
The curse of (non)convexity: The case of an
Optimization-Inspired Data Pruning algorithm

Fadhel Ayed∗

Huawei Technologies
France

Soufiane Hayou∗

National University of Singapore

Abstract

Data pruning consists of identifying a subset of the training set that can be used for
training instead of the full dataset. This pruned dataset is often chosen to satisfy
some desirable properties. In this paper, we leverage some existing theory on
importance sampling with Stochastic Gradient Descent (SGD) to derive a new prin-
cipled data pruning algorithm based on Lipschitz properties of the loss landscape.
The goal is to identify a training subset that accelerates training (compared to
random data pruning). We call this algorithm LiPrune. We illustrate cases where
LiPrune outperforms existing methods and discuss the limitations and failures of
this algorithm in the context of deep learning.

1 Introduction
Data pruning aims at selecting a fraction of the most informative examples in a large training dataset.
This is done once, usually at initialization of after a few iterations, and the coreset remains unchanged
thereafter. It is an old topic that has amassed a large body of works [Welling, 2009, Chen et al., 2012,
Feldman et al., 2011, Huggins et al., 2016, Campbell and Broderick, 2019]. The main objective of
data pruning is to reduce the computational complexity and achieve faster training with a lower power
consumption. Applications include: 1) neural architecture search (NAS) where models trained with a
small fraction of the data serve as a proxy to quickly estimate the performance of a given choice of
hyperparameters [Coleman et al., 2019]. 2) Continual/incremental learning: In the context of online
learning, in order to avoid the forgetting problem, one keeps track of the most representative examples
of past observations [Aljundi et al., 2019]. A variety of approaches can be used in order to select the
relevant examples that will constitute the coreset. Examples include Error based approaches where
the goal is to find the most ‘difficult’ examples defined as the ones that contribute the most to the
error: keeping the most foregettable examples (that change the most often from being well classified
to being misclassified during the course of the training, Toneva et al. [2018]), or the examples with
highest expected gradient norm (GraND, EL2N scores Paul et al. [2021]). Another approach is
the decision boundary based algorithms which find the examples near the decision boundary, the
points for which the prediction has the highest variation (with respect to the input space, Ducoffe and
Precioso [2018], Margatina et al. [2021]). In this work, we focus on a different question: Can we
prune the dataset in a way that accelerates training, as compared to e.g. random data pruning? We
answer this question by introducing a new data pruning algorithm, called LiPrune , based on the
Lipschitz coefficients of the loss function evaluated on single datapoints. LiPrune is designed to
accelerate the convergence of SGD in the context of convex optimization. We document cases where
LiPrune succeeds at accelerating the training (convex case) and explain why this algorithm fails in
the context of deep learning (non-convex case). A comprehensive discussion is provided at the end of
the paper.

∗Equal contribution. Correspondence to: <fadhel.ayed@huawei.com; soufiane.hayou@yahoo.fr>

I Can’t Believe It’s Not Better Workshop at NeurIPS 2022.

2 SGD, Importance Sampling, and Stochastic data pruning

For some m ≥ 1, consider an optimization problem of the form

min
w∈Rm

F (w) ≡ 1

n

n∑
i=1

fi(w) (1)

where (fi)1≤i≤n is a sequence of functions from Rm to R. Given a dataset D = {(xi, yi), i =
1, . . . , N}, we are particularly interested in two choices of the functions fi:

1. fi as point loss: in this case n = N and fi(w) = ℓ(yout(xi), yi), where yout is a neural network
and ℓ is some loss function, e.g. squared loss for regression, cross-entropy loss for classification.

2. fi as batch loss: in this case N = n × B where B ∈ N is the batch size and fi(w) =
1
B

∑B
i=1 ℓ(yout(xγ(i)), yγ(i)), and γ is a permutation of the set {1, . . . , N}. This is the standard

setting for neural networks training with SGD; batches are fixed at initialization.

When the number of functions fi’s is large, computing the full gradient ∇wF might be expensive.
Stochastic Gradient Descent (SGD) uses a randomly sampled index i from the set {1, . . . , n} to
estimate the full gradient with the noisy version∇wfi

2. At training iteration t+ 1, SGD updates the
weights according to the following rule

wt+1 = wt − η∇wfit(wt),

where it is a randomly sampled index in {1, . . . , n}, and η is the learning rate. The standard sampling
distribution of i is the uniform distribution. Let us assume that there exists a global minimum
w∗ = argminwF (w). We have the following result on the convergence of SGD.

Theorem 1 (Thm 2.1 and Cor 2.2 in Needell et al. [2014]) Assume that each fi is convex and that
∇wfi has Lipschitz constant Li such that there exists a constant Lsup with Li ≤ Lsup almost
surely. Let F (w) = Ei[fi(w)] =

1
n

∑n
i=1 fi(w) be µ−strongly convex and σ2 = Ei[∥∇wfi(w

∗)∥22].
Given ϵ > 0, and learning rate η = µϵ

2µϵLsup+2σ2 , we have E∥wt − w∗∥2 ≤ ϵ after t =

2 log(2ϵ0/ϵ)
(

Lsup

µ + σ2

ϵµ2

)
, where ϵ0 = E∥w0 − w∗∥2.

