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Abstract

Sparse and patch adversarial attacks were previously shown to be applicable in1

realistic settings and are considered a security risk to autonomous systems. Sparse2

adversarial perturbations constitute a setting in which the adversarial perturba-3

tions are limited to affecting a relatively small number of points in the input.4

Patch adversarial attacks denote the setting where the sparse attacks are limited5

to a given structure, i.e., sparse patches with a given shape and number. How-6

ever, previous patch adversarial attacks do not simultaneously optimize multi-7

ple patches’ locations and perturbations. This work suggests a novel approach8

for sparse patches adversarial attacks via point-wise trimming of dense adver-9

sarial perturbations. Our approach enables simultaneous optimization of multi-10

ple sparse patches’ locations and perturbations for any given number and shape.11

Moreover, our approach is also applicable for standard sparse adversarial attacks,12

where we show that it significantly improves the state-of-the-art over multiple13

extensive settings. A reference implementation of the proposed method and the14

reported experiments is provided at https://anonymous.4open.science/r/15

sparse-patches-adversarial-attacks-3CF3.16

1 Introduction17

Adversarial perturbations were first discovered in the context of deep neural networks (DNNs), where18

the networks’ gradients were used to produce small bounded-norm perturbations of the input that19

significantly altered their output Szegedy et al. [2013]. Methods for optimizing such perturbations and20

the resulting perturbed inputs are denoted as adversarial attacks and adversarial inputs. Such attacks21

target the increase of the model’s loss or the decrease of its accuracy and were shown to undermine the22

impressive performance of DNNs in multiple fields. The norm bounds on adversarial perturbations23

are usually discussed in either the L∞ or L2 norms Szegedy et al. [2013], Goodfellow et al. [2014],24

Madry et al. [2018]. Sparse adversarial attacks, in contrast, are a setting where L0 norm bounds are25

applied and limit the perturbations to affect a relatively small number of points in the input. Sparsity26

L0 norm bounds can also be applied in addition to the usually considered norms of L∞, L2 but we27

consider such out of the scope of the current work. Croce and Hein [2019], Fan et al. [2020], Croce28

and Hein [2021], Dong et al. [2020]. Patch adversarial attacks are a sub-setting of sparse attacks,29

where the perturbed points are constrained to constitute patches of a given shape and number. Patch30

adversarial attacks are highly realistic and were shown to be applicable in multiple real-world settings31

Nemcovsky et al. [2022], Xu et al. [2019], Zolfi et al. [2021], Wei et al. [2022a], Chen et al. [2019].32

However, the optimization of sparse adversarial patches is computationally complex and entails the33

simultaneous optimization of the patches’ locations and corresponding perturbations. Moreover,34
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Clean Dense perturbation Trim to ϵ0 = 32768 Trim to ϵ0 = 8192 Final trim to ϵ0 = 224

True label: pop bottle Predicted label: jellyfish Predicted label: jellyfish Predicted label: jellyfish Predicted label: jellyfish

True label: harvestmen Predicted label: fountain Predicted label: fountain Predicted label: bubble Predicted label: beetle

Figure 1: Flowchart of our sparse (top) and 2× 2 patch (bottom) adversarial attacks trim process on
Imagenet standard Resnet50 model, for attacks bounded to ϵ0 = 224. We present the adversarial
inputs produced for distinct ϵ0 bounds during the process and the predicted label for each, compared
to the true label.

the locations’ optimization is not directly differentiable and mandates a search over combinatorial35

spaces that grow exponentially with the number of patches. Previous patch attacks do not solve this36

optimization but rather a problem relaxation. Such attacks either optimize the perturbations over37

fixed locations Nemcovsky et al. [2022], Chen et al. [2019], optimize the locations of fixed patches38

Wei et al. [2022b], Zolfi et al. [2021], or limit the optimization to be over a single patch Wei et al.39

[2022a]. In contrast, previous sparse attacks that do not discuss patches suggest several approaches40

for simultaneously optimizing the selection of points to perturb and point-wise perturbations. To solve41

this complex optimization problem, Modas et al. [2019] first suggested approximating the non-convex42

L0 norm by the convex L1 norm, proposing the SparseFool(SF ) attack. Following this, Croce and43

Hein [2019] suggested to utilize binary optimization and presented the PGDL0 PGD-based Madry44

et al. [2018] attack. Goodfellow et al. [2020] then suggested first increasing the number of perturbed45

points, then reducing any unnecessary, presenting the GreedyFool(GF ) attack. Lastly, Zhu et al.46

