
CoT-Planner: Chain-of-Thoughts as the Content Planner for Few-shot
Table-to-Text Generation Reduces the Hallucinations from LLMs

Anonymous ACL submission

Abstract
Few-shot table-to-text generation seeks to gen-001
erate natural language descriptions for the002
given table in low-resource scenarios. Previous003
works mostly utilized Pre-trained Language004
Models (PLMs) even Large Language Mod-005
els (LLMs) to generate fluent descriptions of006
the tables. However, they are prone to halluci-007
nations that do not conform to the table. In this008
work, we propose CoT-Planner, a simple but ef-009
ficient Chain-of-Thoughts-based approach that010
can be used to reduce the generation of hal-011
lucinations in the few-shot table-to-text gen-012
eration. We first use a large language model013
(such as ChatGPT) to automatically generate014
ten intermediate content plans in the form of015
a Chain-of-Thoughts (CoT) for each table and016
corresponding description pair. Then, we re-017
fined the most accurate content plan for each018
sample and used the table and text pairs with019
the added content plan (CoT-Plan) as demon-020
strations for In-Context Learning (ICL). Both021
automatic and human evaluations on the numer-022
icNLG dataset show our method can effectively023
alleviate hallucinations, thereby improving fac-024
tual consistency in few-shot table-to-text gener-025
ation. The code and data will be released upon026
acceptance.027

1 Introduction028

Table-to-text generation (Table2Text) is an im-029

portant branch of Natural Language Generation030

(NLG), aiming at generating textual natural lan-031

guage descriptions that can fluently and precisely032

describe the given table. Table2Text has a wide033

variety of application scenarios, such as weather034

forecasting report (Liang et al., 2009), sport news035

generation (Wiseman et al., 2017), medical report036

generation (Nishino et al., 2020) and open-domain037

table-based question answering (Chen et al., 2020a,038

2021; Jiang et al., 2022).039

In recent years, supervised natural language gen-040

eration models have shown the ability to generate041

natural language text at an astounding degree of042

fluency and coherence, due to the advent of pre- 043

trained language models (PLMs) such as GPT-2 044

(Radford et al., 2019), T5 (Raffel et al., 2020), and 045

BART (Lewis et al., 2020). However, table-to-text 046

generation faces the dilemma of lack of labeled 047

data. In our daily lives, numerous statistical ta- 048

bles are produced, yet they lack nearly any cor- 049

responding descriptions in natural language. To 050

address this concern, researchers are exploring al- 051

ternative methods in the few-shot settings (Luo 052

et al., 2022). Fortunately, large language mod- 053

els (LLMs; Zhao et al., 2023) that contain hun- 054

dreds of billions (or more) of parameters, such as 055

GPT-3 (Brown et al., 2020), PaLM (Chowdhery 056

et al., 2022), Galactica (Taylor et al., 2022), and 057

LLaMA (Touvron et al., 2023a), can solve few-shot 058

tasks through in-context learning (ICL; Dong et al., 059

2023) which incorporates input-output demonstra- 060

tions into the prompt. More recently, ChatGPT1 061

and GPT-4 (OpenAI, 2023) benefit from instruction 062

fine-tuning and perform well on new tasks even in 063

the few-shot scenario. 064

Nevertheless, when presented with complex rea- 065

soning tasks, this simple ICL method usually per- 066

forms poorly. As shown in Figure 1, in the table-to- 067

text generation task involving numerical reasoning 068

(Suadaa et al., 2021), the simple ICL method is 069

prone to generating descriptions with various hal- 070

lucinations: (1) the fact exists, but the numerical 071

value is incorrect; (2) the fact does not exist, and the 072

numerical value is also incorrect; (3) the numerical 073

value is correct, but the fact does not exist. 074

Wei et al. (2022) find that chain-of-thought 075

prompting—a technique that involves incorpo- 076

rating step-by-step reasoning processes into the 077

demonstration—can enhance the reasoning abil- 078

ity of LLMs. Inspired by this discovery, in this 079

paper, we propose CoT-Planner, a simple but effi- 080

cient Chain-of-Thoughts-based few-shot table-to- 081

text generation approach to reduce the hallucina- 082

1https://openai.com/blog/chatgpt/
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Figure 1: Hallucinations of ChatGPT in the table-to-text generation focusing on numerical reasoning.

