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ABSTRACT

Pretrained large language models (LLMs) are widely used for various downstream
tasks in different languages. However, selecting the best LLM (from a large set
of potential LLMs) for a given downstream task and language is a challenging
and computationally expensive task, making the efficient use of LLMs difficult
for low-compute communities. To address this challenge, we present Koya, a
recommender system built to assist researchers and practitioners in choosing the
right LLM for their task and language, without ever having to finetune the LLMs.
Koya is built with the Koya Pseudo-Perplexity (KPPPL), our adaptation of the
pseudo perplexity, and ranks LLMs in order of compatibility with the language
of interest, making it easier and cheaper to choose the most compatible LLM. By
evaluating Koya using five pretrained LLMs and three African languages (Yoruba,
Kinyarwanda, and Amharic), we show an average recommender accuracy of 95%,
demonstrating its effectiveness. Koya aims to offer an easy to use (through a
simple web interface accessible at https://huggingface.co/spaces/
koya—-recommender/system), cost-effective, fast and efficient tool to assist
researchers and practitioners with low or limited compute access.

1 INTRODUCTION

Pre-training is a widely adopted strategy that enables very deep neural networks effectively learn
from huge unlabeled text data (Qiu et al.,2020; |Doddapaneni et al.,2021). While large-scale labeled
datasets are expensive to annotate, there is an abundance of unlabeled, and sometimes noisy, text
data and pre-training enables models to learn useful representations from them — representations
that can improve performance on downstream natural language processing (NLP) tasks (Qiu et al.}
2020).

The proliferation of large language models (LLMs) (Devlin et al., 2018}, |Sanh et al.| [2019a} Tang
et al., 2020; |(Ogueji et al., 20215 (Chi et al., 2021} |Dossou et al., [2022; |Alabi et al., 2022} Adebara
et al.,|2022) has made the task of selecting the most suitable model for a given low-resource language
and downstream task increasingly complex. The conventional approach to determine the best LLM
involves finetuning multiple models and comparing their performance, which is computationally
expensive and not feasible for low-resource communities (Bender et al., 2021; |Ahia et al.| [2021]).
The lack of time and computational resources makes it difficult for these communities to go through
the process of finetuning a large number of models just to find and select the best-performing one
(Amodei et al., 2018; Kaplan et al.l 2020; Hoffmann et al.| 2022).

To address this challenge, we present Koya, a powerful recommender system that simplifies the
process of selecting a suitable model from a large number of possible pretrained models, without
needing to finetune them. Koya is built with the Koya Pseudo-Perplexity (KPPPL), our adaptation of
the pseudo perplexity, and ranks LMs in order of compatibility with the language of interest, making
it easier and cheaper to choose the best-performing model.
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2 RELATED WORK

The objective of understanding an LLM’s performance on a particular language without finetuning
has been studied by [Xia et al.| (2020) and |Ye et al| (2021). Xia et al.| (2020) trained a regression
model to predict the performance of a model on a supervised NLP task given the model, previous
experimental setups, the training procedures, a test dataset and the language. In contrast, we propose
a technique that is independent of training another model entirely and does not require the use
of a model’s experimental setup information which might not exist in an understudied domain or
language. In addition the work uses language distance features from the URIRL database (Littell
et al [2017) which does not cover all existing languages. Similary, |Ahuja et al.| (2022) extends
Microsoft Research’s Project LITMUS [Hwhile training different machine learning models in order
to predict another model’s performance. This method depends on external tools and data points
from the LITMUS project while our work is independent of these external variables that may not be
present in a low-resource setting.

Evaluating LLMs has also been done by scoring them with their pseudo-log-likelihood (Salazar
et al} [2019; Wang et al.| 2019) which uses token masking. Our work builds on this with some
key differences: we propose KPPPL which offers advantages like faster inference for Koya. We
are also operating in a different context of constructing a recommender system with the masked
language scores to recommend models for African languages. Finally, their work was directed
toward evaluating ASR and NMT models while our initial work follows a model and task agnostic
approach.

3  MOTIVATION

Kunle is a masters student from a remote community in Rwanda who is interested in building an
NLP model with the dataset he has been able to collect. Since his dataset is small, he will leverage
transfer learning by finetuning a pretrained model on his downstream task. There are over 500
possible LMs on HuggingFace (HuggingFace) which Kunle can try. As Kunle does not work at
Google, Meta or OpenAl, he does not have access to abundant compute resources. Luckily, he is
able to get a Masakhane GCP compute but it has a limit of 1 day (the exact time it would take to
finetune just one model) so Kunle cannot afford to finetune different models and test them in order
to ascertain the most compatible for his downstream task.