Now assume that we sample the index i according to some probability vector p = (p1, p2, . . . , pn)
such that pT1 =

∑n
i=1 pi = 1 and pi ∈ (0, 1). The new SGD update rule is given by

wt+1 = wt − η∇wgit(wt),

where gi(w) = 1
n pi

fi(w). The normalization by n pi is necessary so that we have an unbiased
estimate of the gradient, i.e. E[∇wgi(w)] = ∇F (w). This is equivalent to the minimization
problem Eq. (1) when fi is replaced by gi. Assuming that ∇wfi has Lipschitz constant Li, the
function gi has Lipschitz constant Li

npi
. Therefore, the new Lsup (which depends on p) is given by

Lsup(p) = supi
Li

npi
. From Theorem 1, the convergence rate is given by 1 − 2ηµ(1 − ηLsup(p)),

and a smaller Lsup(p) results in faster convergence. Hence, a natural choice of the probability vector
p would be the one that minimizes Lsup(p), i.e. p∗ = argminp Lsup(p) under the condition that
pT1 = 1. This has a closed-form solution given by p∗i = Li

L̄
where L̄ = 1

n

∑n
i=1 Li (Needell et al.

[2016]). Hence, choosing probabilities pi ∝ Li is optimal for convergence speed with importance
sampling. How do we leverage this result to perform data pruning?

Interpretation. The Lipschitz constant Li encodes some information about the second order
geometry of the function fi. Assuming that fi has a second derivative, and that w ∈ C ⊂ Rm where
C is a compact set, Li represents the maximum norm eigenvalue of the Hessian matrix of fi over the
compact set C. Thus, Li captures the maximum curvature of the function fi over the set C. Hence,
sampling i according to pi ∝ Li entails giving more importance to indices i for which fi has large
curvatures. We can think of these indices as those corresponding to hard functions fi. For instance,
in the context of ordinary SGD with batch size 1 where fi(w) = ℓ(yout(xi), yi) for (xi, yi) ∈ D, the
optimal sampling scheme gives more importance to hard examples in the training procedure. For
mini-batch SGD, this corresponds to giving more importance to hard batches.

2This SGD version is slightly more general than the standard setting where the functions fi are assumed to
be equal to the value of the loss function evaluated at a single datapoint (xi, yi).

2

Stochastic pruning. Now that we understand importance sampling in SGD, how do we incorporate
data pruning in this framework? Intuitively, given some compression ratio r ∈ (0, 1)3, we can define
a stochastic variant of data pruning as performing the following SGD updates

wt+1 = wt − ηζt∇wgit(wt), (2)

where ζt ∼ B(r) is a Bernoulli variable with probability r, i.e. P(ζt = 1) = 1− P(ζt = 0) = r, it
is sampled according to some probability vector p and gi(w)

def
= 1

rnpi
fi(w). With this update rule,

when we train for n iterations, only a fraction r of the data will be sampled on average. This can
be seen a stochastic data pruning algorithm. For this algorithm, we have the following convergence
result, which is similar in flavour to that of Theorem 1.

Theorem 2 (SGD Convergence with Stochastic Data Pruning) Assume that each fi is convex and
that ∇wfi has Lipschitz constant Li such that there exists a constant Lsup with Li ≤ Lsup. Let
F (w) = Ei[fi(w)] be µ−strongly convex and σ2 = Ei[∥∇wfi(w

∗)∥22]. Consider the update rule
given by Eq. (2), where gi(w) =

1
rnpi

fi(w), r ∈ (0, 1) is the compression ratio, and it is sampled

according to some probability vector p. Suppose η < r/Lsup(p) where Lsup(p)
def
= supi

Li

npi
, then

with probability at least 1− e−
r2t
2 over the distribution of ζ = (ζ1, . . . , ζt), we have that

E∥wt − w∗∥22 ≤
(
1− 2µ

η

r

(
1− η

r
Lsup(p)

))r t/2

∥w0 − w∗∥22 +
ησ2(p)

µr
(
1− η

rLsup(p)
) ,

where σ2(p) = 1
n2

∑n
i=1

1
pi
∥∇wfi(w∗)∥22.

As a result, given some error threshold ϵ > 0, by choosing η = µrϵ
2σ2(p)+2µLsup(p)ϵ

, with probability

at least 1− e−
r2t
2 we have that E∥wt − w∗∥2 ≤ ϵ for

t = 4 log

(
2ϵ0
ϵ

)
1

r

(
Lsup(p)

µ
+

σ2(p)

µ2ϵ

)
.