tions from LLMs. Specifically, we first utilize083

LLMs to automatically generate the intermediate084

content plan in the form of the Chain-of-Thoughts085

and then introduce the content plan with the origi-086

nal corresponding input and output as the example087

of In-Context Learning for the few-shot table-to-088

text generation. Compared with traditional two-089

stage methods (Puduppully et al., 2019; Moryossef090

et al., 2019a,b; Su et al., 2021b; Luo et al., 2022),091

our method does not require fine-tuning of the two-092

stage model with content planning data, which093

is particularly suitable for low-resource scenar-094

ios. Furthermore, descriptions generated under the095

guidance of an intermediate CoT-Plan are more096

trustworthy and interpretable than descriptions pro-097

duced using the typical ICL method. To evalu-098

ate the effectiveness of our approach, we conduct099

extensive experiments on a wide range of Large100

Language Models, such as ChatGPT, LLaMA-101

2(Touvron et al., 2023b), Alpaca(Taori et al., 2023),102

and Vicuna(Zheng et al., 2023). Our results reveal103

that LLMs can achieve remarkable performance104

with only 1 or 2 CoT-Plan demonstrations in the105

table-to-text generation task. Our human evalua-106

tion indicates that the CoT-Planner can effectively107

reduces the hallucinations generated by various108

LLMs in few-shot table-to-text generation.109

2 Related Work 110

2.1 Few-shot Table-to-Text Generation. 111

Ma et al. (2019) firstly studied table-to-text gener- 112

ation under the low-resource constraint, and sepa- 113

rated the generation process into two stages: key 114

fact prediction and surface realization. Pre-trained 115

language models (PLMs; Chen et al., 2020b) such 116

as GPT-2, T5, and BART have performed well 117

in various few-shot natural language generation 118

(NLG) tasks in recent years (Li et al., 2021). How- 119

ever, adapting pre-trained language models to the 120

table-to-text generation task requires serialization 121

for structured data, resulting in the loss of its struc- 122

tured information. To preserve the table’s structural 123

information and improve the text’s fidelity, Gong 124

et al. (2020) exploited multi-task learning with two 125

auxiliary tasks: table structure reconstruct from 126

GPT-2’s representation and the content matching 127

based on the optimal transport distance. Su et al. 128

(2021a) proposed the Prototype-to-Generate (P2G) 129

framework, which utilized the retrieved prototypes 130

to help the model bridge the structural gap between 131

tables and texts. And Ke et al. (2022) introduced 132

self-training to explicitly capture the relationship 133

between structured data and texts. To generate a co- 134

herent and faithful sentence with high coverage of 135
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ICL with CoT-Plan

Task-specific Prompt

Key Requirements

ChatGPT

(text-davinci-003)

(gpt-3.5-turbo)

…

Instruction

Tabular data

You are a researcher in the field of computer science and 

are currently writing a paper on AI.

I will give you a table made up of experimental results in 

json format. You need to analyze the data and generate a 

technical  analysis which can be directly put into an 

academic paper as the description of the table. 

It is advisable to imitate the writing style of academic 

papers, in which you need show the results and further 

illustrate them through numerical reasoning. 

Before generating the description text, you need to do a 

content planning process first. The content planning 

requires you to select and sort content.

Content planning:

1. Introduction to the problem of link prediction in AI

2. Description of the dataset used in the experiment (FB122 and WN18)

3. Overview of the models used in the experiment (TransE, TransH, TransR, KALE-

Trip, KALE-Pre, KALE-Joint)

4. Presentation of the experimental results in the table

5. Analysis of the experimental results:

a. Comparison of the models' performance on Test-I, Test-II, and Test-ALL sets

b. Comparison of the models' performance on FB122 and WN18 datasets

c. Discussion of the results and their implications

CoT-Plan

Please generate an intermediate content plan based on the provided structured 

input and corresponding description text.

The tabular data: [Tabular data].

Here are some examples:

The tabular data: [Tabular data].

Intermediate content plan: [CoT-Plan]

The corresponding description: [Textual description].

Verified and Refined by Human 

Candidate

CoT-Plan-0

Candidate

CoT-Plan-2

Candidate

CoT-Plan-9

Candidate

CoT-Plan-10
…

The corresponding description: [Textual description].

Candidate CoT-Plan Set

LLaMA-2

Vicuna

LLaMA-2

Vicuna

ChatGPT

(text-davinci-003)

(gpt-3.5-turbo)

Alpaca

Alpaca

LLMs

LLMs

Role Setting

Task Objectives

Figure 2: The overview of the proposed CoT-Planner approach. Left: Semi-automatic CoT-Plan; Right: In-Context
Learning with CoT-Plan.