[2021] suggested a homotopy algorithm and the Homotopy attack.47

In the present work, we suggest a novel approach for simultaneously optimizing multiple sparse48

patches’ locations and perturbations. Our approach is based on point-wise trimming of dense adversar-49

ial perturbations and enables the optimization of patches for any given number and shape. To the best50

of our knowledge, this is the first direct solution to the complex optimization problem of adversarial51

patches. Moreover, our solution does not require differentiability during the trimming process and52

is therefore applicable to all the real-world settings presented in previous works Nemcovsky et al.53

[2022], Xu et al. [2019], Zolfi et al. [2021], Wei et al. [2022a], Chen et al. [2019]. In all these54

settings, our solution enables the optimization to be over a more extensive scope of patch adversarial55

attacks. In addition, our approach applies to standard sparse adversarial attacks, and we compare it to56

previous works on the ImageNet classification task over various models. We consider ϵ0 bounds up57

to the common sparse representation bound of root input size Candès et al. [2006] and show that we58

significantly outperform the state-of-the-art for all the considered settings.59

2 Background60

Let X ∈ [0, 1]n be some normalized data space comprising N data points, and we denote [N ] ≡61

{i}Ni=1. Let x ∈ X be a data sample and let δ ∈ X be a perturbation, for δ to be applicable on x62

it must be limited s.t. the perturbed data sample remains in the data space xδ = x + δ ∈ X . Let63

GT : X → Y be a ground truth function over X and target space Y , and let M : X → Y be a model64

aiming to predict GT . Given a data sample (x, y) ∈ X × Y , a criterion over the model prediction65

ℓ : Y×Y → R+, and L0 norm bound ϵ0 ∈ [N ], a sparse adversarial attack As : X ×Y× [N ]→ X66

targets the maximization of the criterion over the data sample and bound:67

As(x, y, ϵ0) = arg max
{δ|x+δ∈X ,∥δ∥0≤ϵ0}

ℓ(M(x+ δ), y) (1)
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Figure 2: We compare our method to previous sparse attack works(left) and with various patch sizes
(right) on the Imagenet dataset InceptionV 3 model. We report the ASR as a function of l0 for all
attacks.
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Figure 3: We compare our method to previous sparse attack works(left) and with various patch sizes
(right) on the Imagenet dataset Resnet50 standard model. We report the ASR as a function of l0 for
all attacks.

For a given choice of points and corresponding binary mask B ∈ {0, 1}N , the point-wise multiplica-68

tion δs = B⊙δ defines a projection onto the L0 norm-bound space. We denote the set of binary masks69

with exactly ϵ0 ones as CN,ϵ0 ⊂ {0, 1}N and, for B ∈ CN,ϵ0 , the L0 norm of the resulting sparse70

perturbation δs is bound by ∥δs∥0 ≤ ϵ0. Sparse adversarial perturbations can be optimized using71

such projections Fan et al. [2020]. For an RGB normalized data space, we define the mask according72

to the pixels, i.e., X ∈ [0, 1]H×W×3, N ≡ H ·W,CN,ϵ0 ⊂ {0, 1}H×W . Given an additional patch73

constraint with kernel K ≡ (Kh,Kw) ∈ [H]× [W ], the perturbed points are limited to form exactly74
ϵ0

Kh·Kw
patches of K’s shape, where we only consider accordingly divisible parameters. We denote75

the corresponding set of binary masks as CKh×Kw

N,ϵ0
. We allow for partial overlapping patches, as for76

sufficiently large kernels and ϵ0 bounds, most and then all of the binary masks B ∈ CKh×Kw

N,ϵ0
will77

contain such. The patch adversarial attack is then denoted as Ap : X ×Y × [N ]× [H]× [W ]→ X78

and we formulate the attacks targets as:79

δs ≡ As(x, y, ϵ0) = arg max
{δs=B⊙δ|x+δ∈X ,B∈CN,ϵ0

}
ℓ(M(x+ δs), y) (2)

δp ≡ Ap(x, y, ϵ0,Kh,Kw) = arg max
{δs=B⊙δ|x+δ∈X ,B∈C

Kh×Kw
N,ϵ0

}
ℓ(M(x+ δs), y) (3)

3 Method80

We define our approach for point-wise evaluation and corresponding trimming of adversarial pertur-81

bations. We first present the process we denote as TrimStep and discuss its optimization target and82

the point-wise evaluation criterion it utilizes. We discuss the underlying assumptions under which83

