
training and our downstream fine-tuning.

In this paper, we aim to investi-
gate how to adapt strong visual
foundation models pre-trained on
natural images to MVS tasks via
PET. We initiate our analysis with
some examples of widely available
models that use image-level pre-
training (e.g., classification task
(Deng et al., 2009), CLIP (Rad-
ford et al., 2021), MOCO v3 (Chen
et al., 2021)) in natural image do-
main. Figure 1 presents the two-
fold gaps between upstream pre-training and downstream fine-tuning: (1) Domain gap
between natural images and medical volumes; (2) Task gap between image-level pre-
training and pixel-level segmentation. To narrow these gaps, we propose Med-Tuning, a
new PET framework for MVS, and Med-Adapter, an efficient plug-and-play module for
task-specific feature extractions. Med-Tuning processes 3D volumes through a frozen pre-
trained Transformer model with inserted Med-Adapters. Med-Adapter greatly narrow both
gaps by capturing spatial multi-scale features and volumetric correlations between slices
with few additional parameters. Our main contributions are summarized as follows:
• We propose a new PET framework Med-Tuning, which greatly boosts the performance
of the pre-trained models on MVS task and reduces training costs.

• We propose a plug-and-play module Med-Adapter, to consider both spatial relationship
modeling (coarse/fine-grained) and volumetric correlations between slices.

• Extensive experiments on three benchmark datasets with both CT and MRI modalities
convince the effectiveness of Med-Tuning over full fine-tuning and other PET methods.

• Med-Tuning adapts well to the rapidly evolving Transformer-based visual foundation
models (i.e., SAM), showcasing strong generalization and flexibility.

2. Related Work

2.1. Medical Volumetric Segmentation

Achieving promising performance on MVS requires the incorporation of both spatial multi-
scale representations and volumetric correlations, as demonstrated by prior research (Hatamizadeh
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et al., 2022a). Several U-Net inspired CNN-based models (Ronneberger et al., 2015; Çiçek
et al., 2016; Zhou et al., 2018; Isensee et al., 2021) concatenate multi-scale features from
the encoder and up-sampled features, complementing the loss of spatial information caused
by down-samplings. Cao et al. (Cao et al., 2022) use skip connections to effectively fuse
low-level and high-level features in Transformers. Besides, various MVS methods capture
volumetric correlations by 3D convolutions (Çiçek et al., 2016; Milletari et al., 2016; Isensee
et al., 2021) or self-attention mechanism among 3D volumes (Wang et al., 2021).

2.2. Visual Parameter-Efficient Tuning

Recently, novel vision PET methods have emerged to balance accuracy and tuned parameter
efficiency during fine-tuning, which can be categorized into three groups: (1) Prompt-based
methods (Zhang et al., 2023; Fischer et al., 2024). For instance, VPT (Jia et al., 2022) adds
learnable prompt tokens to patch embeddings for downstream visual tasks. Pro-tuning (Nie
et al., 2023) inserts multiple stage-wise prompt blocks into different stages of the backbone.
(2) Adapter-based methods (Houlsby et al., 2019; Chen et al., 2022; Yang et al., 2023;
Wu et al., 2023). Adapter is a lightweight module inserted between the feed-forward layer
and layer normalization in Transformer, which are tuned during fine-tuning while other
layers stay frozen. ST-Adapter (Pan et al., 2022) introduces 3D depth-wise convolution
(DWConv) (Ye et al., 2019) in Adapter modules to capture spatial-temporal features. (3)
Other PET techniques. SAN (Xu et al., 2023) is a small and separate network that is
trained via shortcut connections from backbone to reduce memory cost during fine-tuning.
Recent studies (Wu et al., 2023; Chai et al., 2023) mainly focus on exploring the potential
of the Segment Anything Model (SAM) for medical image analysis.

2.3. Utilization of Fourier Transform in Computer Vision

Image analysis in Fourier domain is extensively used in various vision tasks (Ding et al.,
2017; Lee et al., 2018; Li et al., 2020; Chi et al., 2020; Yang and Soatto, 2020; Rao et al.,
2021). Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) leverage
frequency information for global connectivity through parameter-free domain mapping on
original images, resulting in an intrinsic global vision characteristic. According to the
conclusion of (Oppenheim et al., 1979; Liu et al., 2023a), the phase-only image or feature
retains many of the semantics features of the original image.

3. Methodology

3.1. Preliminaries

Vanilla Adapter. Given an input feature X ∈ RN×d, the vanilla Adapter can be repre-
sented as Equation (1) (Houlsby et al., 2019) , where Wdown and Wup indicate the down-
projection and up-projection layer, σ(·) is an activation function, + is a skip-connection.

Adapter(X) = X + σ(XWdown)Wup, (1)
Discrete Fourier Transform. Discrete Fourier Transform (DFT) serves as classical tech-
nique for computer vision applications (Rao et al., 2021). Given a 3D input (volumetric
data or feature) x[D,H,W ], DFT is defined as:

X = F(x) =

W−1∑
w=0

H−1∑
h=0

D−1∑
d=0

x(d, h, w)e−j2π( xd
D + yh

H + zw
W ) = R+ Ij, (2)

where X is a complex matrix, R and I denote its real and imaginary part. In implementa-
tion, we use the accelerated versions of DFT and Inverse DFT (i.e., FFT and IFFT).
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Figure 2: The overall architecture of Med-Tuning. Med-Tuning consists of a 2D Trans-
former baseline with proposed Med-Adapters inserted at each encoder stage. Only
Med-Adapters and decoder are tuned while all the other layers stay frozen.

