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Abstract
For the latter part of the past decade, Aspect-001
Based Sentiment Analysis has been a field of002
great interest within Natural Language Pro-003
cessing. Supported by the Semantic Evalua-004
tion Conferences in 2014 – 2016, a variety of005
methods has been developed competing in im-006
proving performances on benchmark data sets.007
Exploiting the transformer architecture behind008
BERT, results improved rapidly and efforts in009
this direction still continue today. Our con-010
tribution to this body of research is a holis-011
tic comparison of six different architectures012
which achieved (near) state-of-the-art results013
at some point in time. We utilize a broad014
spectrum of five benchmark data sets and in-015
troduce a fixed setting with respect to the pre-016
processing, the train/validation splits, the per-017
formance measures and the quantification of018
uncertainty. Overall, our findings are two-fold:019
First, we find that the results reported in the sci-020
entific articles are hardly reproducible, since021
in our experiments the observed performance022
(most of the time) fell short of the reported023
one. Second, the results are burdened with no-024
table uncertainty (depending on the data splits)025
which is why a reporting of uncertainty mea-026
sures is crucial.027

1 Introduction028

The field of Natural Language Processing (NLP)029

has profited a lot from technical and algorithmic030

improvements within the last years. Before the suc-031

cessful times of Machine Learning and Deep Learn-032

ing, NLP was mainly based on what linguists knew033

about how languages work, i.e. grammar and syn-034

tax. Thus, primarily rule-based approaches were035

employed in the past. Nowadays, far more general-036

ized models based on neural networks are able to037

learn the desired language features.038

On the other hand, data in written form is avail-039

able in huge amounts and thus might be an im-040

portant source for valuable information. For in-041

stance, the internet is full of comparison portals,042

forums, blogs and social media posts where people 043

state their opinions on a broad range of products, 044

companies and other people. Product developers, 045

politicians or other persons in charge could profit 046

from this information and improve their products, 047

decisions and behavior. 048

We specifically focus on Aspect-Based Sentiment 049

Analysis (ABSA) in our work. ABSA is often used 050

as a generic term for several unique tasks, which is 051

caused by the inconsistency of terms in literature 052

where many different names are widely used. To 053

be as precise as possible, we explicitly use differ- 054

ent terms than ABSA to refer to the exact tasks. 055

The first one (Subtask 2, Pontiki et al., 2014) as- 056

sumes that in each text, aspect terms are already 057

marked and thus given exactly as written in the text 058

(this differs from so-called aspect categories which 059

do not necessarily appear in the text). Here, the 060

task is to classify the sentiments for those aspect 061

terms. This is why the term Aspect Term Sentiment 062

Classification (ATSC) is most accurate. 063

When referring to ATSC methods, we usually 064

think of single-task approaches. These methods are 065

designed to carry out only aspect term sentiment 066

classification as the aspect terms are already given. 067

Whether these were identified manually or by an 068

algorithm is not relevant in this setting. In prac- 069

tice, however, the aspect terms oftentimes are not 070

already known. Thus, approaches dealing with the 071

step of Aspect Term Extraction (ATE) have been 072

developed. They can either work on their own or be 073

combined with an ATSC method. For these com- 074

bined methods, which we refer to as ATE+ATSC, 075

one can further distinguish between pipeline, joint 076

and collapsed models. In pipeline models, ATE 077

and ATSC are simply stacked one after another, 078

i.e. the output of the first model is used as input to 079

the second model. The latter two are often also re- 080

ferred to as multi-task models, since both tasks are 081

carried out simultaneously or in an alternating way. 082

These models only differ in their labeling mecha- 083
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nisms: There are two label sets for joint models,084