3
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Figure 4: We compare our method to previous sparse attack works(left) and with various patch sizes
(right) on the Imagenet dataset Resnet50 robust model. We report the ASR as a function of l0 for all
attacks.
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Figure 5: We compare our method to previous works on the Imagenet dataset, visual transformer-
based SwinB model (left), and ConvNextB model (right). We report the ASR as a function of l0 over
sparse adversarial attacks.

this process is most accurate. We then discuss our suggested sparse and patch adversarial attacks,84

which utilize the TrimStep while aiming to fulfill the underlying assumptions.85

3.1 TrimStep86

Let x, y,M, ℓ, ϵ0 be defined as in Eq. (1), and let δ be a somewhat denser pre-optimized adversarial87

perturbation ∥δ∥0 > ϵ0. In this process, we aim to extrapolate a binary mask B ∈ CN,ϵ0 from δ88

while targeting the proceeding optimization of a sparse perturbation under the fixed binary mask:89

δBs = arg max
{δs=B⊙δ|x+δ∈X}

ℓ(M(x+ δs), y) (4)

B = arg max
B∈CN,ϵ0

δBs

For this purpose, we consider the distributions of binary masks B ∈ CN,ϵ0 and criteria ℓ(M(x +90

B ⊙ δ), y), ℓ(M(x+ δBs ) as prior and posterior distributions. We then define a point-wise evaluation91

criterion over the distributions and approximate the point-wise evaluation of the posterior by the prior.92

We denote the point-wise criterion over δBs as Lδs ∈ RN , and formally define the evaluation and its93

approximation:94

Lδs = EB∈CN,ϵ0
ℓ(M(x+ δs), y) ·B (5)

≈ EB∈CN,ϵ0
ℓ(M(x+B ⊙ δ), y) ·B (6)

While computing Lδs directly is infeasible, we can efficiently compute the approximation given δ.95

As the number of possible masks |CN,ϵ0 | may be infeasible to compute, we further approximate96

4



this evaluation via Monte Carlo sampling. For each point in the data sample, the point-wise value97

of Lδs is the expectation of the attack target over binary masks that indicate the perturbation of98

the corresponding point. Accordingly, this evaluation estimates the expected benefit of each point99

selection to the attack target in Eq. (4). We, therefore, extrapolate the binary mask B to perturb the100

top evaluated points, according to Eq. (6). Similarly, given an additional patch kernel constraint K101

defined as in Eq. (3), the same process applies over the corresponding set of binary masks. Formally:102

Bs = arg max
B∈CN,ϵ0

LT
δs ·B (7)

Bp = arg max
B∈C

Kh×Kw
N,ϵ0

LT
δs ·B (8)

The maximization in Eq. (7) can be implemented directly as the top evaluated points in Lδs ; however,103

for Eq. (8), we need to account for overlapping patches. We, therefore, use a max-out scheme when104

choosing the best patches, where the best patch in each step is chosen according to the sum of Lδs105

over the corresponding points. We then zero the Lδs values for the chosen patch to eliminate their106

benefit when considering overlapping patches. We can employ a similar process while applying a107

binary mask over the points in the kernel K to allow for optimization of patches of any given shape.108

However, we consider this out of the scope of the current work.109

There are two approximations in the TrimStep process. The first of which is approximating the110

best mask in Eq. (4) as in Eq. (7), and the second is approximating the posterior in Eq. (5) via the111

prior in Eq. (6). We consider several assumptions for which these approximations should be most112

accurate. We first assume that attack criterion ℓ mainly depends on selecting significant points in the113

dense perturbation rather than a well-correlated group. Secondly, we assume that δ is sufficiently114

robust to the projections B ⊙ δ, s.t., the decrease in the criterion for top evaluated points in Lδs ,115

ℓ(M(x+ δ), y)→ ℓ(M(x+B⊙ δ), y) is mainly due to trimming less significant points. Finally, we116

assume that the L0 gap between the perturbations ∆ϵ0 ≡ ∥δ∥0 − ϵ0 is sufficiently small as it aids our117

previous assumptions. This entails that the point-wise significance should remain relatively unaltered118

between perturbations and limits the effect of the projections B ⊙ δ. Under these assumptions, the119

top evaluated points according to Lδs should correlate well with the optimal mask selection in Eq. (4),120

and more so for sufficiently small ∆ϵ0. Moreover, the top evaluated points in both Eq. (6) and Eq. (5)121

should correlate to the points’ importance in the dense perturbation and, therefore, to each other.122