3.2. Med-Tuning: Parameter-Efficient Tuning for MVS

The overall architecture of our framework is depicted in Figure 2. Med-Tuning consists of a
2D Transformer backbone G pre-trained on natural images, a segmentation decoder and in-
serted Med-Adapter. Given a batch of medical volumes input I[B,C,D,H,W ],(B,C,D,H,W
is the number of batch size, channel, slice, height, width), we initially reshape them to
I[BD,C,H,W ] before embedding layer. According to two main considerations in the fol-
lowing, we decide to exclusively introduce Med-Adapter into encoder without modifying
decoder, enabling high decoder scalability to meet different requirements. First, encoder
plays a pivotal role in baseline. Inadequate feature extraction will hinder performance even
with the same robust decoder, as evidenced by the decline in results for Head compared
to Full, detailed in Table 1, Table 2 and Table 3. Besides, not all segmentation decoders
come with pre-trained weights, necessitating the fine-tuning of the entire decoder. Secondly,
sole insertion in encoder part improves the flexibility of the whole framework. Our insert-
ing strategy broadens the adaptability of Med-Tuning on visual foundation models while
reducing tuned parameters.

3.3. Med-Adapter: Adapter for MVS

We propose a task-oriented and simple yet effective module for medical volumetric data,
namely Med-Adapter. The motivation of Med-Adapter is to empower a 2D Transformer
model pre-trained on natural images to gain the capability of volumetric feature modeling
in a parameter-efficient manner. Here we consider three criteria when designing Med-
Adapter: (1) MVS oriented : It’s necessary to narrow the mentioned gaps in Figure 1.
(2) Light-weight : Structure with a low amount of parameters is crucial. (3) Plug-and-
play : An easy-to-implement module is friendly to practical deployment. While retaining
the bottleneck structure of the vanilla Adapter (Equation (1)), we introduce a few tailored
designs into Med-Adapter based on above criteria, shown in Figure 2 (right).

3.3.1. Intra-stage Feature Enhancement (Intra-FE).

We introduce multiple branches tailored to capture fine-grained feature representations,
coarse-grained global semantics and volumetric correlations among slices, which are vital
for realizing accurate medical volumetric segmentation task.
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Multi-scale Local Branch (MLB) We employ parallel 3D convolutions with kernels of
sizes k = 3 and k = 5 to extract spatial multi-scale features and 3D volumetric correlations
between slices. The conventional 3D convolution operations are replaced with 3D DWConv
in a parameter-efficient manner. Moreover, we use two cascaded 1 × k × k and k × 1 × 1
convolutions to replace the k×k×k convolution to pursue an extremely lightweight structure.

FFT Global Branch (FGB) To achieve coarse-grained global semantic extraction in a
parameter-efficient way, we substitute traditional large convolutional kernels and attention
mechanisms, known for their memory and computation demands, with 3D FFT, IFFT
and learnable complex matrices. These filter-like complex matrices are designed to model
frequency features that contain global semantics in the whole frequency domain. Compared
to vanilla 3D self-attention operation with O(n3) complexity (n is the number of tokens),
our FGB is a lightweight module. In detail, the computational complexity of FGB is
O(nlog(n)), where FFT and IFFT are both with O(nlog(n)) complexity while that of
Hadamard product or matrix addition is O(n). Then we merge the aforementioned branches
by efficient 1 × 1 × 1 convolution. Therefore, given the intermediate embedded feature
representations X ∈ [BD,C ′, HW ], the Intra-FE module can be expressed as Equation (3)-
(5). In this way, the Intra-FE module is theoretically capable of modeling volumetric
correlations among slices and incorporating abundant spatial multi-scale features for the
downstream dense prediction task (i.e., MVS).

Intra-FE = M = Conv1×1×1(MLB + FGB), (3)

MLB = DWConv3(X
′) +DWConv5(X

′), FGB = F−1(WF ⊙F(X ′) + bF ) (4)

X ′ = Rvolume(σ(XWdown)), X ′ ∈ [B,C ′, D,H,W ], C ′ = C/α (5)

where M is the intra-stage enhanced feature representations. WF and bF are the learnable
complex matrices, F is 3D FFT in Equation (2) and F−1 is 3D IFFT. ⊙ is the hadamard
product, while Rvolume is a reshape operation to obtain cube-shape feature representations.

3.3.2. Inter-stage Feature Interaction (Inter-FI).

To fully exploit the representations collected by Inter-FI modules in Med-Adapter at each
stage, we further consider the feature interaction between different stages. The intra-stage
enhanced feature representations M in this stage will be fused with MLastStage (i.e., the
output of the Intra-FE module from the previous stage). Note that Inter-FI is only intro-
duced at specific Med-Adapters at the end of each stage. Thus, Inter-FI is expressed as
Equation (6). In this way, feature representations extracted by Intra-FE modules of Med-
Adapters in shallow layers are gradually fed to adjacent higher layers, realizing inter-stage
feature interaction by explicit enhancement and thus boosting model performance.

Inter-FI = Cat(A(H,MLastStage)), M =

{
Inter-FI, if Flaglast

M, if not Flaglast
(6)

where A denotes convolution operations to align M and MLastStage in terms of spatial
resolution and channel dimension, Cat refers the concatenation. Flaglast is a bool parameter
and Flaglast = True when the current Med-Adapter is the inserted last one at this stage.

In summary, our Med-Adapter can be formulated as Equation (7). Rflatten denotes a
symmetric operation that reshapes the feature back to the original shape of X.