The first part of the proof of Theorem 2 is similar to that of Theorem 2.1 in Needell et al. [2016] and
uses the same co-coercivity property. The second part is an application of Hoeffding’s inequality to
control the deviation of

∑
k≤t ζk from its mean.

An important consequence of Theorem 2 is that the convergence rate of the stochastic pruning
algorithm Eq. (2) is controlled by the term λ = 1− 2µη

r

(
1− η

rLsup(p)
)
; the smaller the quantity

λ, the faster the convergence. In the case of r = 1, Needell et al. [2016] characterizes the choice
of the probability vector p that minimizes the growth factor λ, which is given by pi ∝ Li. It is
straightforward to see that this choice of p is optimal for any choice of compression ratio r.

Conclusion: To maximize the factor λ, the probability vector p should be chosen as pi = Li∑
j Lj

.

Theorem 2 shows that sampling according to Li’s results in faster convergence of the stochastic
data pruning algorithm given by Eq. (2). However, our goal in data pruning is to reduce the size
of the dataset (deterministic pruning) and the stochastic pruning algorithm (Eq. (2)) does not fit in
this category (each index i has a non-zero sampling probability). Can we derive a detemrministic
version of algorithm Eq. (2) with the optimal choice of p? As straightforward deterministic variant
is obtained by using the Lipschitz coefficients Li’s as pruning scores. This consists of keeping the
samples i with the largest Li’s. We define this algorithm in the next section.

3 Deterministic pruning

The deterministic alternative of stochastic data pruning (Eq. (2)) is to rank the functions fi based
on the Lipschitz constants Li since it represents how hard the function fi is to train. We call this
algorithm LiPrune , and we describe it in Algorithm 1. LiPrune requires access to the Lipschitz
coefficients L′

is, which are generally unknown. However, approximations of Li’s can be obtained in
different ways:

3The compression ratio is the fraction of datapoints kept after pruning.

3

• Using the Gradient. Paul et al. [2021] introduced the GraNd algorithm which uses the gra-
dient norm to rank samples. Let D = {(xi, yi), i = 1, . . . , n} be a dataset and fi(w) =
ℓ(yout(xi, w), yi), where ℓ is some loss function and yout(xi, w) is the network output, and w are
the weights of the network. GraNd then computes approximations of the gradient norm given by
χi = Ew[∥∇wfi∥] where the expectation is taken over random initializations, and uses the scores
(χi)1≤i≤n as a measure of sample importance. This gradient computation is usually performed at a
fixed iteration t, e.g. pruning at initialization where t = 0, or during training where t > 0. Recall
that LiPrune uses the Lipschitz constant Li’s as sample importance scores. This Lipschitz constant
satisfies |∇wfi(w)−∇wfi(w∗)| ≤ Li∥w − w∗∥ where w∗ = argminwF (w). Hence, given some
weight w, we can use the fraction |∇wfi(w)−∇wfi(w∗)|/∥w − w∗∥ as an approximation of Li.
Assuming that∇wfi(w∗) ≈ 0 for all i, GraNd can be seen as an approximate LiPrune .

• Using the Hessian. A better estimate of the Lipschitz constants Li’s is the norm of the Hessian
matrix. Indeed, locally, we have that |∇wfi(w

′) − ∇wfi(w)| ≤ ∥∇2fi(w)∥∥w′ − w∥, and
the constant ∥∇2fi(w)∥ is tight. We propose to use the Hessian matrix norm to estimate the
Lipschitz constants Li’s. However, a major drawback of this methods is the computation cost
of the Hessian matrix norm. This cannot be performed for each example (xi, yi) in the dataset.
Hence, we restrict our analysis to batch pruning, and consider the second scenario where fi(w) =
1
B

∑
xi∈Bi

ℓ(yout(xi), yi). Intuitively, using LiPrune in batch pruning should accelerate SGD
convergence as compared to random batch pruning. We summarize this in the following hypothesis.

Hypothesis. By using the Hessian norm to estimate the Lipschitz constants Li’s in batch pruning,
we can accelerate the convergence speed with minimal loss in performance.

Algorithm 1 LiPrune

Require: Functions (fi)1≤i≤n with Lipschitz constants Li’s, com-
pression ratio r ∈ (0, 1).
si ← Li (scores)
ŝi ← sorted(s)i (ith largest score)
Tr ← ŝr×n (threshold)
I = ∅ (to be populated with indices)
for i = 1, . . . , n do

if si ≥ Tr then
I = I ∪ {i}

end if
end for
return I

In the next section, we empirically verify our hypothesis by pruning and training models until
convergence. We observe that while the loss in performance might be indeed minimal, the convergence
speed remains relatively unchanged. We conjecture that this is due to the non-convex nature of the
loss landscape, and explain why LiPrune might not be the best pruning algorithm in this case.