Thereby indicating the accuracy of the approximations in the TrimStep.123

3.2 PGDTrim and PGDTrimKernel124

We continue to present our suggested sparse and patches adversarial attack based on the PGD iterative125

optimization scheme Madry et al. [2018]. Both attacks use the same optimization scheme and126

differ only in utilizing the corresponding TrimStep. This optimization scheme aims to mitigate the127

inaccuracy of TrimStep by fulfilling the underlying assumptions. The assumption on the attack128

criterion cannot be directly mitigated as it depends on the task; however, the other assumptions of129

small ∆ϵ0 and robust δ are highly dependent on the optimization scheme. To fulfill the small ∆ϵ0130

assumption, we use a trimming schedule containing several applications of TrimStep to gradually131

decrease the L0 norm of the optimized perturbations until reaching the ϵ0 bound. We consider a132

logarithmic trimming schedule with up to ntrim = ⌈log2(N)⌉ − ⌊log2(ϵ0)⌋ trim steps, where N is133

the input size and ϵ0 is the L0 norm bound. In addition, before each application of TrimStep, we134

optimize the current dense perturbation δ via the PGD scheme. To improve the robustness of δ to the135

perturbations B⊙ δ we employ a corresponding dropout scheme. The dropout we consider in training136

the perturbations depends on the distributions of binary masks in the proceeding trim step. For a137

given current and following L0 norms Lcurr
0 , Lnext

0 , the binary masks in the proceeding trim step138

are sampled from the set B ∈ CLcurr
0 ,Lnext

0
. We consider Bernoulli dropout from the corresponding139

distribution Bernoulli(L
next
0 /Lcurr

0 ), as it best simulates the binary mask projection. We present a140

flowchart of our attacks in Fig. 1, and in the supplementary material, we continue to discuss our141

optimization scheme and provide an entire algorithm of the resulting attacks.142

4 Experiments143

Experimental settings. We now present an empirical evaluation of the proposed method. We144

compare our method to previous sparse attacks on the ImageNet classification task Deng et al.145
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[2009] over various models. We present each attack’s adversarial success rate (ASR), dependent on146

the L0 norm bound, and show the result of our proposed method for both sparse and patch attacks.147

The L0 norm bounds we consider are all values up to root input size ϵ0 =
√
N , and we present the148

performance of the compared attacks for powers of 2 in this range. The considered models are then149

the InceptionV 3 Szegedy et al. [2016], standardly trained Resnet50 model Koonce and Koonce150

[2021], adversarially robust Resnet50 model, and the visual transformer-based Swin-B Liu et al.151

[2021] and ConvNeXt-B models Liu et al. [2022]. We use the pre-trained models made available152

by Croce et al. [2020], and the adversarially robust Resnet50 we consider is the corresponding153

state-of-the-art adversarial defense suggested by Salman et al. [2020], which we denote as robust154

Resnet50. The input size for the InceptionV 3 model is then N = 299, and N = 224 for all other155

models.156

In our method, for all the presented settings, we use K = 100 PGD iterations for optimizing157

perturbations and MC = 1000 Monte Carlo samples in our trim steps, where if these samples are158

sufficient, we compute the expression in Eq. (6) directly. We compute the attacks for ntrim = 11159

trim steps and nrestarts = 11 restarts; we use the PGD restarts optimization scheme to re-initiate160

the attack with fewer trim steps, as doing so will result in different perturbations and allow for161

re-evaluation of points trimmed in the extra steps. We use the default settings suggested by the162

authors for all the compared attacks for all the presented settings. In addition, as GF , SF , and163

Homotopy attacks minimize the L0 for each sparse adversarial perturbation instead of utilizing ϵ0164

bounds, we report their ASR for each L0 limitation as the rate of produced adversarial perturbations165

with correspondingly bounded L0 norms.166

4.1 Experimental results167

In Fig. 1, we show the trimming process of our sparse and patch attacks. We see that the perturbed168

points are gradually trimmed until reaching the ϵ0 bounds with the most significant points remaining.169

In Fig. 2, we compare the ASR of previous sparse attacks to our sparse and patch attacks on the170

