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ABSTRACT

This paper concerns the central issues of model robustness and sample efficiency
in offline reinforcement learning (RL), which aims to learn to perform decision
making from history data without active exploration. Due to uncertainties and
variabilities of the environment, it is critical to learn a robust policy—with as few
samples as possible—that performs well even when the deployed environment de-
viates from the nominal one used to collect the history dataset. We consider a dis-
tributionally robust formulation of offline RL, focusing on tabular robust Markov
decision processes with an uncertainty set specified by the Kullback-Leibler diver-
gence in both finite-horizon and infinite-horizon settings. To combat with sample
scarcity, a model-based algorithm that combines distributionally robust value it-
eration with the principle of pessimism in the face of uncertainty is proposed, by
penalizing the robust value estimates with a carefully designed data-driven penalty
term. Under a mild and tailored assumption of the history dataset that measures
distribution shift without requiring full coverage of the state-action space, we es-
tablish the finite-sample complexity of the proposed algorithm, and further show it
is almost unimprovable in light of a nearly-matching information-theoretic lower
bound up to a polynomial factor of the (effective) horizon length. To the best our
knowledge, this provides the first provably near-optimal robust offline RL algo-
rithm that learns under model uncertainty and partial coverage.

Keywords: offline/batch reinforcement learning, distributional robustness, pessimism, model-based
reinforcement learning

1 INTRODUCTION

Reinforcement learning (RL) concerns about finding an optimal policy that maximizes an agent’s
expected total reward in an unknown environment. A fundamental challenge of deploying RL to
real-world applications is the limited ability to explore or interact with the environment, due to
resources, time, or safety constraints. Offline RL, or batch RL, seeks to circumvent this challenge by
resorting to history data—which are often collected by executing some possibly unknown behavior
policy in the past—with the hope that the history data might already provide significant insights
about the targeted optimal policy without further exploration (Levine et al., 2020).

Besides maximizing the expected total reward, perhaps an equally important goal—to say the least—
for an RL agent is safety and robustness (Garcıa & Fernández, 2015), especially in high-stake appli-
cations such as robotics, autonomous driving, clinical trials, financial investments, and so on (Choi
et al., 2009; Schulman et al., 2013). It has been observed that a standard RL agent trained in an
ideal environment might be extremely sensitive and fail catastrophically when the deployed envi-
ronment is subject to small adversarial perturbations (Zhang et al., 2020). Consequently, robust RL
has attracted a surge of attentions with the goal to learn an optimal policy that is robust to envi-
ronment perturbations. In fact, providing robustness guarantees becomes even more relevant in the
offline setting, which can be formulated as robust offline RL, since the history data is often inevitably
collected from a timeframe where it is no longer reasonable to assume model stillness, due to the
highly non-stationary and time-varying dynamics of many real-world applications. Altogether, this
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naturally leads to a question: Can we learn a near-optimal policy which is robust with respect to
uncertainties and variabilities of the environments using as few history samples as possible?

1.1 CHALLENGES AND PREMISES IN ROBUST OFFLINE RL

Despite significant amount of recent activities in robust RL and offline RL, addressing model uncer-
tainty and sample efficiency simultaneously remains challenging due to several key issues that we
single out below.

• Distribution shift. The history data is generated by following some behavior policy in an outdated
environment, which can result in a data distribution that is heavily deviated from the desired one,
i.e., induced by the target policy in the deployed environment.

• Partial and limited coverage. The history data might only provide partial and limited coverage
over the entire state-action space, where the limited sample size leads to a poor estimate of the
associated model parameters, and consequently, unreliable policy learning outcomes.

Understanding the implications of—and designing algorithms that work around—these challenges
play a major role in advancing the state-of-the-art of robust offline RL. In particular, two prevalent
algorithmic ideas, distributional robustness and pessimism, are called out as our guiding principles.

• Distributional robustness. Instead of finding an optimal policy in a fixed environment, motivated
by the literature in distributionally robust optimization (Delage & Ye, 2010), one might seek
to find a policy that achieves the best worst-case performance for all the environments in some
uncertainty set around the offline environment, as formulated in the framework of robust RL
(Iyengar, 2005; Nilim & El Ghaoui, 2005).

• Pessimism. When the samples are scarce, it is wise to act with caution based on the principle of
pessimism, where one subtracts a penalty term—representing the confidence of the corresponding
estimate—from the value functions to avoid excessive risk. Encouragingly, pessimism has been
recently shown as an indispensable ingredient to achieve sample efficiency in offline RL without
requiring full coverage (Jin et al., 2021; Rashidinejad et al., 2021; Li et al., 2022), as long as the
trajectory of the behavior policy provides sufficient overlap with that of the target policy.

While these two ideas have been proven useful for robust RL and offline RL separately, tackling
robust offline RL needs novel ingredients that go significantly beyond a naı̈ve combination of ex-
isting techniques. This is because, in robust offline RL, one needs to handle the distribution shift
induced not only by the behavior policy, but also by model perturbations, thus the penalty term de-
rived from the pessimism principle in standard offline RL is no longer applicable. In short, while the
value function of standard RL depends linearly with respect to the transition kernel, the dependency
between the nominal transition kernel and the robust value function unfortunately becomes highly
nonlinear—even without a closed-form expression—making the control of statistical uncertainty
extremely challenging in robust offline RL.

1.2 MAIN CONTRIBUTIONS

In this work, we provide an affirmative answer to the question raised earlier, by developing a prov-
ably efficient model-based algorithm that learns a near-optimal distributionally-robust policy from
a minimal number of offline samples. Specifically, we consider a Robust Markov Decision Pro-
cess (RMDP) with S states, A actions in both the nonstationary finite-horizon setting (with horizon
length H) and the discounted infinite-horizon setting (with discount factor γ). Different from stan-
dard MDPs, RMDPs specify a family transition kernels, which lie within an uncertainty set taken
as a small ball of size σ around a nominal transition kernel with respect to the Kullback-Leibler
(KL) divergence. Given K episodes (resp. N transitions) of history data drawn by following some
behavior policy πb under the nominal transition kernel in the finite-horizon (resp. infinite-horizon)
setting, our goal is to learn the optimal robust policy π? in the maximin sense, which has the best
worst-case value for all the models within the uncertainty set (Iyengar, 2005; Nilim & El Ghaoui,
2005). Our main results are summarized below.

• We introduce a notion called robust single-policy clipped concentrability coefficient C?rob ∈
[1/S,∞] to quantify the quality of history data, which measures the distribution shift between
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Problem type Algorithm Data source coverage Sample complexity

infinite

DRVI offline full S2A exp(O( 1
1−γ ))

(1−γ)4σ2ε2(Zhou et al., 2021)
REVI/DRVI simulator full S2A exp(O( 1

1−γ ))
(1−γ)4σ2ε2(Panaganti & Kalathil, 2022)

DRVI simulator full S2A
P 2

min(1−γ)4σ2ε2(Yang et al., 2021)
DRVI-LCB
(this work) offline partial SC?rob

P?min(1−γ)4σ2ε2

Lower bound
(this work) offline partial SC?rob

P?min(1−γ)2σ2ε2

finite

DRVI-LCB
(this work) offline partial SC?robH

5

P?minσ
2ε2

Lower bound
(this work) offline partial SC?robH

3

P?minσ
2ε2

Table 1: Comparisons between our results and prior arts for finding an ε-optimal robust policy in
the infinite/finite-horizon robust MDPs with an uncertainty set measured with respect to the KL
divergence. The sample complexities included in the table are valid for sufficiently small ε, with all
logarithmic factors omitted. Here, σ is the uncertainty level, C?rob is the robust single-policy clipped
concentrability coefficient, P ?min is the smallest positive state transition probability of the nominal
kernel visited by the optimal robust policy π?, and Pmin is the smallest positive state transition
probability of the nominal kernal; it holds Pmin ≤ P ?min.

the behavior policy πb and the optimal robust policy π? in the presence of model perturbations,
without requiring full coverage of the entire state-action space by the behavior policy. In con-
trast, prior algorithms (Yang et al., 2021; Zhou et al., 2021; Panaganti & Kalathil, 2022)—using
simulator or offline data—all require full coverage of the entire state-action space.

• We propose a novel pessimistic variant of distributionally robust value iteration with a plug-in
estimate of the nominal transition kernel (Iyengar, 2005; Nilim & El Ghaoui, 2005), called DRVI-
LCB, by penalizing the robust value estimates with a carefully designed data-driven penalty term.
We demonstrate that DRVI-LCB finds an ε-optimal robust policy as soon as the sample size is
above Õ

(
SC?robH

5

P?minσ
2ε2

)
for the finite-horizon setting and Õ

(
SC?rob

P?minσ
2(1−γ)4ε2

)
for the infinite-horizon

setting, up to some logarithmic factor after a burn-in cost independent of ε. Here, P ?min is the
smallest positive state transition probability of the optimal robust policy π? under the nominal
kernel. In contrast, prior algorithms (Yang et al., 2021; Zhou et al., 2021; Panaganti & Kalathil,
2022) have only addressed the infinite-horizon setting, and incur sample complexities that scale at
least quadratically with respect to the size of the state space S (ignoring other parameters) while
ours only scales linearly with S. In addition, our bound improves the exponential dependency
on 1

1−γ of Zhou et al. (2021); Panaganti & Kalathil (2022) to a polynomial dependency, as well
as the quadratic dependency on 1/Pmin (which satisfies Pmin ≤ P ?min) of Yang et al. (2021) to a
linear one on 1/P ?min. See Table 1 for detailed comparisons.

• To complement the upper bound, we further develop an information-theoretic lower bound, where
there exists some robust MDP such that at least Ω

(
SC?robH

3

P?minσ
2ε2

)
samples (resp. Ω

(
SC?rob

P?minσ
2(1−γ)2ε2

)
samples) are needed to find an ε-optimal robust policy regardless of the choice of algorithms in
the finite-horizon (resp. infinite-horizon) setting. Hence, this corroborates the near-optimality of
DRVI-LCB with respect to all key parameters up to a polynomial factor of the horizon length H
(resp. the effective horizon length 1

1−γ ).

To the best of our knowledge, our paper is the first work to execute the principle of pessimism in a
data-driven manner for robust offline RL, leading to the first provably near-optimal algorithm that
learns under simultaneous model uncertainty and partial coverage.
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1.3 NOTATION AND PAPER ORGANIZATION

Throughout this paper, we denote by ∆(S) the probability simplex over a set S , and introduce
the notation [H] := {1, · · · , H} for any positive integer H > 0. In addition, for any vector
x =

[
x(s, a)

]
(s,a)∈S×A ∈ RSA (resp. x =

[
x(s)

]
s∈S ∈ RS) that constitutes certain values for

each state-action pair (resp. state), we overload the notation by letting x2 =
[
x(s, a)2

]
(s,a)∈S×A

(resp. x2 =
[
x(s)2

]
s∈S ). Moreover, for any two vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, the

notation x ≤ y (resp. x ≥ y) means xi ≤ yi (resp. xi ≥ yi) for all 1 ≤ i ≤ n. Finally, the
Kullback-Leibler (KL) divergence for any two distributions P and Q is denoted as KL(P ‖ Q).

Paper organization. The rest of this paper is organized as follows, focusing on the finite-horizon
setting. Section 2 provides the backgrounds and introduces the distributionally robust formulation
of finite-horizon MDPs in the offline setting under partial coverage. Section 3 presents the proposed
algorithm and provides sample complexity guarantees. Finally, we conclude in Section 5. Results
of the infinite-horizon setting, related works and detailed proofs are postponed to the appendix.

2 BACKGROUNDS AND PROBLEM FORMULATION

2.1 BASICS OF FINITE-HORIZON EPISODIC TABULAR MDPS

Consider an episodic finite-horizon MDP, represented by M =
(
S,A, H, P :=

{Ph}Hh=1, {rh}Hh=1

)
, where S = {1, · · · , S} and A = {1, · · · , A} are the finite state and action

spaces, respectively, H is the horizon length, Ph : S × A → ∆(S) (resp. rh : S × A → [0, 1])
denotes the probability transition kernel (resp. reward function) at the step h (1 ≤ h ≤ H). For any
transition kernel P , we introduce the S-dimensional distribution vectors

Ph,s,a := Ph(· | s, a) ∈ [0, 1]1×S , ∀(h, s, a) ∈ [H]× S ×A (1)

to represent the probability transition vector in state s when taking action a at step h.

Denote π = {πh}Hh=1 as the policy or action selection rule of an agent, where πh : S → ∆(A)
specifies the action selection probability over the action space; when the policy is deterministic, we
slightly abuse the notation and refer to πh(s) as the action selected by policy π in state s at step h.
The value function V π,P = {V π,Ph }Hh=1 of policy π with a transition kernel P is defined by

∀(h, s) ∈ [H]× S : V π,Ph (s) := Eπ,P

[
H∑
t=h

rt
(
st, at

) ∣∣∣ sh = s

]
. (2)

Similarly, the Q-function Qπ,P = {Qπ,Ph }Hh=1 of policy π is defined as ∀(h, s, a) ∈ [H]× S ×A:

Qπ,Ph (s, a) := rh(s, a) + Eπ,P

[
H∑

t=h+1

rt(st, at)
∣∣∣ sh = s, ah = a

]
. (3)

Moreover, when the initial state s1 is drawn from a given distribution ρ, let dπ,Ph (s | ρ) and
dπ,Ph (s, a | ρ) denote respectively the state occupancy distribution and the state-action occupancy
distribution induced by π at time step h ∈ [H], i.e.,

∀(h, s) ∈ [H]× S : dπ,Ph (s) := P(sh = s | s1 ∼ ρ, π, P ), (4a)

∀(h, s, a) ∈ [H]× S ×A : dπ,Ph (s, a) := P(sh = s | s1 ∼ ρ, π, P )πh(a | s), (4b)

which are conditioned on s1 ∼ ρ and the event that all actions and states are drawn according to
policy π and transition kernel P . In particular, we often dropped the dependency on ρ whenever it
is clear from the context, by simply writing dπ,Ph (s) := dπ,Ph (s | ρ) and dπ,Ph (s, a) := dπ,Ph (s, a | ρ).

2.2 DISTRIBUTIONALLY ROBUST MDPS

In this work, we focus on finite-horizon episodic distributionally robust MDPs (RMDPs), denoted
by Mrob =

(
S,A, H,Uσ(P 0), {rh}Hh=1

)
. Different from standard MDPs, we now consider an
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ensemble of probability transition kernels or models within an uncertainty set centered around a
nominal one P 0 = {P 0

h}Hh=1, where the distance between the transition kernels is measured in
terms of the Kullback-Leibler (KL) divergence. Specifically, given an uncertainty level σ > 0, the
uncertainty set around P 0, which satisfies the so-called rectangularity condition (Wiesemann et al.,
2013), is specified as

Uσ(P 0) := ⊗ Uσ(P 0
h,s,a), Uσ(P 0

h,s,a) :=
{
Ph,s,a ∈ ∆(S) : KL

(
Ph,s,a ‖ P 0

h,s,a

)
≤ σ

}
, (5)

where ⊗ denote the Cartesian product. In words, the KL divergence between the true transition
probability vector and the nominal one at each state-action pair is at most σ; moreover, the RMDP
reduces to the standard MDP when σ = 0.

Instead of evaluating a policy in a fixed MDP, the performance of a policy in the RMDP is evaluated
based on its worst-case—i.e., smallest—value function over all the instances in the uncertainty set.
That is, we define the robust value function V π,σ = {V π,σh }Hh=1 and the robust Q-function Qπ,σ =
{Qπ,σh }Hh=1 respectively as

∀(h, s, a) ∈ [H]× S ×A : V π,σh (s) := inf
P∈Uσ(P 0)

V π,Ph (s), Qπ,σh (s, a) := inf
P∈Uσ(P 0)

Qπ,Ph (s, a),

where the infimum is taken over the uncertainty set of transition kernels.

Optimal robust policy. For finite-horizon RMDPs, it has been established that there exists at least
one deterministic policy that maximizes the robust value function and Q-function simultaneously
(Iyengar, 2005; Nilim & El Ghaoui, 2005). In view of this, we shall denote a deterministic policy
π? = {π?h}Hh=1 as an optimal robust policy throughout this paper. The resulting optimal robust value
function V ?,σ = {V ?,σh }Hh=1 and optimal robust Q-function Q?,σ = {Q?,σh }Hh=1 are denoted by

∀(h, s) ∈ [H]× S : V ?,σh (s) := V π
?,σ

h (s) = max
π

V π,σh (s), (6a)

∀(h, s, a) ∈ [H]× S ×A : Q?,σh (s, a) := Qπ
?,σ
h (s, a) = max

π
Qπ,σh (s, a). (6b)

Similar to (4), we adopt the following short-hand notation for the occupancy distributions associated
with the optimal policy:

∀(h, s) ∈ [H]× S : d?,Ph (s) := dπ
?,P
h (s), (7a)

∀(h, s, a) ∈ [H]× S ×A : d?,Ph (s, a) := dπ
?,P
h (s, a) = d?,Ph (s)1{a = π?h(s)}. (7b)

Robust Bellman equations. It turns out the Bellman’s principle of optimality can be extended natu-
rally to its robust counterpart (Iyengar, 2005; Nilim & El Ghaoui, 2005), which plays a fundamental
role in solving the RMDP. To begin with, for any policy π, the robust value function and robust
Q-function satisfy the following robust Bellman consistency equation:

∀(h, s, a) ∈ [H]× S ×A : Qπ,σh (s, a) = rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV π,σh+1. (8)

Additionally, the optimal robust Q-function obeys the robust Bellman optimality equation:

∀(h, s, a) ∈ [H]× S ×A : Q?,σh (s, a) = rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV ?,σh+1, (9)

which can be solved efficiently via a robust variant of value iteration when the RMDP is known
(Iyengar, 2005; Nilim & El Ghaoui, 2005).

2.3 DISTRIBUTIONALLY ROBUST OFFLINE RL

Let D be a history/batch dataset, which consists of a collection of K independent episodes gen-
erated based on executing a behavior policy πb = {πb

h}Hh=1 in some nominal MDP M0 =(
S,A, H, P 0 := {P 0

h}Hh=1, {rh}Hh=1

)
. More specifically, for 1 ≤ k ≤ K, the k-th episode(

sk1 , a
k
1 , . . . , s

k
H , a

k
H , s

k
H+1

)
is generated according to

sk1 ∼ ρb, akh ∼ πb
h(· | skh) and skh+1 ∼ P 0

h (· | skh, akh), 1 ≤ h ≤ H. (10)
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Throughout the paper, ρb represents for some initial distribution associated with the history dataset.
Then, we introduce the following short-hand notation for the occupancy distribution w.r.t. πb:

∀(h, s, a) ∈ [H]× S ×A : db,P
0

h (s) := dπ
b,P 0

h (s), db,P
0

h (s, a) := dπ
b,P 0

h (s, a). (11)

Robust single-policy clipped concentrability. To quantify the quality of the history dataset, it is
desirable to capture the distribution mismatch between the history dataset and the desired ones, in-
spired by the single-policy clipped concentrability assumption recently proposed by Li et al. (2022),
we introduce a tailored assumption for robust MDPs as follows.
Assumption 1 (Robust single-policy clipped concentrability). The behavior policy of the history
dataset D satisfies

max
(s,a,h,P )∈S×A×[H]×Uσ(P 0)

min
{
d?,Ph (s, a), 1

S

}
db,P

0

h (s, a)
≤ C?rob (12)

for some finite quantity C?rob ∈
[
1
S ,∞

)
. Here, we take C?rob to be the smallest quantity satisfying

(12), and refer to it as the robust single-policy clipped concentrability coefficient. In addition, we
follow the convention 0/0 = 0.

In words, C?rob measures the worst-case discrepancy—between the optimal robust policy π? in any
model P ∈ Uσ(P 0) within the uncertainty set and the behavior policy πb in the nominal model
P 0—in terms of the maximum density ratio of the state-action occupancy distributions.

• Distribution shift. When the uncertainty level σ = 0, Assumption 1 reduces back to the single-
policy clipped concentrability in Li et al. (2022) for standard offline RL, a weaker notion that can
be S times smaller than the single-policy concentrability adopted in (Rashidinejad et al., 2021;
Xie et al., 2021; Shi et al., 2022). On the other end, whenever σ > 0, the proposed robust single-
policy clipped concentrability accounts for the distribution shift not only due to the policies in use
(π? versus πb), but also the underlying environments (P ∈ Uσ(P 0) versus P 0).

• Partial coverage. As long asC?rob is finite, i.e., C?rob <∞, it admits the scenarios when the history
dataset only provides partial coverage over the entire state-action space, as long as the behavior
policy πb visits the state-action pairs that are visited by the optimal robust policy π? under at least
one model in the uncertainty set.

Goal. With the history dataset D in hand, our goal is to find a near-optimal robust policy π̂, which
satisfies

V π̂,σ1 (ρ) ≥ V ?,σ1 (ρ)− ε (13)

using as few samples as possible, where ε is the target accuracy level, and

V π,σ1 (ρ) := E
s1∼ρ

[
V π,σ1 (s1)

]
and V ?,σ1 (ρ) := E

s1∼ρ

[
V ?,σ1 (s1)

]
(14)

are evaluated when the initial state s1 is drawn from a given distribution ρ.

3 PESSIMISTIC ROBUST VALUE ITERATION: ALGORITHM AND THEORY

In this section, we present a model-based algorithm—namely DRVI-LCB—for robust offline RL,
along with its performance guarantees.

3.1 BUILDING AN EMPIRICAL NOMINAL MDP

For a moment, imagine we have access to N independent sample transitions D0 :=
{(hi, si, ai, s′i)}Ni=1 drawn from the transition kernel P 0 of the nominal MDP M0, where each
sample (hi, si, ai, s

′
i) indicates the transition from state si to state s′i when action ai is taken at

step hi, drawn according to s′i ∼ P 0
hi

(· | si, ai). It is then natural to build an empirical estimate
P̂ 0 = {P̂ 0

h}Hh=1 of P 0 based on the empirical frequencies of state transitions, where

P̂ 0
h (s′ | s, a) :=

 1
Nh(s,a)

N∑
i=1

1
{

(hi, si, ai, s
′
i) = (h, s, a, s′)

}
, if Nh(s, a) > 0

0, else
(15)
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for any (h, s, a, s′) ∈ [H]×S×A×S . Here,Nh(s, a) denotes the total number of sample transitions
from (s, a) at step h as

Nh(s, a) :=

N∑
i=1

1
{

(hi, si, ai) = (h, s, a)
}
. (16)

While it is possible to directly break down the history dataset D into sample transitions, unfortu-
nately, the sample transitions from the same episode are not independent, significantly hurdling the
analysis. To alleviate this, Li et al. (2022, Algorithm 2) proposed a simple two-fold subsampling
scheme to preprocess the history dataset D and decouple the statistical dependency, resulting into
a distributionally equivalent dataset D0 with independent samples. We have the following lemma
paraphrased from Li et al. (2022).
Lemma 1 ((Li et al., 2022), Lemma 1 and Lemma 5). With probability at least 1 − 8δ, the output
dataset from the two-fold subsampling scheme in Li et al. (2022) is distributionally equivalent to
D0, where {Nh(s, a)} are independent and obey

Nh(s, a) ≥
Kdb,P

0

h (s, a)

8
− 5

√
Kdb,P

0

h (s, a) log
KH

δ
. (17)

for all (h, s, a) ∈ [H]× S ×A.