Med-Adapter(X) = X +Rflatten(M +Rvolume(σ(XWdown))Wup. (7)
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4. Experiments and Results

4.1. Experimental Setup

Datasets and Evaluation Metrics. Our proposed Med-Tuning is evaluated on three
benchmark datasets: (1) Kidney Tumor Segmentation 2019 (Heller et al., 2019)(KiTS
2019), (2) Brain Tumor Segmentation 2019 (BraTS 2019) (Menze et al., 2014; Bakas et al.,
2017, 2018), (3) Brain Tumor Segmentation 2020 (BraTS 2020) (Menze et al., 2014; Bakas
et al., 2017, 2018), detailed in Appendix A.1. KiTS 2019 dataset comprises multi-phase 3D
CTs depicting the kidneys and tumors. The ground truth contains 3 classes: background
(label 0), kidney (label 1), and kidney tumor (label 2). The segmentation accuracy of KiTS
2019 is measured by kidney dice (label 1 and 2) and tumor dice (label 2), composite dice
(the average of kidney and tumor dice). BraTS 2019 and BraTS 2020 datasets consist of
3D brain MRI scans with four modalities. The ground truth contains 4 classes: background
(label 0), necrotic and non-enhancing tumor (label 1), peritumoral edema (label 2), and
GD-enhancing tumor (label 4). The segmentation accuracy is measured by Dice score and
the Hausdorff distance (95%) metrics for enhancing tumor region (ET, label 4), regions of
tumor core (TC, labels 1 and 4), and whole tumor region (WT, labels 1,2 and 4).

Implementation Details. Experiments utilizing PyTorch (Paszke et al., 2019) for im-
plementation are conducted on NVIDIA GeForce RTX 3090 GPUs. The pre-trained vanilla
ViT (Dosovitskiy et al., 2021) with UPerNet (Xiao et al., 2018) decoder (ViT+UPerNet)
and Swin-UNet (Cao et al., 2022) based on pre-trained Swin Transformer(tiny) are our
chosen baselines. More implementation details are available in Appendix A.2.

4.2. Results and Analysis

We conduct experiments on three benchmark validation sets and compare our method with
scratch (i.e., training with random initialization, without pre-training), full fine-tuning,
head tuning and previous state-of-the-art PET approaches (i.e., VPT (Jia et al., 2022),
Adapter (Houlsby et al., 2019), AdaptFormer (Chen et al., 2022), Pro-tuning (Nie et al.,
2023), ST-Adapter (Pan et al., 2022)). Qualitative results are shown in Appendix B.

KiTS 2019. The performance comparisons with ViT+UPerNet and Swin-UNet as base-
line are shown in Table 1. Our proposed method boosts the performance of full fine-tuning
considerably and achieves much higher Dice scores than previous PET methods, with much
fewer tuned model parameters. In comparison with recently proposed PET methods (e.g.,
VPT, Pro-tuning and ST-Adapter), our Med-Tuning achieves better performance-efficiency
trade-off on two baselines. Specifically, Med-Tuning improves model performance by a large
margin (i.e., ↑ 4.20% Kidney Dice, ↑ 17.13% Tumor Dice, ↑ 10.67% Composite Dice on
ViT+UPerNet and ↑ 1.01% Kidney Dice, ↑ 8.02% Tumor Dice, ↑ 4.52% Composite
Dice on Swin-UNet) with only 17.70% and 27.58% of tuned parameters respectively in
comparison with full fine-tuning.

BraTS 2019. Performance comparisons on BraTS 2019 on two baselines are shown in
Table 2 (left) and Table 3 (left). Results show that our method attains the best trade-off
between performance and efficiency, achieving comparable or even better results than previ-
ous methods. Compared to full fine-tuning, Med-Tuning achieves maximum improvements
of 4.23% (ViT+UPerNet) and 1.28% (Swin-UNet) in Dice scores. Our Med-Tuning also
achieves high parameter efficiency, tuning only 17.70% parameters of ViT and 27.58% of
Swin-UNet, with inserted parameters being only 2.82% of ViT and 2.72% of Swin-UNet.
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Table 1: Performance comparison on KiTS 2019 with Swin-UNet and ViT+UPerNet. Blue
and Green text denote the percentage of tuned parameters and the performance
improvement compared to full fine-tuning (with grey background).

KiTS 2019
ViT+UPerNet Swin-UNet

Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑ Tuned
Params(M)

Inserted
Params(M)

Dice (%) ↑
Kidney Tumor Composite Kidney Tumor Composite

Scratch 100.849 - 88.01 46.53 67.27 27.154 - 94.33 61.10 77.71
Full 100.849 - 87.32 47.34 67.33 27.154 - 94.68 62.13 78.40
Head 15.007 - 87.35 42.85 65.10 6.752 - 91.95 53.93 72.94
VPT-Shallow 15.015 0.008 86.91 41.67 64.29 6.753 0.001 91.72 54.86 73.29
VPT-Deep 15.100 0.092 88.01 46.45 67.23 6.780 0.029 91.53 53.41 72.47
Adapter 18.567 3.560 89.75 49.03 69.39 7.541 0.790 93.02 57.15 75.08
AdaptFormer 16.197 1.190 87.62 44.46 66.04 7.124 0.372 93.74 59.79 76.77
Pro-tuning 19.812 4.805 89.44 48.32 68.88 8.359 1.607 90.34 51.19 70.77
ST-Adapter 22.118 7.110 90.33 61.29 75.81 8.328 1.577 92.97 57.33 75.15

Ours
17.853
17.70%

2.846
2.82%

91.52
(+4.20)

64.47
(+17.13)

78.00
(+10.67)

7.489
27.58%

0.738
2.72%

95.69
(+1.01)

70.14
(+8.01)

82.92
(+4.52)

Table 2: Performance comparison on BraTS 2019 and BraTS 2020 with ViT+UPerNet.

