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Abstract

For the latter part of the past decade, Aspect-
Based Sentiment Analysis has been a field of
great interest within Natural Language Pro-
cessing. Supported by the Semantic Evalua-
tion Conferences in 2014 — 2016, a variety of
methods has been developed competing in im-
proving performances on benchmark data sets.
Exploiting the transformer architecture behind
BERT, results improved rapidly and efforts in
this direction still continue today. Our con-
tribution to this body of research is a holis-
tic comparison of six different architectures
which achieved (near) state-of-the-art results
at some point in time. We utilize a broad
spectrum of five benchmark data sets and in-
troduce a fixed setting with respect to the pre-
processing, the train/validation splits, the per-
formance measures and the quantification of
uncertainty. Overall, our findings are two-fold:
First, we find that the results reported in the sci-
entific articles are hardly reproducible, since
in our experiments the observed performance
(most of the time) fell short of the reported
one. Second, the results are burdened with no-
table uncertainty (depending on the data splits)
which is why a reporting of uncertainty mea-
sures is crucial.

1 Introduction

The field of Natural Language Processing (NLP)
has profited a lot from technical and algorithmic
improvements within the last years. Before the suc-
cessful times of Machine Learning and Deep Learn-
ing, NLP was mainly based on what linguists knew
about how languages work, i.e. grammar and syn-
tax. Thus, primarily rule-based approaches were
employed in the past. Nowadays, far more general-
ized models based on neural networks are able to
learn the desired language features.

On the other hand, data in written form is avail-
able in huge amounts and thus might be an im-
portant source for valuable information. For in-
stance, the internet is full of comparison portals,

forums, blogs and social media posts where people
state their opinions on a broad range of products,
companies and other people. Product developers,
politicians or other persons in charge could profit
from this information and improve their products,
decisions and behavior.

We specifically focus on Aspect-Based Sentiment
Analysis (ABSA) in our work. ABSA is often used
as a generic term for several unique tasks, which is
caused by the inconsistency of terms in literature
where many different names are widely used. To
be as precise as possible, we explicitly use differ-
ent terms than ABSA to refer to the exact tasks.
The first one (Subtask 2, Pontiki et al., 2014) as-
sumes that in each text, aspect terms are already
marked and thus given exactly as written in the text
(this differs from so-called aspect categories which
do not necessarily appear in the text). Here, the
task is to classify the sentiments for those aspect
terms. This is why the term Aspect Term Sentiment
Classification (ATSC) is most accurate.

When referring to ATSC methods, we usually
think of single-task approaches. These methods are
designed to carry out only aspect term sentiment
classification as the aspect terms are already given.
Whether these were identified manually or by an
algorithm is not relevant in this setting. In prac-
tice, however, the aspect terms oftentimes are not
already known. Thus, approaches dealing with the
step of Aspect Term Extraction (ATE) have been
developed. They can either work on their own or be
combined with an ATSC method. For these com-
bined methods, which we refer to as ATE+ATSC,
one can further distinguish between pipeline, joint
and collapsed models. In pipeline models, ATE
and ATSC are simply stacked one after another,
i.e. the output of the first model is used as input to
the second model. The latter two are often also re-
ferred to as multi-task models, since both tasks are
carried out simultaneously or in an alternating way.
These models only differ in their labeling mecha-



nisms: There are two label sets for joint models,
one to indicate whether a word is part of an aspect
term and the other one to state its polarity. For col-
lapsed models, a unified labeling scheme indicates
whether a word is part of a positive, negative or
neutral aspect term or not.

We re-evaluate four different models for ATSC,
covering a variety of different architectures (RNNss,
Capsule networks, LCF-based, BERT-based), as
well as two different ATE+ATSC models, one of
which is a pipeline approach while the other one
works in a collapsed fashion. All models are re-
trained five times using five different (identical)
train/validation splits and tested on the respective
test sets in order to (i) compare them on a common
ground and (ii) quantify the epistemic uncertainty
associated with the architectures and the data.

2 Related work

Related experiments were conducted by Mukher-
jee et al. (2021), yet with a different focus. On
the one hand, the authors also try to reproduce
results on the benchmark data sets from SemEval-
14 about Restaurants and Laptops. However, they
selected six other models than we did for which
the implementations are provided in one reposi-
tory !. For these, the authors observed a consis-
tent drop of 1-2 % with respect to both accuracy
and macro-averaged F1-Score F"““"°. Mukher-
jee et al. (2021) reported a doubling of this drop
when using 15% of the training data as validation
data. On the other hand, they executed additional
tasks which included the set-up of two new data
sets about Men’s T-shirts and Television as well
as the model evaluation on them. Furthermore,
they also experimented with cross-domain training
and testing. Yet, several important points are not
addressed by their work which is why we inves-
tigate them in our work. First, while they mostly
care about comparing different types of architec-
tures (Memory Networks vs. BERT), we instead
focus on comparing the best performing models for
different tasks (ATSC vs. ATE+ATSC). Further,
we cover a larger variety of types of architectures
by selecting the best performing representatives of
several different types. Second, we stick closer to
the original implementations (by using them, when
available) whereas they exclusively rely on com-
munity designed implementations, which adds a
further potential source of errors. Third, and most

"https://github.com/songyouwei/ABSA-PyTorch

important, we provide estimates for the epistemic
uncertainty of performance values and are thus able
to (at least tentatively) explain performance differ-
ences due to different reporting standards.

3 Materials and Methods

This section will introduce the data sets we utilized
for training and evaluation as well as the selected
model architectures. We start by briefly explaining
the data, before the models are described, since
(reported) performance values on these data sets
partly motivate our choices regarding the models.
Descriptive statistics for all used data sets can be
found in Tab. 1. Note that the data sets we even-
tually use for training and testing the models are
all based on the original train/test splits. Further
we apply small modifications (as described below)
which were (a) also applied by some of the authors
whose models we re-evaluate and (b) we perceive
as reasonable. This allows us to evaluate all of the
architectures on a common ground, which is not
possible by comparing the reported values from the
original publications alone. Nevertheless, we are
aware of the fact that this might limit comparability
of our results to the original ones to some extent.