By invoking the two-fold sampling trick from Li et al. (2022), it is sufficient to treat the dataset D0

with independent samples onwards with Lemma 1 in place.

3.2 DRVI-LCB: A PESSIMISTIC VARIANT OF ROBUST VALUE ITERATION

Armed with the estimate P̂ 0 of the nominal transition kernel P 0, we are positioned to introduce our
algorithm DRVI-LCB, summarized in Algorithm 1.

Distributionally robust value iteration. Before proceeding, let us recall the update rule of the
classical distributionally robust value iteration (DRVI), which serves as the basis of our algorithmic
development. Given an estimate of the nominal MDP P̂ 0 and the radius σ of the uncertainty set,
DRVI updates the robust value functions according to

Q̂h(s, a) = rh(s, a) + inf
P∈Uσ(P̂ 0

h,s,a)
PV̂h+1, and V̂h(s) = max

a
Q̂h(s, a), (18)

which works backwards from h = H to h = 1, with the terminal condition Q̂H+1 = 0. Due
to strong duality (Hu & Hong, 2013), the update rule of the robust Q-functions in (18) can be
equivalently reformulated in its dual form as

Q̂h(s, a) = rh(s, a) + sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V̂h+1

λ

))
− λσ

}
, (19)

which can be solved efficiently (Iyengar, 2005; Yang et al., 2021; Panaganti & Kalathil, 2022).

Our algorithm DRVI-LCB. Motivated by the principle of pessimism in standard offline RL (Jin
et al., 2021; Xie et al., 2021; Rashidinejad et al., 2021; Li et al., 2022), we propose to perform a
pessimistic variant of DRVI, where the update rule of DRVI-LCB at step h is modified as

Q̂h(s, a) = max

{
rh(s, a) + sup

λ≥0

{
−λ log

(
P̂ 0
h,s,a · exp

(
−V̂h+1

λ

))
− λσ

}
− bh

(
s, a
)
, 0

}
.

(20)

Here, the robust Q-function estimate is adjusted by subtracting a carefully designed data-driven
penalty term bh(s, a) that measures the uncertainty of the value estimates. Specifically, for some
δ ∈ (0, 1) and any (s, a, h) ∈ S ×A× [H], the penalty term bh(s, a) is defined as

bh(s, a) =

min

{
cb
H
σ

√
log(KHSδ )

P̂min,h(s,a)Nh(s,a)
, H

}
if Nh(s, a) > 0,

H otherwise,
(21)
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Algorithm 1 Robust value iteration with LCB (DRVI-LCB) for robust offline RL.
input: a dataset D0; reward function r; uncertainty level σ.
initialization: Q̂H+1 = 0, V̂H+1 = 0.

for h = H, · · · , 1 do
Compute the empirical nominal transition kernel P̂ 0

h according to (15);
for s ∈ S, a ∈ A do

Compute the penalty term bh
(
s, a
)

according to (21);
Set Q̂h(s, a) according to (20);

for s ∈ S do
Set V̂h(s) = maxa Q̂h(s, a) and π̂h(s) = arg maxa Q̂h(s, a);

output: π̂ = {π̂h}1≤h≤H .

where cb is some universal constant, and

P̂min,h(s, a) := min
s′

{
P̂ 0
h (s′ | s, a) : P̂ 0

h (s′ | s, a) > 0
}
. (22)

The penalty term is novel and different from the one used in standard (no-robust) offline RL (Jin
et al., 2021; Xie et al., 2021; Rashidinejad et al., 2021; Li et al., 2022; Shi et al., 2022), by taking
into consideration the unique problem structure pertaining to robust MDPs. In particular, it tightly
upper bounds the statistical uncertainty which carries a non-linear and implicit dependency w.r.t.
the estimated nominal transition kernel induced by the uncertainty set U(P 0), addressing unique
challenges not present for the standard MDP case.

3.3 PERFORMANCE GUARANTEES

Before stating the main theorems, let us first introduce several important metrics.

• P ?min, which only depends on the state-action pairs covered by the optimal robust policy π? under
the nominal model P 0:

P ?min := min
h,s,s′

{
P 0
h (s′|s, π?h(s)) : P 0

h (s′|s, π?h(s)) > 0
}
. (23)

In words, P ?min is the smallest positive state transition probability of the optimal robust policy π?
under the nominal kernel P 0.

• Similarly, we introduce P b
min which only depends on the state-action pairs covered by the behavior

policy πb under the nominal model P 0:

P b
min := min

h,s,a,s′

{
P 0
h (s′|s, a) : db,P

0

h (s, a) > 0, P 0
h (s′ | s, a) > 0

}
. (24)

In words, P b
min is the smallest positive state transition probability of the behavior policy πb under

the nominal kernel P 0.
• Finally, let dbmin denote the smallest positive state-action occupancy distribution of the behavior

policy πb under the nominal model P 0:

dbmin := min
h,s,a

{
db,P

0

h (s, a) : db,P
0

h (s, a) > 0
}
. (25)

We are now positioned to present the performance guarantees of DRVI-LCB for robust offline RL
in the finite-horizon setting.
Theorem 1. Given an uncertainty level σ > 0, suppose that the penalty terms in Algorithm 1 are
chosen as (21) for sufficiently large cb. With probability at least 1 − δ, the output π̂ of Algorithm 1
obeys

V ?,σ1 (ρ)− V π̂,σ1 (ρ) ≤ c0
H2

σ

√
SC?rob log2(KHS/δ)

P ?minK
, (26)
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as long as the number of episodes K satisfies

K ≥ c1 log(KHS/δ)

dbminP
b
min

, (27)

where c0 and c1 are some sufficiently large universal constants.

Our theorem is the first to characterize the sample complexities of robust offline RL under partial
coverage, to the best of our knowledge (cf. Table 1). Theorem 1 shows that DRVI-LCB finds an
ε-optimal robust policy as soon as the sample size T = KH is above the order of

SC?robH
5

P ?minσ
2ε2︸ ︷︷ ︸

ε-dependent

+
H

dbminP
b
min︸ ︷︷ ︸

burn-in cost

, (28)

up to some logarithmic factor, where the burn-in cost is independent of the accuracy level ε. For
sufficiently small accuracy level ε, this results in a sample complexity of

Õ

(
SC?robH

5

P ?minσ
2ε2

)
. (29)

Our theorem suggests that the sample efficiency of robust offline RL critically depends on the prob-
lem structure of the given RMDP (i.e. coverage of the optimal robust policy π? as measured by P ?min)
as well as the quality of the history dataset (as measured by C?rob). Given that C?rob can be as small
as on the order of 1/S, the sample complexity requirement can exhibit a much weaker dependency
with the size of the state space S.

On the flip side, to assess the optimality of Theorem 1, we develop an information-theoretic lower
bound for robust offline RL as provided in the following theorem.

Theorem 2. For any (H,S,C?rob, σ, ε) obeying H ≥ e8, C?rob ≥ 8/S, ε ≤ H
256e6 logH , and logH −

6 ≤ σ ≤ logH − 4, we can construct two robust MDPsM0,M1, an initial state distribution ρ,
and a batch dataset with K independent sample trajectories each with length H , such that

inf
π̂

max
{
P0

(
V ?,σ1 (ρ)− V π̂,σ1 (ρ) > ε

)
, P1

(
V ?,σ1 (ρ)− V π̂,σ1 (ρ) > ε

)}
≥ 1

8
,

provided that T = KH ≤ c1SC
?
robH

3

P?minσ
2ε2 . Here, c1 > 0 is some universal constant, the infimum is taken

over all estimator π̂, and P0 (resp. P1) denotes the probability when the MDP isM0 (resp.M1).

Theorem 2 shows that no algorithm can succeed in finding an ε-optimal robust policy when the
sample complexity falls below the order of Ω

(
SC?robH

3

P?minσ
2ε2

)
, which confirms the near-optimality of

DRVI-LCB up to a factor of H2 ignoring logarithmic factors. Therefore, DRVI-LCB is the first
provable algorithm for robust offline RL with a near-optimal sample complexity without requiring
the stringent full coverage assumption.
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Figure 1: The performance evaluation of the proposed algorithm DRVI-LCB, where it shows better
sample efficiency than the baseline algorithm DRVI without pessimism, as well as better robustness
in the learned policy compare to its non-robust counterpart.
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4 NUMERICAL EXPERIMENTS

We conduct experiments on the gambler’s problem (Sutton & Barto, 2018; Zhou et al., 2021) to
evaluate the performance of the proposed algorithm DRVI-LCB, with comparisons to both the robust
value iteration algorithm DRVI without pessimism.

Gambler’s problem. In the gambler’s game (Sutton & Barto, 2018; Zhou et al., 2021), a gambler
bets on a sequence of coin flips, winning the stake with heads and losing with tails. Starting from
some initial balance, the game ends when the gambler’s balance either reaches 50 or 0, or the total
number of bets H is hit. This problem can be formulated as an episodic finite-horizon MDP, with a
state space S = {0, 1, · · · , 50} and the associated possible actions a ∈

{
0, 1, · · · ,min{s, 50− s}

}
at state s. Here, we set the horizon length H = 100. Moreover, the parameter of the transition
kernel, which is the probability of heads for the coin flip, is fixed as phead and remains the same
in all time steps h ∈ [H]. The reward is set as 1 when the state reaches s = 50 and 0 for all
other cases. In addition, suppose the initial state (i.e., the gambler’s initial balance) distribution ρ
is taken uniformly at random within S. Throughout the experiments, we utilize a history dataset
with N samples per state-action pair and time step, which is generated from a nominal MDP with
p0head = 0.6.

Results and discussions. First, we evaluate the performance of the learned policy π̂ using our
proposed method DRVI-LCB with comparison to robust value iteration (DRVI) without pessimism,
where we fix the uncertainty level σ = 0.1 for learning the robust optimal policy. The experiments
are repeated 10 times with the average and standard deviations reported. To begin with, Figure
1(a) plots the sub-optimality value gap V ?,σ1 (s) − V π̂,σ1 (s) for every s ∈ S, when a sample size
N = 100 is used to learn the robust policies. It is shown that DRVI-LCB outperform the baseline
DRVI uniformly over the state space when the sample size is small, corroborating the benefit of
pessimism in the sample-starved regime. Furthermore, Figure 1(b) shows the sub-optimality gap
V ?,σ1 (ρ) − V π̂,σ1 (ρ) with varying sample sizes n = 100, 300, 1000, 3000, 5000, where the initial
test distribution ρ is generated randomly.1 While the performance of DRVI-LCB and DRVI both
improves with the increase of the sample size, the proposed algorithm DRVI-LCB achieves much
better performance with fewer samples.

Finally, to corroborate the benefit of distributional robustness, we evaluate the performance of the
policy learned from N = 1000 samples using DRVI-LCB on perturbed environments with varying
model parameters phead ∈ [0.25, 0.75]. We measure the practical performance based on the ratio of
winning (i.e., reaching the state s = 50) calculated from 3000 episodes. Figure 1(c) illustrates the
ratio of winning against the test probability of heads for the policies learned from DRVI-LCB with
σ = 0.01 and σ = 0.2, which are benchmarked against the non-robust optimal policy of the nominal
MDP using the exact model. It can be seen that the policies learned from DRVI-LCB deviate from
the non-robust optimal policy as σ increases, which achieves better worst-case rates of winning
across a wide range of perturbed environments. On the other end, while the non-robust policy
maximizes the performance when the test environment is close to the history one used for training,
its performance degenerates to be much worse than the robust policies when the probability of heads
is mismatched significantly, especially when phead drops below, say around, 0.5.

5 CONCLUSION

To accommodate both model robustness and sample efficiency, this paper proposes a distributionally
robust model-based algorithm for offline RL with the principle of pessimism. We study the finite-
sample complexity of the proposed algorithm DRVI-LCB, and establishes its near-optimality with
a matching information-theoretic lower bound. To the best our knowledge, this provides the first
provably near-optimal robust offline RL algorithm that learns under model perturbation and partial
coverage. This work opens up several interesting directions; for example, can we design provably-
efficient model-free algorithms for robust offline RL with partial coverage? In addition, can we
extend the algorithm design to the multi-agent setting in a scalable manner? Moreover, it is possible

1The probability distribution vector ρ ∈ ∆(S) is generated as ρ(s) = us/
∑

s∈S us, where us is drawn
independently from a uniform distribution.
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to extend our framework to handle uncertainty sets defined using other distances such as the chi-
square distance and the total variation distance in a similar fashion. We leave these questions to
future investigations.
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A RELATED WORKS

We shall focus on the closely related works on offline RL and distributionally robust RL.

Offline RL. Focusing on the task of learning an optimal policy from offline data, a significant
amount of prior arts sets to understand the sample complexity and efficacy of offline RL under
different assumptions of the history dataset. A bulk of prior results requires the history data to cover
all the state-action pairs, under assumptions such as uniformly bounded concentrability coefficients
(Chen & Jiang, 2019; Munos, 2005) and uniformly lower bounded data visitation distribution (Yin &
Wang, 2021; Yin et al., 2021), where the latter assumption is also related to studies of asynchronous
Q-learning (Li et al., 2021). More recently, the principle of pessimism has been investigated for
offline RL in both model-based (Jin et al., 2021; Xie et al., 2021; Rashidinejad et al., 2021; Li et al.,
2022) and model-free algorithms (Kumar et al., 2020; Shi et al., 2022; Yan et al., 2022), without the
stringent requirement of full coverage. In particular, Li et al. (2022) established the near-minimax
optimality of a pessimistic variant of value iteration under the single-policy clipped concentrability
of history data, which inspired our algorithm design in the distributionally robust setting.

Distributionally robust RL. While distributionally robust optimization has been mainly inves-
tigated in the context of supervised learning (Rahimian & Mehrotra, 2019; Gao, 2020; Bertsimas
et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019), distributionally robust dynamic
programming has also attracted considerable amount of attention, e.g. Iyengar (2005); Nilim &
Ghaoui (2003); Xu & Mannor (2012); Nilim & El Ghaoui (2005), where natural robust extensions
to the standard Bellman machineries are developed under mild assumptions. Targeting robust MDPs,
empirical and theoretical works have been widely explored under different forms of uncertainty sets
(Iyengar, 2005; Xu & Mannor, 2012; Wolff et al., 2012; Kaufman & Schaefer, 2013; Ho et al.,

14



Under review as a conference paper at ICLR 2023

2018; Smirnova et al., 2019; Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman & Mannor,
2020; Tamar et al., 2014; Badrinath & Kalathil, 2021; Ball et al., 2021). Nonetheless, the majority of
prior theoretical analyses focus on planning with an exact knowledge of the uncertainty set (Iyengar,
2005; Xu & Mannor, 2012; Tamar et al., 2014), or are asymptotic in nature (Roy et al., 2017).

A number of robust RL algorithms were proposed recently with an emphasis on finite-sample per-
formance guarantees under different data generating mechanisms. Wang & Zou (2021) proposed
a robust Q-learning algorithm with an R-contamination uncertain set for the online setting, which
achieves a similar bound as its non-robust counterpart. Badrinath & Kalathil (2021) proposed a
model-free algorithm for the online setting with linear function approximation to cope with large
state spaces. Yang et al. (2021); Panaganti & Kalathil (2022) developed sample complexities for
a model-based robust RL algorithm with a variety of uncertainty sets where the data are collected
using a generative model. In addition, Zhou et al. (2021) examined the uncertainty set defined by
the KL divergence for offline data with uniformly lower bounded data visitation distribution. These
works all require full coverage of the state-action space, whereas ours is the first one to leverage the
principle of pessimism in robust offline RL.

B PRELIMINARIES

Before starting, let’s introduce some additional notation useful throughout the theoretical analysis.
Let ess inf X denote the essential infimum of a function/variable X .

B.1 PROPERTIES OF THE ROBUST BELLMAN OPERATOR

To begin with, we introduce the following strong duality lemma which is widely used in distribu-
tionally robust optimization when the uncertainty set is defined with respect to the KL divergence.
Lemma 2 ((Hu & Hong, 2013), Theorem 1). Suppose f(x) has a finite moment generating function
in some neighborhood around x = 0, then for any σ > 0 and a nominal distribution P 0, we have

sup
P∈Uσ(P 0)

EX∼P [f(X)] = inf
λ≥0

{
λ logEX∼P 0

[
exp

(
f(X)

λ

)]
+ λσ

}
. (30)

Armed with the above lemma, it is easily verified that for any positive constant M and a nominal
distribution vector P 0 ∈ R1×S supported over the state space S, if X(s) ∈ [0,M ] for all s ∈ S,
then

inf
P∈Uσ(P 0)

PX = sup
λ≥0

{
−λ log

(
P 0 exp

(
−X
λ

))
− λσ

}
. (31)

For convenience, we introduce the following lemma, paraphrased from Zhou et al. (2021, Lemma 4)
and its proof, to further characterize several essential properties of the optimal dual value.
Lemma 3 ((Zhou et al., 2021)). Let X ∼ P be a bounded random variable with X ∈ [0,M ]. Let
σ > 0 be any uncertainty level and the corresponding optimal dual variable be

λ? ∈ arg max
λ≥0

f(λ, P ), where f(λ, P ) :=

{
−λ logEX∼P

[
exp

(
−X
λ

)]
− λσ

}
. (32)

Then the optimal value λ? obeys

λ? ∈
[
0,
M

σ

]
, (33)

where λ? = 0 if and only if

log
(
P(X = essinfX)

)
+ σ ≥ 0. (34)

Moreover, when λ? = 0, we have

lim
λ→0

f(λ, P ) = lim
λ→0

{
−λ logEX∼P

[
exp

(
−X
λ

)]
− λσ

}
= essinfX. (35)
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B.2 CONCENTRATION INEQUALITIES

In light of Lemma 3 (cf. 35), we are interested in comparing the values of essinfX whenX is drawn
from the population nominal distribution or its empirical estimate. This is supplied by the following
lemma from Zhou et al. (2021).
Lemma 4 ((Zhou et al., 2021)). Let X ∼ P be a discrete bounded random variable with
X ∈ [0,M ]. Let Pn denote the empirical distribution constructed from n independent sam-
ples X1, X2, · · · , Xn, and let X̂ ∼ Pn. Denote Pmin,X as the smallest positive probability
Pmin,X := min{P(X = x) : x ∈ supp(X)}, where supp(X) is the support of X . Then for
any δ ∈ (0, 1), with probability at least 1− δ, we have

min
i∈[n]

Xi = essinfX̂ = essinfX, (36)

as long as

n ≥ − log(2/δ)

log(1− Pmin,X)
. (37)

We next gather a few elementary facts about the Binomial distribution, which will be useful through-
out the proof.
Lemma 5 (Chernoff’s inequality). Suppose N ∼ Binomial(n, p), where n ≥ 1 and p ∈ [0, 1). For
some universal constant cf > 0, we have

P (|N/n− p| ≥ pt) ≤ exp
(
−cfnpt2

)
, ∀t ∈ [0, 1]. (38)

Lemma 6 ((Shi et al., 2022, Lemma 8)). SupposeN ∼ Binomial(n, p), where n ≥ 1 and p ∈ [0, 1].
For any δ ∈ (0, 1), we have

N ≥ np

8 log
(
1
δ

) if np ≥ 8 log

(
1

δ

)
, (39a)

N ≤
{
e2np if np ≥ log

(
1
δ

)
,

2e2 log
(
1
δ

)
if np ≤ 2 log

(
1
δ

) (39b)

hold with probability at least 1− 4δ.

B.3 KULLBACK-LEIBLER (KL) DIVERGENCE

We next introduce some useful facts about the Kullback-Leibler (KL) divergence for two distribu-
tions P and Q, denoted as KL(P ‖ Q). Denoting Ber(p)(resp. Ber(q)) as the Bernoulli distribution
with mean p (resp. q), we introduce

KL
(
Ber(p) ‖ Ber(q)

)
:= p log

p

q
+ (1− p) log

1− p
1− q

, (40)

which represents the KL divergence from Ber(p) to Ber(q). We now introduce the following lemma.

Lemma 7. For any p, q ∈
[
1
2 , 1
)

and p > q, it holds that

KL
(
Ber(p) ‖ Ber(q)

)
≤ KL

(
Ber(q) ‖ Ber(p)

)
≤ (p− q)2

p(1− p)
. (41)

Moreover, for any 0 ≤ x < y < q, it holds

KL (Ber (x) ‖ Ber(q)) > KL (Ber (y) ‖ Ber(q)) . (42)

Proof. The first half of this lemma is proven in (Li et al., 2022, Lemma 10). For the latter half, it
follows from that the function

f(x, q) := KL (Ber (x) ‖ Ber(q))

is monotonically decreasing for all x ∈ (0, q], since its derivative with respect to x satisfies ∂f(x,q)∂x =

log x
q + log 1−q

1−x < 0.
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C ANALYSIS: EPISODIC FINITE-HORIZON RMDPS

C.1 PROOF OF THEOREM 1

Before starting, we introduce several additional notation that will be useful in the analysis. First, we
denote the state-action space covered by the behavior policy πb in the nominal model P 0 as

Cb =
{

(h, s, a) : db,P
0

h (s, a) > 0
}
. (43)

Moreover, we recall the definition in (22) and define a similar one based on the exact nominal model
P 0 as

Pmin,h(s, a) := min
s′

{
P 0
h (s′ | s, a) : P 0

h (s′ | s, a) > 0
}
. (44)

Clearly, by comparing with the definitions (23) and (24), it holds that

P ?min = min
h,s

Pmin,h(s, π?h(s)), P b
min = min

(h,s,a)∈Cb
Pmin,h(s, a). (45)

For any time step h ∈ [H], we denote the set of possible state occupancy distributions associated
with the optimal policy π? in a model within the uncertainty set P ∈ Uσ

(
P 0
)

as

D?h :=

{[
d?,Ph (s)

]
s∈S

: P ∈ Uσ
(
P 0
)}

=

{[
d?,Ph

(
s, π?h(s)

)]
s∈S

: P ∈ Uσ
(
P 0
)}

, (46)

where the second equality is due to the fact that π? is chosen to be deterministic.

With these in place, the proof of Theorem 1 is separated into several key steps, as outlined below.

Step 1: establishing the pessimism property. To achieve this claim, we heavily count on the
following lemma whose proof can be found in Appendix C.2.