4 Experiments

4.1 Linear model

We consider a linear model where the data is generated using the following rule (i ∈ [N], N = 1000)

yi = w∗xi + 0.2 εi, εi
iid∼ N (0, 1), (3)

where w∗ ∈ R is fixed and xi ∼ U([−5, 5]) (uniform distribution). See Fig. 4 for an il-
lustration of the dataset. We would like to fit a linear regression model to the data D =
{(xi, yi), i = 1, . . . , N} by minimizing the mean squared loss. Is this case, the functions fi
are given by fi(w) = 1

2 (w xi − yi)
2, and the Lipschitz constants are given by Li = |xi|2. Us-

ing LiPrune in this case implies choosing the samples (xi, yi) with the largest |xi|2. To under-
stand why this would accelerate convergence, let us look at what happens with SGD. In this case

4

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Lo
ss

r = 0.1

0 5 10 15 20 25 30
0

1

2

3

4

5
r = 0.3

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

r = 0.5

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r = 0.7

No pruning
LiPrune
Random pruning

Figure 1: Data pruning using LiPrune Vs. Random
pruning in the case of the linear model Eq. (3). Test loss
(with 400 test samples) with 30 iterations of SGD with
batch size=10, learning rate=0.01, w0 = 0, and com-
pression ratios r ∈ {0.1, 0.3, 0.5, 0.7}. 95% confidence
intervals are shown (based on 100 runs). The curve cor-
responding to ‘No pruning’ does not show clearly since
it is almost the same as with random pruning.

the update rule is given by wk+1 = wk −
η(wkxik − yik)xik = (1− ηx2

ik
)wk + ηxikyik ,

and hence the convergence speed is controlled
by the contraction factor (1 − ηx2

ik
). Choos-

ing xik such that x2
ik

is large results in faster
convergence (on average). Fig. 1 shows the em-
pirical results of data pruning using LiPrune
vs. Random pruning for different compression
ratios r. Notice that the initial loss value is
large with LiPrune since we fix the initial point
of SGD to w0 = 0. The results confirm our
theoretical predictions that LiPrune accelerates
convergence. More experiments with different
hyper-parameters are provided in Appendix B.

4.2 Non-convex case: Neural Networks

To evaluate LiPrune on deep learning applica-
tions, we consider a ResNet architecture and the
CIFAR10 dataset. We use batch pruning (based on the estimation of the Hessian norm) at different
training iterations (pruning at initialization or later in training). We train the model with SGD with
batch size 128 and varying learning rates for 164 epochs. In Fig. 2, we report the test error corre-
sponding to using LiPrune with different network depths, compression ratios, and pruning iterations.
The learning rate in this case is 0.01 which is divided by 10 at epoch 80 and 120. Experiments with
different learning rates are provided in Appendix B.5. From these empirical results, we conclude that
there is no (training acceleration) advantage of using LiPrune (in the current form of batch pruning)
instead of random pruning.

0 20 40 60 80 100 120 140 160
Epoch

20

25

30

35

40

45

50

55

To
p-

1
Er

ro
r

LiPrune
Random pruning

(a) d = 14, r = 0.2, it = 5

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(b) d = 14, r = 0.5, it = 5

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60
To

p-
1

Er
ro

r
LiPrune
Random pruning

(c) d = 14, r = 0.5, it = 1

0 20 40 60 80 100 120 140 160
Epoch

20

25

30

35

40

45

50

55

To
p-

1
Er

ro
r

LiPrune
Random pruning

(d) d = 20, r = 0.2, it = 5

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

To
p-

1
Er

ro
r

LiPrune
Random pruning

(e) d = 20, r = 0.5, it = 5

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(f) d = 20, r = 0.5, it = 1

Figure 2: Empirical evaluation of LiPrune (versus Random pruning) on CIFAR10 dataset with ResNet
architecture for different depths d ∈ {14, 20}, compression ratios r ∈ {0.2, 0.5}, and pruning iteration
it ∈ {1, 5} (it = 1 corresponds to pruning at initialization, and it = 5 corresponds to pruning at the beginning
of the fifth epoch).

5 Discussion

The gains of the data pruning methods are usually less remarkable in deep learning. In particular,
they lead to limited improvement compared to naively prioritizing the samples uniformly at random.
For example, Guo et al. [2022] conduct extensive experiments with 12 of the most popular data
pruning methods on Cifar10 and imagenet datasets with popular architectures (ResNet-18, VGG-16,
Inception-v3) for variaous pruning levels, keeping from 0.1% to 100% of the data. One of the main
conclusions is that random pruning is a strong baseline: no method can outperform it systematically

5

across the different levels of pruning; Random pruning achieves the best test accuracy when pruning
90% or 70% of ImageNet data, for example. As seen in the experiment section, our method suffers
from the same caveat. We believe that two different and potentially concurrent effects can explain
these behaviors: i) modification of the asymptotic loss and ii) modification of the learning dynamic

Modification of the asymptotic loss. In essence, any pruning algorithm aims to find a better subset
than random pruning; therefore, it transforms the data distribution, i.e. the distribution of (X,Y).
This typically results in a modification of the loss landscape. We illustrate this point using the example
developed in Appendix B.4. The data generating process is given by