3.1 Data Sets

SemEval-14 Restaurants This data set contains
reviews about restaurants in New York. Pontiki
et al. (2014) chose a subset of the restaurant data
from Ganu et al. (2009) as training data®, while
collecting test data® themselves. Both were labeled
for several subtasks in the same way. These data
sets were designed for ATSC as well as its equiva-
lent on Aspect-category level (ACSC), but we stick
to ATSC samples only. For each identified aspect
term within a sentence, the polarity is given as pos-
itive, negative, neutral or conflict. We deleted the
labels of the latter category (conflict) from the data
sets due to their rare appearance. This is similar to
previous work (Fan et al., 2018; Bai et al., 2020;
Yang et al., 2020; Li et al., 2019a), yet, they do not
all mention or explain the removing process explic-
itly. Rarely appearing duplicate sentences which
occurred in the training set were also removed in
our work. Due to their small amount, this proce-

Zhttp://metashare.ilsp.gr:8080/repository/browse/semeval-
2014-absa-restaurant-reviews-train-data/479d18c0625011e
38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/

3 http://metashare.ilsp.gr:8080/repository/browse/semeval-
2014-absa-test-data-gold-annotations/b98d11cec18211e38229
842b2b6a04d77591d40acd7542b7af823a54fb03al155/
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dure should not cause severe problems concerning
the over-estimation of metrics. This might be the
reason why a similar preprocessing step was, to the
best of our knowledge, only performed in one other
work (Xue and Li, 2018).

SemEval-14 Laptops The second domain-
specific subset of the SemEval-14 data is on
Laptops. The data were collected and annotated
by Pontiki et al. (2014) for the task of ATE and/or
ATSC. The training data set is publicly available,*
just like the test data (see Footnote 3). Again, there
were duplicate sentences in the training data which
we deleted Xue and Li (cf. 2018). Unlike other
benchmark data sets, both SemEval-14 data sets
come without an official train/validation split.

MAMS A Multi-Aspect  Multi-Sentiment
(MAMS) data set for the restaurant domain was
introduced by Jiang et al. (2019) who criticized
existing data sets for not being adequate for
ATSC. Since the data sets described above mainly
consist of sentences which exhibit (i) only one
single aspect or (ii) several aspects with the same
sentiment, they argued that the task would not be
much more difficult than a sentiment prediction
on the sentence-level. To circumvent this issue,
they extracted sentences of Ganu et al. (2009)
which comprise at least two aspects with differing
sentiments.’ The data sets have the same structure
as the SemEval-14 data sets, with the difference
that Jiang et al. (2019) provide a fixed validation
set for MAMS. The size of the validation split
comprises about ten percent of the whole training
set, which also inspired our choice when it comes
to creating train/validation splits from the two
SemEval-14 training data sets.

ARTS Xing et al. (2020) questioned the suitabil-
ity of existing data sets for testing the aspect robust-
ness of a model, i.e. whether the model is able to
correctly identify the words corresponding to the
chosen aspect term and predict its sentiment only
based on them. Thus, the authors created an auto-
matic generation framework that takes SemEval-14
test data (Restaurants and Laptops) as input and
creates an Aspect Robustness Test Set (ARTS). They
used three different strategies to enrich the existing
test set: The first one, REVTGT ("reverse target"),

“http://metashare.ilsp.gr:8080/repository/browse/semeval-
2014-absa-laptop-reviews-train-data/94748ff4624e11e38d18
842b2b6a04d7ca9201ec33f34d74a8551626be122856

Shttps://github.com/siat-nlp/MAMS-for-ABSA

aims to reverse the sentiment of the chosen aspect
term (also called "target aspect™). This is reached
by flipping the opinion using antonyms or adding
negation words like "not". Additionally, conjunc-
tions may be changed in order to make sentences
sound more fluent. Another strategy to augment
the test set is REVNON ("reverse non-target") for
which the sentiment of non-target aspects are (i)
changed if they have the same sentiment as the
target aspect or (ii) exaggerated if the non-target
aspect is of a differing polarity. The third strat-
egy called ADDDIFF ("add different sentiment")
adds non-target aspects with an opposite sentiment
which is intended to confuse the model. These non-
target aspects are selected from a set of aspects
collected from the whole data set and appended to
the end of the sentence. ARTS are only designed to
be used as test sets after training an architecture on
the respective SemEval-14 training sets. The test
sets for both restaurants and laptops are publicly
available.® During the preparation of the ARTS
data for CapsNet-BERT, we noticed that the start
and end positions of some aspect terms were not
correct. We changed them in order to make the
code work properly and we also deleted duplicates
(cf. Xue and Li (2018)). For these specific test
sets, the Aspect Robustness Score (ARS) was intro-
duced by Xing et al. (2020) in order to measure how
well models can deal with variations of sentences.
Therefore, each sentence and all its variations are
regarded as one unit for which the prediction is
only considered to be correct if the predictions for
all variations are correct. These units alongside
with their corresponding predictions are then used
to compute the regular accuracy on the unit-level.

More Data Sets Recently more data sets have
been published in addition to the ones mentioned
beforehand. Mukherjee et al. (2021) proposed two
new data sets about Men’s T-Shirts and Television.
The YASO data set (Orbach et al., 2020) has a
different structure as it is a multi-domain collection.
This is an interesting approach, yet also the reason
for not considering it for our experiments: This data
set is far better suited for cross-domain analyses,
which is out of the scope of this work.

3.2 Models

MGATN A multi-grained attention network
(MGATN) was proposed by Fan et al. (2018). Its
multi-grained attention as able to take into account

®https://github.com/zhijing-jin/ARTS_TestSet
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Original | Sentences | Sentences | Multi- Aspect | Positive | Negative | Neutral lézl:‘;)i:d
Data Set Subset Sentences | without for 3-class | Sentiment | Terms | Aspect | Aspect Aspect Aspect
in total Duplicates | ATSC Sentences | in total | Terms | Terms Terms Terms
SemEval-14 Training 3,044 3,038 1,978 320 3,605 2,161 807 637 91
Restaurants Test 800 800 600 80 1,120 728 196 196 14
SemEval-14 Laptops Training 3,048 3,036 1,460 166 2,317 988 866 463 45
Test 800 800 411 38 638 341 128 169 16
ARTS Restaurants Test 2,784 2,784 2,784 206 3,528 1,952 1,103 473 0
ARTS Laptops Test 1,576 1,576 1,576 74 1,877 883 587 407 0
Training 4,297 4,297 4,297 4,297 | 11,186 3,380 2,764 5,042 0
MAMS Restaurant Validation 500 500 500 500 1,332 403 325 604 0
Test 500 500 500 500 1,336 400 329 607 0

Table 1: Descriptive Statistics for the five utilized data sets. "Multi-Sentiment sentences" are those with at least
two different polarities after removing "conflict" polarity. "Aspect Terms in total" also exclude "conflict".

the interaction between aspects. We chose MGATN
since it is reported to be the best performing RNN-
based model on SemEval-14 data sets.