one to indicate whether a word is part of an aspect085

term and the other one to state its polarity. For col-086

lapsed models, a unified labeling scheme indicates087

whether a word is part of a positive, negative or088

neutral aspect term or not.089

We re-evaluate four different models for ATSC,090

covering a variety of different architectures (RNNs,091

Capsule networks, LCF-based, BERT-based), as092

well as two different ATE+ATSC models, one of093

which is a pipeline approach while the other one094

works in a collapsed fashion. All models are re-095

trained five times using five different (identical)096

train/validation splits and tested on the respective097

test sets in order to (i) compare them on a common098

ground and (ii) quantify the epistemic uncertainty099

associated with the architectures and the data.100

2 Related work101

Related experiments were conducted by Mukher-102

jee et al. (2021), yet with a different focus. On103

the one hand, the authors also try to reproduce104

results on the benchmark data sets from SemEval-105

14 about Restaurants and Laptops. However, they106

selected six other models than we did for which107

the implementations are provided in one reposi-108

tory 1. For these, the authors observed a consis-109

tent drop of 1-2 % with respect to both accuracy110

and macro-averaged F1-Score F macro
1 . Mukher-111

jee et al. (2021) reported a doubling of this drop112

when using 15% of the training data as validation113

data. On the other hand, they executed additional114

tasks which included the set-up of two new data115

sets about Men’s T-shirts and Television as well116

as the model evaluation on them. Furthermore,117

they also experimented with cross-domain training118

and testing. Yet, several important points are not119

addressed by their work which is why we inves-120

tigate them in our work. First, while they mostly121

care about comparing different types of architec-122

tures (Memory Networks vs. BERT), we instead123

focus on comparing the best performing models for124

different tasks (ATSC vs. ATE+ATSC). Further,125

we cover a larger variety of types of architectures126

by selecting the best performing representatives of127

several different types. Second, we stick closer to128

the original implementations (by using them, when129

available) whereas they exclusively rely on com-130

munity designed implementations, which adds a131

further potential source of errors. Third, and most132

1https://github.com/songyouwei/ABSA-PyTorch

important, we provide estimates for the epistemic 133

uncertainty of performance values and are thus able 134

to (at least tentatively) explain performance differ- 135

ences due to different reporting standards. 136

3 Materials and Methods 137

This section will introduce the data sets we utilized 138

for training and evaluation as well as the selected 139

model architectures. We start by briefly explaining 140

the data, before the models are described, since 141

(reported) performance values on these data sets 142

partly motivate our choices regarding the models. 143

Descriptive statistics for all used data sets can be 144

found in Tab. 1. Note that the data sets we even- 145

tually use for training and testing the models are 146

all based on the original train/test splits. Further 147

we apply small modifications (as described below) 148

which were (a) also applied by some of the authors 149

whose models we re-evaluate and (b) we perceive 150

as reasonable. This allows us to evaluate all of the 151

architectures on a common ground, which is not 152

possible by comparing the reported values from the 153

original publications alone. Nevertheless, we are 154

aware of the fact that this might limit comparability 155

of our results to the original ones to some extent. 156

3.1 Data Sets 157

SemEval-14 Restaurants This data set contains 158

reviews about restaurants in New York. Pontiki 159

et al. (2014) chose a subset of the restaurant data 160

from Ganu et al. (2009) as training data2, while 161

collecting test data3 themselves. Both were labeled 162

for several subtasks in the same way. These data 163

sets were designed for ATSC as well as its equiva- 164

lent on Aspect-category level (ACSC), but we stick 165

to ATSC samples only. For each identified aspect 166

term within a sentence, the polarity is given as pos- 167

itive, negative, neutral or conflict. We deleted the 168

labels of the latter category (conflict) from the data 169

sets due to their rare appearance. This is similar to 170

previous work (Fan et al., 2018; Bai et al., 2020; 171

Yang et al., 2020; Li et al., 2019a), yet, they do not 172

all mention or explain the removing process explic- 173

itly. Rarely appearing duplicate sentences which 174

occurred in the training set were also removed in 175

our work. Due to their small amount, this proce- 176

2http://metashare.ilsp.gr:8080/repository/browse/semeval-
2014-absa-restaurant-reviews-train-data/479d18c0625011e
38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/

3 http://metashare.ilsp.gr:8080/repository/browse/semeval-
2014-absa-test-data-gold-annotations/b98d11cec18211e38229
842b2b6a04d77591d40acd7542b7af823a54fb03a155/

2

https://github.com/songyouwei/ABSA-PyTorch
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-restaurant-reviews-train-data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e72185b8/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/
http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-test-data-gold-annotations/b98d11cec18211e38229842b2b6a04d77591d40acd7542b7af823a54fb03a155/


dure should not cause severe problems concerning177

the over-estimation of metrics. This might be the178

reason why a similar preprocessing step was, to the179

best of our knowledge, only performed in one other180

work (Xue and Li, 2018).181

SemEval-14 Laptops The second domain-182

specific subset of the SemEval-14 data is on183

Laptops. The data were collected and annotated184

by Pontiki et al. (2014) for the task of ATE and/or185

ATSC. The training data set is publicly available,4186

just like the test data (see Footnote 3). Again, there187

were duplicate sentences in the training data which188

we deleted Xue and Li (cf. 2018). Unlike other189

benchmark data sets, both SemEval-14 data sets190

come without an official train/validation split.191

MAMS A Multi-Aspect Multi-Sentiment192

(MAMS) data set for the restaurant domain was193

introduced by Jiang et al. (2019) who criticized194

existing data sets for not being adequate for195

ATSC. Since the data sets described above mainly196

consist of sentences which exhibit (i) only one197

single aspect or (ii) several aspects with the same198

sentiment, they argued that the task would not be199

much more difficult than a sentiment prediction200

on the sentence-level. To circumvent this issue,201

they extracted sentences of Ganu et al. (2009)202

which comprise at least two aspects with differing203

sentiments.5 The data sets have the same structure204

as the SemEval-14 data sets, with the difference205

that Jiang et al. (2019) provide a fixed validation206

set for MAMS. The size of the validation split207

comprises about ten percent of the whole training208

set, which also inspired our choice when it comes209

to creating train/validation splits from the two210

SemEval-14 training data sets.211

ARTS Xing et al. (2020) questioned the suitabil-212

ity of existing data sets for testing the aspect robust-213

ness of a model, i.e. whether the model is able to214

correctly identify the words corresponding to the215

chosen aspect term and predict its sentiment only216

based on them. Thus, the authors created an auto-217

matic generation framework that takes SemEval-14218

test data (Restaurants and Laptops) as input and219

creates an Aspect Robustness Test Set (ARTS). They220

used three different strategies to enrich the existing221

test set: The first one, REVTGT ("reverse target"),222

4http://metashare.ilsp.gr:8080/repository/browse/semeval-
2014-absa-laptop-reviews-train-data/94748ff4624e11e38d18
842b2b6a04d7ca9201ec33f34d74a8551626be122856

5https://github.com/siat-nlp/MAMS-for-ABSA

aims to reverse the sentiment of the chosen aspect 223

term (also called "target aspect"). This is reached 224

by flipping the opinion using antonyms or adding 225

negation words like "not". Additionally, conjunc- 226

tions may be changed in order to make sentences 227

sound more fluent. Another strategy to augment 228

the test set is REVNON ("reverse non-target") for 229

which the sentiment of non-target aspects are (i) 230

changed if they have the same sentiment as the 231

target aspect or (ii) exaggerated if the non-target 232

aspect is of a differing polarity. The third strat- 233

egy called ADDDIFF ("add different sentiment") 234

adds non-target aspects with an opposite sentiment 235

which is intended to confuse the model. These non- 236

target aspects are selected from a set of aspects 237

collected from the whole data set and appended to 238

the end of the sentence. ARTS are only designed to 239

be used as test sets after training an architecture on 240

the respective SemEval-14 training sets. The test 241

sets for both restaurants and laptops are publicly 242

available.6 During the preparation of the ARTS 243

data for CapsNet-BERT, we noticed that the start 244

and end positions of some aspect terms were not 245

correct. We changed them in order to make the 246

code work properly and we also deleted duplicates 247

(cf. Xue and Li (2018)). For these specific test 248

sets, the Aspect Robustness Score (ARS) was intro- 249

duced by Xing et al. (2020) in order to measure how 250

well models can deal with variations of sentences. 251

Therefore, each sentence and all its variations are 252

regarded as one unit for which the prediction is 253

only considered to be correct if the predictions for 254

all variations are correct. These units alongside 255

with their corresponding predictions are then used 256

to compute the regular accuracy on the unit-level. 257

More Data Sets Recently more data sets have 258

been published in addition to the ones mentioned 259

beforehand. Mukherjee et al. (2021) proposed two 260

new data sets about Men’s T-Shirts and Television. 261

The YASO data set (Orbach et al., 2020) has a 262

different structure as it is a multi-domain collection. 263

This is an interesting approach, yet also the reason 264

for not considering it for our experiments: This data 265

set is far better suited for cross-domain analyses, 266

which is out of the scope of this work. 267

3.2 Models 268

MGATN A multi-grained attention network 269

(MGATN) was proposed by Fan et al. (2018). Its 270

multi-grained attention as able to take into account 271

6https://github.com/zhijing-jin/ARTS_TestSet
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Data Set Subset
Original
Sentences
in total