table slots, Zhao et al. (2021) proposed a table slot136

attention mechanism to empower the model gener-137

alization ability in inference and designed a mem-138

ory unit to monitor the visits of each table slot. Li139

et al. (2023) introduced a unified representation for140

knowledge graphs, tables, and meaning represen-141

tations, which led to significant improvements in142

transfer learning scenarios across structured forms143

in the few-shot settings. Inspired by prompt tuning144

that was first proposed by GPT-3, Luo et al. (2022)145

prepended a task-specific prefix for the PLMs to146

make the table structure better fit the pre-trained147

input. Jiang et al. (2023) developed an Iterative148

Reading-then-Reasoning (IRR) approach to sup-149

port large language models (LLMs) in reading and150

reasoning on the structured data with the help of151

external interfaces. Different from the above stud-152

ies, we focus on how to reduce the hallucinations153

from LLMs in few-shot table-to-text generation.154

2.2 Chain-of-Thoughts Reasoning with LLMs.155

While LLMs have shown remarkably effective in a156

range of NLP tasks, their capacity for reasoning is157

often seen as a drawback. Even worse, this capabil-158

ity cannot be gained simply by increasing the size159

of the model. It has recently been found that LLMs160

can do intricate reasoning over text when they are161

given the Chain-of-Thoughts prompting(Wei et al.,162

2022). CoT prompting allows the model to learn 163

more precisely about the reasoning process and the 164

complexities of the queries. And Wang et al. (2023) 165

propose to use self-consistency with CoT to fur- 166

ther improve performance. Besides, the Chain-of- 167

Symbol (CoS; Hu et al., 2023) represents the com- 168

plex environments with condensed symbolic chain 169

representations during planning in symbolic reason- 170

ing. The original chain structure naturally limits 171

the scope of exploration. Tree of Thoughts (ToT; 172

Yao et al., 2023), a variant of CoT, allows LLMs 173

to perform deliberate decision-making by consid- 174

ering multiple different reasoning paths and self- 175

evaluating choices to decide the next course of ac- 176

tion. Skeleton-of-Thought (SoT; Ning et al., 2023) 177

is another variant of ToT, which decomposes a prob- 178

lem into subproblems that can be processed in par- 179

allel. Furthermore, Graph of Thoughts (GoT; Besta 180

et al., 2023; Lei et al., 2023) additionally introduces 181

aggregation and refinement operations compared to 182

the ToT. However, current research does not delve 183

into the ability of Chain-of-Thoughts prompting 184

with LLMs to perform numerical reasoning on ta- 185

bles (Chen, 2023). In this paper, we are specifically 186

interested in understanding LLMs’ capability to 187

reason over numerical tables with CoT-Planner, es- 188

pecially in data-to-text generation tasks. 189
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3 CoT-Planner190