All these make it a great difficulty for people like Kunle to find the optimal LLM for their use-case
— until Koya.

4 Koya

Koya is a recommender system for choosing the most compatible pretrained LLM to use for a
downstream task and language of interest. Koya aims to offer an easy to use (through a simple web
interface), cost-effective, fast and efficient tool to assist researchers and practitioners with low or
limited compute access.

4.1 How KoyA WORKS

A pretrained LLM is not guaranteed to perform well in a given downstream task or language (Gu-
rurangan et al.| [2020; |Azunrel 2021} |Adelani et al 2022} |Alabi et al.l [2022). Therefore, after an
LLM has been pretrained, it is important to estimate its performance on the downstream task and
language of interest. Besides finetuning the LLM — which becomes computationally expensive as
the set of LLMs in question increases — just to find the right one, one intrinsic method to evaluate
a LLM relies on perplexity, which is defined as the inverse of the model’s probability likelihood
of the corpus (Jurafsky & Martin, |2009). The advantage of the perplexity is that as an intrinsic,
task-agnostic measure of LLM performance, it does not require finetuning the LLM on any task,
making the model evaluation much quicker (Gandhi). We give a formal definition of the perplexity
of a language model below.

"https://www.microsoft.com/en-us/research/project/project-litmus/
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Given a sequence S (e.g a sentence), of IV tokens (e.g words) (w1, wa, ..., wy ), the perplexity (PPL)
of S is formally defined as the inverse of the model’s probability likelihood of .S. That is:

~ 1
PPL(S) - \/P(wl,wg,...,wN)’ (1)

where P(w1, wa, ..., wy) is the likelihood of the S from the model (Jurafsky & Martinl 2009). For a
causal autoregressive model (which models a word as the probability of the word given the sequence
of words before it), we can decompose P(wq, wa, ..., wy ) into

N
HP(wi\wl,...,wi,l) (2)
i=1
and therefore Equation[I| becomes:
PPL(S) = \/ _ ! 3)
Hi:l P(wi\wl, ceny ’LUl',l)

As a result, better language models will have a lower perplexity (or higher probability likelihood)
for S. One can therefore interpret the perplexity as the model’s ability to make sense of .S (Wang
et al., [2019). Koya is designed around this underlying concept: the more sense an LLM is able
to make of a sentence in a given language, the easier and faster it will be for the model to learn
the downstream task in that language of the task (Jurafsky & Martin, 2009; [Wang et al., [2019).
Therefore, the performance (on a downstream task) of an LLM depends on the extent to which the
model is familiar with the language (Gonen et al., 2022).

Concretely, given a set M of n pretrained language models, M = {Ly, Lo, ...L,, }, and a dataset, D
which will be used for a downstream task 7', the user gives Koya one sentence St from D and Koya
compares the perplexities from all the models in M for the sentence St. In theory, the perplexity can
be computed over a corpus of many sentences, but in practice, we observe that with just a sentence,
Koya is able to make a good recommendation, with the advantage of faster inference.

Adapting the perplexity to MLM-LLMs with Pseudo-Perplexity (PPPL) Masked language
modelling (MLM) (Taylor, [1953)) is the pretraining objective for bidirectional LLMs (which are
ubiquitous) like BERT (Devlin et al.l 2018) and its numerous variants like ROBERTa (Liu et al.,
2019b), DistilBERT |Sanh et al.| (2019b), ALBERT (Lan et al., 2019), XLNet (Yang et al., [2019),
ELECTRA (Clark et al.,2020), SpanBERT (Joshi et al.}[2020). In MLM pretraining, we first rand-
lomly mask out some tokens from the input sentence and then train the model to predict the masked
tokens, using the rest of the unmasked tokens as context. MLM has been shown to be very ideal to
learn useful linguistic representations of text (Devlin et al., 2018} [Liu et al., [2019b)), which is why it
is used by many LMs, with extensions beyond pretraining (Davody et al., 2022).