CapsNet-BERT Capsules Networks were ini-
tially proposed for the field of Computer Vi-
sion (Hinton et al., 2011; Sabour et al., 2017), with
the so-called capsules being responsible for rec-
ognizing certain implicit entities in images. Each
capsule performs internal calculations and returns
a probability that the corresponding entity appears
in the image. A variation of Capsule Networks for
ATSC and its combination with BERT was intro-
duced by Jiang et al. (2019). It was reported to
outperform all other capsule networks with respect
to their accuracy on the SemEval-14 Restaurants
data. Additionally, it performed second-best on
MAMS, which is why we selected it for this study.
Furthermore, we assumed their results on SemEval-
14 Restaurants data to be for three-class classifica-
tion, as all the other results they refer to are also
three-class. Yet, it is not fully clear to us which
makes this experiment even more interesting.

RGAT-BERT The Relational Graph Attention
Network (RGAT) was introduced by Bai et al.
(2020). It utilizes a dependency graph representing
the syntactic relationships between words of a sen-
tence as an additional input. The RGAT encoder
creates syntax-aware aspect term embeddings fol-
lowing the representation update procedures from
Graph Attentional Networks (GATs) (Velickovic
et al., 2018). It exhibits the best performance
among graph-based models and also performs best
on the MAMS data in terms of both accuracy and

macro

LCF-ATEPC Yang et al. (2020) built upon the
idea of the Local Context Focus (LCF) mecha-
nism (Zeng et al., 2019). The local context of

an aspect term is defined as a fixed-size window
around it, words outside this window are taken into
account with lower weights or not at all. For each
input token two labels, for aspect and sentiment,
are assigned according to the joint labeling scheme
described in Sec. 1. We chose LCF-ATEPC to be
part of this meta-study since it reached the highest
Fm?"° and accuracy on SemEval-14 data of all
approaches. Yet, this only holds for the variant that
is trained using additional domain adaptation.

BERT+TFM The approach described by Li et al.
(2019b) consists of a BERT model followed by a
Transformer (TFM) layer (Vaswani et al., 2017) for
classification. BERT+TFM was the best model on
SemEval-14 Laptops among all collapsed models
at the time point of its introduction. There were
also models using other layers on top instead of the
Transformer layer, but our variant of choice was
TFM as it produced slightly better results than the
rest.

GRACE GRACE, a Gradient Harmonized and
Cascaded Labeling model introduced by Luo et al.
(2020), belongs to the category of pipeline ap-
proaches. It includes a post-training step of the
pre-trained BERT (Devlin et al., 2019) model using
Yelp’ and Amazon data (He and McAuley, 2016).
The post-trained model then shares its first [ layers
between the ATE and the ATSC task. The remain-
ing layers are only used for the former. They are
followed by a classification layer for the detected
aspect terms. These classification outputs are then
used again as inputs for a Transformer decoder
which performs sentiment classification. The prin-
ciple of using the first set of labels as input for the
second is called Cascaded Labeling here and is as-
sumed to deal with interactions between different

"https://www.yelp.com/dataset
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aspect terms. Gradient Harmonization is applied in
order to cope with imbalanced labels during train-
ing. GRACE appears to be the best of the pipeline
models according to the literature. Furthermore,
it is reported to be the best ATE+ATSC model on
both SemEval-14 data sets. However, these suc-
cesses have to be taken into account with care, as
their results are based on four-class classification.
This means that in comparison to the other authors’
settings they did not exclude conflicting reviews
of SemEval-14 data. Thus, our analyis contributes
to comparability even more since it has not been
established yet for our model-data combinations.

4 Experiments®

We re-evaluate six models (cf. Sec. 3.2) on the five
data sets presented in Sec. 3.1. Our overall goals
are to establish comparability between the models,
to examine whether reported performance can be
reproduced and to quantify epistemic model uncer-
tainty that might exist due to the lacking knowledge
about the train/validation splits.

First, we re-use the implementations provided
by the authors and try to reproduce their results
on the data sets they used. Second, we adapt their
code to the remaining data sets and conduct the
necessary modifications, again sticking as closely
as possible to the original hyperparameter settings
(cf. Appendix A). The biggest change we made
was increasing the number of training epochs drasti-
cally and adding an early stopping mechanism. For
all ATSC models, we selected the optimal model
during the training process based on the validation
accuracy and/or F}"“"°. For performing the ex-
periments, we had a Tesla V100 PCle 16GB GPU
at our disposal.

Data Preparation Unlike other data sets, both
SemEval-14 data sets come without an official
validation split. Thus, we created five different
train/validation splits (90/10) for each of the two
SemEval-14 training sets. For each split, five train-
ing runs with different random initializations were
conducted per model. The resulting 25 different
versions per model per data set were subsequently
evaluated on the two official SemEval-14 test sets
as well as on the ARTS test sets. In Sec. 5 we re-
port overall means per model per test set as well as
means and standard deviations per model and test
set for each of the different splits. Since there is an

8The complete source code (see appended zip-file) will be
made available on GitHub upon publication.

official validation set for MAMS, we did not apply
the splitting procedure from above when training
on this data set. Consequently, the given means
and standard deviations are based on five training
runs with different random initializations only.

MGATN As there exists no publicly available
implementation by its authors, we used the one
from a collection of re-implemented ABSA meth-
ods from GitHub.® We slightly modified the early
stopping mechanism from that repository and then
implemented it into the other re-evaluated models.

CapsNet-BERT We used the implementation of
CapsNet-BERT provided by its authors.'?

RGAT-BERT We relied on the implementation
of RGAT-BERT provided by its authors.!! Since
the authors manually created an accuracy score dif-
ferent to the one from sklearn,we substituted
their metric to ensure comparability. For data trans-
formation, we selected the stanza tokenizer (Qi
et al., 2020) over the Deep Biaffine Parser,'2 which
was used by Bai et al. (2020), since the former pro-
vides the necessary syntactic information, whereas
the latter failed to produce the syntactic dependency
relation tags and head IDs the model requires.