Lemma 8. Instate the assumptions in Theorem 1. Then for all (h, s, a) ∈ [H] × S × A, consider
any vector V ∈ RS independent of P̂ 0

h,s,a obeying ‖V ‖∞ ≤ H . With probability at least 1− δ, one
has ∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣ ≤ bh(s, a) (47)

with bh(s, a) given in (21). Moreover, for all (h, s, a) ∈ Cb, with probability at least 1− δ, one has

Pmin,h(s, a)

8 log(KHS/δ)
≤ P̂min,h(s, a) ≤ e2Pmin,h(s, a). (48)

Armed with the above lemma, with probability at least 1 − δ, we shall show the following relation
holds

∀(s, a, h) ∈ S ×A× [H + 1] : Q̂h(s, a) ≤ Qπ̂,σh (s, a), V̂h(s) ≤ V π̂,σh (s), (49)

which means that Q̂h (resp. V̂h) is a pessimistic estimate of Qπ̂,σh (resp. V π̂,σh ). Towards this, it is
easily verified that the latter assertion concerning V π̂,σh is implied by the former, since

V̂h(s) = max
a

Q̂h(s, a) ≤ max
a

Qπ̂,σh (s, a) = V π̂,σh (s). (50)

Therefore, the remainder of this step focuses on verifying the former assertion in (49) by induction.

• To begin, the claim (49) holds at the base case when h = H + 1, by invoking the trivial fact
Q̂H+1(s, a) = Qπ̂,σH+1(s, a) = 0.

• Then, suppose that Q̂h+1(s, a) ≤ Qπ̂,σh+1(s, a) holds for all (s, a) ∈ S × A at some time step
h ∈ [H], it boils down to show Q̂h(s, a) ≤ Qπ̂,σh (s, a).

17
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By the update rule of Q̂h(s, a) in Algorithm 1 (cf. line 3.2), the above relation holds immediately
if Q̂h(s, a) = 0 since Q̂h(s, a) = 0 ≤ Qπ̂,σh (s, a). Otherwise, Q̂h(s, a) is updated via

Q̂h(s, a) = rh(s, a) + sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a · exp

(
−V̂h+1

λ

))
− λσ

}
− bh(s, a)

(i)
= rh(s, a) + inf

P∈Uσ(P̂ 0
h,s,a)

PV̂h+1 − bh(s, a)

≤ rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV̂h+1 +

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV̂h+1 − inf

P∈Uσ(P 0
h,s,a)

PV̂h+1

∣∣∣∣∣− bh(s, a)

(ii)

≤ rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV π̂,σh+1 + 0

(iii)
= Qπ̂,σh (s, a), (51)

where (i) rewrites the update rule back to its primal form (cf. (18)), (ii) holds by applying (47) with
the condition (27) satisfied and the induction hypothesis V̂h+1 ≤ V π̂,σh+1, and lastly, (iii) follows by
the robust Bellman consistency equation (8).

Putting them together, we have verified the claim (49) by induction.

Step 2: bounding V ?,σh (s)−V π̂,σh (s). With the pessimism property (49) in place, we observe that
the following relation holds

0 ≤ V ?,σh (s)− V π̂,σh (s) ≤ V ?,σh (s)− V̂h(s) ≤ Q?,σh
(
s, π?h(s)

)
− Q̂h

(
s, π?h(s)

)
, (52)

where the last inequality follows from Q̂h
(
s, π?h(s)

)
≤ maxa Q̂h(s, a) = V̂h(s). Then, by the

robust Bellman optimality equation in (9) and the primal version of the update rule (cf. (18))

Q?,σh
(
s, π?h(s)

)
= rh

(
s, π?h(s)

)
+ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1,

Q̂h
(
s, π?h(s)

)
= rh

(
s, π?h(s)

)
+ inf
P∈Uσ

(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 − bh (s, π?h(s)) ,

we arrive at

V ?,σh (s)− V̂h(s) ≤ Q?,σh
(
s, π?h(s)

)
− Q̂h

(
s, π?h(s)

)
= inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1 − inf
P∈Uσ

(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 + bh
(
s, π?h(s)

)
≤ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1 − inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV̂h+1

+

∣∣∣∣∣∣ inf
P∈Uσ

(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 − inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV̂h+1

∣∣∣∣∣∣+ bh
(
s, π?h(s)

)
(i)

≤ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1 − inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV̂h+1 + 2bh
(
s, π?h(s)

)
(ii)

≤ P̂ inf
h,s,π?h(s)

(
V ?,σh+1 − V̂h+1

)
+ 2bh

(
s, π?h(s)

)
, (53)

where (i) holds by applying Lemma 2 (cf. (47)) since V̂h+1 is independent of P 0
h,s,π?h(s)

by con-
struction, and (ii) arises from introducing the notation

P̂ inf
h,s,π?h(s)

:= argmin
P∈Uσ

(
P 0
h,s,π?

h
(s)

) PV̂h+1 (54)

and consequently,

inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1 ≤ P̂
inf
h,s,π?h(s)

V ?,σh+1, and inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV̂h+1 = P̂ inf
h,s,π?h(s)

V̂h+1.
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To continue, let us introduce some additional notation for convenience. Define a sequence of matri-
ces P̂ inf

h ∈ RS×S and vectors b?h ∈ RS for h ∈ [H], where their s-th rows (resp. entries) are given
by [

P̂ inf
h

]
s,·

= P̂ inf
h,s,π?h(s)

, and b?h(s) = bh
(
s, π?h(s)

)
. (55)

Applying (53) recursively over the time steps h, h+ 1, · · · , H using the above notation gives

0 ≤ V ?,σh − V̂h ≤ P̂ inf
h

(
V ?,σh+1 − V̂h+1

)
+ 2b?h

≤ P̂ inf
h P̂ inf

h+1

(
V ?,σh+2 − V̂h+2

)
+ 2P̂ inf

h b?h+1 + 2b?h ≤ · · · ≤ 2

H∑
i=h

i−1∏
j=h

P̂ inf
j

 b?i ,

(56)

where we let
(∏i−1

j=i P̂
inf
j

)
= I for convenience.

For any d?h ∈ D?h (cf. (46)), taking inner product with (56) leads to〈
d?h, V

?,σ
h − V̂h

〉
≤

〈
d?h, 2

H∑
i=h

i−1∏
j=h

P̂ inf
j

 b?i

〉
= 2

H∑
i=h

〈d?i , b?i 〉 , (57)

where

d?i :=

(d?h)>
i−1∏
j=h

P̂ inf
j

> ∈ D?i (58)

by the definition of D?i (cf. (46)) for all i = h+ 1, · · · , H .

Step 3: controlling 〈d?i , b?i 〉 using concentrability. Since 〈d?i , b?i 〉 =
∑
s∈S d

?
i (s)b

?
i (s), we shall

divide the discussion in two different cases.

• For s ∈ S where maxP∈Uσ(P 0) d
?,P
i

(
s, π?i (s)

)
= maxP∈Uσ(P 0) d

?,P
i (s) = 0, it follows from the

definition (cf. (46)) that for any d?i ∈ D?i , it satisfies that

d?i (s) = 0. (59)

• For s ∈ S where maxP∈Uσ(P 0) d
?,P
i

(
s, π?i (s)

)
= maxP∈Uσ(P 0) d

?,P
i (s) > 0, by the assumption

in (12)

max
P∈Uσ(P 0)

min
{
d?,Pi

(
s, π?i (s)

)
, 1
S

}
db,P

0

i

(
s, π?i (s)

) = max
P∈Uσ(P 0)

min
{
d?,Pi (s), 1

S

}
db,P

0

i

(
s, π?i (s)

) ≤ C?rob <∞,
it implies that

db,P
0

i

(
s, π?i (s)

)
> 0 and

(
i, s, π?i (s)

)
∈ Cb. (60)

Lemma 1 tells that with probability at least 1− 8δ,

Ni
(
s, π?i (s)

)
≥
Kdb,P

0

i

(
s, π?i (s)

)
8

− 5

√
Kdb,P

0

i

(
s, π?i (s)

)
log

KH

δ

(i)

≥
Kdb,P

0

i

(
s, π?i (s)

)
16

(ii)

≥
K maxP∈Uσ(P 0) min

{
d?,Pi

(
s, π?i (s)

)
, 1
S

}
16C?rob

≥
K min

{
d?i (s),

1
S

}
16C?rob

, (61)

where (i) holds due to

Kdb,P
0

i

(
s, π?i (s)

)
≥ c1

db,P
0

i

(
s, π?i (s)

)
log(KHS/δ)

dbminP
b
min

≥
c1 log KH

δ

P b
min

≥ c1 log
KH

δ
(62)
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for some sufficiently large c1, where the first inequality follows from Condition (27), the second
inequality follows from

dbmin = min
h,s,a

{
db,P

0

h (s, a) : db,P
0

h (s, a) > 0
}
≤ db,P

0

i

(
s, π?i (s)

)
(63)

and the last inequality follows from P b
min ≤ 1. In addition, (ii) follows from Assumption 1.

With this in place, we observe that the pessimistic penalty (see (21)) obeys

b?i (s) ≤ cb
H

σ

√√√√ log(KHSδ )

P̂min,i

(
s, π?i (s)

)
Ni
(
s, π?i (s)

) (i)

≤ 4cb
H

σ

√
log2(KHSδ )

Pmin,i

(
s, π?i (s)

)
Ni
(
s, π?i (s)

)
≤ 16cb

H

σ

√
C?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

} , (64)

where (i) holds by applying (48) in view of the fact that
(
i, s, π?i (s)

)
∈ Cb by (60), and the last

inequality holds by (61).

Combining the results in the above two cases leads to∑
s∈S

d?i (s)b
?
i (s) ≤

∑
s∈S

16d?i (s)cb
H

σ

√
C?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

}
(i)

≤ 16cb
H

σ

√√√√∑
s∈S

d?i (s)
C?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

}√∑
s∈S

d?i (s)

≤ 32cb
H

σ

√
SC?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K
, (65)

where (i) follows from the Cauchy-Schwarz inequality and the last inequality hold by the trivial fact∑
s∈S

d?i (s)

min
{
d?i (s),

1
S

} ≤∑
s∈S

d?i (s)

(
1

d?i (s)
+

1

1/S

)
=
∑
s∈S

1 +
1

S

∑
s∈S

d?i (s) ≤ 2S. (66)

Step 4: finishing up the proof. Then, inserting (65) back into (57) with h = 1 shows〈
d?1, V

?,σ
1 − V̂1

〉
≤ 2

H∑
i=1

〈d?i , b?i 〉 ≤
H∑
i=1

64cb
H

σ

√
SC?rob log2 KH

δ

Pmin,i

(
s, π?i (s)

)
K
≤ c2

H2

σ

√
SC?rob log2 KH

δ

P ?minK
,

(67)

where the last inequality holds by plugging in the relation P ?min ≤ Pmin,i

(
s, π?i (s)

)
for i = 1, . . . ,H

by the definition in (23) (see also (45)), and choosing c2 to be large enough. The proof is completed.

C.2 PROOF OF LEMMA 8

To begin, we shall introduce the following fact that

∀(h, s, a) ∈ Cb : Nh(s, a) ≥
c1 log KHS

δ

16Pmin,h(s, a)
≥ −

log 2KHS
δ

log(1− Pmin,h(s, a))
, (68)

as long as Condition (27) holds. The proof is postponed to Appendix C.2.3. With this in mind, we
shall first establish the simpler bound (48) and then move on to show (47).

C.2.1 PROOF OF (48)

To begin, recall that (68) is satisfied for all (h, s, a) ∈ Cb. By Lemma 6 and the union bound, it
holds that with probability at least 1− δ that for all (h, s, a) ∈ Cb:

∀s′ ∈ S : P 0
h (s′ | s, a) ≥ P̂ 0

h (s′ | s, a)

e2
≥ P 0

h (s′ | s, a)

8e2 log(KHSδ )
. (69)

20



Under review as a conference paper at ICLR 2023

To characterize the relation between Pmin,h(s, a) and P̂min,h(s, a) for any (h, s, a) ∈ Cb, we
suppose—without loss of generality—that Pmin,h(s, a) = P 0

h (s1 | s, a) and P̂min,h(s, a) =

P̂ 0
h (s2 | s, a) for some s1, s2 ∈ S. Then, it follows that

Pmin,h(s, a) = P 0
h (s1 | s, a)

(i)

≥ P̂ 0
h (s1 | s, a)

e2
≥ P̂min,h(s, a)

e2
=
P̂ 0
h (s2 | s, a)

e2

(ii)

≥ P 0
h (s2 | s, a)

8e2 log(KHSδ )
≥ Pmin,h(s, a)

8e2 log(KHSδ )
,

where (i) and (ii) follow from (69).

C.2.2 PROOF OF (47)

The main goal of (47) is to control the gap between robust Bellman operations based on the nominal
transition kernel P 0

h,s,a and the estimated kernel P̂ 0
h,s,a by the constructed penalty term. Towards

this, first consider (h, s, a) /∈ Cb, which corresponds to the state-action pairs (s, a) that haven’t been
visited at step h by the behavior policy. In other words, Nh(s, a) = 0. In this case, (47) can be
easily verified that∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣ (i)= inf
P∈Uσ(P 0

h,s,a)
PV ≤ ‖V ‖∞

(ii)

≤ H
(iii)
= bh(s, a), (70)

where (i) follows from the fact P̂ 0
h,s,a = 0 when Nh(s, a) = 0 (see (15)), (ii) arises from the as-

sumption ‖V ‖∞ ≤ H , and (iii) holds by the definition of bh(s, a) in (21). Therefore, the remainder
of the proof will focus on verifying (47) for (h, s, a) ∈ Cb. Rewriting the term of interest via duality
(cf. Lemma 2) yields∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV

∣∣∣∣∣
=

∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}∣∣∣∣ .
(71)

Denoting

λ̂?h,s,a := arg max
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
, (72a)

λ?h,s,a := arg max
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}
, (72b)

Lemma 3 (cf. (33)) then gives that

λ?h,s,a ∈
[
0,
H

σ

]
, λ̂?h,s,a ∈

[
0,
H

σ

]
, (73)

due to ‖V ‖∞ ≤ H . We shall control (71) in three different cases separately: (a) λ?h,s,a = 0 and
λ̂?h,s,a = 0; (b) λ?h,s,a > 0 and λ̂?h,s,a = 0 or λ?h,s,a = 0 and λ̂?h,s,a > 0; and (c) λ?h,s,a 6= 0 or
λ̂?h,s,a 6= 0.

Case (a): λ?h,s,a = 0 and λ̂?h,s,a = 0. Applying Lemma 3 and Lemma 4 to (71) gives that, with
probability at least 1− δ

KH ,∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV

∣∣∣∣∣ (i)=
∣∣∣essinfs∼P̂ 0

h,s,a
V (s)− essinfs∼P 0

h,s,a
V (s)

∣∣∣
(ii)
=
∣∣∣essinfs∼P 0

h,s,a
V (s)− essinfs∼P 0

h,s,a
V (s)

∣∣∣
= 0 ≤ bh(s, a). (74)

where (i) holds by Lemma 3 (cf. (35)) and (ii) arises from Lemma 4 (cf. (36)) given (68).
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Case (b): λ?h,s,a > 0 and λ̂?h,s,a = 0 or λ?h,s,a = 0 and λ̂?h,s,a > 0. Towards this, note that two
trivial facts are implied by the definition (72):

sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}
≥ −λ̂?h,s,a log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ,

(75a)

sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
≥ −λ?h,s,a log

(
P̂ 0
h,s,a · exp

(
−V
λ?h,s,a

))
− λ?h,s,aσ.

(75b)

To continue, first, we consider a subcase when λ?h,s,a = 0 and λ̂?h,s,a > 0. With probability at least
1− δ

KH , it follows from Lemma 3 (cf. (35)) and Lemma 4 (cf. (36)) that

sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
≥ lim
λ→0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
= essinfs∼P̂ 0

h,s,a
V (s) = essinfs∼P 0

h,s,a
V (s)

= sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}
, (76)

leading to∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}∣∣∣∣
(i)

≤

(
−λ̂?h,s,a log

(
P̂ 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ

)

−

(
−λ̂?h,s,a log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ

)

≤ λ̂?h,s,a

∣∣∣∣∣log

(
P̂ 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))∣∣∣∣∣ , (77)

where (i) follows from the definition of λ̂?h,s,a in (72) and the fact in (75a).

We pause to claim that with probability at least 1− δ, the following bound holds

∀(h, s, a) ∈ Cb, V ∈ RS :

∣∣∣(P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

) ≤

√
log(KHSδ )

cfNh(s, a)Pmin,h(s, a)
≤ 1

2
.

(78)
The proof is postponed to Appendix C.2.4. With (78) in place, we can further bound (77) (which is
plugged into (71)) as∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣
≤ λ̂?h,s,a

∣∣∣∣∣∣log

1 +

(
P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)
P 0
h,s,a · exp

(−V
λ

)
∣∣∣∣∣∣

(i)

≤ 2λ̂?h,s,a

∣∣∣(P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

)
(ii)

≤ 2H

σ

√
log(KHSδ )

cfNh(s, a)Pmin,h(s, a)
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≤ 2eH

σ

√
log(KHSδ )

cfNh(s, a)P̂min,h(s, a)
≤ cb

H

σ

√
log(KHSδ )

P̂min,h(s, a)Nh(s, a)
, (79)

where (i) follows from log(1 + x) ≤ 2|x| for any |x| ≤ 1
2 in view of (78), (ii) follows from (73) as

well as (78), and the last line follows from (48) and choosing cb to be sufficiently large.

Moreover, note that it can be easily verified that∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV

∣∣∣∣∣ ≤ H
due to the assumption ‖V ‖∞ ≤ H . Plugging in the definition of bh(s, a) in (21), combined with the
above bounds, we have that with probability at least 1− δ,∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV

∣∣∣∣∣ ≤ min

{
cb
H

σ

√
log(KHSδ )

Nh(s, a)P̂min,h(s, a)
, H

}
=: bh(s, a).

(80)

The other subcase when λ?h,s,a > 0 and λ̂?h,s,a = 0 follows similarly from the bound∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}∣∣∣∣
≤ λ?h,s,a

∣∣∣∣∣log

(
P̂ 0
h,s,a · exp

(
−V
λ?h,s,a

))
− log

(
P 0
h,s,a · exp

(
−V
λ?h,s,a

))∣∣∣∣∣ , (81)

and therefore, will be omitted for simplicity.

Case (c): λ?h,s,a > 0 and λ̂?h,s,a > 0. It follows that∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}∣∣∣∣
(i)

≤ max

{(
−λ̂?h,s,a log

(
P̂ 0
h,s,a · e

−V
λ̂?
h,s,a

)
− λ̂?h,s,aσ

)
−
(
−λ̂?h,s,a log

(
P 0
h,s,a · e

−V
λ̂?
h,s,a

)
− λ̂?h,s,aσ

)
,

(
−λ?h,s,a log

(
P 0
h,s,a · e

−V
λ?
h,s,a

)
− λ?h,s,aσ

)
−
(
−λ?h,s,a log

(
P̂ 0
h,s,a · e

−V
λ?
h,s,a

)
− λ?h,s,aσ

)}

≤ max
λ∈{λ?h,s,a,λ̂

?
h,s,a}

λ

∣∣∣∣log

(
P̂ 0
h,s,a · exp

(
−V
λ

))
− log

(
P 0
h,s,a · exp

(
−V
λ

))∣∣∣∣ , (82)

where (i) can be verified by applying the facts in (75). Hence, the above term (82) can be controlled
again in a similar manner as (77); we omit the details for simplicity.

Summing up. Combining the previous results in different cases by the union bound, with proba-
bility at least 1− 10δ, it is satisfied that for all (h, s, a) ∈ Cb:∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣ ≤ bh(s, a),

which concludes the proof.

C.2.3 PROOF OF (68)

Observe that for all (h, s, a) ∈ Cb:

Kdb,P
0

h

(
s, a
) (i)

≥
c1d

b,P 0

h

(
s, a
)

log(KHS/δ)

dbminP
b
min

(ii)

≥ c1 log(KHS/δ)

P b
min

(iii)

≥ c1 log(KHS/δ)

Pmin,h(s, a)
, (83)
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where (i) follows from Condition (27), (ii) follows from the definition that dbmin ≤ db,P
0

h (s, a) for
(h, s, a) ∈ Cb, and (iii) comes from (45).

Lemma 1 then tells that with probability at least 1− 8δ,

Nh(s, a) ≥
Kdb,P

0

h

(
s, a
)

8
− 5

√
Kdb,P

0

h

(
s, a
)

log
KH

δ

≥
Kdb,P

0

i

(
s, a
)

16
≥

c1 log KH
δ

16Pmin,h(s, a)
, (84)

where the second line follows from the above relation as long as c1 is sufficiently large. The last
inequality of (68) then follows from

c1 log KHS
δ

16Pmin,h(s, a)
≥ −

log 2KHS
δ

log(1− Pmin,h(s, a))
, (85)

since x ≤ − log(1− x) for all x ∈ [0, 1].

C.2.4 PROOF OF (78)

Denoting
supp

(
P 0
h,s,a

)
:=
{
s′ ∈ S : P 0

h (s′ | s, a) > 0
}

as the support of P 0
h,s,a, we observe that∣∣∣(P̂ 0

h,s,a − P 0
h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

) ≤

∑
s′∈supp

(
P 0
h,s,a

) ∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣ exp

(
−V (s′)
λ

)
∑
s′∈supp

(
P 0
h,s,a

) P 0
h (s′ | s, a) exp

(
−V (s′)
λ

)
≤ max
s′∈supp

(
P 0
h,s,a

)
∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣

P 0
h (s′ | s, a)

, (86)

where the second line follows from
∑
i ai =

∑
i bi

ai
bi
≤ (maxi

ai
bi

)
∑
i bi for any positive sequences

{ai, bi}i obeying ai, bi > 0.

To continue, note that for any (h, s, a) ∈ Cb and s′ ∈ supp
(
P 0
h,s,a

)
, Nh(s, a)P̂ 0

h (s′ | s, a) follows
the binomial distribution Binomial

(
Nh(s, a), P 0

h (s′ | s, a)
)
. Thus, applying Lemma 5 with t =√

log(KHSδ )
cfNh(s,a)P 0

h(s
′ | s,a) yields

P
(∣∣∣P̂ 0

h (s′ | s, a)− P 0
h (s′ | s, a)

∣∣∣ ≥ P 0
h (s′ | s, a)t

)
≤ exp

(
−cfNh(s, a)P 0

h (s′ | s, a)t2
)
≤ δ

KHS
,

(87)

as soon as t ≤ 1
2 , which can be verified by the fact (68) and Pmin,h(s, a) ≤ P 0

h (s′ | s, a) (cf. (44)),
namely,

Nh(s, a) ≥
c1 log KHS

δ

16Pmin,h(s, a)
≥

log
(
KHS
δ

)
4cfPmin,h(s, a)

≥
log
(
KHS
δ

)
4cfP 0

h (s′ | s, a)
(88)

as long as c1 is sufficiently large.