In this section, we present the proposed CoT-191

Planner approach for the few-shot table-to-text gen-192

eration task. Figure 2 depicts the overall architec-193

ture of our approach. As shown in the figure, the194

CoT-Planner framework consists of two subtasks:195

(1) Semi-automatic CoT-Plan and (2) In-Context196

Learning with CoT-Plan. We begin by showing197

in Section 3.1 how to semi-automatically generate198

the CoT-Plan (the content plan in the form of the199

Chain-of-Thoughts) in zero-shot scenarios. Next,200

in Section 3.2, we demonstrate the process of In-201

Context Learning with CoT-Plan for the few-shot202

table-to-text generation task.203

3.1 Semi-automatic CoT-Plan.204

Semi-automatic CoT-Plan integrates the advan-205

tages of both manual and automatic construction206

methods (Chu et al., 2023). Specifically, it first207

generates the corresponding CoT-Plan for each208

table-description pair directly using a large lan-209

guage model such as ChatGPT, as illustrated in210

Figure 2 (left). Inspired by zero-shot-CoT (Kojima211

et al., 2022), we implemented zero-shot content212

planning using just one simple prompt with the213

table-description pair. To ensure that the gener-214

ated CoT-Plan is more reliable, we repeated the215

above operation ten times, thus forming a set of 10216

candidate CoT-Plan for each example. The candi-217

date CoT-Plan set is then verified and refined by218

human experts: (1) verifying the candidate CoT-219

Plan by comparing the factual consistency between220

each candidate CoT-Plan and the corresponding221

table; (2) refining the verified candidate CoT-Plan222

by removing redundant content and supplement-223

ing sentences with insufficient explanations. Each224

training example finally forms a high-quality CoT-225

Plan for subsequent In-Context Learning. The226

semi-automatic CoT-Plan reduces the workload of227

manual writing while introducing manual quality228

inspection to ensure the quality of CoT-Plan and en-229

hance the reasoning ability and stability of LLMs.230

3.2 In-Context Learning with CoT-Plan.231

As shown in Figure 2 (right), for the Table2Text232

task, the input to the LLMs consists of 6 parts:233

• Role Setting (RS): You are a researcher in234

the field of computer science and are currently235

writing a paper on AI.236

• Task Objectives (TO): I will give you a table237

made up of experimental results in json format.238

You need to analyze the data and generate a 239

technical analysis which can be directly put 240

into an academic paper as the description of 241

the table. 242

• Key Requirements (KR): It is advisable to 243

imitate the writing style of academic papers, 244

in which you need to show the results and 245

further illustrate them through numerical rea- 246

soning. 247

• Task-specific Prompt (TSP): Before gener- 248

ating the description text, you need to do a 249

content planning process first. This process 250

requires you to select and sort content. 251

• ICL with CoT-Plan. Conventional ICL 252

only incorporates input-output demonstrations 253

into prompts. However, in our proposed 254

method, the high-quality CoT-Plan generated 255

by the first subtask is also integrated into the 256

input-output demonstrations. Therefore, each 257

demonstration has three components: input X 258

(tabular data), CoT-Plan CPlan, and output Y 259

(textual description). 260

• Tabular data. This part is a test input 261

for the few-shot table-to-text generation task. 262

For complex tables with multiple rows and 263

columns, the input data will be serialized into 264

a long sequence. This helps to ensure that 265

the large language model can effectively pro- 266

cess and understand all of the information pre- 267

sented in the table, and generate accurate and 268

coherent descriptions. 269

The basic instruction IRS defines the role we 270

want the LLM to play. The basic instruction ITO 271

defines the specific objectives we want the LLM 272

to achieve for table-to-text generation tasks. The 273

basic instruction IKR further requires the large lan- 274

guage model to follow a specified writing style and 275

focus on numerical reasoning. Suppose there is a 276

probabilistic language model pLM . 277

In the conventional ICL scenario, the main objec- 278

tive is to maximize the likelihood of textual descrip- 279

tion Y = (y1, y2, · · · , y|Y |) given the input tabular 280

data X and prompt TICL, as shown in Equ(1, 2). 281

p(Y |TICL, X) =

|Y |∏
i=1

pLM (yi|TICL, X, y<i) (1) 282

283
TICL = {IRS , ITO, IKR, (t1, d1), · · · , (tn, dn)}

(2) 284

4



where tn and dn represent the tabular data of the n-285

th sample in the demonstrations, respectively. And286

|Y | represents the number of tokens of the textual287

description Y .288

In the CoT-Planner scenario, where the prompt289

TPlan contains the task-specific prompt ITSP and290

the demonstrations contain the content planning291

process CPlan, we need to maximize the likeli-292

hood of textual description Y and rationale R =293

(r1, r2, · · · , r|R|), as shown in Equ(3, 4, 5, 6, 7).294

p(Y |TPlan, X) = p(Y |TPlan, X,R)·p(R|TPlan, X)
(3)295296

p(R|TPlan, X) =

|R|∏
i=1

pLM (ri|TPlan, X, r<i)

(4)297298

p(Y |TPlan, X,R) =

|Y |∏
j=1

pLM (yj |TPlan, X,R, y<j)