LCF-ATEPC We were not able to run the best-
performing LCF-ATEPC variant based on domain
adaptation due to missing pretrained models. Thus,
we decided to go for the second best, LCF-ATEPC-
Fusion, using the official implementation of LCF-
ATEPC."? During our experiments, the authors of
LCF-ATEPC started building a new repository'*
based on the existing code which we did not use as
it was still subject to changes.

BERT+TFM We used the implementation of
BERT+TFM provided by its authors.'> Our model
selection was based on F,"™"° and F,™%“"° which
were calculated based on (start position, end po-
sition, polarity)-triples for each identified aspect.
Due to the collapsed labeling scheme, these scores
account for both ATE and ATSC.

GRACE We used the post-trained BERT model
provided by Luo et al. (2020).' Our model se-

*https://github.com/songyouwei/ABSA-PyTorch
https://github.com/siat-nlp/MAMS-for-ABSA
"https://github.com/muyeby/RGAT-ABSA
Phttps://github.com/yzhangcs/parser
Bhttps://github.com/yangheng95/LCF-ATEPC
“https://github.com/yangheng95/pyabsa
Bhitps://github.com/lixin4ever/BERT-E2E-ABSA
https://github.com/ArrowLuo/GRACE
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lection was based on ATSC-F,™¢"° and - F,™r°
as well as on ATE-F,™"°_ with their calculations
being slightly adjusted in order to match the calcu-
lation of those from BERT+TFM.
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Figure 1: Comparison of reported and reproduced per-
formance. The reproduced value is the mean of all
25 runs per model in total. Further, 95% bootstrap
(n = 2000) confidence intervals are displayed. Note
that absolute performance of GRACE (four classes)
and BERT+TFM cannot be compared to the other mod-
els due to different tasks. No F,™%“"° was reported for
CapsNet-BERT on SemEval-14 Laptops.

In general, reported values were not repro-
ducible. Fig. 1 shows a comparison of our aver-
age results to the reported results from the original
publications on the SemEval-14 data sets. For all
architectures there exists a notable gap between the
blue (reproduced) and the orange (reported) values.
In general, the gap tends to be larger for the ATSC
models compared to the two ATE+ATSC models,
where we could even reach a better performance
for BERT+TFM within our replication study.'’

It is also interesting to see how different runs

"We do not give a similar figure for MAMS or ARTS as
there are not enough reported values to form a good graph.

can lead to rather broad ranges of results, although
having done only five training runs per model and
data split. An example for this phenomenon is the
Accuracy of MGATN on SemEval-14 Laptops (cf.
Fig. 2). For the first, the fourth and fifth split, all
of the values lie very close together (within mean
=+ std), whereas the results of the other two splits
show a rather high variance.

MGATN For MGATN, our reproduces results
fell short of the reported values for accuracy,
around five to ten percentage points for SemEval-
2014 Laptops and Restaurants, respectively (cf.
Tab. 4). Fig. 2 depicts the results on Laptops,
the difference between reported and reproduced
performance on the Restaurant data (not shown)
looks similar. A reason for this behavior might
be that we could not use the official implementa-
tion of the authors. In terms of ARS Accuracy on
ARTS Restaurants, MGATN was the only model
that reached only a single-digit value which means
that it is not good at dealing with perturbed sen-
tences.

CapsNet-BERT Comparing all the selected
models on the ATSC task, CapsNet-BERT per-
formed best on all data sets regarding all the metrics
except for ARS Accuracy on ARTS Restaurant data
(cf. Tab. 4). For ARTS, it seems as if the reported
ARS accuracy for Laptops matched our result for
Restaurants, and vice versa, as Fig. 3 illustrates.
As far as we can tell, we did not mix up the data
sets during our calculations which makes this look
quite peculiar. The difference between the reported
and reproduced values on SemEval-14 Restaurants
data (as shown in Fig. 1b) may be explained by the
fact that we did three-class classification and we
only assumed so for the reported value.
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Figure 2: Example for high differences between data
splits: Accuracy of MGATN on SemEval-14 Laptops.
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Figure 3: Aspect Robustness Score (ARS) Accuracy of
CapsNet-BERT.

RGAT-BERT For both SemEval-14 and MAMS
we missed the reported values by around five per-
centage points (cf. Tab. 4). ARTS Restaurants
is the only data set on which the best ARS Ac-
curacy was not reached by CapsNet-BERT, but
RGAT-BERT. Regarding MAMS, Bai et al. (2020)
provided accuracy as well as F,"*%“"°, which is why
we also compare these results here. Figure 4 shows
the all five values of the four different measures
as well as the average. For accuracy and [,
reported values from Bai et al. (2020) were added.
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Figure 4: Performance of RGAT-BERT on MAMS.
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Figure 5: F}™"° of BERT+TFM.

LCF-ATEPC Our experiments resulted in on av-
erage about five percentage points lower accuracies
for LCF-ATEPC than were reported. Yet, LCF-
ATEPC reached the best ARS Accuracy value on
ARTS Restaurant data in our analysis.

BERT+TFM In contrast to the majority of the
other models, for BERT+TFM the (average) per-
formance of our runs surpassed the reported perfor-
mance values on the SemEval-14 data. As Fig. 5
indicates, this holds for all runs (Laptop domain)
and on average (Restaurant domain). The reasons
for our improved values may lie in the chosen hy-
perparameters, yet we cannot tell for sure.

GRACE During our experiments with GRACE,
we were able to produce results approximately in
the same range as the reported values. Regard-
ing SemEval-14 Restaurants our results on average
were better than the reported ones (cf. Fig. 6b),
while Laptops we could not quite reach the perfor-
mance (cf. Fig. 6a). For the latter case, our results
of single runs were better than (or at least equal
to) the reported one, which is kind of a symptom
of the problem. If we only reported the best of all
runs, our conclusion would have been that we were
able to outperform the original model. However, as



overall mean
EE] overall mean * std
=== B5% bootstrap ci
72 reported
o results
27 » mean per split
E ke
O SE—
X
] X X
[T I — X-—-----=* it
& @
67 T T T T T
splitl split2 split3 splitd split5

(a) SemEval-14 Laptops

overall mean

=]
=1

overall mean * std
=== B5% bootstrap ci

a0 reported
o results
£ » mean per split
j' 79
i X K
% T8 » . 8 = 2
;] x
7
Ta T T T T T
splitl split2 split3 splitd split5

(b) SemEval-14 Restaurants

Figure 6: ATSC F,™“"° of GRACE.

we have already mentioned, reported results were
based on four-class classification, whereas our re-
sults were made for three-class. This might be the
reason for different results. In the ATE+ATSC task,
GRACE outperformed BERT+TFM on all data sets
except for MAMS (cf. Tab. 5).