Applying (87) and taking the union bound over s ∈ supp
(
P 0
h,s,a

)
lead to that with probability at

least 1− δ
KH ,

max
s′∈supp

(
P 0
h,s,a

)
∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣

P 0
h (s′ | s, a)

≤ max
s′∈supp

(
P 0
h,s,a

) P 0
h (s′ | s, a)

√
log(KHSδ )

cfNh(s,a)P 0
h(s
′ | s,a)

P 0
h (s′ | s, a)

24



Under review as a conference paper at ICLR 2023

= max
s′∈supp

(
P 0
h,s,a

)
√

log(KHSδ )

cfNh(s, a)P 0
h (s′ | s, a)

≤

√
log(KHSδ )

cfNh(s, a)Pmin,h(s, a)
≤ 1

2
,

where the last line uses again (88). Plugging this back into (86) and applying the union bound over
(h, s, a) ∈ Cb then completes the proof.

C.3 PROOF OF THEOREM 2

The proof of Theorem 2 is inspired by the construction in Li et al. (2022) for standard MDPs, but
is considerably more involved to handle the uncertainty set unique in robust MDPs. We shall first
construct some hard instances and then characterize the sample complexity requirements over these
instances.

C.3.1 CONSTRUCTION OF HARD PROBLEM INSTANCES

Construction of a collection of hard MDPs. Let us introduce two MDPs{
Mφ =

(
S,A, Pφ = {Pφh }

H
h=1, {rh}Hh=1, H

)
|φ = {0, 1}

}
, (89)

where the state space is S = {0, 1, . . . , S − 1}, and the action space is A = {0, 1}. The transition
kernel Pφ of the constructed MDPMφ is defined as

Pφ1 (s′ | s, a) =


p1(s′ = 0) + (1− p)1(s′ = 1) if (s, a) = (0, φ)
q1(s′ = 0) + (1− q)1(s′ = 1) if (s, a) = (0, 1− φ)
1(s′ = 1) if s = 1
q1(s′ = s) + (1− q)1(s′ = 1) if s > 1

(90a)

and

Pφh (s′ | s, a) = 1(s′ = s), ∀(h, s, a) ∈ {2, . . . ,H} × S ×A. (90b)

In words, except at step h = 1, the MDP always stays in the same state. Additionally, the MDP will
always stay in the state subset {0, 1} if the initial distribution is supported only on {0, 1}, in view of
(90). Here, p and q are set to be

p = 1− 1

H
+ ∆ and q = 1− 1

H
(91)

for some H ≥ e8 and ∆ (whose value will be specified later) obeying

1

H
≤ 1

H1−3/β ≤
1

2
and ∆ ≤ 1

2H
, (92)

where β is set as

β :=
logH

2
≥ 4. (93)

The assumption (92) immediately indicates the facts

1 > p > q ≥ 1

2
. (94)

Moreover, for any (h, s, a) ∈ [H]× S ×A, the reward function is defined as

rh(s, a) =

{
1 if s = 0
0 otherwise . (95)
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Construction of the history/batch dataset. In the nominal environmentMφ, a batch dataset is
generated consisting of K independent sample trajectories each of length H , where each trajectory
is generated according to (10), based on the following initial state distribution ρb and behavior policy
πb = {πb

h}Hh=1:

ρb(s) = µ(s) and πb
h(a | s) =

1

2
, ∀(s, a, h) ∈ S ×A× [H]. (96)

Here, µ(s) is defined as the following state distribution supported on the state subset {0, 1}:

µ(s) =
1

CS
1(s = 0) +

(
1− 1

CS

)
1(s = 1), (97)

where 1(·) is the indicator function, and C > 0 is some constant that will determine the concentra-
bility coefficient C?rob (as we shall detail momentarily) and obeys

1

CS
≤ 1

4
. (98)

As it turns out, for any MDP Mφ, the occupancy distributions of the above batch dataset are the
same (due to symmetry) and admit the following simple characterization:

db,P
φ

1 (0, a) =
1

2
µ(0), ∀a ∈ A, (99a)

µ(s)

2
≤ db,P

φ

h (s) ≤ 2µ(s),
µ(s)

4
≤ db,P

φ

h (s, a) ≤ µ(s), ∀(s, a, h) ∈ S ×A× [H].

(99b)
In addition, we choose the following initial state distribution

ρ(s) =

{
1, if s = 0

0, if s > 0
. (100)

The proof of the claim (99) is postponed to Appendix C.3.3.

Uncertainty set of the transition kernels. Denote the transition kernel vector as

Pφh,s,a := Pφh (· | s, a) ∈ [0, 1]1×S . (101)

For any (s, a, h) ∈ S ×A× [H], the perturbation of the transition kernels inMφ is restricted to the
following uncertainty set

Uσ(Pφ) := ⊗ Uσ
(
Pφh,s,a

)
, Uσ(Pφh,s,a) :=

{
Ph,s,a ∈ ∆(S) : KL

(
Ph,s,a ‖ Pφh,s,a

)
≤ σ

}
,

(102)
where the radius of the uncertainty set σ obeys(

1− 3

β

)
log(H) ≤ σ ≤

(
1− 2

β

)
log(H). (103)

Before continuing, we shall introduce some notation for convenience. For any Pφh (· | s, a) in (90),
we define the limit of the perturbed kernel transiting to the next state s′ from the current state-action
pair (s, a) by

Pφh(s′ | s, a) := inf
Ph,s,a∈Uσ(Pφh,s,a)

Ph(s′ | s, a), (104)

and in particular, denote

p := Pφ1 (0 | 0, φ), q = Pφ1 (0 | 0, 1− φ). (105)
Armed with the above definitions, we introduce the following lemma which implies some useful
properties of the uncertainty set.
Lemma 9. When β satisfies (93) and the uncertainty level σ satisfies (103), the perturbed transition
kernels obey

p ≥ q ≥ 1

β
. (106)

Proof. See Appendix C.3.4.
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Value functions and optimal policies. We take a moment to derive the corresponding value func-
tions and identify the optimal policies. With some abuse of notation, for any MDPMφ, we denote
π?,φ = {π?,φh }Hh=1 as the optimal policy, and let V π,σ,φh (resp. V ?,σ,φh ) represent the robust value
function of policy π (resp. π?,φ) at step h with uncertainty radius σ. Armed with these notation,
we introduce the following lemma which collects the properties concerning the value functions and
optimal policies.
Lemma 10. For any φ = {0, 1} and any policy π, defining

zπφ := pπ1(φ | 0) + qπ1(1− φ | 0), (107)
it holds that

V π,σ,φ1 (0) = 1 + zπφ(H − 1). (108)
In addition, the optimal policies and the optimal value functions obey

V ?,σ,φ1 (0) = 1 + p(H − 1), (109a)

∀h ∈ [H] \ {1} : V ?,σ,φh (0) = H − h+ 1, (109b)

∀h ∈ [H] : π?,φh (φ | 0) = 1, π?,φh (φ | 1) = 1, V ?,σ,φh (1) = 0. (109c)
The robust single-policy clipped concentrability coefficient C?rob obeys

2C ≤ C?rob ≤ 4C. (110)

Proof. See Appendix C.3.5.

In view of Lemma 10, we note that the smallest positive state transition probability of the optimal
policy π? under any MDPMφ with φ ∈ {0, 1} thus can be given by

P ?min := min
h,s,s′

{
Pφh

(
s′|s, π?,φh (s)

)
: Pφh

(
s′|s, π?,φh (s)

)
> 0
}

= Pφ1 (1|0, 1− φ) = 1− p. (111)

C.3.2 ESTABLISHING THE MINIMAX LOWER BOUND

We are now ready to establish the sample complexity lower bound. With the choice of the initial
distribution ρ in (100), for any policy estimator π̂ computed based on the batch dataset, we plan to
control the quantity 〈

ρ, V ?,σ,φ1 − V π̂,σ,φ1

〉
= V ?,σ,φ1 (0)− V π̂,σ,φ1 (0).

Step 1: converting the goal to estimate φ. We make the following claim which shall be verified
in Appendix C.3.6: given ε ≤ H

256e6 logH , choosing

∆ =
128e6σ(1− q)ε

H
≤ σ

2H logH
≤ 1

2H
, (112)

which satisfies (92) with the aid of (103) and (91), it holds that for any policy π̂,〈
ρ, V ?,σ,φ1 − V π̂,σ,φ1

〉
≥ 2ε

(
1− π̂1(φ | 0)

)
. (113)

Armed with this relation between the policy π̂ and its sub-optimality gap, we are positioned to
construct an estimate of φ. We denote Pφ as the probability distribution when the MDP isMφ, for
any φ ∈ {0, 1}.
Suppose for the moment that a policy estimate π̂ achieves

Pφ
{〈
ρ, V ?,σ,φ1 − V π̂,σ,φ1

〉
≤ ε
}
≥ 7

8
, (114)

then in view of (113), we necessarily have π̂1(φ | 0) ≥ 1
2 with probability at least 7

8 . With this in
mind, we are motivated to construct the following estimate φ̂ for φ ∈ {0, 1}:

φ̂ = arg max
a∈{0,1}

π̂1(a | 0), (115)

which obeys

Pφ
{
φ̂ = φ

}
≥ Pφ

{
π̂1(φ | 0) > 1/2

}
≥ 7

8
. (116)

In what follows, we would like to show (116) cannot happen without enough samples, which would
in turn contradict (113).
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Step 2: probability of error in testing two hypotheses. Armed with the above preparation, we
shall focus on differentiating the two hypotheses φ ∈ {0, 1}. Towards this, consider the minimax
probability of error defined as follows:

pe := inf
ψ

max
{
P0(ψ 6= 0), P1(ψ 6= 1)

}
, (117)

where the infimum is taken over all possible tests ψ constructed from the batch dataset.

Let µb,φ (resp. µb,φ
h (sh)) be the distribution of a sample trajectory {sh, ah}Hh=1 (resp. a sample

(ah, sh+1) conditional on sh) for the MDP Mφ. Following standard results from Tsybakov &
Zaiats (2009, Theorem 2.2) and the additivity of the KL divergence (cf. Tsybakov & Zaiats (2009,
Page 85)), we obtain

pe ≥
1

4
exp

(
−KKL

(
µb,0 ‖ µb,1

))
≥ 1

4
exp

{
− 1

2
Kµ(0)

(
KL
(
P 0
1 (· | 0, 0) ‖ P 1

1 (· | 0, 0)
)

+ KL
(
P 0
1 (· | 0, 1) ‖ P 1

1 (· | 0, 1)
))}

,

(118)

where we also use the independence of the K trajectories in the batch dataset in the first line. Here,
the second line arises from the chain rule of the KL divergence (Duchi, 2018, Lemma 5.2.8) and the
Markov property of the sample trajectories (recall that db,P

0

h = db,P
1

h ) according to

KL
(
µb,0 ‖ µb,1

)
=

H∑
h=1

E
sh∼db,P

0

h

[
KL
(
µb,0
h (sh) ‖ µb,1

h (sh)
)]

=
∑

a∈{0,1}

db,P
0

1 (0, a)KL
(
P 0
1 (· | 0, a) ‖ P 1

1 (· | 0, a)
)

=
1

2
µ(0)

∑
a∈{0,1}

KL
(
P 0
1 (· | 0, a) ‖ P 1

1 (· | 0, a)
)
,

where the penultimate equality holds by the fact that P 0
h (· | s, a) and P 1

h (· | s, a) only differ when
h = 1 and s = 0, and the last equality follows from (99).

It remains to control the KL divergence terms in (118). Given p ≥ q ≥ 1/2 (cf. (94)), applying
Lemma 7 (cf. (41)) yields

KL
(
P 0
1 (· | 0, 0) ‖ P 1

1 (· | 0, 0)
)

= KL (p ‖ q) ≤ (p− q)2

(1− p)p
(i)
=

∆2

p(1− p)
(ii)
=

1282e12σ2(1− q)2ε2

H2p(1− p)
(iii)

≤ c1σ
2P ?minε

2

H2
, (119)

where (i) follows from the definition (91), (ii) holds by plugging in the expression of ∆ in (112),
(iii) arises from 1 − q ≤ 2(1 − p) = 2P ?min (see (92) and (111)), p > 1

2 , as long as c1 is a large
enough constant. It can be shown that KL

(
P 0
1 (· | 0, 1) ‖ P 1

1 (· | 0, 1)
)

can be upper bounded in the
same way. Substituting (119) back into (118) demonstrates that: if the sample size is chosen as

KH ≤ H3SC?rob log 2

4c1P ?minσ
2ε2

, (120)

then one necessarily has

pe ≥
1

4
exp

{
− 1

2
Kµ(0) · 2c1σ

2P ?minε
2

H2

}
(i)
=

1

4
exp

{
−Kc1σ

2P ?minε
2

SCH2

}
(ii)

≥ 1

4
exp

{
−K 4c1σ

2P ?minε
2

SC?robH
2

}
≥ 1

8
, (121)

where (i) follows from (97) and (ii) holds by (110).
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Step 3: putting things together. Finally, suppose that there exists an estimator π̂ such that

P0

{〈
ρ, V ?,σ,01 − V π̂,σ,01

〉
> ε
}
<

1

8
and P1

{〈
ρ, V ?,σ,11 − V π̂,σ,11

〉
> ε
}
<

1

8
.

Then Step 1 tells us that the estimator φ̂ defined in (115) must satisfy

P0

(
φ̂ 6= 0

)
<

1

8
and P1

(
φ̂ 6= 1

)
<

1

8
,

which cannot happen under the sample size condition (120) to avoid contradition with (121). The
proof is thus finished.

C.3.3 PROOF OF (99)

With the initial state distribution and behavior policy defined in (96), we have for any MDP Mφ

with φ ∈ {0, 1},

db,P
φ

1 (s) = ρb(s) = µ(s),

which leads to

∀a ∈ A : db,P
φ

1 (0, a) =
1

2
µ(0). (122)

In view of (90a), the state occupancy distribution at step h = 2 obeys

db,P
φ

2 (0) = P
{
s2 = 0 | s1 ∼ db,P

φ

1 ;πb
}

= µ(0)
[
πb
1(φ | 0)p+ πb

1(1− φ | 0)q
]

=
(p+ q)µ(0)

2
,

and

db,P
φ

2 (1) = P
{
s2 = 1 | s1 ∼ db,P

φ

1 ;πb
}

= µ(0)
[
πb
1(φ | 0)(1− p) + πb

1(1− φ | 0)(1− q)
]

+ µ(1) = µ(1) +
(2− p− q)µ(0)

2
.

With the above result in mind and recalling the assumption in (94), we arrive at

µ(0)

2
≤ db,P

φ

2 (0) ≤ µ(0), µ(1) ≤ db,P
φ

2 (1)
(i)

≤ 2µ(1), (123)

where (i) holds by applying (94) and (98) (which implies µ(0) ≤ µ(1) by the assumption in (98))

db,P
φ

2 (1) = µ(1) +
(2− p− q)µ(0)

2
≤ µ(1) + µ(0) ≤ 2µ(1).

Finally, from the definitions of Pφh (· | s, a) in (90b) and the Markov property, we arrive at for any
(h, s) ∈ [H]× S ,

µ(s)

2
≤ db,P

φ

h (s) ≤ 2µ(s), (124)

which directly leads to

µ(s)

4
≤ db,P

φ

h (s, a) = πb
1(a | s)db,P

φ

h (s) ≤ µ(s). (125)

C.3.4 PROOF OF LEMMA 9

Note that p ≥ q can be easily verified since p > q, which indicates that the first assertion is true. So
we will focus on the second assertion in (106). Towards this, invoking the definition in (40), let σ′
be the KL divergence from Ber

(
1
β

)
to Ber(q), defined as follows

σ′ := KL

(
Ber

(
1

β

)
‖ Ber(q)

)
=

1

β
log

1
β

q
+

(
1− 1

β

)
log

(
1− 1

β

)
1− q
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=

(
1

β

)
log

(
1

β

)
−
(

1

β

)
log(q) +

(
1− 1

β

)
log(H) +

(
1− 1

β

)
log

(
1− 1

β

)
, (126)

where the second line uses the definition of q in (91). We claim that σ′ satisfies the following relation
with σ, which will be proven at the end of this proof:(

1− 3

β

)
log(H) ≤ σ ≤

(
1− 2

β

)
log(H) ≤ σ′ ≤

(
1− 1

β

)
log(H). (127)

Recalling the definition of the transition kernel in (90a)

Pφ1 (0 | 0, 1− φ) = q, Pφ1 (1 | 0, 1− φ) = 1− q, Pφ1 (s | 0, 1− φ) = 0, ∀s ∈ S \ {0, 1},
the uncertainty set of the transition kernel with radius σ is thus given as

Uσ(Pφ1,0,1−φ) (128)

= {P1,0,1−φ ∈ ∆(S) : P (0 | 0, 1− φ) = q′, P (1 | 0, 1− φ) = 1− q′,KL (Ber (q′) ‖ Ber(q)) ≤ σ} .
(129)

Recalling the definition of q in (105), we can bound

q = inf
P1,0,1−φ∈Uσ(Pφ1,0,1−φ)

P (0 | 0, 1− φ) = inf
q′:KL(Ber(q′)‖Ber(q))≤σ

q′

(i)

≥ inf
q′:KL(Ber(q′)‖Ber(q))≤σ′

q′ =
1

β
,

where (i) holds by σ ≤ σ′ (cf. (127)) and the last equality follows from applying Lemma 7 (cf. (42))
and (126) to arrive at

∀0 ≤ q′ < 1

β
: KL (Ber (q′) ‖ Ber(q)) > KL

(
Ber

(
1

β

)
‖ Ber(q)

)
= σ′.

Proof of (127). To control σ′, we plug in the assumptions in (94) and β ≥ 4 and arrive at the trivial
facts (

1

β

)
log

(
1

β

)
−
(

1

β

)
log(q) < 0,

(
1− 1

β

)
log

(
1− 1

β

)
< 0.

The above facts directly lead to

σ′ ≤
(

1− 1

β

)
log(H). (130)

Similarly, observing

−1 ≤
(

1

β

)
log

(
1

β

)
+

(
1− 1

β

)
log

(
1− 1

β

)
≤ 0, −

(
1

β

)
log(q) ≥ 0,

we arrive at

σ′ ≥ −1 +

(
1− 1

β

)
log(H) ≥

(
1− 2

β

)
log(H) (131)

as long as logH ≥ β (cf. (93)). With (130) and (131) in hand, it is straightforward to see that the
choice of the uncertainty radius σ in (103) obeys the advertised bound (127).

C.3.5 PROOF OF LEMMA 10

For notational conciseness, we shall drop the superscript φ and use the shorthand V π,σh = V π,σ,φh

and V ?,σh = V ?,σ,φh whenever it is clear from the context. We begin by deriving the robust value
function for any policy π. Starting with state 1, at any step h ∈ [H], it obeys

V π,σh (1) = Ea∼πh(· | 1)

[
rh(1, a) + inf

P∈Uσ(Pφh,1,a)
PV π,σh+1

]
= 0 + V π,σh+1(1),

30



Under review as a conference paper at ICLR 2023

where the first equality follows from the robust Bellman consistency equation (cf. (8)), and the
second equality follows from the observation that the distribution Pφh,1,a is supported solely on state
1 in view of (90a), therefore Uσ(Pφh,1,a) = Pφh,1,a. Leveraging the terminal condition V π,σH+1(1) = 0,
and recursively applying the previous relation, we have

V ?,σh (1) = V π,σh (1) = 0, ∀h ∈ [H]. (132)

Similarly, turning to state 0, at any step h > 1, the robust value function satisfies

V π,σh (0) = Ea∼πh(· | 0)

[
rh(0, a) + inf

P∈Uσ(Pφh,0,a)
PV π,σh+1

]
= 1 + V π,σh+1(0),

which again uses the fact that the distribution Pφh,0,a is supported solely on state 0 in view of (90b),
therefore Uσ(Pφh,0,a) = Pφh,0,a. Leveraging the terminal condition V π,σH+1(0) = 0, and recursively
applying the previous relation, we have

V ?,σh (0) = V π,σh (0) = H − h+ 1, 2 ≤ h ≤ H. (133)

Taking (132) and (133) together, it follows that

∀ 2 ≤ h ≤ H : V π,σh (0) > V π,σh (1). (134)

Consequently, the robust value function of state 0 at step h = 1 satisfies

V π,σ1 (0) = Ea∼π1(· | 0)

[
r1(0, a) + inf

P∈Uσ(Pφ1,0,a)
PV π,σ2

]
(i)
= 1 + π1(φ | 0)

(
inf

P∈Uσ(Pφ1,0,φ)
PV π,σ2

)
+ π1(1− φ | 0)

(
inf

P∈Uσ(Pφ1,0,1−φ)
PV π,σ2

)
(ii)
= 1 + π1(φ | 0)

[
pV π,σ2 (0) +

(
1− p

)
V π,σ2 (1)

]
+ π1(1− φ | 0)

[
qV π,σ2 (0) +

(
1− q

)
V π,σ2 (1)

]
(iii)
= 1 + V π,σ2 (1) + zπφ [V π,σ2 (0)− V π,σ2 (1)]

= 1 + zπφV
π,σ
2 (0) (135)

where (i) uses the definition of the reward function in (95), (ii) uses (134) so that the infimum is
attained by picking the choice specified in (105) with a smallest probability mass imposed on the
transition to state 0. Finally, we plug in the definition (107) of zπφ in (iii), and the last line follows
from (132).

Therefore, taking π = π?,φ in the previous relation directly leads to

V ?,σ1 (0) = 1 + zπ
?,φ

φ V ?,σ2 (0) = 1 + zπ
?,φ

φ (H − 1), (136)

where the second equality follows from (133). Observing that the function (H − 1)z is increasing
in z and that zπφ is increasing in π1(φ | 0) (due to the fact p ≥ q in (106)). As a result, the optimal
policy obeys

π?,φ1 (φ | 0) = 1 (137)

at state 0, and plugging back to (136) gives

V ?,σ1 (0) = 1 + zπ
?,φ

φ (H − 1) = 1 + p(H − 1),

where zπ
?,φ

φ = pπ?,φ1 (φ | 0) + qπ?,φ1 (1 − φ | 0) = p. For the rest of the states, without loss of
generality, we choose the optimal policy obeying

∀h ∈ [H] : π?,φh (φ | 0) = 1, π?,φh (φ | 1) = 1. (138)
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Proof of claim (110). Given that π?,φh (φ | 0) = 1 for all h ∈ [H] and ρ(0) = 1, for any P ∈
Uσ(Pφ), we have

d?,P2 (0, φ) = d?,P2 (0)π?,φ2 (φ | 0) = d?,P2 (0) = Ps2∼P (· | s1,π?,φ1 (s1))

{
s2 = 0 | s1 ∼ ρ;π?,φ

}
= P1(0 | 0, φ)

(i)

≥ Pφ1 (0 | 0, φ)
(ii)
= p ≥ 1

β
, (139)

which (i) holds by plugging in the definition (104), (ii) follows from the definition (105), and the
final inequality arises from Lemma 9. Hence, for all 2 ≤ h ≤ H , by the Markov property and
Pφh (0 | 0, φ) = 1, we have

d?,Ph (0, φ) = d?,P2 (0, φ) ≥ 1

β
. (140)

Examining the definition of C?rob in (12), we make the following observations.