In bidirectional MLMs, different from the autoregressive LMs, the conditional probability of a
word/token w; from a sequence (w1, wa, ..., wx) is

P(wi|w1,...wq;_l,wiH,...,wN), (4)

and due to the bidirectional nature, there isn’t any known way, to the best of our knowledge, to
compute the probability of the sequence itself (i.e P(wy,ws, ..., wy)) that we need for perplexity
(Equation E]) Salazar et al.[(2019), building on past works (Chen et al., 2017; Wang & Cho, 2019;
Shin et al.,[2019), proposed the ‘pseudo perplexity’ for scoring MLM-LM:s:

PPPL(S) = ¥ — ! 5)
Hi:l P(wi|w1, W1, le, ceey wN)

Koya Pseudo-Perplexity (KPPPL) For Koya, we adopt the pseudo-perplexity, and make a few
key adjustments. Given a sequence, S, of N words/tokens (wy, wa, ..., wy ), we calculate the Koya
pseudo-perplexity (KPPPL for short) of S in the following steps:
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1. We randomly select k tokens and mask a subset Wr = {w,,, ...w,, } of S.
2. Then the KPPPL for .S becomes:

1
KPPPL(S)~ KPPPL(Wg) = F ©)
( ) ( R) \/Hle P(qu (wl, U)N) \wr7)

3. Calculating P(wy,|(w1,...wn) \ wy,): We will use a concrete example to explain how
we get the likelihood of the token from the model. Let us assume we have a sequence
s = (s1,...8n), and we have randomly selected one token si. After masking, the new
sequence becomes § = ($1,...85—i, [MASK], ..., s,). We then pass § to the model and
through the logits of the masked token, we get a probability P,,,s; over the vocabulary
size of the model. We then take P,k (sx) which is interpreted as the likelihood of the
model to choose sj, as the token that was masked.

5 EXPERIMENTAL SETTING

We performed experiments to test the effectiveness of Koya, built on the KPPPL algorithm (pro-
posed in Equation [f)), as a recommender system. Concretely, we performed finetuning experiments
on 2 downstream tasks and compared the ranked list of models, based on their downstream task,
to the ranked list of models from Koya (using KPPPL). We chose news classification and named
entity recognition (NER) as our downstream tasks and performed experiments involving 3 African
languages: Amharic, Kinyarwanda and Yoruba. For this paper, we constrained ourselves to encoder-
only LLMs which were trained with the MLM objective and considered five such models: AfriB-
ERTa (Ogueji et al., [2021), Afro-XLMR (Alabi et al., 2022), mBERT (Devlin et al.| 2018)), In-
foXLLM (Chi et al., [2021)), and XLLM-RoBERTa |Conneau et al.| (2019). In the sections that follow,
we will discuss the languages, models, training and recommendation setup.

5.1 LANGUAGES

Ambharic: After Arabic, Amharic is the most widely spoken semantic language (Belay et al., [2022)
belonging to the Afro-Asiatic language family. The language is made up of 34 characters and can
be tokenized by whitespaces. In this work, we used the Amharic news classification dataset (Azime
& Mohammed, |2021)) which contains a total of 50706 articles that were collated from different new
sources.

Kinyarwanda: Kinyarwanda belongs to the Niger-Congo and it is spoken by four different
countries in Africa. It also belongs to a larger group of language families called Rwanda-Rundi. We
used the KINNEWS dataset curated by Niyongabo et al.| (2020) for this work. It contains 21,268
articles (3015 from MasakhaNER) having 14 classes. The data was collected from five newpapers
and fifteen new websites all from Rwanda.

Yoruba: Yoruba also belongs to the Niger-Congo as Kinyarwanda . The dataset used to the Yoruba
language section of this work is the Yoruba BBC News Topic Classification dataset which is hosted
on HuggingFac It contained 1908 articles.

The MasakhaNER dataset|Adelani et al.| (2021), the first large publicly available high-quality dataset
for named entity recognition (NER), was used for our NER experiments in our target languages. It
has a total of 2500 Amharic samples, and 3035 Yoruba samples.

5.2 MODELS

mBERT mBert (Devlin et al. 2018) was pre-trained on 104 languages from the Wikipedia data
using masked language modeling and next sentence prediction technique.

https://huggingface.co/datasets/yoruba_bbc_topics
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AfriBERTa: AfriBerta (Ogueji et al., [2021) was pretrained using masked language modeling
technique but without next sentence prediction on 11 African languages, all constituting a total of
5,448,911 sentences in 1GB size of data. The languages belong to three language families which
includes Afro-Asiatic, Niger-Congo and English Creole.

XLM-RoBERTa: XIL.M-RoBERTa (XLMR) (Conneau et al., 2019) is a multilingual variant of
RoBERTa (Liu et all [2019a). XLMR was pretrained on 100 languages with 2.5TB of Wikipedia
data.

Afro-XLMR: Afro-XLMR (Alabi et al., [2022) is an African variant of XLM-RoBERTa that was
pretrained on 17 African languages by including languages from 3 major language families in
Africa and 3 high resource languages which are French, Arabic and English. It uses multilingual
adaptive finetuning to extend XLMR to African languages (Alabi et al.| 2022).