Y = sin(w∗X) + 0.1 ε, ε
iid∼ N (0, 1), X

iid∼ N (0, 1), (4)

where w∗ = 12, and yout(x;w) = sin(wx). In Figure 3, we compare the loss landscape that is
minimized without pruning (left figure), when keeping only 50%, and 1% of the data (middle and
right figures) with LiPrune. For r = 0.5, we can still ’easily’ identify the minimizer w∗. With r=0.01,
the task is more challenging. Though not always mentioned, we believe this behavior is common to
many popular pruning algorithms, if not most. For example, the authors of Kawaguchi and Lu [2020],
are able to derive a bound on the loss transformation induced by their pruning algorithm in the slightly
different setting of dynamic pruning. The authors prove that their algorithm asymptotically returns a
global minimum for convex losses. However, there are no such results for general non-convex losses.

(a) No pruning (b) Pruning with r = 0.5 (c) Pruning with r = 0.01

Figure 3: Asymptotic loss landscape modification due to pruning.

Modification of the learning dynamic. In the convex setting, it is sufficient to reduce the stochastic
gradient variance to converge faster, which is the base ingredient of accelerated SGD with importance
sampling. In the highly multimodal landscapes of neural network problems, the noise of the gradient
plays a pivotal role in the training dynamic and the final performance of the model. Several lines of
work argue, for instance, that stochastic procedures such as dropout or stochastic depth improve the
generalization results because they introduce additional noise that acts as an implicit regularizer [Wei
et al., 2020, Hayou and Ayed, 2021], smoothing the loss landscape. It has long been believed that the
noise in SGD favors flat minima [Heskes and Kappen, 1993]. In Xie et al. [2020], the authors adopt
a diffusion theory perspective to study the training dynamics and prove, under certain simplifying
assumptions, that the noise in SGD exponentially favors flat minima. A different line of work [Ma
et al., 2018, Zhang et al., 2019] observes that SGD has two regimes, the noise dominated (small
batches/large learning rate), characterized by the gradient noise, and curvature dominated (large
batches/small learning rate). In Smith et al. [2020], the authors empirically verify the existence of the
two regimes and confirm that the small batch size (larger noise) leads to test accuracy improvements
when compared to large batch sizes (smaller noise). The noise is particularly determinant in the early
phase of the training. We argue that a successful data pruning method should consider the changes it
induces in the training dynamics and the noise of the gradient. In Johnson and Guestrin [2018], for
example, a key component of the method is to adapt the learning rate by rescaling it by the inverse of
the estimated gradient noise reduction.

6

References
Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International

Conference on Machine Learning, pages 1121–1128, 2009.

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. arXiv preprint
arXiv:1203.3472, 2012.

Dan Feldman, Matthew Faulkner, and Andreas Krause. Scalable training of mixture models via
coresets. Advances in neural information processing systems, 24, 2011.

Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian logistic
regression. Advances in Neural Information Processing Systems, 29, 2016.

Trevor Campbell and Tamara Broderick. Automated scalable bayesian inference via hilbert coresets.
The Journal of Machine Learning Research, 20(1):551–588, 2019.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. arXiv preprint arXiv:1906.11829, 2019.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. Advances in neural information processing systems, 32, 2019.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. 2021.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
based approach. arXiv preprint arXiv:1802.09841, 2018.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault, and Nikolaos Aletras. Active learning by
acquiring contrastive examples. arXiv preprint arXiv:2109.03764, 2021.

Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm. Advances in neural information processing systems, 27,
2014.

D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent, weighted sampling, and the
randomized kaczmarz algorithm. Math. Program, 155:549–573, 2016.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning. arXiv preprint arXiv:2204.08499, 2022.

Kenji Kawaguchi and Haihao Lu. Ordered sgd: A new stochastic optimization framework for
empirical risk minimization. In International Conference on Artificial Intelligence and Statistics,
pages 669–679. PMLR, 2020.

Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout.
In International Conference on Machine Learning, pages 10181–10192. PMLR, 2020.

Soufiane Hayou and Fadhel Ayed. Regularization in resnet with stochastic depth. Advances in Neural
Information Processing Systems, 34, 2021.

Tom M Heskes and Bert Kappen. On-line learning processes in artificial neural networks. In
North-Holland Mathematical Library, volume 51, pages 199–233. Elsevier, 1993.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. arXiv preprint arXiv:2002.03495,
2020.

7

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In International Conference on
Machine Learning, pages 3325–3334. PMLR, 2018.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. Advances in neural information processing systems, 32, 2019.

Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. In International Conference on Machine Learning, pages 9058–9067. PMLR,
2020.

Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate impor-
tance sampling. Advances in Neural Information Processing Systems, 31, 2018.