(5)299300

TPlan = {IPlan, (t1, c1, d1), · · · , (tn, cn, dn)}
(6)301302

IPlan = {IRS , ITO, IKR, ITSP } (7)303

where cn represents the CoT-Plan (CPlan) of the n-304

th sample in the demonstrations, and |R| represents305

the number of tokens of the rationale R.306

4 Experimental Results307

4.1 Experimental Settings.308

Here, we introduce the dataset, evaluation metrics,309

and baselines used in our experiment.310

4.1.1 Dataset.311

NumericNLG Dataset The numericNLG dataset312

was released by Suadaa et al. (2021). The split313

settings for training, validation, and testing were314

1084:136:135 for the numericNLG dataset. Most315

of the table content in this dataset is numerical be-316

cause it shows the experimental results from the317

scientific papers. We use this dataset to evaluate318

the accuracy and factual consistency of the descrip-319

tions generated for tables with numerical content.320

Specifically, <table_id> serves as the table’s identi-321

fier, and <caption> is the table’s brief headline for322

each numericNLG table. Additionally, there are323

various views of a cell for each table cell, including324

<metric>, <header>, and <value> for each row and325

column. The difficulty of this dataset lies in the326

need for numerical reasoning.327

4.1.2 Automatic Evaluation Metrics. 328

We evaluate the generated description text from the 329

following three aspects: 330

(1) We first assessed the informativeness of the 331

generated texts using BLEU(Papineni et al., 2002), 332

METEOR(Lavie and Agarwal, 2007), and ROUGE- 333

L(Lin, 2004). 334

(2) We second computed the BERTScore(Zhang 335

et al., 2020) to evaluate the semantic similarity 336

between the generated texts and the ground-truth 337

table descriptions using contextualized token em- 338

beddings of pre-trained BERT(Devlin et al., 2019). 339

(3) The unfaithful generation usually contains 340

hallucinated content that can not be aligned to any 341

input structured data, especially in table-to-text gen- 342

eration. Thus, considering both the reference text 343

and table content, we also use the PARENT (Dhin- 344

gra et al., 2019) metric to evaluate the faithfulness 345

of the generated text to the input table. 346

4.1.3 Baselines. 347

In these experiments, we mainly take into account 348

the following baseline models. 349

(1) Non-pre-trained Models 350

Template-based Generator. Following previ- 351

ous methods Suadaa et al. (2021), we also use a 352

domain-specific template-based generator to gen- 353

erate two types of sentences in table descriptions: 354

table referring sentences and data description sen- 355

tences. 356

Pointer-Generator. Pointer-Generator (See 357

et al., 2017) is a seq2seq model with the attention 358

and copy mechanism. This model handles the out- 359

of-vocabulary problem in data-to-text generation 360

by combining copying from source text and gener- 361

ating from a vocabulary. We take table serialization 362

as input for the pointer-generator model. 363

(2) Pre-trained Language Models (PLMs) 364

Fine-tuned GPT-2. GPT-2 (Radford et al., 365

2019) is a pre-trained language model with a 366

decoder-only transformer architecture. In the fine- 367

tuning stage, we concatenate the serialized table 368

TS and corresponding description text Y to train 369

the language modeling of the pre-trained model. In 370

the inference phase, we used only the serialized 371

table TS as the input to generate description text Y 372

starting after the last token of the TS . 373

TableGPT. To simultaneously improve text 374

fidelity and leverage structural information, 375

TableGPT (Gong et al., 2020) utilizes a multi-task 376

learning paradigm that consists of two auxiliary 377

tasks: one task aligns the tables and the information 378
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE BERTS PARENT
Template-based Generator 10.28 5.52 2.83 1.14 11.31 11.49 86.88 17.15
Pointer-Generator 5.10 2.71 1.16 0.56 7.82 15.21 76.38 1.40
Fine-tuned GPT-2 16.13 9.02 4.68 2.20 10.14 17.48 85.12 6.56
TableGPT 18.69 8.21 3.31 1.51 11.06 16.90 - -
TASD 21.81 11.03 4.92 2.15 11.87 20.40 - -
Text-davinci-003 21.53 10.62 5.21 2.52 22.23 20.56 84.70 17.21
- with TSP 21.58 10.51 5.16 2.51 21.62 20.31 84.48 16.74
- with 1-shot ICL 23.89 11.94 5.93 2.94 22.76 22.09 85.71 15.29
- with TSP+1-shot CoT-Plan 24.15 11.97 5.90 2.79 23.60 21.45 85.72 13.67
GPT-3.5-turbo-16k 15.45 7.46 3.41 1.36 22.90 15.85 83.16 13.46
- with TSP 15.78 7.62 3.63 1.40 23.10 16.28 83.51 12.26
- with 1-shot ICL 15.79 7.58 3.60 1.47 23.11 15.89 83.56 13.59
- with TSP+1-shot CoT-Plan 17.64 8.30 3.94 1.57 23.16 17.15 84.11 13.05
LLaMA 2 13.73 4.31 1.31 0.37 15.15 13.01 82.96 4.67
- with TSP 12.84 4.11 1.25 0.44 15.24 12.28 82.68 5.07
- with 1-shot ICL 15.39 5.22 1.66 0.48 17.62 13.06 82.82 5.11
- with TSP+1-shot CoT-Plan 17.76 6.44 2.15 0.52 19.52 14.62 84.12 5.47
Alpaca-2 14.93 6.62 3.12 1.28 22.69 15.30 82.82 13.46
- with TSP 14.42 6.31 2.84 1.22 22.1 14.91 82.59 12.33
- with 1-shot ICL 14.59 5.53 1.81 0.59 19.30 13.14 82.13 6.85
- with TSP+1-shot CoT-Plan 18.32 7.82 3.25 1.23 20.70 16.89 83.93 8.26
Vicuna 7.76 3.62 1.63 0.72 15.8 12.32 80.78 7.73
- with TSP 7.80 3.53 1.51 0.73 15.37 12.19 80.56 6.59
- with 1-shot ICL 20.55 10.58 5.70 2.85 21.35 20.42 84.56 10.15
- with TSP+1-shot CoT-Plan 21.20 11.13 6.13 3.12 21.60 21.23 84.89 12.47

Table 1: Performance comparisons of the automatic evaluation on the numericNLG dataset. BERTS denotes
BERTScore.