Sentences
without
Duplicates

Sentences
for 3-class
ATSC

Multi-
Sentiment
Sentences

Aspect
Terms
in total

Positive
Aspect
Terms

Negative
Aspect
Terms

Neutral
Aspect
Terms

Removed
Conflict
Aspect
Terms

Training 3,044 3,038 1,978 320 3,605 2,161 807 637 91SemEval-14
Restaurants Test 800 800 600 80 1,120 728 196 196 14

Training 3,048 3,036 1,460 166 2,317 988 866 463 45
SemEval-14 Laptops

Test 800 800 411 38 638 341 128 169 16
ARTS Restaurants Test 2,784 2,784 2,784 206 3,528 1,952 1,103 473 0
ARTS Laptops Test 1,576 1,576 1,576 74 1,877 883 587 407 0

Training 4,297 4,297 4,297 4,297 11,186 3,380 2,764 5,042 0
Validation 500 500 500 500 1,332 403 325 604 0MAMS Restaurant
Test 500 500 500 500 1,336 400 329 607 0

Table 1: Descriptive Statistics for the five utilized data sets. "Multi-Sentiment sentences" are those with at least
two different polarities after removing "conflict" polarity. "Aspect Terms in total" also exclude "conflict".

the interaction between aspects. We chose MGATN272

since it is reported to be the best performing RNN-273

based model on SemEval-14 data sets.274

CapsNet-BERT Capsules Networks were ini-275

tially proposed for the field of Computer Vi-276

sion (Hinton et al., 2011; Sabour et al., 2017), with277

the so-called capsules being responsible for rec-278

ognizing certain implicit entities in images. Each279

capsule performs internal calculations and returns280

a probability that the corresponding entity appears281

in the image. A variation of Capsule Networks for282

ATSC and its combination with BERT was intro-283

duced by Jiang et al. (2019). It was reported to284

outperform all other capsule networks with respect285

to their accuracy on the SemEval-14 Restaurants286

data. Additionally, it performed second-best on287

MAMS, which is why we selected it for this study.288

Furthermore, we assumed their results on SemEval-289

14 Restaurants data to be for three-class classifica-290

tion, as all the other results they refer to are also291

three-class. Yet, it is not fully clear to us which292

makes this experiment even more interesting.293

RGAT-BERT The Relational Graph Attention294

Network (RGAT) was introduced by Bai et al.295

(2020). It utilizes a dependency graph representing296

the syntactic relationships between words of a sen-297

tence as an additional input. The RGAT encoder298

creates syntax-aware aspect term embeddings fol-299

lowing the representation update procedures from300

Graph Attentional Networks (GATs) (Velickovic301

et al., 2018). It exhibits the best performance302

among graph-based models and also performs best303

on the MAMS data in terms of both accuracy and304

F macro
1 .305

LCF-ATEPC Yang et al. (2020) built upon the306

idea of the Local Context Focus (LCF) mecha-307

nism (Zeng et al., 2019). The local context of308

an aspect term is defined as a fixed-size window 309

around it, words outside this window are taken into 310

account with lower weights or not at all. For each 311

input token two labels, for aspect and sentiment, 312

are assigned according to the joint labeling scheme 313

described in Sec. 1. We chose LCF-ATEPC to be 314

part of this meta-study since it reached the highest 315

F macro
1 and accuracy on SemEval-14 data of all 316

approaches. Yet, this only holds for the variant that 317

is trained using additional domain adaptation. 318

BERT+TFM The approach described by Li et al. 319

(2019b) consists of a BERT model followed by a 320

Transformer (TFM) layer (Vaswani et al., 2017) for 321

classification. BERT+TFM was the best model on 322

SemEval-14 Laptops among all collapsed models 323

at the time point of its introduction. There were 324

also models using other layers on top instead of the 325

Transformer layer, but our variant of choice was 326

TFM as it produced slightly better results than the 327

rest. 328

GRACE GRACE, a Gradient Harmonized and 329

Cascaded Labeling model introduced by Luo et al. 330

(2020), belongs to the category of pipeline ap- 331

proaches. It includes a post-training step of the 332

pre-trained BERT (Devlin et al., 2019) model using 333

Yelp7 and Amazon data (He and McAuley, 2016). 334

The post-trained model then shares its first l layers 335

between the ATE and the ATSC task. The remain- 336

ing layers are only used for the former. They are 337

followed by a classification layer for the detected 338

aspect terms. These classification outputs are then 339

used again as inputs for a Transformer decoder 340

which performs sentiment classification. The prin- 341

ciple of using the first set of labels as input for the 342

second is called Cascaded Labeling here and is as- 343

sumed to deal with interactions between different 344

7https://www.yelp.com/dataset
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aspect terms. Gradient Harmonization is applied in345

order to cope with imbalanced labels during train-346

ing. GRACE appears to be the best of the pipeline347

models according to the literature. Furthermore,348

it is reported to be the best ATE+ATSC model on349

both SemEval-14 data sets. However, these suc-350

cesses have to be taken into account with care, as351

their results are based on four-class classification.352

This means that in comparison to the other authors’353

settings they did not exclude conflicting reviews354

of SemEval-14 data. Thus, our analyis contributes355

to comparability even more since it has not been356

established yet for our model-data combinations.357

4 Experiments8358

We re-evaluate six models (cf. Sec. 3.2) on the five359

data sets presented in Sec. 3.1. Our overall goals360

are to establish comparability between the models,361

to examine whether reported performance can be362

reproduced and to quantify epistemic model uncer-363

tainty that might exist due to the lacking knowledge364

about the train/validation splits.365

First, we re-use the implementations provided366

by the authors and try to reproduce their results367

on the data sets they used. Second, we adapt their368

code to the remaining data sets and conduct the369

necessary modifications, again sticking as closely370

as possible to the original hyperparameter settings371

(cf. Appendix A). The biggest change we made372

was increasing the number of training epochs drasti-373

cally and adding an early stopping mechanism. For374

all ATSC models, we selected the optimal model375

during the training process based on the validation376

accuracy and/or F macro
1 . For performing the ex-377

periments, we had a Tesla V100 PCIe 16GB GPU378

at our disposal.379

Data Preparation Unlike other data sets, both380

SemEval-14 data sets come without an official381

validation split. Thus, we created five different382

train/validation splits (90/10) for each of the two383

SemEval-14 training sets. For each split, five train-384

ing runs with different random initializations were385

conducted per model. The resulting 25 different386

versions per model per data set were subsequently387

evaluated on the two official SemEval-14 test sets388

as well as on the ARTS test sets. In Sec. 5 we re-389

port overall means per model per test set as well as390

means and standard deviations per model and test391

set for each of the different splits. Since there is an392

8The complete source code (see appended zip-file) will be
made available on GitHub upon publication.