6 Discussion

Results differing from the reported values can be
explained by various reasons. First, we often do
not know how the reported values were created,
i.e. whether the authors took the best or an average
value of their runs. In Fig. 6a, it is clear to see
that taking the best value compared the mean of
the runs yields a difference of about almost three
percentage points. Unfortunately there are also,
to the best of our knowledge, no clear guidelines
for how to properly report the uncertainty resulting
from different data splits. One potential starting
point could be to always perform multiple runs on
multiple splits and use the different results to report
variance values between and within splits. While
the former gives an impression for the uncertainty
induced by data heterogeneity, the latter rather re-
flects the model’s share of the overall uncertainty.
Second, our data usually are not identical to the

data sets used for the original papers due to the pre-
processing steps we explained beforehand. Also,
training and validation splits are probably differ-
ent from ours. Some models required additional
syntactical information which we (potentially) in-
ferred from other packages than indicated, because
either none were given or because the ones that
were given did not work as stated. Third, hyperpa-
rameter configurations are often not totally clear
due to a lack of concise descriptions in the origi-
nal work. In these cases we took those that were
chosen by default in the implementations we used.
Since those were not necessarily always provided
by the authors of the models, we have no infor-
mation about how close they are to the original
configurations. What we could find out regarding
hyperparameters can be found in Table 2 and 3 in
Appendix A. Consequently, it is not surprising that
we were not able to exactly reproduce given results,
since hyperparameter tuning often has a large im-
pact on the model performance. This insight is also
shared by Mukherjee et al. (2021), although they
tested other models in a different setup.

7 Conclusion & Future work

Our experiments revealed that reproducing reported
results is hardly possible, given the current practice
of performance reporting (at least for this subset
of selected models). A tendency towards lower re-
sults is visible in our experiments, sometimes even
five to ten percentage points lower than the origi-
nal values. The only exception was BERT+TFM
for which given values were surpassed. The rea-
sons for these observations may lay in the data
preprocessing step, in the hyperparameters or in
the absence of a convention on which values to re-
port (best or mean of several runs). This discovery
of models hardly being comparable based on their
performance measures is a very important one from
our point of view. When new models are proposed,
one of the main aspects during their evaluation is
the improvement with respect to the state of the
art. But when the performance of a single model
can vary between single runs, the question is which
results to take into account for model rankings.

A reporting convention indicating a common pro-
cedure combined with already prepared data sets
with all possible labels could improve the compara-
bility between models a lot. Also a huge practical
meta-analysis of all models on several data sets
would clarify the situation.
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Appendix

will be used:

Table 2: Model hyperparameters (Part I)
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Metric Model SemEval-14 Restaurant

Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
MGATN 74.32 (+£1.24) | 74.36 (+1.47) | 74.70 (£0.73) | 73.23 (£1.07) | 73.66 (£0.81) | 74.05 (+1.14) | 81.25
Accuracy = RGAT-BERT | 82.52 (£ 0.60) | 83.21 (£0.88) [82.00 (£1.13) [ 82.70 (£0.67) | 82.09 (£0.60) | 82.50 (£0.86) | 86.68
F1 Micro CapsNetBERT | 84.46 (£0.84) | 84.07 (£0.92) | 84.68 (£0.87) | 83.46 (£0.63) | 82.77 (£1.40) | 83.89 (£1.13) | 85.93
LCF-ATEPC 82.56 (£0.89) | 83.09 (£0.49) [82.87 (£1.28) [ 82.01 (£1.06) | 81.78 (£1.52) | 82.46 (£1.13) [ 86.77
MGATN 62.04 (£2.37) | 60.48 (£2.78) | 61.34 (£0.99) | 59.05 (£3.13) | 57.15 (£3.70) | 60.01 (£3.08) | 71.94

RGAT-BERT | 72.88 (£0.68) | 75.00 (£1.72) | 72.86 (£2.21) | 73.59 (£2.27) | 72.39 (L0.81) | 73.34 (£1.79) | 80.02
CapsNetBERT | 7621 (£1.59) | 76.85 (£0.87) | 77.02 (£1.66) | 74.50 (£ 1.06) | 72.43 (£4.07) | 75.40 (£2.66) -
LCE-ATEPC | 73.33 (£2.34) | 75.17 (0.38) | 74.03 (£2.85) | 73.22 (£1.58) | 71.38 (£2.76) | 73.43 (£2.36) | 80.54
MGATN 7283 (£1.56) | 71.01 (£1.81) | 72.53 (£0.48) | 71.08 (£1.75) | 70.03 (£2.23) | 71.68 (£1.84) -
RGAT-BERT | 81.03 (£0.54) | 82.42 (£1.11) | 8L.09 (£1.37) | S1.80 (£1.32) | 80.76 (£0.67) | 8142 (£1.15) -
CapsNetBERT | 83.50 (£1.00) | 83.65 (£0.75) | 83.98 (£1.09) | 82.48 (£0.71) | 81.02 (£2.44) | 82.93 (£1.65) -
LCF-ATEPC | 83.86 (1£0.73) | 83.80 (0.70) | 83.97 (£-0.80) | 82.88 (L 1.09) | 83.61 (£1.37) | 83.63 (£0.99) -

F1 Macro

F1 Weighted

Metric Model SemEval-14 Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
MGATN 64.48 (£0.85) | 63.86 (+2.66) | 64.67 (£1.78) | 64.08 (£0.88) | 63.61 (£0.85) | 64.14 (+1.49) | 75.39
Accuracy = RGAT-BERT | 76.14 (£1.05) | 76.24 (£1.43) | 75.27 (£0.63) | 76.39 (£1.19) | 75.20 (£1.02) | 75.85 (£1.13) | 80.94
F1 Micro CapsNetBERT | 76.21 (£1.01) | 77.52 (£1.80) | 77.49 (£1.13) | 77.55 (£1.22) | 77.84 (£1.70) | 77.32 (£1.41) -
LCF-ATEPC 76.22 (£2.37) | 76.93 (£1.24) [75.61 (£1.35) | 77.58 (£1.16) | 75.44 (£1.16) | 76.36 (£1.62) [ 80.97
MGATN 56.98 (£0.92) | 56.36 (+3.09) | 55.82 (£2.29) | 56.81 (£2.87) | 56.93 (£2.05) | 56.58 (+2.21) | 72.47