8

A Proof of Theorem 2

Theorem 2 (SGD Convergence with Stochastic Data Pruning).
Assume that each fi is convex and that ∇wfi has Lipschitz constant Li such that there exists a
constant Lsup with Li ≤ Lsup almost surely. Let F (w) = Ei[fi(w)] be µ−strongly convex and
σ2 = Ei[∥∇wfi(w

∗)∥22]. Consider the following SGD update

wt+1 = wt − ηζt∇wgit(wt), (5)

where gi(w) =
1

rnpi
fi(w), r ∈ (0, 1) is the compression ratio, and i is sampled according to some

probability vector p. Suppose η < r/Lsup(p) where Lsup(p)
def
= supi

Li

npi
, then with probability at

least 1− e−
r2t
2 over the distribution of ζ = (ζ1, . . . , ζt), we have that

E∥wt − w∗∥22 ≤
(
1− 2µ

η

r

(
1− η

r
Lsup(p)

))r t/2

∥w0 − w∗∥22 +
ησ2(p)

µr
(
1− η

rLsup(p)
) ,

where σ2(p) = 1
n2

∑n
i=1

1
pi
∥∇wfi(w∗)∥22.

As a result, given some error threshold ϵ > 0, by choosing η = µrϵ
2σ2(p)+2µLsup(p)ϵ

, with probability

at least 1− e−
r2t
2 we have that E∥wt − w∗∥2 ≤ ϵ for

t = 4 log

(
2ϵ0
ϵ

)
1

r

(
Lsup(p)

µ
+

σ2(p)

µ2ϵ

)
.

The first part of the proof of Theorem 2 is similar to that of Theorem 2.1 in Needell et al. [2016] in the
sense that it uses the same co-coercivity property. The second part is an application of Hoeffding’s
inequality to control the deviation of

∑
k≤t ζk from its mean.

Lemma 1 (Co-coercivity, Lemma A.1 in Needell et al. [2016]) Let f be a smooth function with
Lipschitz constant L, then for all x, y

∥∇f(x)−∇f(y)∥22 ≤ L⟨x− y,∇f(x)−∇f(y)⟩.

Now let ηk
def
= ηζk. We have that

∥wt+1 − w∗∥22 = ∥wt − w∗ − ηt∇wgit(wt)∥22
= ∥wt − w∗∥22 − 2ηt⟨wt − w∗,∇wgit(wt)⟩+ η2t ∥∇wgit(wt)∥22
≤ ∥wt − w∗∥22 − 2ηt⟨wt − w∗,∇wgit(wt)⟩+ 2η2t ∥∇wgit(wt)−∇wgit(w∗)∥22
+ 2η2t ∥∇wgit(w∗)∥22 (Jensen’s inequality)

≤ ∥wt − w∗∥22 − 2ηt⟨wt − w∗,∇wgit(wt)⟩

+ 2η2t
Lit

rnpit
⟨wt − w∗,∇wgit(wt)−∇wgit(w∗)⟩+ 2η2t ∥∇wgit(w∗)∥22 (Co-coercivity).

9

Taking the expectation with respect to it, and letting σ2(p) = 1
n2

∑n
i=1

1
pi
∥∇wfi(w∗)∥22, we obtain

E∥wt+1 − w∗∥22 ≤ ∥wt − w∗∥22 − 2
ηt
r
⟨wt − w∗,∇wF (wt)⟩

+ 2η2tE
Lit

rnpit
⟨wt − w∗,∇wgit(wt)−∇wgit(w∗)⟩+ 2

η2t
r2

σ2(p)

≤ ∥wt − w∗∥22 − 2
ηt
r
⟨wt − w∗,∇wF (wt)⟩

+ 2η2t
1

r
Lsup(p)E⟨wt − w∗,∇wgit(wt)−∇wgit(w∗)⟩+ 2

η2t
r2

σ2(p)

≤ ∥wt − w∗∥22 − 2
ηt
r
⟨wt − w∗,∇wF (wt)⟩

+ 2η2t
1

r2
Lsup(p)⟨wt − w∗,∇wF (wt)⟩+ 2

η2t
r2

σ2(p).

Using strong convexity of F we have

E∥wt+1 − w∗∥22 ≤
(
1− 2µ

ηt
r

(
1− ηt

r
Lsup(p)

))
∥wt − w∗∥22 + 2

η2t
r2

σ2(p).

Let λ = 1− 2µη
r

(
1− η

rLsup(p)
)

and χt =
∑t

j=1 ζj . Using this recursively, we obtain for all t

E∥wt+1 − w∗∥22 ≤ λχt∥w0 − w∗∥22 + 2
η2t
r2

σ2(p)

t∑
j=1

λχj

≤ λχt∥w0 − w∗∥22 + 2
η2σ2(p)

r2(1− λ)
.

Lemma 2 (Hoeffding’s inequality) Let X1, . . . , Xn be independent random variables such that
ai ≤ Xi ≤ bi almost surely. Let Sn = X1 + · · ·+Xn, then for all z > 0, we have that

P(|Sn − ESn| ≥ t) ≤ 2 exp

(
− 2z2∑n

i=1(bi − ai)2

)
.