official validation set for MAMS, we did not apply 393

the splitting procedure from above when training 394

on this data set. Consequently, the given means 395

and standard deviations are based on five training 396

runs with different random initializations only. 397

MGATN As there exists no publicly available 398

implementation by its authors, we used the one 399

from a collection of re-implemented ABSA meth- 400

ods from GitHub.9 We slightly modified the early 401

stopping mechanism from that repository and then 402

implemented it into the other re-evaluated models. 403

CapsNet-BERT We used the implementation of 404

CapsNet-BERT provided by its authors.10 405

RGAT-BERT We relied on the implementation 406

of RGAT-BERT provided by its authors.11 Since 407

the authors manually created an accuracy score dif- 408

ferent to the one from sklearn,we substituted 409

their metric to ensure comparability. For data trans- 410

formation, we selected the stanza tokenizer (Qi 411

et al., 2020) over the Deep Biaffine Parser,12 which 412

was used by Bai et al. (2020), since the former pro- 413

vides the necessary syntactic information, whereas 414

the latter failed to produce the syntactic dependency 415

relation tags and head IDs the model requires. 416

LCF-ATEPC We were not able to run the best- 417

performing LCF-ATEPC variant based on domain 418

adaptation due to missing pretrained models. Thus, 419

we decided to go for the second best, LCF-ATEPC- 420

Fusion, using the official implementation of LCF- 421

ATEPC.13 During our experiments, the authors of 422

LCF-ATEPC started building a new repository14 423

based on the existing code which we did not use as 424

it was still subject to changes. 425

BERT+TFM We used the implementation of 426

BERT+TFM provided by its authors.15 Our model 427

selection was based on F micro
1 and F macro

1 , which 428

were calculated based on (start position, end po- 429

sition, polarity)-triples for each identified aspect. 430

Due to the collapsed labeling scheme, these scores 431

account for both ATE and ATSC. 432

GRACE We used the post-trained BERT model 433

provided by Luo et al. (2020).16 Our model se- 434

9https://github.com/songyouwei/ABSA-PyTorch
10https://github.com/siat-nlp/MAMS-for-ABSA
11https://github.com/muyeby/RGAT-ABSA
12https://github.com/yzhangcs/parser
13https://github.com/yangheng95/LCF-ATEPC
14https://github.com/yangheng95/pyabsa
15https://github.com/lixin4ever/BERT-E2E-ABSA
16https://github.com/ArrowLuo/GRACE
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lection was based on ATSC-F micro
1 and -F macro

1435

as well as on ATE-F micro
1 , with their calculations436

being slightly adjusted in order to match the calcu-437

lation of those from BERT+TFM.438

5 Results439

(a) SemEval-14 Laptops

(b) SemEval-14 Restaurants

Figure 1: Comparison of reported and reproduced per-
formance. The reproduced value is the mean of all
25 runs per model in total. Further, 95% bootstrap
(n = 2000) confidence intervals are displayed. Note
that absolute performance of GRACE (four classes)
and BERT+TFM cannot be compared to the other mod-
els due to different tasks. No F micro

1 was reported for
CapsNet-BERT on SemEval-14 Laptops.

In general, reported values were not repro-440

ducible. Fig. 1 shows a comparison of our aver-441

age results to the reported results from the original442

publications on the SemEval-14 data sets. For all443

architectures there exists a notable gap between the444

blue (reproduced) and the orange (reported) values.445

In general, the gap tends to be larger for the ATSC446

models compared to the two ATE+ATSC models,447

where we could even reach a better performance448

for BERT+TFM within our replication study.17449

It is also interesting to see how different runs450

17We do not give a similar figure for MAMS or ARTS as
there are not enough reported values to form a good graph.

can lead to rather broad ranges of results, although 451

having done only five training runs per model and 452

data split. An example for this phenomenon is the 453

Accuracy of MGATN on SemEval-14 Laptops (cf. 454

Fig. 2). For the first, the fourth and fifth split, all 455

of the values lie very close together (within mean 456

± std), whereas the results of the other two splits 457

show a rather high variance. 458

MGATN For MGATN, our reproduces results 459

fell short of the reported values for accuracy, 460

around five to ten percentage points for SemEval- 461

2014 Laptops and Restaurants, respectively (cf. 462

Tab. 4). Fig. 2 depicts the results on Laptops, 463

the difference between reported and reproduced 464

performance on the Restaurant data (not shown) 465

looks similar. A reason for this behavior might 466

be that we could not use the official implementa- 467

tion of the authors. In terms of ARS Accuracy on 468

ARTS Restaurants, MGATN was the only model 469

that reached only a single-digit value which means 470

that it is not good at dealing with perturbed sen- 471

tences. 472

CapsNet-BERT Comparing all the selected 473

models on the ATSC task, CapsNet-BERT per- 474

formed best on all data sets regarding all the metrics 475

except for ARS Accuracy on ARTS Restaurant data 476

(cf. Tab. 4). For ARTS, it seems as if the reported 477

ARS accuracy for Laptops matched our result for 478

Restaurants, and vice versa, as Fig. 3 illustrates. 479

As far as we can tell, we did not mix up the data 480

sets during our calculations which makes this look 481

quite peculiar. The difference between the reported 482

and reproduced values on SemEval-14 Restaurants 483

data (as shown in Fig. 1b) may be explained by the 484

fact that we did three-class classification and we 485

only assumed so for the reported value. 486

Figure 2: Example for high differences between data
splits: Accuracy of MGATN on SemEval-14 Laptops.

6



(a) ARTS Laptops

(b) ARTS Restaurants

Figure 3: Aspect Robustness Score (ARS) Accuracy of
CapsNet-BERT.

RGAT-BERT For both SemEval-14 and MAMS487

we missed the reported values by around five per-488

centage points (cf. Tab. 4). ARTS Restaurants489

is the only data set on which the best ARS Ac-490

curacy was not reached by CapsNet-BERT, but491

RGAT-BERT. Regarding MAMS, Bai et al. (2020)492

provided accuracy as well as F macro
1 , which is why493

we also compare these results here. Figure 4 shows494

the all five values of the four different measures495

as well as the average. For accuracy and F macro
1 ,496

reported values from Bai et al. (2020) were added.497

Figure 4: Performance of RGAT-BERT on MAMS.