ViT+
UPerNet

Tuned
Params
(M)

Inserted
Params
(M)

BraTS 2019 BraTS 2020
Dice (%) ↑ Hausdorff (mm) ↓ Dice (%) ↑ Hausdorff (mm) ↓

ET WT TC ET WT TC ET WT TC ET WT TC
Scratch 100.849 - 64.96 83.03 71.34 7.64 10.60 10.94 65.80 83.72 72.01 32.48 10.06 21.47
Full 100.849 - 68.49 85.56 75.12 6.67 7.88 10.53 69.12 85.90 75.29 34.43 7.32 17.09
Head 15.007 - 65.71 84.19 74.77 6.13 7.51 7.86 66.03 84.50 74.47 37.81 7.47 14.15
VPT-Shallow 15.015 0.008 66.02 84.72 75.84 6.11 7.51 8.47 66.52 84.82 75.46 37.77 7.47 13.53
VPT-Deep 15.100 0.092 67.01 85.14 76.80 6.06 7.72 7.65 67.69 85.28 76.59 31.77 7.74 10.62
Adapter 18.567 3.560 68.30 85.37 77.05 5.50 7.64 7.99 68.58 85.77 77.00 32.63 8.17 16.18
AdaptFormer 16.197 1.190 65.88 84.34 74.77 6.65 8.20 8.43 65.52 84.14 74.28 41.03 8.39 14.78
Pro-tuning 19.812 4.805 67.18 85.32 76.51 5.81 7.07 7.56 67.28 85.57 76.58 40.43 7.00 12.87
ST-Adapter 22.118 7.110 69.18 86.27 79.18 6.08 6.94 6.78 68.60 86.55 79.52 34.06 6.79 12.77

Ours
17.853
17.70%

2.846
2.82%

70.53
(+2.04)

86.58
(+1.02)

79.35
(+4.23)

5.86
(-0.81)

6.22
(-1.66)

6.95
(-3.58)

70.69
(+1.57)

86.69
(+0.79)

79.36
(+4.07)

28.64
(-5.79)

6.20
(-1.12)

15.05
(-2.04)

BraTS 2020. Performance comparisons on BraTS 2020 are shown in Table 2 (right)
and Table 3 (right). Compared to full fine-tuning, Med-Tuning achieves maximum im-
provements of 4.07% (ViT+UPerNet) and 1.64% (Swin-UNet) in Dice scores with very
few tuned parameters, surpassing most of PET methods. Compared to ST-Adapter, our
tuned parameters are fewer yet yield a more substantial overall performance improvement.
Moreover, Med-Tuning took about 1.34 (ViT+UPerNet) and 1.68 (Swin-UNet) hours for
fine-tuning, 0.76 (ViT+UPerNet) and 0.46 (Swin-UNet) minutes per sample for inference.

Table 3: Performance comparison on BraTS 2019 and BraTS 2020 with Swin-UNet.

Swin-UNet
Tuned
Params
(M)

Inserted
Params
(M)

BraTS 2019 BraTS 2020
Dice (%) ↑ Hausdorff (mm) ↓ Dice (%) ↑ Hausdorff (mm) ↓

ET WT TC ET WT TC ET WT TC ET WT TC
Scratch 27.154 - 78.38 88.59 76.46 6.06 10.65 9.18 78.72 89.12 77.07 7.62 6.98 19.08
Full 27.154 - 78.26 89.56 79.16 4.33 6.15 6.70 79.09 89.87 79.15 9.67 6.03 15.31
Head 6.752 - 78.07 88.68 77.26 5.02 6.70 7.09 78.77 88.66 76.90 4.89 8.49 16.06
VPT-Shallow 6.753 0.001 77.16 88.30 76.77 5.42 6.15 7.35 77.43 88.23 76.13 7.53 6.07 16.07
VPT-Deep 6.780 0.029 77.02 88.65 76.91 5.30 7.09 7.94 78.63 88.80 77.17 8.27 6.23 13.25
Adapter 7.541 0.790 77.98 89.22 78.02 5.30 6.62 8.49 78.51 89.16 77.71 7.05 6.25 19.09
AdaptFormer 7.124 0.372 77.69 88.61 76.83 4.91 6.29 7.89 78.22 88.92 76.40 10.35 6.48 16.90
Pro-tuning 8.359 1.607 78.58 89.33 78.79 5.27 6.41 8.24 78.77 89.46 78.20 7.31 6.50 10.54
ST-Adapter 8.328 1.577 78.40 89.54 77.44 4.75 6.01 7.41 78.96 89.54 77.85 7.67 5.48 15.53

Ours
7.489
27.58%

0.738
2.72%

78.51
(+0.25)

89.68
(+0.12)

80.44
(+1.28)

4.00
(-0.33)

5.52
(-0.63)

5.76
(-0.94)

79.25
(+0.16)

90.06
(+0.19)

80.79
(+1.64)

12.40
(+2.73)

4.41
(-1.62)

11.59
(-3.72)
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4.3. Ablation Studies
Table 4: Ablation study on the position

of inserted Med-Adapter.

Encoder Dice (%) ↑ HF (mm)↓
n=0n=1n=2n=3 ET WT TC ET WT TC
- - - - 78.07 88.68 77.26 5.02 6.70 7.10
✓ - - - - - - - - -
✓ ✓ - - 74.83 87.09 72.94 7.26 13.1210.17
✓ ✓ ✓ - 75.60 86.79 73.41 8.44 12.3211.24
✓ ✓ ✓ ✓ 78.5189.6880.444.00 5.52 5.76

Extensive ablation experiments are conducted
based on five-fold cross-validation. For more ab-
lation experiments please refer to Appendix C.