RGAT-BERT | 70.54 (£1.54) | 70.86 (£2.51) | 69.49 (£ 1.13) | 71.94 (£1.62) | 70.59 (£1.23) | 70.68 (£1.73) | 782
CapsNetBERT | 70.76 (£1.87) | 72.92 (£2.45) | 72.68 (£1.72) | 72.56 (£2.43) | 73.39 (£3.21) | 72.46 (£2.37) -
LCF-ATEPC | 70.23 (£3.60) | 72.43 (£0.89) | 70.20 (£1.58) | 73.34 (£1.72) | 70.63 (£2.07) | 71.37 (£2.37) | 77.86
MGATN 63.71 (£0.66) | 63.20 (£2.63) | 62.52 (£1.87) | 63.22 (£2.30) | 63.50 (£1.48) | 63.23 (£1.79) -
RGAT-BERT | 75.16 (£1.26) | 75.37 (£1.87) | 74.38 (£1.00) | 76.14 (£1.32) | 74.99 (£0.97) | 75.21 (£1.34) -
CapsNetBERT | 7529 (£1.47) | 77.20 (£2.09) | 76.97 (£1.38) | 76.73 (£2.00) | 77.43 (£2.59) | 76.72 (£1.95) -
LCE-ATEPC | 77.33 (£1.93) | 77.08 (£1.72) | 7643 (£1.37) | 77.74 (20.99) | 75.50 (£1.23) | 76.84 (£1.56) -

F1 Macro

F1 Weighted

Metric Model MAMS
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
MGATN - - - - - | 61.95(£3.17) -
Accuracy = RGAT-BERT - - - - - [ 7979 (£0.55) | 84.52
F1 Micro CapsNetBERT - - - - - 183.04(£0.70) | 83.39
LCF-ATEPC . - s B = [ 7894 (£0.56) s
MGATN - - - - - | 59.25(£3.78) -
F1 Macro RGAT-BERT . - . - ~[ 7924 (£0.69) | 83.74
CapsNetBERT - - - - - | 82.44 (£0.81) -
LCF-ATEPC - - - - - | 78.43 (£0.64) -
MGATN - - - - - | 61.24 (£3.53) -
. RGAT-BERT - - - - - | 79.77 (£0.59) -
FI Weighted - NeiBERT - - - - 18304 (F0.74) | -
LCF-ATEPC . - s B ~[ 7894 (£0.50) s
Metric Model ARTS Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
MGATN 57.19 (£1.42) | 57.61 (£2.47) | 58.04 (£1.91) | 57.74 (£1.01) | 58.45 (£0.57) | 57.81 (£1.54) -
Accuracy = RGAT-BERT | 72.32(£0.83) | 73.20 (£1.52) | 72.57 (£2.37) | 71.38 (£1.54) | 72.44 (£1.09) | 72.38 (£1.54) -
F1 Micro CapsNetBERT | 78.80 (£1.17) | 78.38 (£0.75) | 78.91 (£1.98) | 78.80 (£0.77) | 75.23 (£5.86) | 78.02 (£2.98) .
LCF-ATEPC 73.59 (£0.55) | 73.92 (£1.43) | 74.88 (£1.58) | 71.11 (£3.27) | 73.13 (£0.90) | 73.32 (£2.09) -
MGATN 47.03 (£0.76) | 43.15(£6.16) | 43.17 (£7.18) | 45.96 (£1.69) | 43.13 (£2.40) | 44.49 (£4.40) -

RGAT-BERT | 63.53 (£2.11) | 66.20 (£2.04) | 64.77 (£3.19) | 62.99 (£3.07) | 63.70 (£1.27) | 64.24 (£2.51) -
CapsNetBERT | 71.22 (£1.36) | 71.94 (£0.65) | 71.63 (£2.65) | 71.02 (£1.32) | 65.87 (£7.49) | 70.34 (£4.06) -
LCE-ATEPC | 64.04 (£1.38) | 66.82 (£1.76) | 66.55 (£2.61) | 62.91 (2.71) | 63.84 (£0.99) | 65.01 (£2.39) -
MGATN 54.89 (£0.81) | 52.59 (£3.92) | 52.79 (£5.22) | 55.02 (£0.25) | 52.96 (£ 1.44) | 53.65 (L 2.96) -
RGAT-BERT | 70.96 (£1.15) | 72.65 (£1.66) | 72.03 (£2.49) | 70.61 (£2.07) | 7141 (£1.16) | 71.53 (£1.79) -
CapsNetBERT | 78.12 (£1.19) | 78.29 (£0.48) | 78.55 (£1.85) | 78.10 (20.84) | 74.20 (£6.39) | T7.47 (£3.25) -
LCF-ATEPC | 74.74 (£0.37) | 7441 (£1.36) | 75.83 (£1.34) | 72.04 (£3.37) | 74.70 (£0.91) | 74.34 (£2.07) -
MGATN 913 (£142) | 9.50 (£2.51) | 10.00 (£3.03) | 9.90 (£1.00) | 9.57 (£0.67) | 9.62 (£1.81) -
RGAT-BERT | 35.17 (£3.16) | 3647 (£3.02) | 3547 (£4.52) | 33.33 (£3.31) | 35.73 (£3.14) | 35.23 (£3.39) -
CapsNetBERT | 29.96 (£3.11) | 27.70 (£2.60) | 28.75 (£5.70) | 29.74 (£ 1.84) | 21.43 (£8.50) | 27.52 (£5.57) | 55.36
LCE-ATEPC | 39.16 (£1.66) | 40.30 (=3.24) | 40.10 (£3.89) | 34.02 (£6.20) | 39.16 (£3.12) | 38.55 (£4.28) -