InceptionV 3 model. In this setting, our sparse attack achieves the best ASR on all the presented171

attacks and 100% ASR starting from ϵ0 = 128. The second best sparse attack is GF , which shows172

comparable results to our patch attack over 2 × 2 patches. Our patch attacks over 4 × 4 achieve173

somewhat lower results, possibly due to the attacks’ scope being more limited under this patch174

constraint. In Fig. 3, we compare the ASR of previous sparse attacks to our sparse and patch attacks175

on the standard Resnet50 model. Similarly, our sparse attack achieves the best ASR and 100%176

starting from ϵ0 = 128. Our results for 2 × 2 and 4 × 4 patches are again somewhat lower than177

our sparse attack, with the 2 × 2 setting comparable to the second-best sparse attack, GF . In178

Fig. 4, we compare the ASR of previous sparse attacks to our sparse and patch attacks on the robust179

Resnet50 model. Our sparse attack again achieves the best ASR with 100% achieved at ϵ0 = 224,180

corresponding to the model’s robustness. Moreover, these results significantly outperform all other181

sparse attacks, which may entail that our method performs relatively better in robust settings. Our182

results for 2 × 2 and 4 × 4 patches are significantly lower than those of our sparse attack, yet the183

2 × 2 setting is still comparable to the second-best sparse attack, GF . In Fig. 5, we compare the184

ASR of previous sparse attacks to our sparse attack on the Swin−B and ConvNeXt VIT models.185

Similarly, our sparse attack achieves the best ASR on all the compared settings and significantly186

outperforms other sparse attacks.187

5 Discussion188

This paper proposes novel sparse and patch adversarial attacks based on point-wise trimming of dense189

adversarial perturbations. For that purpose, we suggest ranking the points based on their average190

significance over potential resulting perturbations. We then approximate this significance based on191

the dense perturbation and choose the most significant points for our attacks under the corresponding192

constraints. Our sparse attack achieves state-of-the-art results for all the considered L0 bounds.193

Moreover, our 2× 2 patch attack shows results comparable to previous sparse attacks. The success of194

our method suggests that our point-wise evaluation may correspond to the significance of points in the195

input sample and not only in the adversarial perturbation. Therefore, our trimming-based approach is196

an efficient optimization method for sparse and patch attacks. In addition, our approach is the first to197

enable simultaneous optimization of multiple patches’ locations and perturbations. Our approach198

does not require differentiability during trimming and applies to various real-world settings.199
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A Adversarial attacks269

A.1 Optimization scheme270

We continue to discuss the optimization scheme we use in the attack as described in Section 3.2. We271

continue the discussion on the trimming schedule and offer continuous alternatives to the Bernoulli272

dropout. We have previously defined the number of trimming steps ntrim, and we now detail the273

logarithmic trimming schedule we consider. We first define the L0 norm values to which we trim the274

perturbation in each step. The first perturbation we train is always whole ∥δinit∥0 = N , and the last275

is always constrained to ϵ0. For the maximal number of trim steps, the L0 norms to which we trim276

and train perturbations are:277

N, 2⌈log2(N)⌉−1, 2⌈log2(N)⌉−2, . . . , 2⌊log2(ϵ0)⌋+1, ϵ0 (9)

For fewer trim steps, we skip a corresponding number of L0 norms, where we attempt to keep the L0278

decrease ratio relatively fixed and otherwise slightly lower for the initial trim steps. In addition, we279

use the PGD restarts optimization scheme to re-initiate the attack with fewer trim steps, as doing so280

will result in different perturbations and allow for re-evaluation of points trimmed in the extra steps.281

Concerning the continuous alternatives to the Bernoulli dropout, we consider the continuous Bernoulli282

and Gaussian dropouts, for which we preserve the mean as in the Bernoulli dropout and, when possible,283

the standard deviation.284

A.2 Attacks Algorithms285

We introduce algorithms for our sparse adversarial attack (Algorithm 2), our patch adversarial attack286

(Algorithm 3), and the PGD-based optimization scheme they make use of (Algorithm 1). We first287

present the optimization scheme, which we denote as Dropout− PGD(DPGD), then continue to288

present our sparse and patch attacks while using DPGD as a procedure. Given a binary projection,289

dropout distribution, and initial perturbation, DPGD optimizes a corresponding perturbation for290

maximized attack criterion. Our sparse and patch attacks then use DPGD to optimize perturbations291

8



and then trim them using our point-wise evaluation. Given trim steps L0 norms and dropout292

distribution class, our sparse attack utilizes DPGD to optimize a corresponding perturbation in293

each trim step, then trim it to be the initial perturbation for the next step. Given an additional kernel294

constraint K ≡ (Kh,Kw), our patch attack similarly optimizes and trims the perturbation but limits295

the resulting perturbation to consist of patches of K’s shape. Once the trimming process is finished,296

it returns the final binary mask, and an additional DPGD procedure maximizes a corresponding297

perturbation. The L0 bound is thereby specified in the norm of the last trim step.298