Info-XLM: InfoXLM (Chi et al.l [2021) was pretrained using masked and translation language
modeling (Lample & Conneaul [2019) and a contrastive learning objective where the encoded
representation of two bilingual sentence pairs are presented to have almost the same meaning to
the model. The model pretraining was done using several corpus by constructing the CC-100
dataset (Conneau et al.,[2020) for masked language modeling objective which contains a total of 94
languages.

5.3 FINETUNING SETUP

All our finetuning experiments were implemented using the HuggingFace Transformers library
(Wolf et al.} 2020). We confined our finetuning to only the base versions of the models highlighted
in Section [5.2| All finetuning was done for 3 epochs using the AdamW optimizer (Loshchilov &
Hutter, 2017) and a batch size of 32. We used a learning rate or Se-5 and a weight decay of 0.01.

5.4 KOYA RECOMMENDATION SETUP

For each language, we sampled a random sentence, .S;., from the test set of the respective task. Then,
using the algorithm described in Sectionf4. 1] we calculated KPPPL(SS,.) for each of the focus models.
While the perplexity was defined over the words of the sentence in Section [4.1] in practice they
can also be taken over the tokens (i.e. after the sentence has been tokenized). Finally, we ranked
the results for each language and compared with their ranking from the results of the finetuning
experiments.

An important practical detail to note is that since the model outputs the conditional log-probabilities
of the tokens, Equation [f]is revised to the log scale:

k
KPPPL(Wg) = exp[%l > log(P(w, |(wy, ..wn) \ wy,))](7)
i=1

5.4.1 EVALUATING KOYA: THE RBO SCORE

Formally, the task of evaluating a recommender system is formulated as comparing ranked lists
(Sarica et al., 2022) and there are broadly two different approaches to compare ranked lists: Rank
Correlation and Set Based Measure (Ritesh,[2013). An in-depth analysis of each of these approaches
is out of the scope of this paper and we refer the reader to the authors’ work for that.

Concretely in our case, for a given language [, we have two ordered lists, R, and R, of pretrained
LLMs ranked from best to worst, R is got from our recommendation system using the KPPPL ob-
jective and R is got from the ranking of the performance of the LLMs in the finetuning experiments
for [. The task is to find a function F'(Ry, R,) that tells us how similar Ry is to Ry.
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For our F' we chose the rank-biased overlap (RBO) function (Webber et al.,[2010). The RBO is a
type of the set based measure, and is suited for our use case because 1) it is a bounded function —
due to the use of the geometric series [Webber et al.| (2010), 2) it works even when the ranked lists
are disjoint, i.e. some elements from one list are absent in the other list, and 3) during comparison,
more weight is given to the elements in front than at the end of the list — which is more intuitive to
a user’s internal ranking system where the first few recommendations matter more than those at the
end of the list (Webber et al., [2010; |Sarica et al.| [2022).

6 RESULTS & DISCUSSION

Table 1: F1 score on the news classification test set
Yoruba Kinyarwanda Ambharic

AfriBERTA 83.82 87.63 88.32
Afro-XLMR  55.71 85.73 85.66
mBERT 65.98 83.40 55.82
XLMR 29.85 79.33 86.78
Info-XILM 20.55 68.86 83.10

Table 2: F1 score on the NER validation set
Yoruba Kinyarwanda Ambharic

AfriBERTA 67.10 69.58 58.59
Afro-XLMR  54.93 78.38 49.09
mBERT 67.98 65.41 00.00
XLMR 51.97 68.50 38.08
Info-XLM 30.21 15.88 01.78

Table [T) and [2] shows our finetuning experiments on the news classification and NER tasks respec-
tively. It can be seen that AfriBERTa leads in most of the experiments and Info-XLMR performs the
worst in most of the experiments for news classification. The top performance of AfriBERTa can be
attributed to the fact that AfriBERTa was pretrained on language data containing Yoruba, Amharic
and Kinyarwanda (Oguejt et al., [2021). This attests to our earlier conjecture that LLMs perform
better on a downstream task for a given language if they have some intrinsic understanding of that
language already (often via pretraining) (Nekoto et al., [2020; |[Fan et al., [2021} |Adelani et al.| 2021}
2022; Babu et al.l 2022; [Team et al., 2022). The low performance of mBERT on Amharic NER was
because mBERT’s default tokenizer could not tokenize Ahmaric texts since it was not pre-trained
on Ambharic. This same result was obtained in the MasakhaNER dataset paper|Adelani et al.[(2021)).