• For h = 1, we have

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P1 (s, a), 1

S

}
db,P

φ

1 (s, a)

(i)
= max

P∈Uσ(Pφ)

min
{
d?,P1 (0, φ), 1

S

}
db,P

φ

1 (0, φ)

(ii)
= max

P∈Uσ(Pφ)

1

Sdb,P
φ

1 (0, φ)

(iii)
=

2

Sµ(0)
= 2C, (141)

where (i) holds by d?,P1 (s) = ρ(s) = 0 for all s ∈ S \ {0} (see (100)) and π?,φh (φ | 0) = 1 for
all h ∈ [H], (ii) follows from the fact d?,P1 (0, φ) = 1, (iii) is verified in (99), and the last equality
arises from the definition in (97).

• Similarly, for h = 2, we arrive at

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P2 (s, a), 1

S

}
db,P

φ

2 (s, a)

(i)
= max

s∈{0,1},P∈Uσ(Pφ)

min
{
d?,P2 (s, φ), 1

S

}
db,P

φ

2 (s, φ)

≤ max
s∈{0,1},P∈Uσ(Pφ)

1

Sdb,P
φ

2 (s, φ)

(ii)

≤ 4

Sµ(0)
= 4C,

(142)

where (i) holds by the optimal policy in (109) and the trivial fact that d?,P2 (s) = 0 for all s ∈
S \ {0, 1} (see (100) and (90a)), (ii) arises from (99), and the last equality comes from (97).

• For all other steps h = 3, . . . ,H , observing from the deterministic transition kernels in (90b), it
can be easily verified that

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,Ph (s, a), 1

S

}
db,P

φ

h (s, a)
= max

(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P2 (s, a), 1

S

}
db,P

φ

2 (s, a)
≤ 4C.

(143)

Combining the above cases, we complete the proof by

2C ≤ C?rob = max
(h,s,a,P )∈[H]×S×A×Uσ(Pφ)

min
{
d?,Ph (s, a), 1

S

}
db,P

φ

h (s, a)
≤ 4C.

C.3.6 PROOF OF THE CLAIM (113)

Recall that by virtue of (107) and (109), we arrive at

z?φ := zπ
?,φ

φ = pπ?,φ1 (φ | 0) + qπ?,φ1 (1− φ | 0) = p.
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Applying (108) yields〈
ρ, V ?,σ,φ1 −V π,σ,φ1

〉
= V ?,σ,φh (0)−V π,σ,φh (0) =

(
p− zπφ

)
(H−1) =

(
p− q

)
(H−1) (1− π1(φ | 0)) ,

(144)
where the last equality uses the definition (107). Therefore, it boils down to control p− q.

To continue, we define an auxiliary value function vector V ∈ RS×1 obeying

V (0) = H − 1 and V (s) = 0, ∀s ∈ S \ {0}. (145)

With this in hand, applying Lemma 2 gives

(H − 1)
(
p− q

)
(i)
= inf
P∈Uσ(Pφ1,0,φ)

PV − inf
P∈Uσ(Pφ1,0,1−φ)

PV

= sup
λ≥0

{
−λ log

(
Pφ1,0,φ · exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
Pφ1,0,1−φ · exp

(
−V
λ

))
− λσ

}
(ii)

≥
{
−λ? log

(
Pφ1,0,φ · exp

(
−V
λ?

))
− λ?σ

}
−
{
−λ? log

(
Pφ1,0,1−φ · exp

(
−V
λ?

))
− λ?σ

}
= −λ?

[
log

(
Pφ1,0,φ · exp

(
−V
λ?

))
− log

(
Pφ1,0,1−φ · exp

(
−V
λ?

))]
, (146)

where (i) follows from (see the definition of p in (105))

inf
P∈Uσ(Pφ1,0,φ)

PV = Pφ1 (0 | 0, φ)V (0) = (H − 1)p,

inf
P∈Uσ(Pφ1,0,1−φ)

PV = Pφ1 (0 | 0, 1− φ)V (0) = (H − 1)q.

Here, (ii) holds by letting

λ? := arg max
λ≥0

f(λ) := arg max
λ≥0

{
−λ log

(
Pφ1,0,1−φ · exp

(
−V
λ

))
− λσ

}
. (147)

The rest of the proof is then to control (146). We start with the observation that λ? > 0; this is
because in view of Lemma 3 (cf. (34)), it suffices to verify that

log(1− q) + σ
(i)

≤ log

(
1

H

)
+

(
1− 2

β

)
logH = − 2

β
logH < 0, (148)

where (i) holds by (103). We now claim the following bound for λ? holds, whose proof is postponed
to the end:

H

16σ
≤ H − 1

log(βH)
≤ λ? ≤ H − 1(

1− 3
β

)
log(H)

, (149)

which immediately implies the following by taking exponential maps given λ? > 0:

1

βH
≤ e−(H−1)/λ

?

≤ 1

H1−3/β . (150)

Moving to the second term of (146), it follows that

log

(
Pφ1,0,φ · exp

(
−V
λ?

))
− log

(
Pφ1,0,1−φ · exp

(
−V
λ?

))
(i)
= log

pe−(H−1)/λ
?

+ (1− p)
qe−(H−1)/λ? + (1− q)

= log

(
1 +

(p− q)
(
e−(H−1)/λ

? − 1
)

qe−(H−1)/λ? + (1− q)

)
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(ii)
< −

∆
(
1− e−(H−1)/λ?

)
qe−(H−1)/λ? + (1− q)

(iii)

≤ −1

2

∆

H
3
β (1− q) + (1− q)

≤ − ∆

4e6(1− q)
, (151)

where (i) follows from the definitions in (90) and (145), (ii) holds by log(1 + x) < x for x ∈
(−1,∞), (iii) can be verified by (150) and (92):

1− e−(H−1)/λ
?

≥ 1− 1

H1−3/β ≥
1

2
,

and the last line uses H3/β = H6/ logH = e6 by the definition of β in (93). Plugging (149) and
(151) back into (146) and (144), we arrive at〈

ρ, V ?,σ,φ1 − V π,σ,φ1

〉
= (H − 1)

(
p− q

)
(1− π1(φ | 0))

≥ H∆

64e6σ(1− q)
(1− π1(φ | 0)) ≥ 2ε (1− π1(φ | 0)) ,

where (i) holds by the definition of β in (93) and the last inequality follows directly from the choice
of ∆ in (112).

Proof of inequality (149). Applying (33) in Lemma 3 to λ? in (147) leads to the upper bound in
(149):

λ? ≤ H − 1

σ
≤ H − 1(

1− 3
β

)
log(H)

, (152)

where the last inequality holds by (103). As a result, we shall focus on showing the lower bounds in
(149) in the remainder of the proof.

Recalling the definition of q in (91), we can reparameterize 1− q using two positive variables cq and
λq (whose choices will be made clearer soon) as follows:

1− q =
1

H
= cqe

−(H−1)/λq . (153)

Deriving the first derivative of the function of interest f(λ) in (147) as follows:

∇λf(λ) = ∇λ
(
−λ log

(
Pφ1,0,1−φ · exp

(
−V
λ

))
− λσ

)
(i)
= ∇λ

(
−λ log

(
qe−(H−1)/λ + 1− q

)
− λσ

)
= −σ − log

(
qe−(H−1)/λ + 1− q

)
− 1

λ
· q(H − 1)e−(H−1)/λ

qe−(H−1)/λ + 1− q
, (154)

where (i) holds by the chosen transition kernels in (90) and the last line arises from basic calculus.
To continue, when λ = λq , the derivative of the function f(λ) can be expressed as

∇λf(λ) | λ=λq = −σ − log

(
(1− q) q

cq
+ 1− q

)
+

(1− q) qcq log 1−q
cq

(1− q) qcq + 1− q

= −σ − log(1− q)− log

(
1 +

q

cq

)
+

q
cq

log 1−q
cq

q
cq

+ 1

= −σ − log(1− q)
(

1− q/cq
q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq

(i)
= −σ + logH

(
1− q/cq

q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq
(155)
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(ii)

≥ logH

(
2

β
− q/cq
q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq
(iii)

≥ 1

β
logH − log(1 +

1

β
)− 1

≥ 1

β
logH − 2 = 0, (156)

where (i) holds by (153), (ii) follows from the bound of σ in (103), (iii) arises from letting cq = β ≥
4 and noting the fact 1/2 ≤ q < 1 (see (94)), leading to

1

2β
≤ q

cq
<

1

β
,

q/cq
q/cq + 1

≤ 1

β
,

q
cq

log(cq)

1 + q/cq
< 1. (157)

Finally, the last line holds by 1/β ≤ 1
4 and logH = 2β (see (93)).

To proceed, note that the function f(λ) is concave with respect to λ. Therefore, observing
∇λf(λ) | λ=λq ≥ 0 with cq = β, we have λq ≤ λ?, which implies (see (153))

1− q =
1

H
= βe−(H−1)/λq ≤ βe−(H−1)/λ

?

. (158)

The above assertion directly gives

λ? ≥ H − 1

log(βH)
.

The proof is completed by noticing

H − 1

log(βH)
=

H − 1

log(H) + log β

(i)

≥ H − 1

2 logH
≥

(
1− 3

β

)
(H − 1)

2σ
≥ H

16σ
,

where (i) follows from (93), the penultimate inequality follows from (103), and the last inequality
follows from β ∈ [4,∞).

D ROBUST OFFLINE RL FOR DISCOUNTED INFINITE-HORIZON RMDPS

In this section, we turn to the studies of robust offline RL for discounted infinite-horizon MDPs.

D.1 BACKGROUNDS ON DISCOUNTED INFINITE-HORIZON RMDPS

Similar to the finite-horizon setting, we consider the discounted infinite-horizon robust MDPs
(RMDPs) represented byMrob = {S,A, γ,Uσ(P 0), r}. Here, S = {1, 2, · · · , S} is the state space,
A = {1, 2, · · · , A} is the action space, γ ∈ [0, 1) is the discounted factor, and r : S × A → [0, 1]
is the intermediate reward function. Different from the standard MDPs, Uσ(P 0) denote the set of
possible transition kernels within an uncertainty set centered around a nominal kernel P 0 : S×A →
∆(S) using the distance measured in terms of the KL divergence. In particular, given an uncertainty
level σ > 0, the uncertainty set around P 0 is specified as

Uσ(P 0) := ⊗ Uσ(P 0
s,a), Uσ(P 0

s,a) :=
{
Ps,a ∈ ∆(S) : KL

(
Ps,a ‖ P 0

s,a

)
≤ σ

}
, (159)

where we denote a vector of the transition kernel P or P 0 at (s, a) respectively as

Ps,a := P (· | s, a) ∈ R1×S , P 0
s,a := P 0(· | s, a) ∈ R1×S . (160)

Policy and robust value/Q functions. A (possibly random) stationary policy π : S → ∆(A) rep-
resents the selection rule of the agent, namely, π(a | s) denote the probability of choosing a in state
s. With some abuse of notation, let π(s) represent the action chosen by π when π is a deterministic
policy. We define the robust value function V π,σ and robust Q-function Qπ,σ respectively as

∀(s, a) ∈ S ×A : V π,σ(s) := inf
P∈Uσ(P 0)

V π,P (s), Qπ,σ(s, a) := inf
P∈Uσ(P 0)

Qπ,P (s, a),
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where the value function V π,P and Q-function Qπ,P w.r.t. policy π and transition kernel P are
defined respectively by

∀s ∈ S : V π,P (s) := Eπ,P

[ ∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0 = s

]
, (161)

∀(s, a) ∈ S ×A : Qπ,P (s, a) := Eπ,P

[ ∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, a0 = a

]
, (162)

where the expectation is taken over the randomness of the trajectory. In words, the robust value/Q
functions characterize the worst case over all the instances in the uncertainty set.

Optimal policy and robust Bellman equation. Similar to the finite-horizon RMDPs, it is well-
known that there exists at least one deterministic policy that maximizes the robust value function and
Q-function simultaneously in the infinite-horizon setting as well (Iyengar, 2005; Nilim & El Ghaoui,
2005). With this in mind, we denote the optimal policy as π? and the corresponding optimal robust
value function (resp. optimal robust Q-function) as V ?,σ (resp. Q?,σ), namely

∀s ∈ S : V ?,σ(s) := V π
?,σ(s) = max

π
V π,σ(s), (163a)

∀(s, a) ∈ S ×A : Q?,σ(s, a) := Qπ
?,σ(s, a) = max

π
Qπ,σ(s, a). (163b)

In addition, we continue to admit the Bellman’s optimality principle, resulting in the following
robust Bellman consistency equation (resp. robust Bellman optimality equation):

∀(s, a) ∈ S ×A : Qπ,σ(s, a) = r(s, a) + γ inf
P∈Uσ(P 0)

V π,σ, (164a)

∀(s, a) ∈ S ×A : Q?,σ(s, a) = r(s, a) + γ inf
P∈Uσ(P 0)

V ?,σ. (164b)

Occupancy distributions. To begin, let ρ be some initial state distribution. We denote dπ,P (s | ρ)
and dπ,P (s, a | ρ) respectively as the state occupancy distribution and the state-action occupancy
distribution induced by policy π, namely

∀s ∈ S : dπ,P (s) := (1− γ)

∞∑
t=0

γtP(st = s | s0 ∼ ρ, π, P ), (165a)

∀(s, a) ∈ S ×A : dπ,P (s, a) := (1− γ)

∞∑
t=0

γtP(st = s | s0 ∼ ρ, π, P )π(a | s). (165b)

Here, the occupancy distributions are conditioned on s0 ∼ ρ and the sequence of actions and states
are generated based on policy π and transition kernel P . Next, applying (165) with π = π?, we adopt
the the following short-hand notation for the occupancy distributions associated with the optimal
policy:

∀s ∈ S : d?,P (s) := dπ
?,P (s), (166a)

∀(s, a) ∈ S ×A : d?,P (s, a) := dπ
?,P (s, a) = d?,P (s)1{a = π?(s)}. (166b)

D.2 DATA COLLECTION AND CONSTRUCTING THE EMPIRICAL MDP

Suppose that we observe a batch/history dataset D = {(si, ai, s′i)}1≤i≤N consisting of N sample
transitions. These transitions are independently generated, where the state-action pair is drawn
from some behavior distribution db ∈ ∆(S × A), followed by a next state drawn over the nominal
transition kernel P 0, i.e.,

(si, ai)
i.i.d.∼ db and s′i

i.i.d.∼ P 0(· | si, ai), 1 ≤ i ≤ N. (167)

Similar to Assumption 1, we design the following robust single-policy clipped concentrability as-
sumption tailored for infinite-horizon RMDPs to characterize the quality of the history dataset.
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Algorithm 2 Robust value iteration with LCB (DRVI-LCB) for infinite-horizon RMDPs.
input: a dataset D; reward function r; uncertainty level σ; number of iterations M .
initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.

Compute the empirical nominal transition kernel P̂ 0 according to (171);
Compute the penalty term b(s, a) according to (175);
for m = 1, 2, · · · ,M do

for s ∈ S, a ∈ A do
Set Q̂m(s, a) according to (178);

for s ∈ S do
Set V̂m(s) = maxa Q̂m(s, a);

output: π̂ s.t. π̂(s) = arg maxa Q̂M (s, a) for all s ∈ S.

Assumption 2 (Robust single-policy clipped concentrability for infinite-horizon MDPs). The be-
havior policy of the history dataset D satisfies

max
(s,a,P )∈S×A×Uσ(P 0)

min
{
d?,P (s, a), 1

S

}
db,P 0(s, a)

≤ C?rob (168)

for some finite quantity C?rob ∈
[
1
S ,∞

)
. Following the convention 0/0 = 0, we denote C?rob to be the

smallest quantity satisfying (168), and refer to it as the robust single-policy clipped concentrability
coefficient.

Armed with these, we are ready to introduce the goal in the infinite-horizon setting. Given the
history dataset D obeying Assumption 2, for some target accuracy ε > 0, we aim to find a near-
optimal robust policy π̂, which satisfies

V π̂,σ(ρ) ≥ V ?,σ(ρ)− ε (169)

in a sample-efficient manner for some initial state distribution ρ.

Building an empirical nominal MDP Recalling that we have N independent samples in the
dataset D = {(si, ai, s′i)}1≤i≤N . First, we denote N(s, a) as the total number of sample transi-
tions from any state-action pair (s, a) as

N(s, a) :=

N∑
i=1

1
{

(si, ai) = (s, a)
}
. (170)

Armed withN(s, a), we construct the empirical estimate P̂ 0 of the nominal kernel P 0 by the visiting
frequencies of state-action pairs as follows:

P̂ 0(s′ | s, a) :=

 1
N(s,a)

N∑
i=1

1
{

(si, ai, s
′
i) = (s, a, s′)

}
, if N(s, a) > 0

0, else
(171)

for any (s, a, s′) ∈ S ×A× S.

D.3 DRVI-LCB FOR DISCOUNTED INFINITE-HORIZON RMDPS

With the estimate P̂ 0 of the nominal transition kernel P 0 in hand, we are positioned to introduce
our algorithm DRVI-LCB for infinite-horizon RMDPs, which bears some similarity with the finite-
horizon version (cf. Algorithm 1), by taking the uncertainties of the value estimates into considera-
tion throughout the value iterations. The procedure is summarized in Algorithm 2.
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The pessimistic robust Bellman operator. At the core of DRVI-LCB is a pessimistic variant of
the classical robust Bellman operator in the infinite-horizon setting (Zhou et al., 2021; Iyengar, 2005;
Nilim & El Ghaoui, 2005), denoted as T σ(·) : RSA → RSA, which we recall as follows:
∀(s, a) ∈S ×A : T σ(Q)(s, a) := r(s, a) + γ inf

P∈Uσ(P 0
s,a)
PV, with V (s) := max

a
Q(s, a).

(172)
Encouragingly, the robust Bellman operator shares the nice γ-contraction property of the standard
Bellman operator, ensuring fast convergence of robust value iteration by applying the robust Bellman
operator (172) recursively. In the robust offline setting, instead of recursing using the population
robust Bellman operator, we need to construct a pessimistic variant of the robust Bellman operator
T̂ σpe(·) w.r.t. the empirical nominal kernel P̂ 0 as follows:

∀(s, a) ∈ S ×A : T̂ σpe(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV − b

(
s, a
)
, 0

}
, (173)

where b(s, a) denotes the penalty term that measures the data-dependent uncertainty of the value
estimates.

To specify the tailored penalty term b(s, a) in (173), we first introduce an additional term

∀(s, a) ∈ S ×A : P̂min(s, a) := min
s′

{
P̂ 0(s′ | s, a) : P̂ 0(s′ | s, a) > 0

}
, (174)

which in words represents the smallest positive transition probability of the estimated nominal kernel
P̂ 0(s′ | s, a). Then for some δ ∈ (0, 1), some universal constant cb > 0, b(s, a) is defined as

b(s, a) =

min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s,a)N(s,a)

+ 4
σN(1−γ) ,

1
1−γ

}
+ 2

σN if N(s, a) > 0,

1
1−γ + 2

σN otherwise.
(175)

As shall be illuminated, our proposed pessimistic robust Bellman operator T̂ σpe(·) (cf. (173)) plays
an important role in DRVI-LCB. Encouragingly, despite the additional data-driven penalty term
b(s, a), it still enjoys the celebrated γ-contractive property, which greatly facilitates the analysis.
Before continuing, we summarize the γ-contraction property below, whose proof is postponed to
Appendix E.1.1.

Lemma 11 (γ-Contraction). For any γ ∈ [0, 1), the operator T̂ σpe(·) (cf. (173)) is a γ-contraction
w.r.t. ‖ · ‖∞. Namely, for any Q1, Q2 ∈ RSA s.t. Q1(s, a), Q2(s, a) ∈

[
0, 1

1−γ
]

for all (s, a) ∈
S ×A, one has ∥∥∥T̂ σpe(Q1)− T̂ σpe(Q2)

∥∥∥
∞
≤ γ ‖Q1 −Q2‖∞ . (176)

Additionally, there exists a unique fixed point Q̂?,σpe of the operator T̂ σpe(·) obeying 0 ≤ Q̂?,σpe (s, a) ≤
1

1−γ for all (s, a) ∈ S ×A.

Our algorithm DRVI-LCB for infinite-horizon robust offline RL. Armed with the γ-contraction
property of the pessimistic robust Bellman operator T̂ σpe(·), we are positioned to introduce DRVI-
LCB for infinite-horizon RMDPs, summarized in Algorithm 2. Specifically, DRVI-LCB can be seen
as a value iteration algorithm w.r.t. T̂ σpe(·) (cf. (173)), whose update rule at the m-th iteration can be
formulated as

Q̂m(s, a) = T̂ σpe(Q̂m−1)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂m−1 − b

(
s, a
)
, 0

}
, (177)

and V̂m(s) = maxa Q̂m(s, a) for all m = 1, 2, · · · ,M . In view of strong duality (Hu & Hong,
2013), the above convex problem can be translated into a dual formulation, leading to the following
equivalent update rule:

Q̂m(s, a) = max

{
r(s, a) + sup

λ≥0

{
−λ log

(
P̂ 0
s,a · exp

(
−V̂m−1
λ

))
− λσ

}
− b
(
s, a
)
, 0

}
,

(178)

38



Under review as a conference paper at ICLR 2023

which can be solved efficiently (Iyengar, 2005; Yang et al., 2021; Panaganti & Kalathil, 2022) as a
one-dimensional optimization problem.

To finish the description, we initialize the estimates of Q-function (Q̂0) and value function (V̂0) to
be zero and output the greedy policy of the final Q-estimates (Q̂M ) as the final policy π̂, namely,

π̂(s) = arg max
a

Q̂M (s, a) for all s ∈ S. (179)

It turns out that the iterates
{
Q̂m
}
m≥0 of DRVI-LCB converge linearly to the fixed point Q̂?,σpe owing

to the nice γ-contraction property outlined in Lemma 11. This fact is summarized in the following
lemma, whose proof is postponed to Appendix E.1.2.

Lemma 12. Let Q̂0 = 0. The iterates of Algorithm 2 obey

∀m ≥ 0 : Q̂m ≤ Q̂?,σpe and
∥∥Q̂m − Q̂?,σpe

∥∥
∞ ≤

γm

1− γ
. (180)

D.4 PERFORMANCE GUARANTEES

Before introducing the main theorems, we first define several essential metrics.