Inserted Position of Med-Adapter. We
conduct experiments on BraTS 2019 training set
to assess the segmentation performance by in-
serting Med-Adapter at various stages of Swin-
UNet encoder. Given that Swin-UNet encoder
has four continuous stages (n = 0, 1, 2, 3). According to Table 4, Inserting Med-Adapter in
the initial stages resulted in degraded performance, with none surpassing our best default
setting (gray background). This may be attributed to the greater contribution of features
learned in later encoder stages when transferring pre-trained weights to the MVS task.

Generalization Capability on Other Pre-trained Weights. To explore the potential
of our Med-Tuning, we investigate the effect of diverse encoder pre-trained weights (e.g.,
multi-modal based (CLIP (Radford et al., 2021)), self-supervised based (MAE (He et al.,
2022), MoCo v3 (Chen et al., 2021)) and SAM (Kirillov et al., 2023)) on BraTS 2019
training set with ViT-B/16. As presented in Table 5, given different pre-trained weights,
our easy-to-integrate framework boosts the performance consistently with much fewer tuned
parameters, suggesting the effectiveness and robustness of our Med-Tuning framework.

Generalization Capability on 3D Baseline and Medical Pre-trained Weight. To
demonstrate the generalization capability of our approach, we select Swin UNETR (Tang
et al., 2022) pre-trained on medical datasets as a supplementary 3D baseline and experiment
on part of the Medical Segmentation Decathlon (MSD) (Antonelli et al., 2022) dataset. For
implementation details please refer to Appendix A.3. Experimental results in Table 6 show
that our method still outperforms full fine-tuning in Memory, Time and Dice score.

Table 5: Ablations on other pre-
trained weights.

Pre-trained
Weights

Method
Dice (%) ↑

ET WT TC

CLIP
Full 64.58 84.69 73.31
Ours 68.05 86.29 77.34

MAE
Full 64.86 84.71 73.95
Ours 66.32 85.50 78.05

MoCo v3
Full 65.06 84.30 73.51
Ours 67.09 85.45 77.41

SAM
Full 65.89 85.32 74.05
Ours 67.64 86.10 78.33

Table 6: Ablations on MSD dataset with
pre-trained Swin UNETR.

Organ Method Memory(GB)↓ Time(h)↓ Dice AVG(%)↑
Task02
Heart
(MRI)

Scratch 19.73 1.05 91.95
Full 19.73 1.06 93.73
Ours 13.44 0.86 95.84

Task06
Lung
(CT)

Scratch 23.51 8.39 65.82
Full 23.51 8.39 67.69
Ours 20.30 8.03 78.09

Task09
Spleen
(CT)

Scratch 20.32 3.21 95.76
Full 20.32 3.21 96.52
Ours 19.71 2.22 97.06

5. Conclusion

In this work, we present a new PET framework named Med-Tuning with strong general-
ization capabilities for the practical application of MVS. Taking advantage of both spa-
tial relationship modeling (coarse/fine-grained) and volumetric correlations, our framework
achieves better volumetric segmentation accuracy on 2D baselines pre-trained on relatively
easily acquired natural images. To some extent, Med-Tuning could consistently and sus-
tainably boost the segmentation performance of pre-trained models on MVS tasks, keeping
pace with the rapid development of foundation models in computer vision field.
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Appendix A. Implementation Details.

A.1. Details about Benchmark Datasets

Details about BraTS 2019, BraTS 2020 and KiTS 2019 datasets are shown in Table 7.

A.2. Details about Benchmark Validation Experiments.

We employ pre-trained weights from two exemplary Transformer-based backbones, Swin
Transformer tiny (Liu et al., 2021) pre-trained on ImageNet-1k and Vision Transformer
base version (ViT-B/16) (Dosovitskiy et al., 2021) pre-trained on ImageNet-21k (Deng et al.,
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Table 7: Details about BraTS 2019, BraTS 2020 and KiTS 2019 datasets.

Dataset Modality
Number of

Training Cases
Number of
Test Cases

Spatial Resolution

KiTS 2019 CT 210 90 512× 512
BraTS 2019 MRI 335 125 240× 240× 155
BraTS 2020 MRI 369 125 240× 240× 155

2009). Swin-UNet (Cao et al., 2022) and ViT (Dosovitskiy et al., 2021) with UPerNet (Xiao
et al., 2018) decoder (ViT+UPerNet) are chosen as two robust baselines to ensure equitable
comparison. As shown in Table 8, the specific implementation details on BraTS 2019,
BraTS 2020, and KiTS 2019 datasets for two baselines are comprehensively illustrated. On
all three benchmark datasets, models are fine-tuned with a batch size of 16 and the Adam
optimizer.

During training, the following data augmentation techniques are applied to BraTS 2019
and BraTS 2020 datasets: (1) random cropping from 240×240×155 to 128×128×128 voxels;
(2) random mirror flipping across the axial, coronal and sagittal planes by a probability of
0.5; (3) random intensity shift between [-0.1, 0.1] and scale between [0.9, 1.1]. L2 Norm
is also applied for regularization with a weight decay rate of 10−5. As for the KiTS 2019
dataset, the employed data augmentations follow as the prior work (Isensee et al., 2021).

Table 8: Implementation details on BraTS 2019, BraTS 2020 and KiTS 2019 datasets for
two baselines (i.e., Swin-UNet, ViT+UPerNet).

Dataset Baseline Backbone
Pre-trained
Weight

Learning
rate

Training
epochs

Warm-up
epochs

BraTS 2019 &
BraTS 2020

Swin-UNet Swin-T ImageNet-1k 0.002 250 60
ViT+UPerNet ViT-B/16 ImageNet-21k 0.002 250 25

KiTS 2019
Swin-UNet Swin-T ImageNet-1k 0.002 500 20

ViT+UPerNet ViT-B/16 ImageNet-21k 0.004 500 20

A.3. Details about Generalization Capability Experiments.