in the generated text, while the other reconstructs379

the table structure from representations of GPT-2.380

TASD. TASD (Chen et al., 2022) first adopted a381

three-layered multi-head attention network to real-382

ize the table-structure-aware text generation model383

with the help of the pre-trained language model.384

Furthermore, a multi-pass decoder framework is385

adopted to enhance the capability of polishing gen-386

erated text for table descriptions.387

(3) Large Language Models (LLMs)388

This family of models contains tens or hundreds389

of billions of parameters. In this paper, we also390

add a baseline method that directly uses various391

LLMs (e.g. ChatGPT, LLaMA 2, Alpaca-2, and392

Vicuna) to accomplish the table-to-text generation393

task in a zero-shot manner. We use the same ba-394

sic instructions (role setting, task objective, and key395

requirements) in our approach to implement this396

baseline method, to ensure that the only distinction397

between our approach and this baseline method is398

the use of a task-specific prompt (TSP) and some399

examples of In-Context Learning (with CoT-Plan). 400

4.1.4 Implementation Details. 401

Concerning ChatGPT, we tested two models, Text- 402

davinci-003 and GPT-3.5-turbo-16k, respectively, 403

for inference on the numericNLG dataset. Their pa- 404

rameters are all 175B, but the former has a context 405

window of 4k, while the latter has a context win- 406

dow of 16k. We used a temperature of 0.5 without 407

any frequency penalty and top-k truncation. About 408

LLaMA 2, we mainly used the Llama2-13B-4k 409

version with the top-1 setting. For Alpaca-2, we 410

mainly tested the Chinese-Alpaca-2-13B-16k(Cui 411

et al., 2023) model on the numericNLG dataset. 412

For Vicuna, we mainly used the Vicuna-v1.5-13B- 413

16k model (top-k = 10, top-p = 0.5, temperature = 414

0.2) to generate descriptions of tabular data. 415

4.2 Main Results and Analysis. 416

Table 1 presents the automatic evaluation results 417

comparisons between CoT-Planner and other base- 418

lines on the numericNLG dataset. First, with the 419
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE BERTS PARENT
GPT-3.5-turbo-16k 15.45 7.46 3.41 1.36 22.90 15.85 83.16 13.46
- with TSP 15.78 7.62 3.63 1.40 23.10 16.28 83.51 12.26
- with 1-shot ICL 15.79 7.58 3.60 1.47 23.11 15.89 83.56 13.59
- with 1-shot CoT-Plan 14.08 6.66 3.00 1.19 22.72 14.92 83.22 11.72
- with TSP+1-shot CoT-Plan 17.64 8.30 3.94 1.57 23.16 17.15 84.11 13.05
- with 2-shot ICL 16.62 7.95 3.77 1.44 23.5 16.65 83.79 13.53
- with TSP+2-shot ICL 16.26 7.75 3.61 1.50 23.23 16.63 83.77 12.76
- with TSP+2-shot CoT-Plan 17.43 8.16 3.87 1.63 23.26 17.11 83.97 14.14
Alpaca-2 14.93 6.62 3.12 1.28 22.69 15.30 82.82 13.46
- with TSP 14.42 6.31 2.84 1.22 22.1 14.91 82.59 12.33
- with 1-shot ICL 14.59 5.53 1.81 0.59 19.30 13.14 82.13 6.85
- with 1-shot CoT-Plan 17.8 7.73 3.25 1.26 21.05 16.89 84.04 9.18
- with TSP+1-shot CoT-Plan 18.32 7.82 3.25 1.23 20.70 16.89 83.93 8.26
- with 2-shot ICL 14.12 6.35 2.86 1.09 22.84 12.86 82.85 6.03
- with TSP+2-shot ICL 12.75 5.50 2.41 0.90 20.89 12.37 81.60 6.74
- with TSP+2-shot CoT-Plan 12.53 4.80 1.38 0.32 16.47 13.18 82.18 4.04
Vicuna 7.76 3.62 1.63 0.72 15.8 12.32 80.78 7.73
- with TSP 7.80 3.53 1.51 0.73 15.37 12.19 80.56 6.59
- with 1-shot ICL 20.55 10.58 5.70 2.85 21.35 20.42 84.56 10.15
- with 1-shot CoT-Plan 19.94 10.56 5.83 2.94 21.25 20.97 84.86 10.38
- with TSP+1-shot CoT-Plan 21.20 11.13 6.13 3.12 21.60 21.23 84.89 12.47
- with 2-shot ICL 13.73 6.75 3.53 1.70 20.05 16.01 80.64 8.34
- with TSP+2-shot ICL 13.77 6.87 3.50 1.66 19.9 16.13 80.64 8.90
- with TSP+2-shot CoT-Plan 20.91 10.82 5.67 2.62 20.27 22.36 85.43 11.93

Table 2: Ablation experiments on the numericNLG dataset. BERTS denotes BERTScore.