• dbmin: the smallest positive entry of the distribution db,P
0

, i.e.,

dbmin := min
s,a

{
db,P

0

(s, a) : db,P
0

(s, a) > 0
}
. (181)

• P b
min: the smallest positive state transition probability under the nominal kernel P 0 in the region

covered by dataset D, i.e.,

P b
min := min

s,a,s′

{
P 0 (s′ | s, a) : db,P

0

(s, a) > 0, P 0 (s′ | s, a) > 0
}
. (182)

Note that P b
min is determined only by the state-action pairs covered by the batch dataset D.

• P ?min: the smallest positive state transition probability of the optimal robust policy π? under the
nominal kernel P 0, namely

P ?min := min
s,s′

{
P 0
(
s′ | s, π?(s)

)
: P 0

(
s′ | s, π?(s)

)
> 0
}
. (183)

We also note that P ?min is determined only by the state-action pairs covered by the optimal robust
policy π? under the nominal model P 0.

We are now positioned to introduce the sample complexity upper bound of DRVI-LCB, together with
the minimax lower bound, for solving infinite-horizon RMDPs. First, we present the performance
guarantees of DRVI-LCB for robust offline RL in the infinite-horizon case, with the proof deferred
to Appendix E.2.
Theorem 3. Let c0 and c1 be some sufficiently large universal constants. Given an uncertainty level
σ > 0, suppose that the penalty terms in Algorithm 2 are chosen as (175) for sufficiently large cb.
With probability at least 1− δ, the output π̂ of Algorithm 2 obeys

V ?,σ(ρ)− V π̂,σ(ρ) ≤ c0
σ(1− γ)2

√√√√SC?rob log2
(

(1+σ)N3S
(1−γ)δ

)
P ?minN

, (184)

as long as the number of samples N satisfies

N ≥ c1 log(NS/δ)

dbminP
b
min

. (185)

The result directly indicates that DRVI-LCB can finds an ε-optimal policy as long as the sample size
in dataset D exceeds the order of (ignoring logarithmic factors)

SC?rob
P ?min(1− γ)4σ2ε2︸ ︷︷ ︸

ε-dependent

+
1

dbminP
b
min︸ ︷︷ ︸

burn-in cost

. (186)
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Note that the burn-in cost is independent with the accuracy level ε, which tells us that the sample
complexity is on the order of

Õ

 SC?

P ?min(1− γ)4σ2ε2︸ ︷︷ ︸
ε-dependent

+
1

dbminP
b
min︸ ︷︷ ︸

burn-in cost

 (187)

as long as ε is small enough. The sample complexity of DRVI-LCB dramatically outperforms prior
works, which has been compared in detail in Section 1.2 (cf. Table 1). In particular, our sample
complexity produces an exponential improvement over Zhou et al. (2021); Panaganti & Kalathil
(2022) in terms of the dependency with the effective horizon 1

1−γ , which is especially significant
for long-horizon problems. Compared with Yang et al. (2021), our sample complexity is better
by at least a factor of S/P ?min. To achieve the claimed bound, we resort to a delicate technique
called the leave-one-out (LOO) analysis (Agarwal et al., 2020; Li et al., 2020; 2022), by carefully
designing an auxiliary set of RMDPs to decouple the statistical dependency introduced across the
iterates of pessimistic robust value iteration. This is the first time that the LOO analysis is applied
to understanding the sample efficiency of model-based robust RL algorithms, which is of potential
independent interest to tighten the sample complexity of other robust RL problems.

To complement the upper bound, we develop an information-theoretic lower bound for robust offline
RL as provided in the following theorem whose proof can be found in Appendix E.3.

Theorem 4. Suppose (S,C?rob, γ, σ, ε) obeying 1
1−γ ≥ e8, S ≥ log

(
1

1−γ
)
, C?rob ≥ 8/S, ε ≤

1
256e6(1−γ) log 1

1−γ
, and log

(
1

1−γ
)
− 6 ≤ σ ≤ log

(
1

1−γ
)
− 4, we can construct two infinite-horizon

RMDPsM0,M1, an initial state distribution ρ, and a batch dataset with N independent samples,
such that

inf
π̂

max
{
P0

(
V ?,σ(ρ)− V π̂,σ(ρ) > ε

)
, P1

(
V ?,σ(ρ)− V π̂,σ(ρ) > ε

)}
≥ 1

8
,

provided that

N ≤ c1SC
?
rob

P ?min(1− γ)2σ2ε2
.

Here, c1 > 0 is some universal constant, the infimum is taken over all estimators π̂, and P0 (resp. P1)
denotes the probability when the RMDP isM0 (resp.M1).

The above theorem suggests that there exists some RMDP such that no algorithm can find an ε-
optimal policy if the sample complexity is below the order of

Ω

(
SC?rob

P ?min(1− γ)2σ2ε2

)
,

which directly confirms that DRVI-LCB is near-optimal up to a polynomial factor of the effective
horizon length 1

1−γ (cf. (186)). To the best of our knowledge, DRVI-LCB is the first provable
algorithm with near-optimal sample complexity for infinite-horizon robust offline RL. Moreover,
the requirement imposed on the history dataset is also much weaker than prior literature on robust
offline RL (Yang et al., 2021; Zhou et al., 2021), without the need of full coverage of the state-action
space.

E ANALYSIS: DISCOUNTED INFINITE-HORIZON RMDPS

E.1 PROOF OF AUXILIARY LEMMAS

E.1.1 PROOF OF LEMMA 11

We shall provide the proof to show that the operator T̂ σpe(·) (cf. (173)) is a γ-contraction and the
existence of the unique fixed point of T̂ σpe(·) subsequently.
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Before starting, suppose Q,Q′, Q1, Q2 ∈ RSA obey Q(s, a), Q′(s, a), Q1(s, a), Q2(s, a) ∈[
0, 1

1−γ
]

for all (s, a) ∈ S ×A. Then we introduce the following notations:

∀s ∈ S : V (s) := max
a

Q(s, a), V ′(s) := max
a

Q′(s, a),

V1(s) := max
a

Q1(s, a), V2(s) := max
a

Q2(s, a). (188)

γ-contraction. We first show that T̂ σpe(·) is a γ-contraction. Towards this, instead of T̂ σpe(·), we
consider a simpler operator T̃ σpe(·) firstly, defined as follows:

∀(s, a) ∈ S ×A : T̃ σpe(Q)(s, a) = r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV − b

(
s, a
)
, (189)

which consequently leads to

∀(s, a) ∈ S ×A : T̂ σpe(Q)(s, a) = max
{
T̃ σpe(Q)(s, a), 0

}
. (190)

With this in mind, we observe that∥∥∥T̃ σpe(Q1)− T̃ σpe(Q2)
∥∥∥
∞

= γ

∥∥∥∥∥ inf
P∈Uσ(P̂ 0

s,a)
PV1 − inf

P∈Uσ(P̂ 0
s,a)
PV2

∥∥∥∥∥
∞

(i)

≤ γ ‖V1 − V2‖∞

(ii)
= γmax

s

∣∣∣max
a

Q1(s, a)−max
a

Q2(s, a)
∣∣∣

≤ γmax
(s,a)
|Q1(s, a)−Q2(s, a)| = γ ‖Q1 −Q2‖∞ (191)

where the first equality holds by applying the definition of b(s, a) (cf. (175)) and (189), (i) follows
from that the infimum operator is a 1-contraction w.r.t. ‖·‖∞ and ‖PV1−PV2‖∞ ≤ ‖V1−V2‖∞ for
all P ∈ ∆(S), (ii) arises from the definitions in (188), and the last inequality is due to the maximum
operator is also a 1-contraction w.r.t. ‖ · ‖∞.

Taking the above result with (190), we verify the desired assertion by∥∥∥T̂ σpe(Q1)− T̂ σpe(Q2)
∥∥∥
∞
≤
∥∥∥T̃ σpe(Q1)− T̃ σpe(Q2)

∥∥∥
∞
≤ γ ‖Q1 −Q2‖∞ , (192)

where the first inequality follows from the basic fact that the maximum operator is a 1-contraction
w.r.t. ‖ · ‖∞.

Existence of the unique fixed-point. To continue, we shall firstly show that there exist at least
one fixed-point of T̂ σpe(·). Recalling the definition of T̂ σpe(·) (cf. (173))

T̂ σpe(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV − b

(
s, a
)
, 0

}
, (193)

one has as long as 0 ≤ Q ≤ 1
1−γ · 1, it is easily verified 0 ≤ T̂ σpe(Q) ≤ 1

1−γ · 1. Then, we construct
the following sequence of Q-function recursively

Q(0) = 0, and Q(t+1) = T̂ σpe(Q(t)) for all t ≥ 0, (194)

which mimic the iterations of our algorithm DRVI-LCB. As a result, the proof for the Banach fixed-
point theorem (Agarwal et al., 2001, Theorem 1) gives that as t → ∞, Q(t) converges to some
point Q(∞). It can also be verified that 0 ≤ Q(∞) ≤ 1

1−γ · 1, which indicates the existence of

the fixed points. Then, to prove the uniqueness of the fixed points of T̂ σpe(·), we suppose that there
exists another point Q′ obeying Q′ = T̂ σpe(Q′). The definition of T̂ σpe(·) directly gives Q′ ≥ 0 and if
‖Q′‖∞ > 1

1−γ , then

‖Q′‖∞ =
∥∥∥T̂ σpe(Q′)∥∥∥∞ ≤ ‖r‖∞ + γmax

(s,a)

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV ′

∣∣∣∣∣
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≤ 1 + γ‖V ′‖∞ ≤ 1 + γ‖Q′‖∞ < (1− γ)‖Q′‖∞ + γ‖Q′‖∞ = ‖Q′‖∞ (195)

gives contraction. Therefore, we have 0 ≤ Q′ ≤ 1
1−γ · 1, which yields∥∥∥Q′ −Q(∞)

∥∥∥
∞

=
∥∥∥T̂ σpe(Q′)− T̂ σpe (Q(∞)

)∥∥∥
∞
≤ γ

∥∥∥Q′ −Q(∞)
∥∥∥
∞
. (196)

However, (196) can’t happen given γ ∈
[
1
2 , 1
)
, indicating the uniqueness of the fixed points of

T̂ σpe(·).

E.1.2 PROOF OF LEMMA 12

To begin with, considering any Q,Q′ obeying Q ≤ Q′, 0 ≤ Q ≤ 1
1−γ · 1, and 0 ≤ Q′ ≤ 1

1−γ · 1,

we observe that the operator T̂ σpe(·) (cf. (173)) has the monotone non-decreasing property, namely,

T̂ σpe(Q) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV − b

(
s, a
)
, 0

}

= max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
Pmax

a′
Q(·, a′)− b

(
s, a
)
, 0

}

≤ max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
Pmax

a′
Q′(·, a′)− b

(
s, a
)
, 0

}
= T̂ σpe(Q′). (197)

In addition, armed with (197) and the initial rule Q̂0 = 0, we also observe that the fixed-point Q̂?,σpe

of T̂ σpe(·) obeys 0 ≤ Q̂?,σpe ≤ 1
1−γ · 1. Consequently, we arrive at

Q̂1 = T̂ σpe(Q̂0) ≤ T̂ σpe(Q̂?,σpe ) = Q̂?,σpe . (198)

Implementing the above result recursively gives

for all m ≥ 0 : Q̂m ≤ Q̂?,σpe . (199)

To continue, applying Lemma 11 yields that for any m ≥ 0,

‖Q̂m − Q̂?,σpe ‖∞ =
∥∥∥T̂ σpe(Q̂m−1)− T̂ σpe(Q̂?,σpe )

∥∥∥
∞
≤ γ‖Q̂m−1 − Q̂?,σpe ‖∞ (200)

≤ · · · ≤ γm‖Q̂0 − Q̂?,σpe ‖∞ = γm‖Q̂?,σpe ‖∞ ≤
γm

1− γ
, (201)

where the last inequality holds by the fact ‖Q̂?,σpe ‖∞ ≤ 1
1−γ (see Lemma 11). The final assertion

can be directly achieved with the above result by observing∥∥∥Q̂M − Q̂?,σpe

∥∥∥
∞
≤ γM

1− γ
≤ 1

σN
(202)

when M ≥ log σN
1−γ

log 1
γ

.

E.1.3 PROOF OF LEMMA 14

We first note that the second assertion in (238) is a counterpart of (48) which can be verified fol-
lowing the same argument in Appendix C.2.1 except the set of notations are adapted to the infinite-
horizon case. Therefore, the rest of the proof will focus on verifying (237).

To begin with, we consider the situation when N(s, a) = 0. In this case, (237) can be easily verified
that ∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PV − inf

P∈Uσ(P 0
s,a)
PV

∣∣∣∣∣ (i)= inf
P∈Uσ(P 0

s,a)
PV ≤ ‖V ‖∞

(ii)

≤ 1

1− γ
, (203)
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where (i) follows from the fact P̂ 0
s,a = 0 when N(s, a) = 0 (see (171)), and (ii) arises from the

assumption ‖V ‖∞ ≤ 1
1−γ . Consequently, in the remainder of the proof, we focus on verifying

(237) when N(s, a) > 0.

Before continuing, we introduce a counterpart of the fact (47) in Lemma 8 as follows:
Lemma 13. For all (s, a) ∈ S ×A with N(s, a) > 0, consider any vector V ∈ RS independent of
P̂ 0
s,a obeying ‖V ‖∞ ≤ 1

1−γ . With probability at least 1− δ, one has∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV − inf

P∈Uσ(P 0
s,a)
PV

∣∣∣∣∣ ≤ cb
σ(1− γ)

√
log(NSδ )

P̂min(s, a)N(s, a)
. (204)

Proof. The proof follows from the same pipeline of the proof in Appendix C.2.2. The only differ-
ence is the upper bound on ‖V ‖∞ is 1

1−γ (as opposed to H), the union bound is taken over N (as
opposed to KH), and some notations are exchanged to that of the infinite-horizon case. We omit
the proof details for conciseness.

Armed with above point-wise results, we are now ready to derive the union bound over all Ṽ desired
in Lemma 14, counting on a leave-one-out argument separated into the following steps.

Step 1: construction of auxiliary robust MDPs with state-absorbing nominal transitions. To
begin with, we denote the empirical infinite-horizon robust MDP with the nominal transition kernel
P̂ 0 as M̂rob. Then, for each state s and each scalar u ≥ 0, we can construct an auxiliary robust
MDP M̂s,u

rob so that it is the same as M̂rob except the properties in state s. Specifically, the reward
function of the auxiliary robust MDP M̂s,u

rob is denoted as rs,u which obeys{
rs,u(s, a) = u for all a ∈ A,
rs,u(s̃, a) = r(s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s.

(205)

In addition, the nominal transition kernel of M̂s,u
rob is denoted as P s,u such that{

P s,u(s′ | s, a) = 1(s′ = s) for all (s′, a) ∈ S ×A,
P s,u(· | s̃, a) = P̂ 0(· | s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s.

(206)

It can be observed that the nominal transition kernel P s,u of the auxiliary M̂s,u
rob drops all the ran-

domness of P̂ 0
s,a for all a ∈ A in state s and makes s an absorbing state, while keeps other parts the

same as P̂ 0.

With the robust MDP M̂s,u
rob in hand, we can define the corresponding penalty term for all (s, a) ∈

S ×A as follows

bs,u(s, a) :=

min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
P s.umin (s,a)N(s,a) + 4

Nσ(1−γ) ,
1

1−γ

}
+ 2

σN if N(s, a) > 0,

1
1−γ + 2

σN otherwise,
(207)

where P s,umin is defined as the smallest positive state transition probability over the nominal kernel
P s,u as follows:

∀(s, a) ∈ S ×A : P s,umin (s, a) := min
s′

{
P s,u(s′ | s, a) : P s,u(s′ | s, a) > 0

}
. (208)

Armed with the penalty term, the pessimistic robust Bellman operator T̂ σs,u(Q)(·) w.r.t. M̂s,u
rob is

defined as

∀(s, a) ∈ S ×A : T̂ σs,u(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P s,us,a )
PV − bs,u(s, a), 0

}
. (209)
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Step 2: verifying the relation between M̂rob and the auxiliary robust MDP M̂s,u
rob . Recall that

Q̂?,σpe is the unique fixed-point of operator T̂ σpe(·) with the corresponding value V̂ ?,σpe . In particular,
given a state s, we introduce a special reward

u? := (1− γ)V̂ ?,σpe (s) + min

 cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P s.umin (s, a)N(s, a)

+
4

Nσ(1− γ)
,

1

1− γ

+
2

σN
.

(210)

With it in mind, we shall justify that there exists a fixed-point Q̂?,σs,u? of the operator T̂ σs,u?(·) whose
corresponding value V̂ ?,σs,u? is identical to V̂ ?,σpe . Towards this, we shall show the facts in two different
cases:

• For state s′ 6= s. In this case, for any s′ 6= s and a ∈ A, it can be verified that

max

{
rs,u

?

(s′, a) + γ inf
P∈Uσ(P s,u

?

s′,a )

PV̂ ?,σpe − bs,u
?

(s′, a), 0

}

= max

{
r(s′, a) + γ inf

P∈Uσ(P̂ 0
s′,a)
PV̂ ?,σpe − b(s′, a), 0

}
= T̂ σpe(Q̂?,σpe )(s′, a) = Q̂?,σpe (s′, a), (211)

where the first identity follows from the definitions in (260) and (259), the penultimate equality
arises from (173), and the final equality holds by that Q̂?,σpe is the fixed-point.

• For state s. In this case, for any u and a ∈ A, observing that P s,u(s′ | s, a) has only one positive
entry equal to 1 (cf. (259)), applying (262) yields

P s,umin (s, a) = 1. (212)

Plugging above fact into (261) leads to

bs,u(s, a) =

min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
N(s,a) + 4

Nσ(1−γ) ,
1

1−γ

}
+ 2

σN if N(s, a) > 0,

1
1−γ otherwise

(213)

for all a ∈ A. As a result, we have for any a ∈ A:

max

{
rs,u

?

(s, a) + γ inf
P∈Uσ(P s,u

?
s,a )

PV̂ ?,σpe − bs,u
?

(s, a), 0

}
= max

{
u? + γV̂ ?,σpe (s)− bs,u

?

(s, a), 0
}

(i)
= max

{
(1− γ)V̂ ?,σpe (s) + γV̂ ?,σpe (s), 0

}
= V̂ ?,σpe (s), (214)

where (i) follows from plugging in the definition of u? in (264) and bs,u
?

(s, a) in (267).

Summing up the above results, we observe that there exists a fixed point Q̂?,σs,u? of the operator
T̂ σs,u?(·) if we let{

Q̂?,σs,u?(s, a) = V̂ ?,σpe (s) for all a ∈ A
Q̂?,σs,u?(s′, a) = Q̂?,σpe (s′, a) for all s′ 6= s and a ∈ A.

(215)

Consequently, we already confirm the existence of a fixed point of the operator T̂ σs,u?(·). In addition,
its corresponding value function V̂ ?,σs,u? also coincides with V̂ ?,σpe .
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Step 3: building an ε-net for all rewards u. Before continuing, it is easily verified that the reward
obeys

u? ≤ 1 + min

 cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P s,umin (s, a)N(s, a)

+
4

σN(1− γ)
,

1

1− γ

+
2

σN
≤ 2

σ
+

2

(1− γ)
.

(216)

As a result, we construct an ε-net (Vershynin, 2018) of the range
[
0, 2

σ + 2
(1−γ)

]
with ε = 1

σN as
follows:

Uε :=

{
i

σN
| 1 ≤ i ≤ σN

(
2

σ
+

2

(1− γ)

)}
. (217)

Armed with this covering net Uε, we can construct an auxiliary robust MDP M̂s,u
rob and its corre-

sponding pessimistic robust Bellman operator for each u ∈ Uε (see Step 1). Following the same
pipeline in the proof of Lemma 11 (cf. Appendix E.1.1), for each u ∈ Uε, it can be verified that
there exists a unique fixed-point Q̂?,σs,u of the operator T̂ σs,u(·) which satisfies 0 ≤ Q̂?,σs,u ≤ 1

1−γ · 1.

Consequently, the corresponding value function also satisfies ‖V̂ ?,σs,u ‖∞ ≤ 1
1−γ .

To continue, in view of the definitions in (260) and (259), we notice that for all u ∈ Uε, M̂s,u
rob is

statistically independent from P̂ 0
s,a, which indicates the independence between V̂ ?,σs,u and P̂ 0

s,a. So
invoking Lemma 15 and taking the union bound over all samples N and u ∈ Uε give that, with
probability at least 1− δ,∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σs,u − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u

∣∣∣∣∣ ≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

(218)

hold simultaneously for all (s, a, u) ∈ S ×A× Uε with N(s, a) > 0.

Step 4: implementing a covering argument. To continue, we shall control the gap between the
value functions of the fixed-points of T̂ σpe(·) and the auxiliary operator T̂ σs,u(·), i.e.,

∥∥V̂ ?,σs,u −V̂ ?,σpe

∥∥
∞.

First, recalling that u? ∈
[
0, 2

σ + 2
(1−γ)

]
(see (264)), we can always find some ũ ∈ Uε such that

|ũ− u?| ≤ 1
σN . Consequently, plugging in the operator in (263) yields

∀Q ∈ RSA :
∥∥∥T̂ σs,ũ(Q)− T̂ σs,u?(Q)

∥∥∥
∞

(i)

≤ |ũ− u?| ≤ 1

σN
, (219)

where (i) holds by bs,ũ(s, a) = bs,u
?

(s, a) for s (see (267)) and bs,ũ(s′, a) = bs,u
?

(s′, a) = b(s′, a)
for all s′ 6= s.

With this in mind, we observe that the fixed-points obey∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ =
∥∥∥T̂ σs,ũ(Q̂?,σs,ũ)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞

≤
∥∥∥T̂ σs,ũ(Q̂?,σs,ũ)− T̂ σs,ũ(Q̂?,σs,u?)

∥∥∥
∞

+
∥∥∥T̂ σs,ũ(Q̂?,σs,u?)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞

≤ γ
∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ +

1

σN
, (220)

which directly indicates that ∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ ≤ 1

(1− γ)σN
(221)

and then ∥∥∥V̂ ?,σs,ũ − V̂
?,σ
s,u?

∥∥∥
∞
≤
∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ ≤ 1

(1− γ)σN
. (222)

45



Under review as a conference paper at ICLR 2023

Armed with above facts, invoking the identity between V̂ ?,σpe and V̂ ?,σs,u? established in Step 2 gives∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σpe − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣ =

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,u? − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣
(i)

≤

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,ũ

∣∣∣∣∣
+

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣+

∣∣∣∣∣ inf
P∈Uσ(P 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣
(ii)

≤

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,ũ

∣∣∣∣∣+
2

Nσ(1− γ)

≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

+
2

Nσ(1− γ)
, (223)

where (i) holds by applying the triangle inequality, (ii) arises from (276) and the basic fact that
infimum operator is a 1-contraction w.r.t. ‖ · ‖∞, and the final inequality follows from (272).