(a) SemEval-14 Laptops

(b) SemEval-14 Restaurants

Figure 5: F micro
1 of BERT+TFM.

LCF-ATEPC Our experiments resulted in on av- 498

erage about five percentage points lower accuracies 499

for LCF-ATEPC than were reported. Yet, LCF- 500

ATEPC reached the best ARS Accuracy value on 501

ARTS Restaurant data in our analysis. 502

BERT+TFM In contrast to the majority of the 503

other models, for BERT+TFM the (average) per- 504

formance of our runs surpassed the reported perfor- 505

mance values on the SemEval-14 data. As Fig. 5 506

indicates, this holds for all runs (Laptop domain) 507

and on average (Restaurant domain). The reasons 508

for our improved values may lie in the chosen hy- 509

perparameters, yet we cannot tell for sure. 510

GRACE During our experiments with GRACE, 511

we were able to produce results approximately in 512

the same range as the reported values. Regard- 513

ing SemEval-14 Restaurants our results on average 514

were better than the reported ones (cf. Fig. 6b), 515

while Laptops we could not quite reach the perfor- 516

mance (cf. Fig. 6a). For the latter case, our results 517

of single runs were better than (or at least equal 518

to) the reported one, which is kind of a symptom 519

of the problem. If we only reported the best of all 520

runs, our conclusion would have been that we were 521

able to outperform the original model. However, as 522

7



(a) SemEval-14 Laptops

(b) SemEval-14 Restaurants

Figure 6: ATSC F micro
1 of GRACE.

we have already mentioned, reported results were523

based on four-class classification, whereas our re-524

sults were made for three-class. This might be the525

reason for different results. In the ATE+ATSC task,526

GRACE outperformed BERT+TFM on all data sets527

except for MAMS (cf. Tab. 5).528

6 Discussion529

Results differing from the reported values can be530

explained by various reasons. First, we often do531

not know how the reported values were created,532

i.e. whether the authors took the best or an average533

value of their runs. In Fig. 6a, it is clear to see534

that taking the best value compared the mean of535

the runs yields a difference of about almost three536

percentage points. Unfortunately there are also,537

to the best of our knowledge, no clear guidelines538

for how to properly report the uncertainty resulting539

from different data splits. One potential starting540

point could be to always perform multiple runs on541

multiple splits and use the different results to report542

variance values between and within splits. While543

the former gives an impression for the uncertainty544

induced by data heterogeneity, the latter rather re-545

flects the model’s share of the overall uncertainty.546

Second, our data usually are not identical to the547

data sets used for the original papers due to the pre- 548

processing steps we explained beforehand. Also, 549

training and validation splits are probably differ- 550

ent from ours. Some models required additional 551

syntactical information which we (potentially) in- 552

ferred from other packages than indicated, because 553

either none were given or because the ones that 554

were given did not work as stated. Third, hyperpa- 555

rameter configurations are often not totally clear 556

due to a lack of concise descriptions in the origi- 557

nal work. In these cases we took those that were 558

chosen by default in the implementations we used. 559

Since those were not necessarily always provided 560

by the authors of the models, we have no infor- 561

mation about how close they are to the original 562

configurations. What we could find out regarding 563

hyperparameters can be found in Table 2 and 3 in 564

Appendix A. Consequently, it is not surprising that 565

we were not able to exactly reproduce given results, 566

since hyperparameter tuning often has a large im- 567

pact on the model performance. This insight is also 568

shared by Mukherjee et al. (2021), although they 569

tested other models in a different setup. 570

7 Conclusion & Future work 571

Our experiments revealed that reproducing reported 572

results is hardly possible, given the current practice 573

of performance reporting (at least for this subset 574

of selected models). A tendency towards lower re- 575

sults is visible in our experiments, sometimes even 576

five to ten percentage points lower than the origi- 577

nal values. The only exception was BERT+TFM 578

for which given values were surpassed. The rea- 579

sons for these observations may lay in the data 580

preprocessing step, in the hyperparameters or in 581

the absence of a convention on which values to re- 582

port (best or mean of several runs). This discovery 583

of models hardly being comparable based on their 584

performance measures is a very important one from 585

our point of view. When new models are proposed, 586

one of the main aspects during their evaluation is 587

the improvement with respect to the state of the 588

art. But when the performance of a single model 589

can vary between single runs, the question is which 590

results to take into account for model rankings. 591

A reporting convention indicating a common pro- 592

cedure combined with already prepared data sets 593

with all possible labels could improve the compara- 594

bility between models a lot. Also a huge practical 595

meta-analysis of all models on several data sets 596

would clarify the situation. 597
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Appendix707

A Specifications and hyperparameters of708

the evaluated models709

For upcoming tables, the following conventions710

will be used:711

712
B BERT Dimension

BS Batch Size

CS Capsule Size

E Embedding Dimension

H Hidden Dimension

# L Number of Layers

LR Learning Rate
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Table 2: Model hyperparameters (Part I)
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Table 3: Model hyperparameters (Part II)

B Complete results 714

The following tables show the quantitative results 715

of our experiments. For SemEval-14, five train- 716

validation splits were created out of the original 717

training set. On each split pair, five runs were per- 718

formed which lead to split-specific means and stan- 719

dard deviations. In the overall mean and deviation, 720

all runs of all splits are included. Consequently, 721

they are based on 25 values for SemEval-14 and 722

ARTS data and five values for MAMS data (as 723

there were no splits applied). 724

10



Metric Model SemEval-14 Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN 74.32 (±1.24) 74.36 (±1.47) 74.70 (±0.73) 73.23 (±1.07) 73.66 (±0.81) 74.05 (±1.14) 81.25
RGAT-BERT 82.52 (± 0.60) 83.21 (±0.88) 82.00 (±1.13) 82.70 (±0.67) 82.09 (±0.60) 82.50 (±0.86) 86.68
CapsNetBERT 84.46 (±0.84) 84.07 (±0.92) 84.68 (±0.87) 83.46 (±0.63) 82.77 (±1.40) 83.89 (±1.13) 85.93
LCF-ATEPC 82.56 (±0.89) 83.09 (±0.49) 82.87 (±1.28) 82.01 (±1.06) 81.78 (±1.52) 82.46 (±1.13) 86.77