We conduct ablation experiments to investigate the generalization capability of our Med-
Tuning on the 3D baseline and pre-trained weight on the medical dataset. The Medical
Segmentation Decathlon (MSD) (Antonelli et al., 2022) dataset includes 10 segmentation
tasks covering various organs and image modalities. These tasks are intentionally diverse,
presenting challenges like limited training data, class imbalances, multi-modality data, and
small objects. In the main text, we have validated our approach on two MRI and one CT
benchmark dataset. For ablation experiments, we selected one MRI and two CT datasets
(i.e., Task02 Heart (MRI), Task06 Lung (CT), and Task09 Spleen (CT)) from the MSD
dataset. Dataset pre-processing followed the protocol outlined in Swin UNETR (Tang
et al., 2022). In Table 6, Memory(GB) represents memory usage during the fine-tuning,
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Time(h) denotes the fine-tuning time, and Dice AVG signifies the average of multi-class
Dice scores for the corresponding segmentation task.

A.4. The position of the inserted parameters.

Regarding the insertion position for the parameters, for SwinUnet-Tiny and SwinUNETR,
we have incorporated the Med-Adapter exclusively within each transformer layer of their
encoder. This results in a total of 8 Med-Adapters, calculated from 4× 2 (number of stages
× number of layers in each stage). Within each stage, the second Med-Adapter is designated
for Inter-FI. In the case of ViT+UPerNet, a Med-Adapter is inserted following every layer,
amounting to a total of 12 (number of layers in ViT-B/16) Med-Adapters. Specifically,
the Med-Adapters placed after the 2nd, 5th, 8th, and 11th layers are used for Inter-FI,
maintaining a division of the ViT encoder into 4 stages, similar to the Swin Transformer
setup. The relative positioning between Med-Adapters and Transformer blocks can be
referenced in Figure 2 of our manuscript. Through our experiments, we have determined
that the insertion position illustrated in Figure 2 of the manuscript represent the optimal
configuration, as currently established.

A.5. The scale of bottleneck features of Med-Adapter.

As indicated in Table 9 of our manuscript, the default Reduction Ratio is set to 6. Conse-
quently, for all baselines, the scale of the bottleneck features of the adapter is represented
by L/6, L is the base scale of features in each stage (i.e., the scale of input features of Med-
Adapter). Specifically, the scale of bottleneck features of 8 Med-Adapter in SwinUnet-Tiny
or SwinUNETR are [16, 16, 32, 32, 64, 64, 128, 128]. The scale of bottleneck features of 12
Med-Adapter in ViT+UPerNet are both 128.

Appendix B. Visualization Comparisons

B.1. Visualization Comparisons with other PET method

Comparison with full fine-tuning, head tuning and previous PET methods in terms of the
trade-off between the number of tuned parameters and segmentation accuracy is shown
in Figure 3. The experiments were conducted using ViT+UPerNet as the baseline on the
BraTS 2019 dataset. The horizontal axis represents the parameters involved in model
training during the fine-tuning stage, while the vertical axis denotes the mean Dice scores
for ET, WT, and TC. Our method achieves much better segmentation performance than full
fine-tuning and previous state-of-the-art PET methods with much less tuned parameters.

B.2. Visualization of BraTS 2019

Qualitative results of BraTS 2019 datasets are shown in Figure 4, with the comparison
with full fine-tuning, ST-Adapter and VPT. As the labels for the validation set are not
available, five-fold cross-validation is conducted on the training set for visualization. Our
method recognizes brain tumors in enhancing and non-enhancing regions more accurately
and reduces missed or false identification of the peritumoral edema in general.
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Figure 3: Comparison with previous PET methods in terms of the number of tuned param-
eters and Dice scores.

Full ST-Adapter VPT Ours GT

Figure 4: The visual comparison of segmentation results on BraTS 2019. The blue, red and
green regions denote the enhancing tumors, non-enhancing tumors, and peritu-
moral edema. GT=Ground Truth.
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Full ST-Adapter VPT Ours GT

Figure 5: The visual comparison of segmentation results on KiTS 2019. The red and green
regions denote the kidneys and kidney tumors. GT=Ground Truth.

B.3. Visualization of KiTS 2019

As the labels for the validation set are not available, five-fold cross-validation is conducted
on the training set for visualization. The qualitative results of KiTS 2019 datasets, de-
picted in Figure 5, highlight the superior performance of our method in organ and tumor
segmentation compared to full fine-tuning, ST-Adapter, and VPT. Our approach demon-
strates enhanced accuracy in segmenting organs and tumor types, producing finer-grained
segmentation masks for corresponding tumors.

Appendix C. More Ablation Studies and Analysis

C.1. Reduction Ratio in Bottleneck Design.

Method
Tuned

Params(M)
Inserted

Params(M)
Dice (%) ↑

ET WT TC Avg.

α=2 10.064 3.313 76.89 90.14 81.92 82.99
α=4 7.994 1.243 77.22 90.09 81.59 82.97
α=6 7.489 0.738 77.06 90.28 82.71 83.35
α=8 7.271 0.520 76.94 89.62 80.74 82.44

Table 9: Ablation study on reduction ratio α. Swin-UNet with Swin-T pre-trained on
supervised ImageNet-1k.
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We analyze the effect of different reduction ratios of the bottleneck structure in our
Med-Adapter. Note that the reduction ratio α here is a key factor that influences the tuned
parameters introduced by our Med-Adapter. Four diverse settings of α are selected. As
shown in Table 9, Med-Tuning achieves a promising trade-off between segmentation accu-
racy and the tuned parameter costs with α = 6. On this basis, higher α would cause inferior
model performance because of the deteriorated representation capability with limited tuned
parameters, while lower α would lead to a certain degree of information redundancy and a
sharp increase of tuned parameters, resulting in both decreased segmentation accuracy and
high training costs.