Using Hoefdding’s inequality (Lemma 2) with z = rt/2, we have that with probability at least
1− 2 exp(− r2t

2)
χt ≥ rt− rt/2 = rt/2.

Hence, with probability at least 1− 2 exp(− r2t
2), we have that

E∥wt+1 − w∗∥22 ≤ λrt/2∥w0 − w∗∥22 + 2
η2σ2(p)

r2(1− λ)
. (6)

which concludes the first part of the proof.

Now let ϵ > 0 and consider the following choice of the learning rate η

η =
µϵ
r

2 1
r2σ

2(p) + 2µϵ
r2 Lsup(p)

.

With this choice, we have that

2
η2σ2(p)

r2(1− λ)
=

ησ2(p)

µrd
(
1− η

rLsup(p)
) ≤ ϵ

2
.

Now it suffices to control the first term of Eq. (6) to conclude. Let ϵ0 = ∥w0 − w∗∥22. In order to to
have λrt/2ϵ0 ≤ ϵ/2, it is sufficient to have

rt

2
× log (λ) ≤ log(ϵ/2ϵ0).

10

As in Needell et al. [2016], we leverage the inequality −1
log(1−x) ≤ 1/x with x = 1− λ to obtain a

sufficient condition for this statement to hold. Indeed, using this inequality, it is straightforward that
rt
2 × log (λ) ≤ log(ϵ/2ϵ0) is satisfied whenever

t ≥ 4 log

(
2ϵ0
ϵ

)
1

r

(
Lsup(p)

µ
+

σ2(p)

µ2ϵ

)
.

B Additional experiments

B.1 Data distribution in the linear model

4 2 0 2 4
y

2

1

0

1

2
y = w*x
y = w*x + 0.2

Figure 4: Samples from the dataset generated with Eq. (3).

B.2 Different learning rates

We show in Fig. 5 and Fig. 6 the results of LiPrune for different compression ratios with a different
learning rates. The results show consistent training acceleration with LiPrune , compared to random
pruning. In Fig. 6, the convergence is fast for both LiPrune and random pruning, with a small
advantage for LiPrune .

11

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Lo
ss

r = 0.1

0 5 10 15 20 25 30
0

1

2

3

4

5
r = 0.3

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

r = 0.5

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r = 0.7

No pruning
LiPrune
Random pruning

Figure 5: Experiments with the linear model (Eq. (3)) with batchsize= 10, learning rate=0.005.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Lo
ss

r = 0.1

0 5 10 15 20 25 30
0

1

2

3

4

5
r = 0.3

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

r = 0.5

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r = 0.7

No pruning
LiPrune
Random pruning

Figure 6: Experiments with the linear model (Eq. (3)) with batchsize= 10, learning rate=0.05.

B.3 Different batch sizes

In Fig. 7, Fig. 8, Fig. 9, we show the empirical results of LiPrune (Vs random pruning) for different
choices of the batch size. LiPrune seems to be robust to batch size as well, in the case of the linear
model. As the batch size increases (Fig. 9), the empirical advantage of LiPrune over random pruning
becomes less significant, which is expected since the pruned sets obtained using LiPrune and random
pruning have more and more shared samples.

12

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Lo
ss

r = 0.1

0 5 10 15 20 25 30
0

1

2

3

4

5
r = 0.3

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

r = 0.5

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r = 0.7

No pruning
LiPrune
Random pruning

Figure 7: Experiments with the linear model (Eq. (3)) with batchsize= 1, learning rate=0.01.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Lo
ss

r = 0.1

0 5 10 15 20 25 30
0

1

2

3

4

5
r = 0.3

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

r = 0.5

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r = 0.7

No pruning
LiPrune
Random pruning

Figure 8: Experiments with the linear model (Eq. (3)) with batchsize= 20, learning rate=0.01.

B.4 Non-Convex case: a simple example

We consider a simple non-linear model where the data is generated using the following rule (for
i ∈ [N], N = 1000)

yi = sin(w∗xi) + 0.1 εi, εi
iid∼ N (0, 1), (7)

where w∗ = 12 is fixed and xi ∼ N (0, 1) (standard normal distribution). See Fig. 10 for an
illustration of the dataset. We would like to fit a regression model of the form y = sin(wx) to
the data D = {(xi, yi), i = 1, . . . , N} by minimizing the mean squared loss. We show in Fig. 11

13

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Lo
ss

r = 0.1

0 5 10 15 20 25 30
0

1

2

3

4

5
r = 0.3

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

r = 0.5

0 5 10 15 20 25 30
SGD steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r = 0.7

No pruning
LiPrune
Random pruning

Figure 9: Experiments with the linear model (Eq. (3)) with batchsize= 100, learning rate=0.01.

the empirical loss landscape with N = 1000 samples. The figure illustrates, as expected, a highly
non-convex shape.