F1 Macro

F1 Weighted

ARS Accuracy

Metric Model ARTS Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
MGATN 52.31(£0.20) | 52.14 (£1.56) | 52.29 (£1.20) | 52.19 (£0.83) | 52.83 (£0.77) | 52.35 (£0.96) -
Accuracy = RGAT-BERT | 65.81 (£3.23) | 64.66 (£5.33) | 66.31 (£1.68) | 68.25 (£1.35) [ 66.31 (£2.56) | 66.27 (£3.12) -
F1 Micro CapsNetBERT | 66.68 (£6.17) | 72.51 (£0.73) | 70.80 (£2.32) | 71.97 (£1.48) | 71.84 (£1.85) | 79.77 (£3.60) -
LCF-ATEPC 69.38 (£1.78) | 67.57 (£2.58) [ 68.99 (£0.74) | 69.45 (£2.12) | 67.50 (£1.56) | 68.58 (£1.91) -
MGATN 46.58 (£0.76) | 46.86 (£2.05) | 44.91 (£1.69) | 46.81 (+-2.63) | 48.41 (+1.57) | 46.71 (£2.03) -

RGAT-BERT | 60.30 (£4.14) | 59.96 (£5.90) | 61.46 (£1.73) | 64.37 (£1.69) | 62.75 (£2.62) | 61.77 (£3.68) -
CapsNetBERT | 61.61 (£6.59) | 68.53 (£1.71) | 66.57 (£3.00) | 67.36 (£2.66) | 68.29 (£3.51) | 66.47 (£4.38) -
LCF-ATEPC | 63.00 (£2.70) | 63.79 (£3.44) | 64.19 (£1.64) | 66.02 (£2.87) | 6381 (£1.99) | 64.34 (£2.53) -
MGATN 50.54 (£0.45) | 50.67 (£1.20) | 49.60 (£1.30) | 50.83 (£1.70) | 52.10 (£1.00) | 50.75 (£1.37) -
RGAT-BERT | 64.30 (£3.69) | 6347 (£5.71) | 65.23 (£1.58) | 67.60 (£1.52) | 65.73 (£2.70) | 65.27 (£3.43) -
CapsNetBERT | 65.34 (£6.43) | 71.89 (£1.18) | 70.02 (£2.69) | 70.96 (2.11) | 71.31 (£2.61) | 69.91 (£4.00) -
LCE-ATEPC | 70.71 (£1.68) | 68.02 (£2.25) | 69.94 (£0.60) | 69.79 (=1.80) | 67.96 (£1.59) | 69.28 (=1.89) -
MGATN 11.68 (£0.83) | 12.12 (£1.43) | IL.14 (£1.78) | 12.41 (£1.34) | 13.87 (£0.93) | 12.24 (£1.52) -
RGAT-BERT | 3431 (£6.26) | 31.68 (£10.32) | 34.84 (£3.83) | 39.17 (X2.18) | 34.01 (£6.34) | 34.80 (£6.36) -
CapsNetBERT | 35.52 (£10.83) | 46.13 (£1.61) | 41.75 (£3.66) | 44.33 (£3.01) | 42.34 (£2.90) | 42.01 (£6.21) | 25.86
LCF-ATEPC | 41.98 (£2.42) | 37.77 (£4.95) | 40.69 (£0.75) | 40.94 (£4.09) | 37.08 (£3.60) | 39.69 (£3.73) -