F1 Macro

MGATN 62.04 (±2.37) 60.48 (±2.78) 61.34 (±0.99) 59.05 (±3.13) 57.15 (±3.70) 60.01 (±3.08) 71.94
RGAT-BERT 72.88 (±0.68) 75.00 (±1.72) 72.86 (±2.21) 73.59 (±2.27) 72.39 (±0.81) 73.34 (±1.79) 80.92
CapsNetBERT 76.21 (±1.59) 76.85 (±0.87) 77.02 (±1.66) 74.50 (±1.06) 72.43 (±4.07) 75.40 (±2.66) -
LCF-ATEPC 73.33 (±2.34) 75.17 (±0.38) 74.03 (±2.85) 73.22 (±1.58) 71.38 (±2.76) 73.43 (±2.36) 80.54

F1 Weighted

MGATN 72.83 (±1.56) 71.91 (±1.81) 72.53 (±0.48) 71.08 (±1.75) 70.03 (±2.23) 71.68 (±1.84) -
RGAT-BERT 81.03 (±0.54) 82.42 (±1.11) 81.09 (±1.37) 81.80 (±1.32) 80.76 (±0.67) 81.42 (±1.15) -
CapsNetBERT 83.50 (±1.00) 83.65 (±0.75) 83.98 (±1.09) 82.48 (±0.71) 81.02 (±2.44) 82.93 (±1.65) -
LCF-ATEPC 83.86 (±0.73) 83.80 (±0.70) 83.97 (±0.89) 82.88 (±1.09) 83.61 (±1.37) 83.63 (±0.99) -

Metric Model SemEval-14 Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN 64.48 (±0.85) 63.86 (±2.66) 64.67 (±1.78) 64.08 (±0.88) 63.61 (±0.85) 64.14 (±1.49) 75.39
RGAT-BERT 76.14 (±1.05) 76.24 (±1.43) 75.27 (±0.63) 76.39 (±1.19) 75.20 (±1.02) 75.85 (±1.13) 80.94
CapsNetBERT 76.21 (±1.01) 77.52 (±1.80) 77.49 (±1.13) 77.55 (±1.22) 77.84 (±1.70) 77.32 (±1.41) -
LCF-ATEPC 76.22 (±2.37) 76.93 (±1.24) 75.61 (±1.35) 77.58 (±1.16) 75.44 (±1.16) 76.36 (±1.62) 80.97

F1 Macro

MGATN 56.98 (±0.92) 56.36 (±3.09) 55.82 (±2.29) 56.81 (±2.87) 56.93 (±2.05) 56.58 (±2.21) 72.47
RGAT-BERT 70.54 (±1.54) 70.86 (±2.51) 69.49 (±1.13) 71.94 (±1.62) 70.59 (±1.23) 70.68 (±1.73) 78.2
CapsNetBERT 70.76 (±1.87) 72.92 (±2.45) 72.68 (±1.72) 72.56 (±2.43) 73.39 (±3.21) 72.46 (±2.37) -
LCF-ATEPC 70.23 (±3.60) 72.43 (±0.89) 70.20 (±1.58) 73.34 (±1.72) 70.63 (±2.07) 71.37 (±2.37) 77.86

F1 Weighted

MGATN 63.71 (±0.66) 63.20 (±2.63) 62.52 (±1.87) 63.22 (±2.30) 63.50 (±1.48) 63.23 (±1.79) -
RGAT-BERT 75.16 (±1.26) 75.37 (±1.87) 74.38 (±1.00) 76.14 (±1.32) 74.99 (±0.97) 75.21 (±1.34) -
CapsNetBERT 75.29 (±1.47) 77.20 (±2.09) 76.97 (±1.38) 76.73 (±2.00) 77.43 (±2.59) 76.72 (±1.95) -
LCF-ATEPC 77.33 (±1.93) 77.08 (±1.72) 76.43 (±1.37) 77.74 (±0.99) 75.59 (±1.23) 76.84 (±1.56) -

Metric Model MAMS
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN - - - - - 61.95 (±3.17) -
RGAT-BERT - - - - - 79.79 (±0.55) 84.52
CapsNetBERT - - - - - 83.04 (±0.70) 83.39
LCF-ATEPC - - - - - 78.94 (±0.56) -

F1 Macro

MGATN - - - - - 59.25 (±3.78) -
RGAT-BERT - - - - - 79.24 (±0.69) 83.74
CapsNetBERT - - - - - 82.44 (±0.81) -
LCF-ATEPC - - - - - 78.43 (±0.64) -

F1 Weighted

MGATN - - - - - 61.24 (±3.53) -
RGAT-BERT - - - - - 79.77 (±0.59) -
CapsNetBERT - - - - - 83.04 (±0.74) -
LCF-ATEPC - - - - - 78.94 (±0.50) -

Metric Model ARTS Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN 57.19 (±1.42) 57.61 (±2.47) 58.04 (±1.91) 57.74 (±1.01) 58.45 (±0.57) 57.81 (±1.54) -
RGAT-BERT 72.32 (±0.83) 73.20 (±1.52) 72.57 (±2.37) 71.38 (±1.54) 72.44 (±1.09) 72.38 (±1.54) -
CapsNetBERT 78.80 (±1.17) 78.38 (±0.75) 78.91 (±1.98) 78.80 (±0.77) 75.23 (±5.86) 78.02 (±2.98) -
LCF-ATEPC 73.59 (±0.55) 73.92 (±1.43) 74.88 (±1.58) 71.11 (±3.27) 73.13 (±0.90) 73.32 (±2.09) -

F1 Macro

MGATN 47.03 (±0.76) 43.15 (±6.16) 43.17 (±7.18) 45.96 (±1.69) 43.13 (±2.40) 44.49 (±4.40) -
RGAT-BERT 63.53 (±2.11) 66.20 (±2.04) 64.77 (±3.19) 62.99 (±3.07) 63.70 (±1.27) 64.24 (±2.51) -
CapsNetBERT 71.22 (±1.36) 71.94 (±0.65) 71.63 (±2.65) 71.02 (±1.32) 65.87 (±7.49) 70.34 (±4.06) -
LCF-ATEPC 64.94 (±1.38) 66.82 (±1.76) 66.55 (±2.61) 62.91 (±2.71) 63.84 (±0.99) 65.01 (±2.39) -

F1 Weighted

MGATN 54.89 (±0.81) 52.59 (±3.92) 52.79 (±5.22) 55.02 (±0.25) 52.96 (±1.44) 53.65 (± 2.96) -
RGAT-BERT 70.96 (±1.15) 72.65 (±1.66) 72.03 (±2.49) 70.61 (±2.07) 71.41 (±1.16) 71.53 (±1.79) -
CapsNetBERT 78.12 (±1.19) 78.29 (±0.48) 78.55 (±1.85) 78.19 (±0.84) 74.20 (±6.39) 77.47 (±3.25) -
LCF-ATEPC 74.74 (±0.37) 74.41 (±1.36) 75.83 (±1.34) 72.04 (±3.37) 74.70 (±0.91) 74.34 (±2.07) -