basic instruction (role setting, task objectives, and420

key requirements) as the prompt, LLMs have the421

capability to directly generate fluent descriptions422

of the numerical tables, achieving comparable per-423

formance as full-data supervised-tuning methods,424

in a zero-shot setting without using any example.425

Second, our proposed method can significantly im-426

prove the performance of LLMs, especially GPT-427

3.5-turbo-16k, LLaMA 2, and Vicuna. It indicates428

the effectiveness of CoT-Planner in helping LLMs429

reasoning over numerical tables. However, the per-430

formance of Alpaca-2 with 1-shot ICL is worse431

than that of the zero-shot baseline method, indicat-432

ing that Alpaca-2 has trouble comprehending ex-433

amples of the data-to-text generation task. In PAR-434

ENT, hallucinations make it difficult to measure the435

true faithfulness of the generated text to the input ta-436

ble based on their scores. Therefore, table1 shows437

that this metric exhibits different trends in different438

LLMs. Overall, LLMs with CoT-Planner are more439

effective than ordinary ICL methods, achieving440

new state-of-the-art performance on the numeric-441

NLG dataset in the few-shot scenario.442

4.3 Ablation Study. 443

Moreover, to verify the effectiveness of different 444

modules, we compare CoT-Planner with its variants 445

on three models with the 16k context window since 446

the 4k context window can only contain at most 447

1-shot example. Table 2 shows our ablation experi- 448

mental results. We then analyze the following three 449

questions: 450

(1) Is only TSP effective? As can be seen in 451

Table 2, compared to the baseline method in a zero- 452

shot setting, the method that only added TSP did 453

not significantly improve the text generated by the 454

LLMs and even deteriorated the performance of 455

Vicuna and Alpaca-2. Moreover, the lack of exam- 456

ples of content planning in ICL makes it difficult 457

for LLMs to comprehend TSP accurately, which 458

leads to the generation of erroneous descriptions. 459

(2) Is only CoT-Plan effective? 460

Table 2 shows that the method with only 1-shot 461

CoT-Plan is slightly inferior to the method with 462

both TSP and 1-shot CoT-Plan added simultane- 463

ously. In conclusion, we can declare that the best 464

option is to combine the CoT-Plan with TSP. The 465
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two complement each other in terms of definition466

and instance, which helps the LLMs better under-467

stand specific tasks.468

(3) More examples are better?469

From Table 2, we can see that the 2-shot CoT-470

Plan is generally less effective than the 1-shot CoT-471

Plan on LLMs with the 16k context window, espe-472

cially on Alpaca-2 and Vicuna. Due to the average473

length of the CoT-Plan examples exceeding 3340474

words, the understanding ability of the LLMs for475

contextual examples exceeding 2-shot has signif-476

icantly decreased. To further explore this issue,477

we compared the results of GLM-4-9B-128k from478

1-shot to 5-shot. As can be seen in Table 4, as the479

number of examples increases, the overall perfor-480

mance of GLM-4-9B shows an obvious increase.481

4.4 Human Evaluation on Hallucinations.482

To better assess the quality of generated descrip-483

tions for tables with numerical content, we con-484

ducted human evaluation experiments targeting485

three types of hallucinations on complex tables.486

Specifically, we selected 17% of the 59 samples487

with complex tables (at least 7 rows and 4 columns)488

in the test set. Then we separately counted the pro-489

portion of three types of hallucinations in each490

sample and used their arithmetic mean as the fi-491

nal result. As shown in Table 3 and Figure 4, our492

method (CoT-Planner) effectively reduces the hallu-493

cinations generated by various large language mod-494

els, while ordinary ICL methods may even exacer-495

bate the hallucination problem of large language496

models. From the results of H-1, it can be observed497

that our method makes the large language mod-498

els more accurate in numerical reasoning, thereby499

generating descriptions with fewer numerical hal-500

lucinations. In addition, our method achieved the501

lowest proportion on H-2, indicating that it can at502

least accurately predict facts or values, especially503

on the GPT-3.5-turbo-16k model (H-2 = 0.00%).504

4.5 Case Study.505

In order to understand the effect of our method506

more intuitively, we select one representative ex-507

ample and present its descriptions generated by dif-508

ferent methods with the GPT-3.5-turbo-16k model509

in Figure 3. Under the zero-shot setting, the model510

generates a description containing four H-1 hallu-511

cinations. The reason for these hallucinations is512

that the model confuses the results of the baseline513

method and the proposed method. In the conven-514

tional ICL scenario, the description generated by515

Method H-1 H-2 H-3 Total
Text-davinci-003 13.61 3.58 8.25 25.44
- w/ 1-shot ICL 8.25 3.75 15.65 27.65
- w/ 1-shot CoT-Planner 2.50 2.92 6.17 11.59
GPT-3.5-turbo-16k 9.69 0.63 2.76 13.08
- w/ 1-shot ICL 6.25 3.28 5.59 15.12
- w/ 1-shot CoT-Planner 4.45 0.00 5.11 9.56
LLaMA 2 4.00 38.19 6.86 49.05
- w/ 1-shot ICL 9.57 45.00 1.25 55.82
- w/ 1-shot CoT-Planner 5.75 25.07 0.00 30.82
Alpaca-2 4.17 15.72 6.58 26.47
- w/ 1-shot ICL 3.76 15.98 16.68 36.42
- w/ 1-shot CoT-Planner 1.00 4.46 17.97 23.43
Vicuna 6.68 23.64 4.43 34.75
- w/ 1-shot ICL 7.00 22.00 5.00 34.00
- w/ 1-shot CoT-Planner 2.50 4.78 13.00 20.28

Table 3: Human Evaluation on Hallucinations. H-n
denotes the proportion of Hallucination-n type (%). Be-
sides, Total = H-1 + H-2 + H-3. CoT-Planner: TSP +
CoT-Plan. The proposed method (LLMs with 1-shot
CoT-Planner) achieved the best scores (bold).