Algorithm 1 Dropout− PGD(DPGD)

Input M : attacked model
Input (x, y): input sample
Input ℓ: attack criterion
Input B: Binary projection
Input δinit: perturbation initialization
Input D: dropout distribution
Input Iter: number PGD iterations
Input α: Step size for the attack

initialize perturbation:
δbest ← δinit
Lossbest ← ℓ(M(x+ δbest), y)
for k = 1 to Iter do

optimization step:
g ← ∇δℓ(M(x+D(δ)), y)
δ ← δ + α ·B ⊙ sign(g)
δ ← clip(δ,−x, 1− x)
evaluate perturbation:
Loss← ℓ(M(x+ δ), y)
if Loss > Lossbest then

δbest ← δ
Lossbest ← Loss

end if
end for
return δbest
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Algorithm 2 PGDTrim sparse adversarial attack
Input M : attacked model
Input N : input size
Input (x, y): input sample
Input ℓ: attack criterion
Input TrimSteps: trim steps lcurr0 , lnext0 norms
Input Dropout: dropout distribution class
Input MC: number Monte Carlo samples
Input Iter: number PGD iterations
Input α: Step size for the attack

initialize perturbation:
Btrim ← {1}N
δbest ← Uniform(−1, 1)N
Lossbest ← ℓ(M(x+ δbest), y)
for lcurr0 , lnext0 in TrimSteps do

perturbation optimization:
D ← Dropout(lnext0 /lcurr0 )
δbest ← DPGD(M, (x, y), ℓ, Btrim, δbest, D, Iter, α)
point-wise evaluation:
BLoss← {0}N
BCount← {0}N
for i = 1 to MC do

B ← Multinomial(lnext0 , Btrim)
BLoss← BLoss + ℓ(M(x+B ⊙ δbest), y) ·B
BCount← BCount +B

end for
BLoss← BLoss/BCount
trim step:
Btrim ← {0}N +Btrim[TopK(lnext0 ,BLoss)]
δbest ← Btrim ⊙ δbest
Lossbest ← ℓ(M(x+ δbest), y)

end for
final perturbation optimization:
D ← Identity
δbest ← DPGD(M, (x, y), ℓ, Btrim, δbest, D, Iter, α)
return δbest
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Algorithm 3 PGDTrimKernel patch adversarial attack
Input M : attacked model
Input N : input size
Input (x, y): input sample
Input ℓ: attack criterion
Input TrimSteps: trim steps lcurr0 , lnext0 norms
Input K = (Kh,Kw): Kernel patch constraint
Input Dropout: dropout distribution class
Input MC: number Monte Carlo samples
Input Iter: number PGD iterations
Input α: Step size for the attack

initialize perturbation:
Btrim ← {1}N
Ksize ← Kh ·Kw

δbest ← Uniform(−1, 1)N
Lossbest ← ℓ(M(x+ δbest), y)
for lcurr0 , lnext0 in TrimSteps do

perturbation optimization:
D ← Dropout(lnext0 /lcurr0 )
δbest ← DPGD(M, (x, y), ℓ, Btrim, δbest, D, Iter, α)
point-wise evaluation:
BLoss← {0}N
BCount← {0}N
Bkernel ← MaxPool(Btrim,K)
for i = 1 to MC do

B ← Multinomial(lnext0 /Ksize, Bkernel)
B ← MaxPool(Pad(B, ((Kh − 1,Kh − 1), (Kw − 1,Kw − 1))),K)
BLoss← BLoss + ℓ(M(x+B ⊙ δbest), y) ·B
BCount← BCount +B

end for
BLoss← BLoss/BCount
trim step:
Btrim ← {0}N
for i = 1 to lnext0 do

BMax ← OneHot(ArgMax(SumPool(BLoss,K)))
BMaxKernel ← MaxPool(Pad(BMax, ((Kh − 1, 0), (Kw − 1, 0)),K)
Btrim ← Btrim +BMaxKernel
BLoss← BLoss⊙ (1−BMaxKernel)

end for
δbest ← Btrim ⊙ δbest
Lossbest ← ℓ(M(x+ δbest), y)

end for
final perturbation optimization:
D ← Identity
δbest ← DPGD(M, (x, y), ℓ, Btrim, δbest, D, Iter, α)
return δbest
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