ARS Accuracy

MGATN 9.13 (±1.42) 9.50 (±2.51) 10.00 (±3.03) 9.90 (±1.00) 9.57 (±0.67) 9.62 (±1.81) -
RGAT-BERT 35.17 (±3.16) 36.47 (±3.02) 35.47 (±4.52) 33.33 (±3.31) 35.73 (±3.14) 35.23 (±3.34) -
CapsNetBERT 29.96 (±3.11) 27.70 (±2.60) 28.75 (±5.70) 29.74 (±1.84) 21.43 (±8.50) 27.52 (±5.57) 55.36
LCF-ATEPC 39.16 (±1.66) 40.30 (±3.24) 40.10 (±3.89) 34.02 (±6.20) 39.16 (±3.12) 38.55 (±4.28) -

Metric Model ARTS Laptop
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

Accuracy =
F1 Micro

MGATN 52.31 (±0.20) 52.14 (±1.56) 52.29 (±1.20) 52.19 (±0.83) 52.83 (±0.77) 52.35 (±0.96) -
RGAT-BERT 65.81 (±3.23) 64.66 (±5.33) 66.31 (±1.68) 68.25 (±1.35) 66.31 (±2.56) 66.27 (±3.12) -
CapsNetBERT 66.68 (±6.17) 72.51 (±0.73) 70.80 (±2.32) 71.97 (±1.48) 71.84 (±1.85) 79.77 (±3.60) -
LCF-ATEPC 69.38 (±1.78) 67.57 (±2.58) 68.99 (±0.74) 69.45 (±2.12) 67.50 (±1.56) 68.58 (±1.91) -

F1 Macro

MGATN 46.58 (±0.76) 46.86 (±2.05) 44.91 (±1.69) 46.81 (±2.63) 48.41 (±1.57) 46.71 (±2.03) -
RGAT-BERT 60.30 (±4.14) 59.96 (±5.90) 61.46 (±1.73) 64.37 (±1.69) 62.75 (±2.62) 61.77 (±3.68) -
CapsNetBERT 61.61 (±6.59) 68.53 (±1.71) 66.57 (±3.09) 67.36 (±2.66) 68.29 (±3.51) 66.47 (±4.38) -
LCF-ATEPC 63.90 (±2.70) 63.79 (±3.44) 64.19 (±1.64) 66.02 (±2.87) 63.81 (±1.99) 64.34 (±2.53) -

F1 Weighted

MGATN 50.54 (±0.45) 50.67 (±1.20) 49.60 (±1.30) 50.83 (±1.70) 52.10 (±1.00) 50.75 (±1.37) -
RGAT-BERT 64.30 (±3.69) 63.47 (±5.71) 65.23 (±1.58) 67.60 (±1.52) 65.73 (±2.70) 65.27 (±3.43) -
CapsNetBERT 65.34 (±6.43) 71.89 (±1.18) 70.02 (±2.69) 70.96 (±2.11) 71.31 (±2.61) 69.91 (±4.00) -
LCF-ATEPC 70.71 (±1.68) 68.02 (±2.25) 69.94 (±0.60) 69.79 (±1.80) 67.96 (±1.59) 69.28 (±1.89) -

ARS Accuracy

MGATN 11.68 (±0.83) 12.12 (±1.43) 11.14 (±1.78) 12.41 (±1.34) 13.87 (±0.93) 12.24 (±1.52) -
RGAT-BERT 34.31 (±6.26) 31.68 (±10.32) 34.84 (±3.83) 39.17 (±2.18) 34.01 (±6.34) 34.80 (±6.36) -
CapsNetBERT 35.52 (±10.83) 46.13 (±1.61) 41.75 (±3.66) 44.33 (±3.01) 42.34 (±2.90) 42.01 (±6.21) 25.86
LCF-ATEPC 41.98 (±2.42) 37.77 (±4.95) 40.69 (±0.75) 40.94 (±4.09) 37.08 (±3.60) 39.69 (±3.73) -

Table 4: Our performance results (mean ± standard deviation) for ATSC models. For SemEval-14 Restaurants and
Laptops as well as for MAMS, no ARS Accuracy is measured.
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Metric Model SemEval-14 Restaurant
Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro BERT+TFM 74.27 (±1.25) 74.90 (±0.84) 75.90 (±0.53) 74.55 (±0.54) 74.96 (±0.46) 74.91 (±0.91) 73.98
GRACE 77.78 (±0.65) 77.40 (±0.54) 78.43 (±0.75) 77.90 (±0.95) 77.84 (±0.80) 77.87 (±0.76) 77.26

F1 Macro BERT+TFM 66.71 (±1.52) 67.16 (±1.39) 69.37 (±0.73) 66.49 (±0.84) 67.63 (±1.20) 67.47 (±1.50) -
GRACE 72.05 (±0.88) 71.40 (±0.99) 72.41 (±1.22) 72.13 (±1.35) 71.36 (±1.49) 71.87 (±1.18) -

Precision BERT+TFM 74.25 (±1.46) 74.72 (±1.00) 76.04 (±0.86) 74.29 (±0.35) 75.46 (±0.85) 74.95 (±1.14) -
GRACE 76.25 (±0.79) 76.08 (±0.90) 77.17 (±0.82) 76.86 (±0.87) 76.35 (±0.83) 76.54 (±0.87) -

Recall BERT+TFM 74.30 (±1.30) 75.10 (±1.01) 75.78 (±0.57) 74.82 (±0.90) 74.48 (±1.07) 74.90 (±1.06) -
GRACE 79.37 (±0.75) 78.78 (±0.22) 79.75 (±0.87) 78.99 (±1.12) 79.41 (±0.83) 79.26 (±0.82) -

ATE F1 Micro GRACE 87.88 (±0.60) 88.29 (±0.30) 88.38 (±0.42) 88.64 (±0.41) 88.66 (±0.53) 88.37 (±0.51) -
Metric Model SemEval-14 Laptop

Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro BERT+TFM 63.53 (±0.93) 63.92 (±0.81) 64.03 (±1.56) 64.16 (±0.99) 64.09 (±1.05) 63.95 (±1.03) 60.80
GRACE 70.04 (±1.33) 68.84 (±0.27) 69.10 (±1.68) 69.10 (±1.17) 69.49 (±1.28) 69.31 (±1.21) 70.71