the model not only failed to solve the H-1 halluci- 516

nation but also produced the more serious H-2 hal- 517

lucination. However, in the CoT-Planner scenario, 518

the description generated by the model does not 519

contain any hallucinations. This demonstrates that 520

our approach (CoT-Planner) effectively reduces hal- 521

lucinations generated by LLMs, particularly in nu- 522

merical reasoning over tables. 523

5 Conclusion 524

In this work, we present CoT-Planner, a simple but 525

efficient CoT-based approach that can be used to 526

reduce the generation of hallucinations from LLMs 527

in the few-shot table-to-text generation. In our 528

approach, we first utilize LLMs to automatically 529

generate the intermediate CoT-Plan in the form of a 530

CoT and then introduce the CoT-Plan with the orig- 531

inal corresponding input and output as the example 532

of In-Context Learning for the few-shot table-to- 533

text generation. To verify the effectiveness of our 534

approach, we implement our approach on various 535

LLMs. Experimental results on 5 LLMs show that 536

our approach can effectively reduce the hallucina- 537

tions from LLMs, thereby improving factual con- 538

sistency in few-shot table-to-text generation. We 539

also provide a thorough case study to highlight the 540

strengths and weaknesses of different approaches 541

to enlighten other researchers in related areas. 542
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Limitations543

Our approach has several limitations: (1) the con-544

textual examples chosen are not necessarily the545

most appropriate and there is still a lot of room546

for improvement. (2) this method is still costly be-547

cause it can only achieve good performance based548

on large language models. Therefore, we need to549

think about how to give similar reasoning pow-550

ers to smaller models. (3) although we believe551

that content planning in the form of a chain struc-552

ture is more suitable for table-to-text generation553

tasks, whether content planning in the form of trees554

or graphs is more effective requires further explo-555

ration.556
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Figure 3: A case on numericNLG dataset. Hallucination
1: The fact exists, but the numerical value is incorrect.
Hallucination 2: The fact does not exist, and the nu-
merical value is also incorrect. Hallucination 3: The
numerical value is correct, but the fact does not exist.
Top: tabular data of Test59.
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Settings Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE BERTS SUM
Zero-shot GLM-4-9B-128k 13.09 6.11 2.84 1.00 22.88 14.38 82.81 143.11

- w/ 1-shot ICL 16.16 7.14 2.86 1.02 22.56 15.54 83.70 148.98

Few-shot
- w/ 2-shot ICL 17.52 7.97 3.37 1.18 22.91 16.76 83.89 153.60

ICL
- w/ 3-shot ICL 17.46 7.98 3.53 1.40 23.43 16.86 84.02 154.68
- w/ 4-shot ICL 17.88 8.22 3.58 1.30 23.74 17.16 84.19 156.07
- w/ 5-shot ICL 18.29 8.48 3.77 1.40 23.73 17.19 84.23 157.09
- w/ 1-shot CoT-Planner 16.96 7.99 3.64 1.34 22.93 16.56 83.78 153.20

Few-shot
- w/ 2-shot CoT-Planner 17.84 8.21 3.60 1.42 23.12 17.10 84.24 155.53

CoT-Planner
- w/ 3-shot CoT-Planner 17.46 8.10 3.44 1.15 23.11 16.92 84.15 154.33
- w/ 4-shot CoT-Planner 17.86 8.40 3.71 1.28 23.58 17.22 84.14 156.19
- w/ 5-shot CoT-Planner 18.92 8.69 3.86 1.52 22.99 17.56 84.31 157.85

Table 4: Experimental results on GLM-4-9B-128k model. BERTS denotes BERTScore. SUM denotes summation.

B Hallucinations in Human Evaluation949

We have added a visualized figure to more intu-950

itively observe the proportion of hallucinations on951

different LLMs in human evaluation experiments.952

Figure 4: Total hallucinations of different LLMs in zero-
shot and few-shot settings.

C Demonstration examples for various953

few-shot settings954

We chose demonstration examples from the train-955

ing set that satisfy both features: complex tables956

and accurate descriptions involving numerical rea-957

soning. Specifically, in the 1-shot experiment,958

we used the 966th (containing 12 rows and 11959

columns) sample from the training set as an ex-960

ample; in the 2-shot experiment, we used the 966th961

and 1009th (containing 11 rows and 4 columns)962

samples from the training set as examples. Simi-963

larly, we selected samples 966th, 1009th, 1040th,964

1046th, and 1052nd as demonstration examples for 965

the 5-shot experiment on the GLM-4-9B model. 966

D GLM-4-9B-128k Results 967

The results of GLM-4-9B-128k2 from zero-shot to 968

5-shot in different settings are shown in Table 4. 969

We use the sum of automatic evaluation metrics 970

other than PARENT to represent the model’s over- 971

all performance. We can more intuitively see the 972

model’s overall performance trend from Figure 5.

Figure 5: The overall performance (SUM) of GLM-4-
9B-128k from zero-shot to 5-shot settings.

973

2https://huggingface.co/THUDM/glm-4-9b
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