F1 Macro

F1 Weighted

ARS Accuracy

Table 4: Our performance results (mean =+ standard deviation) for ATSC models. For SemEval-14 Restaurants and
Laptops as well as for MAMS, no ARS Accuracy is measured.
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Metric Model SemEval-14 Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
Fl Micro BERT+TEM | 74.27 (+1.25) | 74.90 (£0.84) | 75.90 (£0.53) | 74.55 (£0.54) | 74.96 (£0.46) | 74.91 (£0.91) 73.98
GRACE 77.78 (£0.65) | 77.40 (£0.54) | 78.43 (£0.75) | 77.90 (£0.95) | 77.84 (£0.80) | 77.87 (£0.76) 77.26
F1 Macro BERT+TEM | 66.71 (+1.52) | 67.16 (+1.39) | 69.37 (£0.73) | 66.49 (£0.84) | 67.63 (£1.20) | 67.47 (£1.50) -
GRACE 72.05 (£0.88) | 71.40 (£0.99) | 72.41 (£1.22) | 72.13 (£1.35) | 71.36 (£1.49) | 71.87 (£1.18) -
Precision BERT+TEM | 74.25 (+1.46) | 74.72 (£1.00) | 76.04 (£0.86) | 74.29 (£0.35) | 75.46 (£0.85) | 74.95 (£1.14) -
GRACE 76.25 (£0.79) | 76.08 (£0.90) | 77.17 (£0.82) | 76.86 (£0.87) | 76.35 (£0.83) | 76.54 (£0.87) -
Recall BERT+TFM | 74.30 (£1.30) | 75.10 (£1.01) | 75.78 (£0.57) | 74.82 (£0.90) | 74.48 (+1.07) | 74.90 (£1.06) -
GRACE 79.37 (£0.75) | 78.78 (£0.22) | 79.75 (£0.87) | 78.99 (£1.12) | 79.41 (£0.83) | 79.26 (10.82) -
ATE F1 Micro | GRACE 87.88 (£0.60) | 88.29 (£0.30) | 88.38 (£0.42) | 88.64 (£0.41) | 88.66 (£0.53) | 88.37 (£0.51) -
Metric Model SemEval-14 Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
Fl Micro BERT+TFM | 63.53 (+0.93) | 63.92 (+0.81) | 64.03 (£1.56) | 64.16 (£0.99) | 64.09 (£1.05) | 63.95 (£1.03) 60.80
GRACE 70.04 (£1.33) | 68.84 (£0.27) | 69.10 (£1.68) | 69.10 (£1.17) | 69.49 (£1.28) | 69.31 (£1.21) 70.71
F1 Macro BERT+TEM | 56.92 (+2.33) | 57.04 (£2.39) | 57.92 (£2.66) | 58.62 (£1.31) | 58.09 (£1.49) | 57.72 (£2.03) -
GRACE 65.29 (£1.90) | 64.00 (£0.39) | 64.95 (£2.42) | 64.51 (£0.98) | 65.06 (£1.57) | 64.76 (£1.55) -
Precision BERT+TFM | 65.57 (+1.16) | 65.69 (£0.65) | 65.19 (£1.61) | 65.48 (£0.77) | 65.35 (£1.02) | 65.46 (£1.02) 63.23
GRACE 69.77 (£1.47) | 68.19 (£0.35) | 68.18 (£1.78) | 68.64 (£1.60) | 68.63 (£1.31) | 68.68 (+1.41) 72.38
Recall BERT+TEM | 61.65 (+£1.38) | 62.26 (+1.37) | 62.94 (£1.79) | 62.90 (£1.31) | 62.90 (£1.33) | 62.53 (£1.42) 58.64
GRACE 70.32 (£1.27) | 69.52 (£0.47) | 70.06 (£1.69) | 69.58 (£0.82) | 70.38 (£1.38) | 69.97 (+1.16) 69.12
ATE F1 Micro | GRACE 85.99 (£1.51) | 85.18 (£0.60) | 85.40 (£0.59) | 85.98 (+0.72) | 85.68 (4+0.65) | 85.64 (£0.87) 87.93
Metric Model MAMS
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
Fl Micro BERT+TFM - - - - - | 64.94 (£1.47) -
GRACE - - - - - | 63.48 (£0.60) -
Fl Macro BERT+TFM - - - - - | 65.54 (£1.43) -
GRACE - - - - - | 64.59 (£0.61) -
Precision BERT+TFM - - - - - | 65.01 (£1.90) -
GRACE - - - - - | 62.63 (£0.98) -
Recall BERT+TFM - - - - - | 64.93(£2.42) -
GRACE - - - - - | 64.37 (£0.86) -
ATE F1 Micro | GRACE - - - - - | 75.96 (£0.42) -
Metric Model ARTS Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
Fl Micro BERT+TFM | 39.80 (10.78) | 39.34 (£0.44) | 39.76 (£0.41) | 39.29 (£0.56) | 39.28 (£1.01) | 39.50 (£0.66) -
GRACE 61.86 (£1.53) | 63.22(£1.04) | 62.80 (£1.28) | 62.44 (£1.71) | 63.82 (£2.38) | 62.83 (£1.66) -
Fl Macro BERT+TFM | 36.83 (+0.90) | 36.13 (+-0.47) | 36.80 (£0.50) | 36.04 (£0.76) | 36.19 (£1.27) | 36.40 (£0.84) -
GRACE 5591 (£2.11) | 57.22 (£1.11) | 56.89 (£1.80) | 56.40 (£2.03) | 57.18 (£3.46) | 56.72 (£2.10) -
Precision BERT+TFM | 28.21 (+0.62) | 27.83 (+0.39) | 28.22 (£0.28) | 27.77 (£0.46) | 27.97 (£0.56) | 28.00 (£0.48) -
GRACE 60.76 (£1.67) | 62.20 (£1.41) | 61.63 (£1.62) | 61.68 (£1.46) | 62.56 (£2.38) | 61.76 (£1.71) -
Recall BERT+TFM | 67.55 (+1.17) | 67.17 (£0.99) | 67.33 (£0.85) | 67.17 (£0.86) | 66.01 (£2.72) | 67.05 (£1.47) -
GRACE 63.02 (£1.65) | 64.30 (£0.93) | 64.02 (£1.00) | 63.24 (£2.02) | 65.14 (£2.38) | 63.94 (£1.73) -
ARS Accuracy BERT+TFM | 37.53 (+£1.97) | 35.60 (+-2.25) | 35.07 (£2.59) | 35.83 (£2.43) | 34.30 (£2.81) | 35.67 (£2.94) -
GRACE 3471 (£2.98) | 38.39 (£3.00) | 37.70 (£2.49) | 36.78 (+3.81) | 40.69 (+4.11) | 37.66 (£+3.64) -
ATE F1 Micro | GRACE 50.53 (+0.32) | 50.81 (£0.25) | 50.78 (£0.26) | 50.87 (£0.14) | 51.02 (£0.33) | 50.83 (£0.29) -
Metric Model ARTS Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported
F1 Micro BERT+TFM | 34.56 (+1.88) | 34.55 (+1.61) | 35.06 (+1.64) | 35.80 (£.075) | 35.50 (£0.39) | 35.09 (£1.36) -
GRACE 65.90 (£1.75) | 64.63 (£3.57) | 63.16 (£1.97) | 64.36 (£2.47) | 64.67 (£1.10) | 64.54 (£2.30) -
Fl Macro BERT+TFM | 31.70 (+2.60) | 31.34 (+2.02) | 32.44 (+2.22) | 33.37 (£0.55) | 33.12 (£0.64) | 32.39 (£1.84) -
GRACE 63.98 (£1.92) | 61.54 (£3.97) | 60.24 (£2.27) | 61.56 (£3.10) | 61.90 (£1.85) | 61.85 (£2.79) -
Precision BERT+TFM | 2591 (+1.29) | 25.85(40.99) | 26.06 (£1.00) | 26.56 (£0.53) | 26.41 (£0.15) | 26.16 (£0.86) -
GRACE 66.81 (£2.20) | 65.43 (£3.99) | 63.83 (£2.04) | 65.23 (£3.14) | 65.41 (£2.23) | 65.34 (£2.75) -
Recall BERT+TFM | 51.91 (4+3.33) | 52.14 (+3.33) | 53.62 (£+3.45) | 54.90 (£1.32) | 54.15 (£1.42) | 53.34 (£2.78) -
GRACE 65.03 (£1.48) | 63.89 (£3.37) | 62.51 (£1.96) | 63.54 (£2.08) | 64.00 (£1.34) | 63.79 (£2.14) -
ARS Accuracy BERT+TFM | 23.60 (+4.29) | 23.26 (+-4.83) | 24.87 (+4.12) | 26.91 (£2.10) | 26.23 (£2.47) | 24.97 (£3.70) -
GRACE 38.80 (£3.90) | 36.40 (£3.85) | 33.20 (£1.79) | 32.80 (£3.03) | 36.40 (£4.56) | 35.52 (£3.97) -
ATE F1 Micro | GRACE 52.97 (£0.53) | 52.64 (£0.59) | 52.62 (£0.36) | 53.08 (£0.49) | 52.82 (£0.37) | 52.83 (£0.47) -

Table 5: Our performance results (mean + standard deviation) for ATE+ATSC models. For SemEval-14 Restau-
rants and Laptops as well as for MAMS, no ARS Accuracy is measured.
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