F1 Macro BERT+TFM 56.92 (±2.33) 57.04 (±2.39) 57.92 (±2.66) 58.62 (±1.31) 58.09 (±1.49) 57.72 (±2.03) -
GRACE 65.29 (±1.90) 64.00 (±0.39) 64.95 (±2.42) 64.51 (±0.98) 65.06 (±1.57) 64.76 (±1.55) -

Precision BERT+TFM 65.57 (±1.16) 65.69 (±0.65) 65.19 (±1.61) 65.48 (±0.77) 65.35 (±1.02) 65.46 (±1.02) 63.23
GRACE 69.77 (±1.47) 68.19 (±0.35) 68.18 (±1.78) 68.64 (±1.60) 68.63 (±1.31) 68.68 (±1.41) 72.38

Recall BERT+TFM 61.65 (±1.38) 62.26 (±1.37) 62.94 (±1.79) 62.90 (±1.31) 62.90 (±1.33) 62.53 (±1.42) 58.64
GRACE 70.32 (±1.27) 69.52 (±0.47) 70.06 (±1.69) 69.58 (±0.82) 70.38 (±1.38) 69.97 (±1.16) 69.12

ATE F1 Micro GRACE 85.99 (±1.51) 85.18 (±0.60) 85.40 (±0.59) 85.98 (±0.72) 85.68 (±0.65) 85.64 (±0.87) 87.93
Metric Model MAMS

Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro BERT+TFM - - - - - 64.94 (±1.47) -
GRACE - - - - - 63.48 (±0.60) -

F1 Macro BERT+TFM - - - - - 65.54 (±1.43) -
GRACE - - - - - 64.59 (±0.61) -

Precision BERT+TFM - - - - - 65.01 (±1.90) -
GRACE - - - - - 62.63 (±0.98) -

Recall BERT+TFM - - - - - 64.93 (±2.42) -
GRACE - - - - - 64.37 (±0.86) -

ATE F1 Micro GRACE - - - - - 75.96 (±0.42) -
Metric Model ARTS Restaurant

Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro BERT+TFM 39.80 (±0.78) 39.34 (±0.44) 39.76 (±0.41) 39.29 (±0.56) 39.28 (±1.01) 39.50 (±0.66) -
GRACE 61.86 (±1.53) 63.22 (±1.04) 62.80 (±1.28) 62.44 (±1.71) 63.82 (±2.38) 62.83 (±1.66) -

F1 Macro BERT+TFM 36.83 (±0.90) 36.13 (±0.47) 36.80 (±0.50) 36.04 (±0.76) 36.19 (±1.27) 36.40 (±0.84) -
GRACE 55.91 (±2.11) 57.22 (±1.11) 56.89 (±1.80) 56.40 (±2.03) 57.18 (±3.46) 56.72 (±2.10) -

Precision BERT+TFM 28.21 (±0.62) 27.83 (±0.39) 28.22 (±0.28) 27.77 (±0.46) 27.97 (±0.56) 28.00 (±0.48) -
GRACE 60.76 (±1.67) 62.20 (±1.41) 61.63 (±1.62) 61.68 (±1.46) 62.56 (±2.38) 61.76 (±1.71) -

Recall BERT+TFM 67.55 (±1.17) 67.17 (±0.99) 67.33 (±0.85) 67.17 (±0.86) 66.01 (±2.72) 67.05 (±1.47) -
GRACE 63.02 (±1.65) 64.30 (±0.93) 64.02 (±1.00) 63.24 (±2.02) 65.14 (±2.38) 63.94 (±1.73) -

ARS Accuracy BERT+TFM 37.53 (±1.97) 35.60 (±2.25) 35.07 (±2.59) 35.83 (±2.43) 34.30 (±2.81) 35.67 (±2.94) -
GRACE 34.71 (±2.98) 38.39 (±3.00) 37.70 (±2.49) 36.78 (±3.81) 40.69 (±4.11) 37.66 (±3.64) -

ATE F1 Micro GRACE 50.53 (±0.32) 50.81 (±0.25) 50.78 (±0.26) 50.87 (±0.14) 51.02 (±0.33) 50.83 (±0.29) -
Metric Model ARTS Laptop

Split 1 Split 2 Split 3 Split 4 Split 5 Overall Reported

F1 Micro BERT+TFM 34.56 (±1.88) 34.55 (±1.61) 35.06 (±1.64) 35.80 (±.075) 35.50 (±0.39) 35.09 (±1.36) -
GRACE 65.90 (±1.75) 64.63 (±3.57) 63.16 (±1.97) 64.36 (±2.47) 64.67 (±1.10) 64.54 (±2.30) -

F1 Macro BERT+TFM 31.70 (±2.60) 31.34 (±2.02) 32.44 (±2.22) 33.37 (±0.55) 33.12 (±0.64) 32.39 (±1.84) -
GRACE 63.98 (±1.92) 61.54 (±3.97) 60.24 (±2.27) 61.56 (±3.10) 61.90 (±1.85) 61.85 (±2.79) -

Precision BERT+TFM 25.91 (±1.29) 25.85 (±0.99) 26.06 (±1.00) 26.56 (±0.53) 26.41 (±0.15) 26.16 (±0.86) -
GRACE 66.81 (±2.20) 65.43 (±3.99) 63.83 (±2.04) 65.23 (±3.14) 65.41 (±2.23) 65.34 (±2.75) -

Recall BERT+TFM 51.91 (±3.33) 52.14 (±3.33) 53.62 (±3.45) 54.90 (±1.32) 54.15 (±1.42) 53.34 (±2.78) -
GRACE 65.03 (±1.48) 63.89 (±3.37) 62.51 (±1.96) 63.54 (±2.08) 64.00 (±1.34) 63.79 (±2.14) -

ARS Accuracy BERT+TFM 23.60 (±4.29) 23.26 (±4.83) 24.87 (±4.12) 26.91 (±2.10) 26.23 (±2.47) 24.97 (±3.70) -
GRACE 38.80 (±3.90) 36.40 (±3.85) 33.20 (±1.79) 32.80 (±3.03) 36.40 (±4.56) 35.52 (±3.97) -

ATE F1 Micro GRACE 52.97 (±0.53) 52.64 (±0.59) 52.62 (±0.36) 53.08 (±0.49) 52.82 (±0.37) 52.83 (±0.47) -

Table 5: Our performance results (mean ± standard deviation) for ATE+ATSC models. For SemEval-14 Restau-
rants and Laptops as well as for MAMS, no ARS Accuracy is measured.
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