C.2. Design for Global Dependency Modeling.

Table 10: Ablation study on different designs for global dependency modeling. The baseline
is Swin-UNet with Swin-T pre-trained on supervised ImageNet-1k. DWConvK
denotes depth-wise convolution with a kernel size of K × K.

Method
Tuned

Params(M)
Inserted

Params(M)
Dice (%) ↑

ET WT TC Avg.

DWConv9 7.837 1.086 76.48 90.58 81.10 82.72
DWConv11 8.126 1.375 76.82 89.40 80.05 82.09
FFT 7.994 1.243 77.22 90.09 81.59 82.97

In order to pursue the most effective and parameter-efficient architecture of our proposed
Med-Adapter, we also investigate different designs for the global branch in our Med-Adapter
block to achieve global dependency modeling. Since convolutional blocks with a large kernel
size or self-attention are usually adopted by previous works for global contextual modeling
and the baseline Swin-UNet itself consists of plenty of self-attention operation in each local
window, we take the depth-wise convolution with a kernel size of 9 and 11 separately to re-
place our originally employed Fast Fourier Transform (i.e., FFT) branch for a comprehensive
comparison. The comparison of the segmentation performance and tuned model parameters
is shown in Table 10. It can be noticed that by taking advantage of the parameter-efficient
FFT branch for effective long-range context modeling, the architecture with the FFT branch
achieves the optimal trade-off between model performance and tuned parameters, reaching
the best segmentation accuracy with only 1.243M introduced model parameters. In con-
trast, too large kernel size of the employed convolutions (i.e., DWConv11) will result in a
burdensome model structure and a large amount of tuned parameter cost.

C.3. Intra-FE Module Design.

We first probe into the rationale of the proposed Intra-FE Module without Inter-FI on
Swin-UNet baseline. Swin-UNet with Swin-T pre-trained on supervised ImageNet-1k is
taken as a baseline. As presented in Table 11, the introduction of MLB, FGB, or channel
mixing consistently leads to a considerable performance increase. Specifically, with only
0.002M additional tuned parameters, the FGB branch greatly improves the segmentation
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Table 11: Ablation study on Intra-FE. The first row is the result of the Vanilla Adapter.

MLB FGB Conv1×1×1
Tuned

Params(M)
Inserted

Params(M)
Dice (%) ↑

ET WT TC

- - - 7.541 0.790 75.13 87.50 75.29
✓ - - 7.574 0.823 75.19 89.44 80.89
✓ ✓ - 7.577 0.825 75.30 89.93 81.93
✓ ✓ ✓ 7.675 0.924 77.10 90.05 81.02

Table 12: Ablation study on inter-FI.

Method
Tuned

Params(M)
Inserted

Params(M)
Dice (%) ↑

ET WT TC

Add 7.896 1.144 75.79 88.99 79.00
Max 7.896 1.144 75.22 89.72 81.41
Concat 7.994 1.243 77.22 90.09 81.59

accuracy, showing the effectiveness and parameter efficiency of our employed FGB branch.
Additionally, channel mixing further boosts the performance by a large margin, especially
on ET (↑ 1.80%).

C.4. Inter-FI Module Design.

After investigating the effect of the intra-stage feature enhancement, we further verify the
effectiveness of the inter-stage feature interaction, as shown in Table 12. Compared with the
intra-only structure (i.e., without the feature connectivity between adjacent Med-Adapters),
the model with inter-stage achieves a considerable performance gain with only 0.319M extra
parameters for feature alignment among adjacent stages, showing the effectiveness of our
inter-stage interaction. Unlike concatenation which maintains the feature representations
of different stages as much as possible, direct addition or taking the maximum value (at
each pixel) of neighboring feature maps with diverse semantic levels would unintentionally
degrade the original feature representation, resulting in a sharp decrease in segmentation
performance.

C.5. Decoder Design.

Here we explore the effect of different decoder designs in our architecture. Although the
backbone is frozen and only the inserted Med-Adapters as well as the decoder are updated
during fine-tuning, the essentially tuned model parameters introduced by the segmenta-
tion decoder can not be reckoned as negligible. In other words, to pursue an extremely
PET framework, the design of the employed decoder should be sufficiently lightweight with
strictly controlled model parameters. Thus, various segmentation decoders with greatly
varied model complexity are introduced respectively for a thorough analysis. As shown
in Table 13, ViT-B/16 with the SETR-MLA decoder reaches the best trade-off between
segmentation accuracy and tuned parameter costs, benefiting from the effective multi-scale
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Table 13: Ablation study on decoder design. ViT-B/16 is pre-trained on supervised
ImageNet-1k.

Method
Tuned

Params(M)
Decoder

Params(M)
Dice (%) ↑

ET WT TC Avg.

UPerNet (Default) 19.562 15.095 68.27 87.22 81.63 79.04
U-Net 9.269 4.712 67.68 88.08 81.72 79.16
SETR-MLA 8.347 3.790 68.12 87.91 81.98 79.34
SETR-Naive 5.004 0.447 69.11 86.93 81.71 79.25
SETR-PUP 5.200 0.643 68.55 86.51 80.42 78.49

feature aggregation. Besides, taking the simplest SETR-Naive that is composed of a con-
volution and an interpolation operation for upsampling as the decoder leads to the lowest
tuned parameters 5.004M while achieving promising segmentation performance with an av-
erage Dice score of 79.34%. It can be seen from Table 13 that although the decoder size
dominantly decides the overall tuned parameters, it does not show a direct impact on model
performance.