Step 5: union bound for all Ṽ . Now we are positioned to show the union bound for all vector Ṽ
obeying

∥∥Ṽ − V̂ ?,σpe

∥∥
∞ ≤

1
σN and ‖Ṽ ‖∞ ≤ 1

1−γ . For any Ṽ mentioned above, we invoke (277)
and apply the triangle inequality to reach∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ

∣∣∣∣∣ ≤
∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σpe − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣ (224)

+

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣+

∣∣∣∣∣ inf
P∈Uσ(P 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣
≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

+
4

Nσ(1− γ)
. (225)

Finally, we complete the proof by verifying that∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ

∣∣∣∣∣ ≤ ∥∥∥Ṽ ∥∥∥∞ ≤ 1

1− γ
(226)

which holds by that the infimum operator is a 1-contraction w.r.t. ‖·‖∞ and the assumption ‖Ṽ ‖∞ ≤
1

1−γ .

E.1.4 PROOF OF (234)

For all (s, a) ∈ Cb, one has

Ndb,P
0(
s, a
) (i)

≥
c1d

b,P 0(
s, a
)

log(NS/δ)

dbminP
b
min

(ii)

≥ c1 log(NS/δ)

P b
min

(iii)

≥ c1 log(NS/δ)

Pmin(s, a)
, (227)

where (i) follows from the condition (185), (ii) arises from the definition that dbmin ≤ db,P
0

(s, a) for
all (s, a) ∈ Cb, and (iii) follows from the definition in (232).

Armed with above result, when c1 is large enough, one has 2
3 log NS

δ < Ndb,P
0
(s,a)

12 . Consequently,
Lemma 16 tells us that with probability at least 1− δ,

N(s, a) ≥ Ndb,P
0

(s, a)

12
≥ c1 log(NS/δ)

12Pmin(s, a)
. (228)
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Regarding the basic fact x ≤ − log(1 − x) for all x ∈ [0, 1], the last inequality of (234) can be
verified by

c1 log(NS/δ)

12Pmin(s, a)
≥ −

log 2NS
δ

log(1− Pmin(s, a))
. (229)

E.2 PROOF OF THEOREM 3

To begin, we introduce some additional notation that will be useful throughout the analysis. We
denote the state-action space covered by the batch dataset D as

Cb =
{

(s, a) : db,P
0

(s, a) > 0
}
. (230)

In addition, recalling the definition in (174), we define a similar one based on the true nominal model
P 0 as

Pmin(s, a) := min
s′

{
P 0(s′ | s, a) : P 0(s′ | s, a) > 0

}
, (231)

which directly indicates that

P ?min = min
s

Pmin(s, π
?(s)), P b

min = min
(s,a)∈Cb

Pmin(s, a). (232)

Next, we denote the set of possible state occupancy distributions associated with the optimal policy
π? in a model within the uncertainty set P ∈ Uσ

(
P 0
)

as

D? :=
{[
d?,P (s)

]
s∈S : P ∈ Uσ

(
P 0
)}

=
{[
d?,P

(
s, π?(s)

)]
s∈S : P ∈ Uσ

(
P 0
)}
, (233)

where the second equality is due to the fact that π? is chosen to be deterministic.

We are now ready to embark on the proof of Theorem 3. We first introduce a fact that is used
throughout the proof; the proof is postponed to Appendix E.2.2:

∀(s, a) ∈ Cb : N(s, a) ≥ Ndb,P
0

(s, a)

12
≥ c1 log(NS/δ)

12Pmin(s, a)
≥ −

log 2NS
δ

log(1− Pmin(s, a))
(234)

as long as (185) holds.

For notation simplicity, denote the output Q-function and value function from Algorithm 2 as Q̂ =

Q̂M and V̂ = V̂M . Invoking Lemma 12 with M ≥ log σN
1−γ

log 1
γ

directly leads to∥∥Q̂− Q̂?,σpe

∥∥
∞ ≤

1

σN
(235)

and therefore∥∥V̂ − V̂ ?,σpe

∥∥
∞ ≤ max

s

∣∣∣max
a

Q̂(s, a)−max
a

Q̂?,σpe (s, a)
∣∣∣ ≤ ∥∥Q̂− Q̂?,σpe

∥∥
∞ ≤

1

σN
. (236)

The proof of Theorem 3 is separated into several key steps as follows.

Step 1: controlling the uncertainty via leave-one-out analysis. Given access to only a finite
number of samples for estimating the nominal transition kernel P 0, we need to efficiently control∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PV̂ − inf

P∈Uσ(P 0
s,a)
PV̂

∣∣∣∣∣
across the robust value iterations, where V̂ is statistically dependent on P̂ 0

s,a (since P̂ 0
s,a will be

reused in the update rule (cf. (178)) for all the iterations). A naive treatment via the standard covering
arguments will unfortunately lead to rather loose bounds (Zhou et al., 2021; Panaganti & Kalathil,
2022; Yang et al., 2021). To overcome this challenge, we resort to the leave-one-out analysis—
pioneered by Agarwal et al. (2020); Li et al. (2020; 2022) in the context of model-based RL—to
decouple the statistical dependency. The results are summarized in the following lemma, with the
proof provided in Appendix E.2.1.
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Lemma 14. Instate the assumptions in Theorem 3. Then for all vector Ṽ obeying
∥∥Ṽ − V̂ ?,σpe

∥∥
∞ ≤

1
σN and ‖Ṽ ‖∞ ≤ 1

1−γ , with probability at least 1− δ, one has∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ

∣∣∣∣∣ ≤ min

 cb
σ(1− γ)

√√√√ log( 2(1+σ)N3S
(1−γ)δ )

P̂min(s, a)N(s, a)
+

4

Nσ(1− γ)
,

1

1− γ


(237)

for all (s, a) ∈ S ×A. In addition, for all (s, a) ∈ Cb, with probability at least 1− δ, one has

Pmin(s, a)

8 log(NS/δ)
≤ P̂min(s, a) ≤ e2Pmin(s, a). (238)

Step 2: establishing the pessimism property. Armed with Lemma 14, we aim to show the key
property that

∀(s, a) ∈ S ×A : Q̂(s, a) ≤ Qπ̂,σ(s, a), V̂ (s) ≤ V π̂,σ(s). (239)

Similar to the finite-horizon setting, it suffices to focus on verifying the former assertion in (239).
Towards this, we first recall that the fixed point Q̂?,σpe of the pessimistic robust Bellman operator
T̂ σpe(·) (cf. (173)) obeys

Q̂?,σpe = T̂ σpe(Q̂?,σpe ) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σpe − b

(
s, a
)
, 0

}
. (240)

If Q̂?,σpe (s, a) = 0. Given the initialization Q̂0 = 0, invoking Lemma 12 gives

Q̂(s, a) = Q̂M (s, a) ≤ Q̂?,σpe (s, a) = 0.

As a result,Qπ̂,σ(s, a) ≥ 0 = Q̂(s, a) as desired. Therefore, it boils down to examine the case when
Q̂?,σpe (s, a) > 0. One has

Q̂(s, a)
(i)

≤ Q̂?,σpe (s, a) +
1

σN
= r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σpe − b

(
s, a
)

+
1

σN

≤ r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − b(s, a) +

1

σN
+ γ

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σpe − inf

P∈Uσ(P̂ 0
s,a)
PV̂

∣∣∣∣∣
(ii)

≤ r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − b(s, a) +

2

σN

≤ r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV̂ − b(s, a) +

2

σN
+ γ

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − inf

P∈Uσ(P 0
s,a)
PV̂

∣∣∣∣∣
≤ r(s, a) + γ inf

P∈Uσ(P 0
s,a)
PV̂ , (241)

where (i) follows from (235), (ii) arises from (236) and the basic fact that infimum operator is 1-
contraction w.r.t ‖ · ‖∞, and the last inequality holds by the definition of b(s, a) (cf. (175)) and
Lemma 14. Putting the above inequality together with the robust Bellman equation (cf. (164a))
pertaining to Qπ̂,σ(s, a), we arrive at

Qπ̂,σ(s, a)− Q̂(s, a) ≥ r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV π̂,σ −

(
r(s, a) + γ inf

P∈Uσ(P 0
s,a)
PV̂

)

= γ

(
inf

P∈Uσ(P 0
s,a)
PV π̂,σ − inf

P∈Uσ(P 0
s,a)
PV̂

)
(i)
= γ

(
P̃s,aV

π̂,σ − inf
P∈Uσ(P 0

s,a)
PV̂

)
≥ γP̃s,a

(
V π̂,σ − V̂

)
,
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where (i) holds by setting P̃s,a = argminP∈Uσ(P 0
s,a)
PV π̂,σ . Consequently, one has

min
s,a

[
Qπ̂,σ(s, a)− Q̂(s, a)

]
≥ min

s,a

[
γP̃s,a

(
V π̂,σ − V̂

)] (i)

≥ γmin
s

[
V π̂,σ(s)− V̂ (s)

]
= γmin

s

[
Qπ̂,σ

(
s, π̂(s)

)
− Q̂

(
s, π̂(s)

)]
≥ γmin

s,a

[
Qπ̂,σ

(
s, a
)
− Q̂

(
s, a
)]
, (242)

where (i) follows from P̃s,a ∈ ∆(S) for all (s, a) ∈ S × A. Noting that 0 ≤ γ < 1, we conclude
Qπ̂,σ(s, a)− Q̂(s, a) ≥ 0 for all (s, a) ∈ S ×A. This establishes the claim (239).

Step 3: bounding V ?,σ(ρ) − V π̂,σ(ρ). In view of the pessimistic property (cf. (239)), it follows
that

V ?,σ(s)− V π̂,σ(s) ≤ V ?,σ(s)− V̂ (s). (243)

Towards this, note that

V̂ (s) = max
a

Q̂(s, a) ≥ Q̂
(
s, π?(s)

) (i)

≥ Q̂?,σpe

(
s, π?(s)

)
− 1

σN
(ii)

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ ?,σpe − b
(
s, π?(s)

)
− 1

σN

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ − b(s, π?(s))− 1

σN

− γ

∣∣∣∣∣∣ inf
P∈Uσ

(
P̂ 0
s,π?(s)

)PV̂ ?,σpe − inf
P∈Uσ

(
P̂ 0
s,π?(s)

)PV̂
∣∣∣∣∣∣

(iii)

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ − b(s, π?(s))− 2

σN

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV̂ − b(s, π?(s))− 2

σN

− γ

∣∣∣∣∣∣ inf
P∈Uσ

(
P̂ 0
s,π?(s)

)PV̂ − inf
P∈Uσ

(
P 0
s,π?(s)

)PV̂
∣∣∣∣∣∣

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV̂ − 2b
(
s, π?(s)

)
, (244)

where (i) follows from (235), (ii) holds by applying (240), (iii) arises from (236), and the basic
fact that the infimum operator is a 1-contraction w.r.t. ‖ · ‖∞, and the final inequality holds by the
definition of b(s, a) (see (175)) and Lemma 14.

To continue, invoking the robust Bellman optimality equation in (164b) gives

V ?,σ(s) = Q?,σ
(
s, π?(s)

)
= r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV ?,σ.
Combining the above relation with (244), we arrive at

V ?,σ(s)− V̂ (s) ≤ γ inf
P∈Uσ

(
P 0
s,π?(s)

)PV ?,σ − γ inf
P∈Uσ

(
P 0
s,π?(s)

)PV̂ + 2b
(
s, π?(s)

)
≤ γP̂ inf

s,π?(s)

(
V ?,σ − V̂

)
+ 2b

(
s, π?(s)

)
, (245)

where the final inequality holds evidently, by introducing

P̂ inf
s,π?(s) := argmin

P∈Uσ
(
P 0
s,π?(s)

) PV̂ . (246)
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Before continuing, for convenience, let us introduce a matrix P̂ inf ∈ RS×S and a vector b? ∈ RS ,
where their s-th rows (resp. entries) are defined as[

P̂ inf
]
s,·

= P̂ inf
s,π?(s), and b?(s) = b

(
s, π?(s)

)
. (247)

With these notation in hand, averaging (245) over the initial state distribution ρ leads to

V ?,σ(ρ)− V̂ (ρ) =
∑
s∈S

ρ(s)
(
V ?,σ(s)− V̂ (s)

)
≤ γ

∑
s∈S

ρ(s)P̂ inf
s,π?(s)

(
V ?,σ − V̂

)
+ 2

∑
s∈S

ρ(s)b
(
s, π?(s)

)
= γρ>P̂ inf

(
V ?,σ − V̂

)
+ 2ρ>b?. (248)

Applying the above result recursively gives

V ?,σ(ρ)− V̂ (ρ) ≤ γρ>P̂ inf
(
V ?,σ − V̂

)
+ 2ρ>b?

≤ γ
(
γρ>P̂ inf

)
P̂ inf

(
V ?,σ − V̂

)
+ 2

(
γρ>P̂ inf

)
b? + 2ρ>b?

≤ · · · ≤
{

lim
i→∞

γiρ>
(
P̂ inf

)i (
V ?,σ − V̂

)}
+ 2ρ>

∞∑
i=0

γi
(
P̂ inf

)i
b?

(i)

≤ 2ρ>
∞∑
i=0

γi
(
P̂ inf

)i
b? = 2ρ>

(
I − γP̂ inf

)−1
b?, (249)

where (i) holds by
∣∣ρ> (P̂ inf

)i (
V ?,σ − V̂

) ∣∣ ≤ 1
1−γ for all i ≥ 0, and that

limi→∞ γiρ>
(
P̂ inf

)i (
V ?,σ − V̂

)
= 0 since limi→∞ γi = 0 for all 0 ≤ γ < 1.

To further characterize the above performance gap, invoking the definition of d?,P (cf. (165) and
(166a)), we arrive at(

d?,P̂
inf
)>

= (1− γ)ρ>
∞∑
t=0

γt
(
P̂ inf

)t
= (1− γ)ρ>

(
I − γP̂ inf

)−1
. (250)

Plugging the above expression back into (249), and combining with(243), yields

V ?,σ(ρ)− V π̂,σ(ρ) ≤ V ?,σ(ρ)− V̂ (ρ) ≤ 2

1− γ

〈
d?,P̂

inf

, b?
〉
. (251)

Step 4: controlling
〈
d?,P̂

inf

, b?
〉

using concentrability. Note that P̂ inf ∈ Uσ(P 0) (see (246)

and (247)), which in words means P̂ inf is some transition kernel inside Uσ(P 0) — the uncertainty
set around the nominal kernel P 0. Similar to the finite-horizon case, observing that we can ex-
press

〈
d?,P̂

inf

, b?
〉

=
∑
s∈S d

?,P̂ inf

(s)b?(s), we divide the states into two cases and control them
separately.

• Case 1: s ∈ S where max
P∈Uσ

(
P 0
) d?,P (s, π?(s)) = 0. Since P̂ inf ∈ Uσ(P 0), one has

0 ≤ d?,P̂
inf

(s) = d?,P̂
inf (

s, π?(s)
)
≤ max
P∈Uσ

(
P 0
) d?,P (s, π?(s)) = 0,

which consequently indicates

d?,P̂
inf

(s) = 0. (252)
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• Case 2: s ∈ S where max
P∈Uσ

(
P 0
) d?,P (s, π?(s)) > 0. For any such state s, we claim that

db,P
0(
s, π?(s)

)
> 0 and

(
s, π?(s)

)
∈ Cb. (253)

This is due to Assumption 2, which requires C?rob to be finite given the numerator is positive:

max
P∈Uσ(P 0)

min
{
d?,P

(
s, π?(s)

)
, 1
S

}
db,P 0

(
s, π?(s)

) = max
P∈Uσ(P 0)

min
{
d?,P (s), 1

S

}
db,P 0(s, a)

≤ C?rob <∞. (254)

To continue, invoking the fact in (234) with
(
s, π?(s)

)
∈ Cb gives

N
(
s, π?(s)

)
≥
Ndb,P

0(
s, π?(s)

)
12

(i)

≥
N maxP∈Uσ(P 0) min

{
d?,P

(
s, π?(s)

)
, 1
S

}
12C?rob

≥
N min

{
d?,P̂

inf

(s), 1
S

}
12C?rob

, (255)

where (i) holds by Assumption 2, and the last inequality holds by P̂ inf ∈ Uσ(P 0). With this in
mind, we can control the pessimistic penalty b?(s) (cf. (175)) by

b?(s) ≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min

(
s, π?(s)

)
N
(
s, π?(s)

) +
4

σN(1− γ)
+

2

σN

(i)

≤ 4cb
σ(1− γ)

√√√√ log2
(

2(1+σ)N3S
(1−γ)δ

)
Pmin

(
s, π?(s)

)
N
(
s, π?(s)

) +
4

σN(1− γ)
+

2

σN

≤ 16cb
σ(1− γ)

√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

} +
6

σN(1− γ)

≤ 20cb
σ(1− γ)

√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

} ,
where (i) arises from (238), the penultimate inequality follows from (255), and the last inequality
holds as long as cb is large enough.

Summing up the above two cases, we arrive at〈
d?,P̂

inf

, b?
〉

=
∑
s∈S

d?,P̂
inf

(s)b?(s)

≤
∑
s∈S

d?,P̂
inf

(s)
20cb

σ(1− γ)

√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

}
(i)

≤ 20cb
σ(1− γ)

√√√√√∑
s∈S

d?,P̂ inf (s)
C?rob log2

(
2(1+σ)N3S

(1−γ)δ

)
Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

}√∑
s∈S

d?,P̂ inf (s)

≤ 40cb
σ(1− γ)

√√√√SC?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
P ?minN

, (256)

where (i) arises from Cauchy-Schwarz inequality, and the last inequality holds since
Pmin

(
s, π?(s)

)
≥ P ?min for all s ∈ S (see (232)) and the following fact (which has been established

in (66)): ∑
s∈S

d?,P̂
inf

(s)

min
{
d?,P̂ inf (s), 1

S

} ≤ 2S.
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Finally, inserting (256) back into (251), with probability at least 1− 2δ, one has

V ?,σ(ρ)− V π̂,σ(ρ) ≤ 2

1− γ

〈
d?,P̂

inf

, b?
〉
≤ 80cb
σ(1− γ)2

√√√√SC?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
P ?minN

,

which concludes the proof.

E.2.1 PROOF OF LEMMA 14

We first note that the second assertion in (238) is the counterpart of (48), which can be verified
following the same argument in Appendix C.2.1. For brevity, we omit its proof, and shall focus on
verifying (237).

To begin with, we consider the situation when N(s, a) = 0. In this case, (237) can be easily verified
since ∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PV − inf

P∈Uσ(P 0
s,a)
PV

∣∣∣∣∣ (i)= inf
P∈Uσ(P 0

s,a)
PV ≤ ‖V ‖∞

(ii)

≤ 1

1− γ
, (257)

where (i) follows from the fact P̂ 0
s,a = 0 when N(s, a) = 0 (see (171)), and (ii) arises from the

assumption ‖V ‖∞ ≤ 1
1−γ . Consequently, in the remainder of the proof, we focus on verifying

(237) when N(s, a) > 0. Let us first introduce the counterpart of the claim (47) in Lemma 8 as
follows.

Lemma 15. For all (s, a) ∈ S ×A with N(s, a) > 0, consider any vector V ∈ RS independent of
P̂ 0
s,a obeying ‖V ‖∞ ≤ 1

1−γ . With probability at least 1− δ, one has∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV − inf

P∈Uσ(P 0
s,a)
PV

∣∣∣∣∣ ≤ cb
σ(1− γ)

√
log(NSδ )

P̂min(s, a)N(s, a)
. (258)

Proof. The proof follows from the same arguments in Appendix C.2.2, with small modifications to
adapt to the infinite-horizon setting; we omit the details for conciseness.

Armed with the above point-wise concentration bound, we are now ready to derive the uniform
concentration bound desired as in Lemma 14, counting on a leave-one-out argument divided into
the following steps. The crux of the analysis is to construct a set of auxiliary RMDPs, each different
from the empirical RMDP only at a single state but possessing crucial statistical independence that
facilitates the concentration arguments, which can then be transferred back to the empirical RMDP
via a simple triangle inequality.

Step 1: construction of auxiliary RMDPs with state-absorbing empirical nominal transitions.
Denote the empirical infinite-horizon robust MDP with the nominal transition kernel P̂ 0 as M̂rob.
Then, for each state s and each scalar u ≥ 0, we can construct an auxiliary robust MDP M̂s,u

rob so
that it is the same as M̂rob except the properties in state s. To be precise, let the nominal transition
kernel and reward function of M̂s,u

rob be P s,u and rs,u, which are given respectively as{
P s,u(s′ | s, a) = 1(s′ = s) for all (s′, a) ∈ S ×A,
P s,u(· | s̃, a) = P̂ 0(· | s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s,

(259)

and {
rs,u(s, a) = u for all a ∈ A,
rs,u(s̃, a) = r(s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s.

(260)

Clearly, state s of the auxiliary M̂s,u
rob is absorbing, meaning that the state stays at s once entering it.

This removes the randomness of P̂ 0
s,a for all a ∈ A in state s, a key property we will leverage later.
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With the robust MDP M̂s,u
rob in hand, we still need to complete the design by defining the corre-

sponding penalty term for all (s̃, a) ∈ S ×A, which is given as follows

bs,u(s̃, a) :=

min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
P s.umin (s,a)N(s̃,a) + 4

Nσ(1−γ) ,
1

1−γ

}
+ 2

σN if N(s̃, a) > 0,

1
1−γ + 2

σN otherwise,
(261)

where P s,umin (s̃, a) is defined as the smallest positive state transition probability over the nominal
kernel P s,u(· | s̃, a):

∀(s̃, a) ∈ S ×A : P s,umin (s̃, a) := min
s′

{
P s,u(s′ | s̃, a) : P s,u(s′ | s̃, a) > 0

}
. (262)

In view of (259) and (174), it holds that P s,umin (s̃, a) = P̂min(s̃, a), and therefore bs,u(s̃, a) = b(s̃, a),
when s̃ 6= s for any u ≥ 0. Armed with the above definitions, the pessimistic robust Bellman
operator T̂ σs,u(Q)(·) of the RMDP M̂s,u

rob is defined as

∀(s, a) ∈ S ×A : T̂ σs,u(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P s,us,a )
PV − bs,u(s, a), 0

}
. (263)

Step 2: fixed-point equivalence between M̂rob and the auxiliary RMDP M̂s,u
rob . Recall that

Q̂?,σpe is the unique fixed point of T̂ σpe(·) with the corresponding value V̂ ?,σpe . We claim that there
exists some choice of u such that the fixed point of T̂ σs,u(Q)(·) coincides with that of T̂ σpe(·). In
particular, given a state s, we show the following choice of u suffices:

u? := (1− γ)V̂ ?,σpe (s) + min

 cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P s.umin (s, a)N(s, a)

+
4

Nσ(1− γ)
,

1

1− γ

+
2

σN
.