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

y y = sin(w*x)
y = sin(w*x) + 0.1

Figure 10: Samples from the data generation process given by Eq. (7)

in Fig. 12, we show the training curves obtained with LiPrune and random pruning. In this case,
there is no clear (acceleration) advantage of LiPrune .

B.5 ResNet experiments

In Figures 13 and ?? we report the results when pruning respectively at iteration 1 and 5 for different
pruning rates r when the learning rate is η = 0.01. Figures 15 and ?? show the same plots with
learning rate η = 0.1. We can see that the conclusions are identical. We also performed the same
experiments when pruning at iteration 15 and obtained very similar plots.

14

10 5 0 5 10 15
w

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Figure 11: The empirical loss function obtained with N = 1000 samples from the generation process
given by Eq. (7)

0 20 40 60 80 100
t

1.2

1.3

1.4

1.5

1.6

1.7

Lo
ss

LiPrune
Random pruning

Figure 12: Comparison of the training loss of LiPrune and random pruning. The model is trained
with 100 steps of SGD with batch size = 10, learning rate= 0.2, and initial weight w0 = 8.

15

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

70

80

To
p-

1
Er

ro
r

LiPrune
Random pruning

(a) d = 14, r = 0.2

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(b) d = 14, r = 0.5

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

70

To
p-

1
Er

ro
r

LiPrune
Random pruning

(c) d = 20, r = 0.2

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(d) d = 20, r = 0.5

Figure 13: Empirical evaluation of LiPrune (versus Random pruning) on CIFAR10 dataset with ResNet
architecture for different depths d ∈ {14, 20}, compression ratios r ∈ {0.2, 0.5}, and pruning iteration it = 1
(it = 1 corresponds to pruning at initialization). With learning rate η = 0.01

B.6 Experiments with learning rate 0.01, pruning iteration it = 1

0 20 40 60 80 100 120 140 160
Epoch

20

25

30

35

40

45

50

55

To
p-

1
Er

ro
r

LiPrune
Random pruning

(a) d = 14, r = 0.2

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(b) d = 14, r = 0.5

0 20 40 60 80 100 120 140 160
Epoch

20

25

30

35

40

45

50

55

To
p-

1
Er

ro
r

LiPrune
Random pruning

(c) d = 20, r = 0.2

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

To
p-

1
Er

ro
r

LiPrune
Random pruning

(d) d = 20, r = 0.5

Figure 14: Empirical evaluation of LiPrune (versus Random pruning) on CIFAR10 dataset with ResNet
architecture for different depths d ∈ {14, 20}, compression ratios r ∈ {0.2, 0.5}, and pruning iteration it = 5.
With learning rate η = 0.01

16

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

70

To
p-

1
Er

ro
r

LiPrune
Random pruning

(a) d = 14, r = 0.2

0 20 40 60 80 100 120 140 160
Epoch

10

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(b) d = 14, r = 0.5

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

70

80

To
p-

1
Er

ro
r

LiPrune
Random pruning

(c) d = 20, r = 0.2

0 20 40 60 80 100 120 140 160
Epoch

10

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(d) d = 20, r = 0.5

Figure 15: Empirical evaluation of LiPrune (versus Random pruning) on CIFAR10 dataset with ResNet
architecture for different depths d ∈ {14, 20}, compression ratios r ∈ {0.1, 0.2}, and pruning iteration it = 1
(it = 1 corresponds to pruning at initialization). With learning rate η = 0.1

0 20 40 60 80 100 120 140 160
Epoch

15

20

25

30

35

40

45

To
p-

1
Er

ro
r

LiPrune
Random pruning

(a) d = 14, r = 0.2

0 20 40 60 80 100 120 140 160
Epoch

10

20

30

40

50

To
p-

1
Er

ro
r

LiPrune
Random pruning

(b) d = 14, r = 0.5

0 20 40 60 80 100 120 140 160
Epoch

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(c) d = 20, r = 0.2

0 20 40 60 80 100 120 140 160
Epoch

10

20

30

40

50

60

To
p-

1
Er

ro
r

LiPrune
Random pruning

(d) d = 20, r = 0.5

Figure 16: Empirical evaluation of LiPrune (versus Random pruning) on CIFAR10 dataset with ResNet
architecture for different depths d ∈ {14, 20}, compression ratios r ∈ {0.2, 0.5}, and pruning iteration it = 5.
With learning rate η = 0.1

17

	Introduction
	SGD, Importance Sampling, and Stochastic data pruning
	Deterministic pruning
	Experiments
	Linear model
	Non-convex case: Neural Networks

	Discussion
	Proof of thm:sgdconvergence
	Additional experiments
	Data distribution in the linear model
	Different learning rates
	Different batch sizes
	Non-Convex case: a simple example
	ResNet experiments
	Experiments with learning rate 0.01, pruning iteration it = 1