C.6. Data Efficiency.

Table 14: Ablation study on data efficiency property with pre-trained ViT-B/16.

Dataset
Ratio

Method
Memory

Cost (GB)↓
Training
Time (h)↓

Dice (%) ↑ HF (mm)↓
ET WT TC ET WT TC

100% Full 16.55 1.34 68.04 85.74 76.58 6.94 7.28 7.99
100% Ours 13.53 1.20 75.46 86.80 86.24 3.78 6.94 4.34
75% Ours 13.53 1.05 69.12 86.69 78.06 6.33 6.01 6.63
50% Ours 13.53 0.72 69.19 86.26 77.26 6.28 7.03 7.12
25% Ours 13.53 0.39 67.43 85.64 74.57 6.32 7.71 8.14
5% Ours 13.53 0.17 59.61 80.44 64.01 15.07 16.64 16.36

At last, we also explore the data efficiency property of our method by examining per-
formance across various training data ratios, particularly in low-data settings. Table 14
shows the quantitative comparison with different numbers of training samples. Our Med-
Tuning can already achieve comparable performance to full fine-tuning using only 25%
training data. As the scale of training data increases, our method consistently improves the
segmentation accuracy, with reduced training time and memory cost compared with full
fine-tuning.

C.7. Other Weight Pre-trained on Medical Image Datasets.

Med-Tuning is not solely focused on pushing SOTA. Instead, it allows us to capitalize on
the extensive progress made in natural image processing. This perspective underscores our
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belief in the potential and value of integrating advancements from one domain to enhance
the capabilities and applications in another.

Indeed, as highlighted in recent literature (Liu et al., 2023b; Silva-Rodŕıguez et al., 2023;
Ulrich et al., 2023), there have been significant advancements in the field of medical image
pre-trained models. Nevertheless, due to the considerable constraints of time, monetary
resources, and clinical applicability faced by many researchers working on medical image
pre-training, the pace of updates and the scale of medical image pre-training efforts still
trail behind those in the natural image domain. Additionally, the use of many open-source
codes in the medical imaging field presents a high threshold. Therefore, the vast array of
convenient and accessible large-scale pre-trained weights from the natural image domain
have become our primary choice.

Based on the above choices, we hypothesize that: If Med-Tuning can tackle the more
challenging task of a large domain shift from features pre-trained on natural 2D images
to CT/MRI volumes, then it is also capable of addressing the comparatively easier task of
domain shift from features pre-trained on medical images to CT/MRI volumes. The exper-
imental results in our manuscript have demonstrated the feasibility of a broader transfer
process, thereby validating the effectiveness of our proposed approach in achieving the for-
mer scenario.

Regarding the latter scenario, we conducted experiments using the same baselines and
pre-trained weights as those in (Liu et al., 2023b; Silva-Rodŕıguez et al., 2023), following
our default training setting. The comprehensive results of all experiments are depicted in
Table 15.

Table 15: The comparison between original SwinUNETR, Universal Model and our pro-
posed Med-Tuning. The performance is evaluated by average Dice scores. ”W1”
signifies the use of the model and pre-training weights from (Tang et al., 2022),
while ”W2” references the model and pre-training weights from (Liu et al., 2023b).
”SCR” denotes the model is trained from scratch and ”FULL” denotes the full
fine-tuning mothod. The first two columns of scores were directly copied from
(Liu et al., 2023b). The last four columns of scores were obtained through train-
ing using our framework.

Dataset
SwinUNETR

(SCR)

Universal
Model
(FULL)

Ours
(SCR)

Ours
(FULL, W1)

Ours
(Med-Tuning,

W1)

Ours
(FULL, W2)

Ours
(Med-Tuning,

W2)

Task06
Heart

68.90 67.15 65.82 67.69 78.09 68.37 78.53

Task09
Heart

95.80 96.71 95.76 96.52 97.06 96.35 97.60

From our results, Med-Tuning proves to be capable of consistently improving the preci-
sion in medical volumetric segmentation tasks by using medical pre-trained weights, requir-
ing only a small number of training parameters for this enhancement. Besides, the trends
observed in our experimental results suggest that our proposed approach can keep pace
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Table 16: Comparisons of training time (hours) on BraTS2019 with SwinUnet and
ViT+UPerNet backbone.

Method ViT+UPerNet SwinUnet

Scratch 1.74h 1.26h
Full 1.73h 1.26h
Head 1.28h 1.02h

VPT-Shallow 1.09h 0.98h
VPT-Deep 1.18h 1.01h
Adapter 1.77h 1.30h

AdaptFormer 1.44h 1.18h
Pro-tuning 1.84h 1.47h
ST-Adapter 1.79h 1.55h

Ours 1.88h 1.51h

with the development of visual models pre-trained in medical domain, aligning with the
conclusions drawn at the end of our manuscript.

Finally, we would like to add that as demonstrated in our results shown in Table 10,
using the W2 weights improved the Dice score by 0.6 over the W1 weights. Hence, we
also look forward to the widespread development of large-scale pre-trained models like (Liu
et al., 2023b) in medical domain and are excited about the potential to further enhance
their performance using our Med-Tuning.

C.8. Training Time.

Under default training settings, the training time of each method are listed in Table 16. The
results indicate that the introduction of few new training parameters inevitably results in a
slight increase in training. However, we achieves a commendable balance between training
time cost and the tuning of parameters.
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