(264)

Towards this, we shall break our arguments in two different cases.

• For state s′ 6= s. In this case, for any a ∈ A, it can be verified that

max

{
rs,u

?

(s′, a) + γ inf
P∈Uσ(P s,u

?

s′,a )

PV̂ ?,σpe − bs,u
?

(s′, a), 0

}

= max

{
r(s′, a) + γ inf

P∈Uσ(P̂ 0
s′,a)
PV̂ ?,σpe − b(s′, a), 0

}
= T̂ σpe(Q̂?,σpe )(s′, a) = Q̂?,σpe (s′, a), (265)

where the second line follows from the definitions in (260) and (259) as well as bs,u
?

(s′, a) =
b(s′, a) when s′ 6= s, the last line arises from the definition of the pessimistic Bellman operator
(173), and that Q̂?,σpe is the fixed point.

• For state s. In this case, for any u and a ∈ A, observing that P s,u(s′ | s, a) has only one positive
entry equal to 1 (cf. (259)), applying (262) yields

P s,umin (s, a) = 1. (266)

Plugging the above fact into (261) leads to

bs,u(s, a) =

min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
N(s,a) + 4

Nσ(1−γ) ,
1

1−γ

}
+ 2

σN if N(s, a) > 0,

1
1−γ otherwise

(267)
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for all a ∈ A. As a result, we have for any a ∈ A:

max

{
rs,u

?

(s, a) + γ inf
P∈Uσ(P s,u

?
s,a )

PV̂ ?,σpe − bs,u
?

(s, a), 0

}
= max

{
u? + γV̂ ?,σpe (s)− bs,u

?

(s, a), 0
}

= max
{

(1− γ)V̂ ?,σpe (s) + γV̂ ?,σpe (s), 0
}

= V̂ ?,σpe (s), (268)

where the second line follows from the fact that P s,u
?

s,a is a singleton distribution at state s, and
hence Uσ(P s,u

?

s,a ) = P s,u
?

s,a by the definition of the KL uncertainty set, and the second line follows
from plugging in the definition of u? in (264) and bs,u

?

(s, a) in (267).

Summing up the above two cases, we establish that there exists a fixed point Q̂?,σs,u? of the operator
T̂ σs,u?(·) if we let{

Q̂?,σs,u?(s, a) = V̂ ?,σpe (s) for all a ∈ A,
Q̂?,σs,u?(s′, a) = Q̂?,σpe (s′, a) for all s′ 6= s and a ∈ A.

(269)

Consequently, we confirm the existence of a fixed point of the operator T̂ σs,u?(·). In addition, its
corresponding value function V̂ ?,σs,u? also coincides with V̂ ?,σpe .

Step 3: building an ε-net for all reward values u. It is easily verified that the reward u? obeys

u? ≤ 1 + min

 cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P s,umin (s, a)N(s, a)

+
4

σN(1− γ)
,

1

1− γ

+
2

σN
≤ 2

σ
+

2

1− γ
.

(270)

As a result, we construct an ε-net (Vershynin, 2018) of the line segment within the range
[
0, 2

σ+ 2
1−γ

]
with ε = 1

σN as follows:

Uε :=

{
i

σN
| 1 ≤ i ≤

⌊
σN

(
2

σ
+

2

1− γ

)⌋}
. (271)

Armed with this covering net Uε, we can construct an auxiliary robust MDP M̂s,u
rob and its corre-

sponding pessimistic robust Bellman operator for each u ∈ Uε (see Step 1). Following the same
arguments in the proof of Lemma 11 (cf. Appendix E.1.1), for each u ∈ Uε, it can be verified that
there exists a unique fixed point Q̂?,σs,u of the operator T̂ σs,u(·), which satisfies 0 ≤ Q̂?,σs,u ≤ 1

1−γ · 1.

In turn, the corresponding value function also satisfies ‖V̂ ?,σs,u ‖∞ ≤ 1
1−γ .

In view of the definitions in (259) and (260), for all u ∈ Uε, M̂s,u
rob is statistically independent from

P̂ 0
s,a, which indicates the independence between V̂ ?,σs,u and P̂ 0

s,a. This makes it possible to invoke
Lemma 15, and taking the union bound over all samples N and u ∈ Uε give that, with probability at
least 1− δ, ∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σs,u − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u

∣∣∣∣∣ ≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

(272)

hold simultaneously for all (s, a, u) ∈ S ×A× Uε with N(s, a) > 0.

Step 4: a covering argument. Recalling that u? ∈
[
0, 2

σ + 2
1−γ

]
(see (270)), we can always find

some ũ ∈ Uε such that |ũ− u?| ≤ 1
σN . Consequently, plugging in the operator in (263) yields

∀Q ∈ RSA :
∥∥∥T̂ σs,ũ(Q)− T̂ σs,u?(Q)

∥∥∥
∞

(i)

≤ |ũ− u?| ≤ 1

σN
, (273)
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where (i) holds by bs,ũ(s, a) = bs,u
?

(s, a) for s (see (267)) and bs,ũ(s′, a) = bs,u
?

(s′, a) = b(s′, a)
for all s′ 6= s.

With this in mind, we observe that the fixed points of T̂ σs,ũ(·) and T̂ σs,u?(·) obey∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ =
∥∥∥T̂ σs,ũ(Q̂?,σs,ũ)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞

≤
∥∥∥T̂ σs,ũ(Q̂?,σs,ũ)− T̂ σs,ũ(Q̂?,σs,u?)

∥∥∥
∞

+
∥∥∥T̂ σs,ũ(Q̂?,σs,u?)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞

≤ γ
∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ +

1

σN
, (274)

which directly indicates that ∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ ≤ 1

(1− γ)σN
(275)

and ∥∥∥V̂ ?,σs,ũ − V̂
?,σ
s,u?

∥∥∥
∞
≤
∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ ≤ 1

(1− γ)σN
. (276)

Armed with the above facts, invoking the identity V̂ ?,σpe = V̂ ?,σs,u? established in Step 2 gives∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σpe − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣ =

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,u? − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣
(i)

≤

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,ũ

∣∣∣∣∣
+

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣+

∣∣∣∣∣ inf
P∈Uσ(P 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣
(ii)

≤

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,ũ

∣∣∣∣∣+
2

Nσ(1− γ)

≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

+
2

Nσ(1− γ)
, (277)

where (i) holds by applying the triangle inequality, (ii) arises from (276) and the basic fact that
infimum operator is a 1-contraction w.r.t. ‖ · ‖∞, and the final inequality follows from (272).

Step 5: finishing up. Now we are positioned to finish up the proof. For all vector Ṽ obeying∥∥Ṽ − V̂ ?,σpe

∥∥
∞ ≤

1
σN and ‖Ṽ ‖∞ ≤ 1

1−γ , we apply the triangle inequality and invoke (277) to reach∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ

∣∣∣∣∣ ≤
∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σpe − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣
+

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣+

∣∣∣∣∣ inf
P∈Uσ(P 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣
≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

+
4

Nσ(1− γ)
. (278)

Finally, we complete the proof by verifying that∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ

∣∣∣∣∣ ≤ ∥∥∥Ṽ ∥∥∥∞ ≤ 1

1− γ
. (279)
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E.2.2 PROOF OF (234)

For all (s, a) ∈ Cb, one has

Ndb,P
0(
s, a
) (i)

≥
c1d

b,P 0(
s, a
)

log(NS/δ)

dbminP
b
min

(ii)

≥ c1 log(NS/δ)

P b
min

(iii)

≥ c1 log(NS/δ)

Pmin(s, a)
, (280)

where (i) follows from the condition (185), (ii) arises from the definition that dbmin ≤ db,P
0

(s, a) for
all (s, a) ∈ Cb, and (iii) follows from the definition in (232). In particular, when c1 is large enough,

one has 2
3 log NS

δ < Ndb,P
0
(s,a)

12 . To continue, we recall a key property of N(s, a) (cf. (170)) in the
following lemma.
Lemma 16 ((Li et al., 2022, Lemma 7)). Fix δ ∈ (0, 1). With probability at least 1−δ, the quantities
{N(s, a)} in (170) obey

max

{
N(s, a),

2

3
log

NS

δ

}
≥ Ndb,P

0

(s, a)

12
(281)

simultaneously for all (s, a) ∈ S ×A.

Consequently, Lemma 16 tells us that with probability at least 1− δ,

N(s, a) ≥ Ndb,P
0

(s, a)

12
≥ c1 log(NS/δ)

12Pmin(s, a)
(282)

as long as c1 is large enough. Last but not least, taking the basic fact x ≤ − log(1 − x) for all
x ∈ [0, 1], the last inequality of (234) can be verified by

c1 log(NS/δ)

12Pmin(s, a)
≥ −

log 2NS
δ

log(1− Pmin(s, a))
. (283)

E.3 PROOF OF THEOREM 4

Similar to the finite-horizon case, we shall first construct some hard discounted infinite-horizon
RMDP instances and then characterize the sample complexity requirements over these instances.

E.3.1 CONSTRUCTION OF HARD PROBLEM INSTANCES

Construction of a collection of hard MDPs. Suppose there are two MDPs{
Mφ =

(
S,A, Pφ, r, γ

)
|φ = {0, 1}

}
.

Here, γ is the discount parameter, S = {0, 1, . . . , S − 1} is the state space, and A = {0, 1} is the
action space. The transition kernel Pφ of either constructed MDPMφ is defined as

Pφ(s′ | s, a) =


p1(s′ = 2) + (1− p)1(s′ = 1) if (s, a) = (0, φ)
q1(s′ = 2) + (1− q)1(s′ = 1) if (s, a) = (0, 1− φ)
1(s′ = s) if s = 1 or s = 2
q1(s′ = s) + (1− q)1(s′ = 1) if s > 2

, (284)

where p and q are set as
p = γ + ∆ and q = γ (285)

for some γ and ∆ obeying

1− γ ≤ 1/e8 ≤ 1

2
and ∆ ≤ 1

2
(1− γ). (286)

Here, ∆ is some value that will be introduced later. Consequently, applying (285) directly leads to

1 ≥ p ≥ q ≥ γ ≥ 1

2
. (287)

Note that state 1 and 2 are absorbing states. In addition, if the initial distribution is supported on
states {0, 1, 2}, the MDP will always stay in the state {1, 2} after the first transition.

Finally, we define the reward function as

r(s, a) =

{
1 if s = 0 or s = 2
0 otherwise . (288)
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Construction of the history/batch dataset. Define a useful state distribution (only supported on
the state subset {0, 1, 2}) as

µ(s) =
1

CS
1(s = 0) +

1

CS
1(s = 2) +

(
1− 2

CS

)
1(s = 1), (289)

where C > 0 is some constant that determines the robust concentrability coefficient C?rob (which
will be made clear soon) and obeys

1

CS
≤ 1

4
. (290)

A batch dataset—consists of N i.i.d samples {(si, ai, s′i)}1≤i≤N—is generated over the nominal
environmentMφ according to (167), with the behavior distribution chosen to be:

∀(s, a) ∈ S ×A : db(s, a) =
µ(s)

2
. (291)

Additionally, we choose the following initial state distribution:

ρ(s) =

{
1, if s = 0

0, otherwise
. (292)

Uncertainty set of the transition kernels. We next describe the radius σ of the uncertainty set in
our construction of the robust MDPs, along with some useful properties, which are similar to the
finite-horizon case. To begin with, with slight abuse of notation, we introduce an important constant
β defined as

β :=
1

2
log

1

1− γ
≥ 4. (293)

The perturbed transition kernels inMφ is limited to the following uncertainty set

Uσ(Pφ) := ⊗ Uσ
(
Pφs,a

)
, Uσ(Pφs,a) :=

{
Ps,a ∈ ∆(S) : KL

(
Ps,a ‖ Pφs,a

)
≤ σ

}
, (294)

where Pφs,a := Pφ(· | s, a) ∈ [0, 1]1×S . Moreover, the radius of the uncertainty set σ obeys(
1− 3

β

)
log

1

1− γ
≤ σ ≤

(
1− 2

β

)
log

1

1− γ
. (295)

For any (s, a, s′) ∈ S × A × S , we denote the infimum entry of the perturbed transition kernel
Ps,a ∈ Uσ(Pφs,a) moving to the next state s′ as

Pφ(s′ | s, a) := inf
Ps,a∈Uσ(Pφs,a)

P (s′ | s, a). (296)

As shall be seen, the transition from state 0 to state 2 plays an important role in the analysis, for
convenience, we denote

p := Pφ(2 | 0, φ), q := Pφ(2 | 0, 1− φ). (297)

With these definitions in place, we summarize some useful properties of the uncertainty set in the
following lemma, which parallels Lemma 9 in the finite-horizon case.

Lemma 17. Suppose β satisfies (293) and the uncertainty level σ satisfies (295). The perturbed
transition kernels obey

p ≥ q ≥ 1

β
. (298)

Proof. The proof follows from the same arguments as Appendix C.3.4 by replacing H with 1
1−γ ;

we omit the details for brevity.
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Value functions and optimal policies. Now we are positioned to derive the corresponding robust
value functions and identify the optimal policies. For any MDPMφ with the above uncertainty set,
denote π?φ as the optimal policy. In addition, we denote the robust value function of any policy π
(resp. the optimal policy π?φ) as V π,σφ (resp. V ?,σφ ). Then, we introduce the following lemma which
describes some important properties of the robust value functions and optimal policies.
Lemma 18. For any φ = {0, 1} and any policy π, one has

V π,σφ (0) = 1 +
γ

1− γ
zπφ , (299)

where zπφ is defined as

zπφ := pπ(φ | 0) + qπ(1− φ | 0). (300)

In addition, the optimal value functions and the optimal policies obey

V ?,σφ (0) = 1 +
γ

1− γ
p, V ?,σφ (2) =

1

1− γ
, V ?,σφ (s) = 0 for s = 1 or s > 2, (301a)

π?φ(φ | s) = 1, for s ∈ S. (301b)

Moreover, choosing S ≥ 2β, the robust single-policy clipped concentrability coefficient C?rob obeys

C?rob = 2C. (302)

Proof. See Appendix E.3.3.

E.3.2 ESTABLISHING THE MINIMAX LOWER BOUND

Now we are positioned to provide the sample complexity lower bound. In view of (18), the smallest
positive state transition probability of the optimal policy π?φ under any nominal transition kernel Pφ

with φ ∈ {0, 1} satisfies:

P ?min := min
s,s′

{
Pφ
(
s′ | s, π?φ(s)

)
: Pφ

(
s′ | s, π?φ(s)

)
> 0
}

= Pφ (1|0, φ) = 1− p. (303)

Our goal is to control the quantity w.r.t. any policy estimator π̂ based on the batch dataset and the
chosen initial distribution ρ in (292), which gives

V ?,σφ (ρ)− V π̂,σφ (ρ) = V ?,σφ (0)− V π̂,σφ (0). (304)

Towards this, we first introduce the following lemma, which parallels the claim in (112)-(113) in the
finite-horizon case.
Lemma 19. Given ε ≤ 1

256e6(1−γ) log( 1
1−γ )

, choosing ∆ = 128e6σ(1− q)ε(1− γ) ≤ σ(1−γ)
2 log( 1

1−γ )
≤

1
2 (1− γ), one has for any policy π̂,

V ?,σφ (0)− V π̂,σφ (0) ≥ 2ε
(
1− π̂(φ | 0)

)
.

Proof. This lemma follows from the same arguments as Appendix C.3.6 except replacing H with
1

1−γ under the additional condition γ ≥ 1
2 ; we omit the details for brevity.

Armed with this lemma, following the same arguments in Appendix C.3.2, we can complete the
proof by observing that: let c1 be some sufficient large constant, as long as the sample size is
beneath

N ≤ SC?rob log 2

4c1P ?minσ
2(1− γ)2ε2

, (305)

then we necessarily have

inf
π̂

max
φ∈{0,1}

Pφ
{
V ?,σφ (ρ)− V π̂,σφ (ρ) ≥ ε

}
≥ 1

8
, (306)

where Pφ denote the probability conditioned on that the MDP isMφ. We omit the details for brevity
and complete the proof.
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E.3.3 PROOF OF LEMMA 18

For any Mφ with φ ∈ {0, 1}, due to state absorbing, the uncertainty set becomes a singleton
containing the nominal distribution at state s = 1 and s = 2. It is easily observed that for any
policy π, the robust value functions at state s = 1 and s = 2 obey

V π,σφ (1) =

∞∑
t=0

γt · 0 = 0, (307a)

V π,σφ (2) =

∞∑
t=0

γt · 1 =
1

1− γ
, (307b)

since r(1, a) = 0 and r(2, a) = 1. In addition, for state s > 2, the perturbed transition kernel is
supported on itself and state 1, both of which receive a reward of 0 by design (288), leading to

V π,σφ (s) =

∞∑
t=0

γt · 0 = 0, for s > 2. (307c)

Moving onto the remaining states, the robust value function of state 0 satisfies

V π,σφ (0) = Ea∼π(· | 0)

[
r(0, a) + γ inf

P∈Uσ(Pφ0,a)
PV π,σφ

]
(i)
= 1 + γπ(φ | 0) inf

P∈Uσ(Pφ0,φ)
PV π,σφ + γπ(1− φ | 0) inf

P∈Uσ(Pφ0,1−φ)
PV π,σφ

(ii)
= 1 + γπ(φ | 0)

[
pV π,σφ (2) +

(
1− p

)
V π,σφ (1)

]
(308)

+ γπ(1− φ | 0)
[
qV π,σφ (2) +

(
1− q

)
V π,σφ (1)

]
(iii)
= 1 + γV π,σφ (1) + γzπφ

[
V π,σφ (2)− V π,σφ (1)

]
= 1 +

γ

1− γ
zπφ , (309)

where (i) holds by the reward function defined in (288). To see (ii), note that (307) indicates
V π,σφ (2) ≥ V π,σφ (1), so that the infimum is obtained by picking the smallest possible mass on the
transition to state 2, provided by the definition in (297). Last but not least, (iii) follows by plugging
in the definition of zπφ in (300), and the last identity is due to (307). Consequently, taking π = π?φ,
we directly arrive at

V ?,σφ (0) = 1 +
γ

1− γ
zπ

?

φ . (310)

Observing that the function z γ
1−γ is increasing in z and zπφ is also increasing in π(φ | 0) (see the fact

p ≥ q in (298)), the optimal policy in state 0 thus obeys

π?φ(φ | 0) = 1. (311)

Finally, plugging the above fact back into (300) leads to

z?φ := zπ
?

φ = pπ?φ(φ | 0) + qπ?φ(1− φ | 0) = p, (312)

which combined with (310) yields

V ?,σφ (0) = 1 +
γ

1− γ
p. (313)

Regarding the optimal policy for the remaining states s > 0, since the action does not influence the
state transition, without loss of generality, we choose the optimal policy to obey

∀s > 0 : π?φ(φ | s) = 1. (314)
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Proof of (302). To begin with, for any MDPMφ with φ ∈ {0, 1}, recall the definition of C?rob as

C?rob = max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

. (315)

Given π?φ(φ | s) = 1 for all s ∈ S and the initial distribution ρ(0) = 1, for any P ∈ Uσ(Pφ), we
arrive at

d?,P (0, φ) = (1− γ)ρ(0)π?φ(φ | 0) = (1− γ), (316)

which holds due to that the agent transits from state 0 to other states at the first step and then will
never go back to state 0. In addition, one has for any P ∈ Uσ(Pφ),

d?,P (2, φ) = (1− γ)P (2 | 0, φ)

∞∑
t=1

γt
(
P (2 | 2, φ)

)t
= (1− γ)P (2 | 0, φ)

∞∑
t=1

γt
(i)

≥ γp ≥ 1

2β
, (317)

where (i) holds by (297) and the final inequality follows from (298) and γ ≥ 1/2. Armed with the
above facts, we observe that

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

= max
s∈{0,1,2},P∈Uσ(Pφ)

min
{
d?,P (s, φ), 1

S

}
db(s, φ)

(318)

which follows from the properties of the optimal policy in (314) and consequently d?,P (s) =
d?,P (s, φ) = 0 for all s > 2 and all P ∈ Uσ(Pφ).

To continue, we control the term in states {0, 1, 2} separately:

max
P∈Uσ(Pφ)

min
{
d?,P (2, φ), 1

S

}
db(2, φ)

(i)
=

1

Sdb(2, φ)

(ii)
=

2

Sµ(2)
= 2C, (319a)

max
P∈Uσ(Pφ)

min
{
d?,P (0, φ), 1

S

}
db(0, φ)

≤ 1

Sdb(0, φ)

(iii)
=

2

Sµ(0)
= 2C, (319b)

max
P∈Uσ(Pφ)

min
{
d?,P (1, φ), 1

S

}
db(1, φ)

≤ 1

Sdb(1, φ)

(iv)
=

2

S
(
1− 2

CS

) (v)

≤ 4

S

(vi)

≤ C, (319c)

where (i) holds by (317) and S ≥ 2β, (ii), (iii) and (iv) follow from the definitions in (291) and
(289), (v) and (vi) arise from the assumption in (290). Plugging the above results back into (318)
directly completes the proof of

C?rob = max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

= 2C.

60


	Introduction
	Challenges and premises in robust offline RL
	Main contributions
	Notation and paper organization

	Backgrounds and problem formulation
	Basics of finite-horizon episodic tabular MDPs
	Distributionally robust MDPs
	Distributionally robust offline RL

	Pessimistic robust value iteration: algorithm and theory
	Building an empirical nominal MDP
	DRVI-LCB: a pessimistic variant of robust value iteration
	Performance guarantees

	Numerical experiments
	Conclusion
	Appendix
	 Appendix
	Related works
	Preliminaries
	Properties of the robust Bellman operator
	Concentration inequalities
	Kullback-Leibler (KL) divergence

	Analysis: episodic finite-horizon RMDPs
	Proof of Theorem 1
	Proof of Lemma 8
	Proof of (48)
	Proof of (47)
	 Proof of (68)
	Proof of (78)

	Proof of Theorem 2
	Construction of hard problem instances
	Establishing the minimax lower bound
	Proof of (99)
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of the claim (113)


	Robust offline RL for discounted infinite-horizon RMDPs
	Backgrounds on discounted infinite-horizon RMDPs
	Data collection and constructing the empirical MDP
	DRVI-LCB for discounted infinite-horizon RMDPs
	Performance guarantees

	Analysis: discounted infinite-horizon RMDPs
	Proof of auxiliary lemmas
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 14
	Proof of (234)

	Proof of Theorem 3
	Proof of Lemma 14
	Proof of (234)

	Proof of Theorem 4
	Construction of hard problem instances
	Establishing the minimax lower bound
	Proof of Lemma 18