Table 3: RBO Score(%) of Koya for each language
Language News Classification NER

Ambharic 96.38 95.39
Kinyarwanda 95.27 94.28
Yoruba 94.29 95.90

In Table [3] we report the similarity score for each language, between Koya’s LLM recommendation
(based on our KPPPL metric) and the ranking based on the LLM finetuning results (in Table [I| & 2)).
We observe that for all languages, Koya achieves very high RBO score, demonstrating its potential
as a recommender system.
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Figure 1: Effect of varying percentages of tokens masked for KPPPL. We use a fixed sequence
length of 100. We show only results for AfriBERTa here due to space, and refer the reader to Figure
B]for an analysis on all models.
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Figure 2: Effect of different sequence lengths on KPPPL for each language. Here all the tokens in
the sequence are used to calculate KPPPL. We show only results for AfriBERTa here due to space,
and refer the reader to Figure [d for an analysis on all models.

KPPPL is a practical metric for ranking MLM-LLMs: Recall that in KPPPL (Equation[6) we
considered a random subset of the sequence when calculating the perplexity. While this greatly im-
proves inference time, we investigate its effectiveness by analyzing the effect of varying percentages
of masked tokens (corresponding to different & in Equation [f). We evaluated the impact at 10%,
20%, 30%, and 100% masked tokens, where 100% means we are using the whole sequence. We do
this analysis for all models and report our findings in Figure[3] For easy readability, we also show, in
Figure[T] our findings for only the best-performing model from our finetuning experiments, AfriB-
ERTa. The figures are log-scaled on the y-axis for an easier view of the behaviour (the perplexity
scores have very low orders of magnitude).
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We see that in both Figures [T| and [3] while the KPPPL slightly varies for the different percentages
of masked tokens, the KPPPL ordering of the languages remains the same. In Figure[I] Amharic is
always lower than Yoruba, which is in turn always lower than Kinyarwanda. Also, the KPPPL-based
ordering (and hence the recommendation scoring) at 10% is the same at 100%, where the whole
sequence length is used (similar to the standard pseudo perplexity scoring discussed in Equation 3)),
showing that the KPPPL method provides a reliable estimate of the pseudo perplexity (in terms of
the ranking of LLMs). We believe that this is due to the randomization of the tokens used: since
this random process mimics the actual MLM pretraining objective |Devlin et al.|(2018) of the LLM,
KPPPL follows the same pattern of LLM training while estimating its performance. The biggest
improvement to Koya with KPPPL is speed: we significantly reduce the time to query the LLM by
considering a random subset (and not the full set) of the sequence.

In Figure [3] a holistic view of the impact of masking several percentage of the sequenced length
can be seen. Yoruba achieves the least pseudo perplexity for all the three out of the five models
(InfoXLM, Afro-XLMR and XLMR) while Amharic achieves the highest perplexity for three out of
five models also (Info-XLM, XLMR and AfriBERTa).

Effect of the sequence length on ranking: Conversely in Figure [2] we see that the sequence
length has an effect on the ordering. At a sentence length of 4, the ordering, based on ascending
KPPPL order is (Yoruba, Kinyarwanda, Amharic). However this changes when we consider the
same sentence, but its longer version. The new ordering becomes (Amharic, Yoruba, Kinyarwanda).
It is important to note here that while the orderings are different, the KPPPL differences between
each of the languages is infinitesimal. Altogether we infer that shorter sentences could give a slightly
different ordering of the languages for a given LLM. When using Koya, customers are advised to
input longer sequences (from a sentence to a paragraph) to get a more confident ranking.

7 CONCLUSION

Due to the combinatorial explosion of LLMs, datasets, and languages, the selection of a suitable pre-
trained LLLM for a given task and language can be expensive and time-consuming, particularly for
low-compute communities. To address this challenge, we introduce Koya, a recommender system
that offers quick insight on the performance of LLMs for a given downstream task and language,
without ever having to finetune the LLMs. The results of our experiments, using five pretrained
LLMs and three African languages, show an average accuracy of 95%. Our results and analysis sug-
gest that Koya is a promising solution for NLP practitioners looking to save time and computational
resources when selecting an LLM.

8 FUTURE WORK

Future efforts will concentrate on expanding Koya to include additional model types, such as
decoder-based models and models with different pretraining objectives. We also plan to investi-
gate the applicability of our algorithm to models in different domains and the same language but
different NLP tasks, since we only evaluated Koya with two downstream tasks. We are concluding
the design of the web interface for Koya, which is hosted at ht tps: //huggingface.co/spa
ces/koya-recommender/system.
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A APPENDIX
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Figure 3: Effect of varying percentages of tokens masked and used for KPPL. We use a fixed se-
quence length of 100.
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